1,065 research outputs found

    Structure Selection of Polynomial NARX Models using Two Dimensional (2D) Particle Swarms

    Full text link
    The present study applies a novel two-dimensional learning framework (2D-UPSO) based on particle swarms for structure selection of polynomial nonlinear auto-regressive with exogenous inputs (NARX) models. This learning approach explicitly incorporates the information about the cardinality (i.e., the number of terms) into the structure selection process. Initially, the effectiveness of the proposed approach was compared against the classical genetic algorithm (GA) based approach and it was demonstrated that the 2D-UPSO is superior. Further, since the performance of any meta-heuristic search algorithm is critically dependent on the choice of the fitness function, the efficacy of the proposed approach was investigated using two distinct information theoretic criteria such as Akaike and Bayesian information criterion. The robustness of this approach against various levels of measurement noise is also studied. Simulation results on various nonlinear systems demonstrate that the proposed algorithm could accurately determine the structure of the polynomial NARX model even under the influence of measurement noise

    Treasure hunt : a framework for cooperative, distributed parallel optimization

    Get PDF
    Orientador: Prof. Dr. Daniel WeingaertnerCoorientadora: Profa. Dra. Myriam Regattieri DelgadoTese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa : Curitiba, 27/05/2019Inclui referências: p. 18-20Área de concentração: Ciência da ComputaçãoResumo: Este trabalho propõe um framework multinível chamado Treasure Hunt, que é capaz de distribuir algoritmos de busca independentes para um grande número de nós de processamento. Com o objetivo de obter uma convergência conjunta entre os nós, este framework propõe um mecanismo de direcionamento que controla suavemente a cooperação entre múltiplas instâncias independentes do Treasure Hunt. A topologia em árvore proposta pelo Treasure Hunt garante a rápida propagação da informação pelos nós, ao mesmo tempo em que provê simutaneamente explorações (pelos nós-pai) e intensificações (pelos nós-filho), em vários níveis de granularidade, independentemente do número de nós na árvore. O Treasure Hunt tem boa tolerância à falhas e está parcialmente preparado para uma total tolerância à falhas. Como parte dos métodos desenvolvidos durante este trabalho, um método automatizado de Particionamento Iterativo foi proposto para controlar o balanceamento entre explorações e intensificações ao longo da busca. Uma Modelagem de Estabilização de Convergência para operar em modo Online também foi proposto, com o objetivo de encontrar pontos de parada com bom custo/benefício para os algoritmos de otimização que executam dentro das instâncias do Treasure Hunt. Experimentos em benchmarks clássicos, aleatórios e de competição, de vários tamanhos e complexidades, usando os algoritmos de busca PSO, DE e CCPSO2, mostram que o Treasure Hunt melhora as características inerentes destes algoritmos de busca. O Treasure Hunt faz com que os algoritmos de baixa performance se tornem comparáveis aos de boa performance, e os algoritmos de boa performance possam estender seus limites até problemas maiores. Experimentos distribuindo instâncias do Treasure Hunt, em uma rede cooperativa de até 160 processos, demonstram a escalabilidade robusta do framework, apresentando melhoras nos resultados mesmo quando o tempo de processamento é fixado (wall-clock) para todas as instâncias distribuídas do Treasure Hunt. Resultados demonstram que o mecanismo de amostragem fornecido pelo Treasure Hunt, aliado à maior cooperação entre as múltiplas populações em evolução, reduzem a necessidade de grandes populações e de algoritmos de busca complexos. Isto é especialmente importante em problemas de mundo real que possuem funções de fitness muito custosas. Palavras-chave: Inteligência artificial. Métodos de otimização. Algoritmos distribuídos. Modelagem de convergência. Alta dimensionalidade.Abstract: This work proposes a multilevel framework called Treasure Hunt, which is capable of distributing independent search algorithms to a large number of processing nodes. Aiming to obtain joint convergences between working nodes, Treasure Hunt proposes a driving mechanism that smoothly controls the cooperation between the multiple independent Treasure Hunt instances. The tree topology proposed by Treasure Hunt ensures quick propagation of information, while providing simultaneous explorations (by parents) and exploitations (by children), on several levels of granularity, regardless the number of nodes in the tree. Treasure Hunt has good fault tolerance and is partially prepared to full fault tolerance. As part of the methods developed during this work, an automated Iterative Partitioning method is proposed to control the balance between exploration and exploitation as the search progress. A Convergence Stabilization Modeling to operate in Online mode is also proposed, aiming to find good cost/benefit stopping points for the optimization algorithms running within the Treasure Hunt instances. Experiments on classic, random and competition benchmarks of various sizes and complexities, using the search algorithms PSO, DE and CCPSO2, show that Treasure Hunt boosts the inherent characteristics of these search algorithms. Treasure Hunt makes algorithms with poor performances to become comparable to good ones, and algorithms with good performances to be capable of extending their limits to larger problems. Experiments distributing Treasure Hunt instances in a cooperative network up to 160 processes show the robust scaling of the framework, presenting improved results even when fixing a wall-clock time for the instances. Results show that the sampling mechanism provided by Treasure Hunt, allied to the increased cooperation between multiple evolving populations, reduce the need for large population sizes and complex search algorithms. This is specially important on real-world problems with time-consuming fitness functions. Keywords: Artificial intelligence. Optimization methods. Distributed algorithms. Convergence modeling. High dimensionality

    Self-Selective Correlation Ship Tracking Method for Smart Ocean System

    Full text link
    In recent years, with the development of the marine industry, navigation environment becomes more complicated. Some artificial intelligence technologies, such as computer vision, can recognize, track and count the sailing ships to ensure the maritime security and facilitates the management for Smart Ocean System. Aiming at the scaling problem and boundary effect problem of traditional correlation filtering methods, we propose a self-selective correlation filtering method based on box regression (BRCF). The proposed method mainly include: 1) A self-selective model with negative samples mining method which effectively reduces the boundary effect in strengthening the classification ability of classifier at the same time; 2) A bounding box regression method combined with a key points matching method for the scale prediction, leading to a fast and efficient calculation. The experimental results show that the proposed method can effectively deal with the problem of ship size changes and background interference. The success rates and precisions were higher than Discriminative Scale Space Tracking (DSST) by over 8 percentage points on the marine traffic dataset of our laboratory. In terms of processing speed, the proposed method is higher than DSST by nearly 22 Frames Per Second (FPS)

    Optical Communication System for Remote Monitoring and Adaptive Control of Distributed Ground Sensors Exhibiting Collective Intelligence

    Full text link
    Comprehensive management of the battle-space has created new requirements in information management, communication, and interoperability as they effect surveillance and situational awareness. The objective of this proposal is to expand intelligent controls theory to produce a uniquely powerful implementation of distributed ground-based measurement incorporating both local collective behavior, and interoperative global optimization for sensor fusion and mission oversight. By using a layered hierarchal control architecture to orchestrate adaptive reconfiguration of autonomous robotic agents, we can improve overall robustness and functionality in dynamic tactical environments without information bottlenecks. In this concept, each sensor is equipped with a miniaturized optical reflectance modulator which is interactively monitored as a remote transponder using a covert laser communication protocol from a remote mothership or operative. Robot data-sharing at the ground level can be leveraged with global evaluation criteria, including terrain overlays and remote imaging data. Information sharing and distributed intelli- gence opens up a new class of remote-sensing applications in which small single-function autono- mous observers at the local level can collectively optimize and measure large scale ground-level signals. AS the need for coverage and the number of agents grows to improve spatial resolution, cooperative behavior orchestrated by a global situational awareness umbrella will be an essential ingredient to offset increasing bandwidth requirements within the net. A system of the type described in this proposal will be capable of sensitively detecting, tracking, and mapping spatial distributions of measurement signatures which are non-stationary or obscured by clutter and inter- fering obstacles by virtue of adaptive reconfiguration. This methodology could be used, for example, to field an adaptive ground-penetrating radar for detection of underground structures in urban environments and to detect chemical species concentrations in migrating plumes. Given is our research in these areas and a status report of our progress

    An Approach Based on Particle Swarm Optimization for Inspection of Spacecraft Hulls by a Swarm of Miniaturized Robots

    Get PDF
    The remoteness and hazards that are inherent to the operating environments of space infrastructures promote their need for automated robotic inspection. In particular, micrometeoroid and orbital debris impact and structural fatigue are common sources of damage to spacecraft hulls. Vibration sensing has been used to detect structural damage in spacecraft hulls as well as in structural health monitoring practices in industry by deploying static sensors. In this paper, we propose using a swarm of miniaturized vibration-sensing mobile robots realizing a network of mobile sensors. We present a distributed inspection algorithm based on the bio-inspired particle swarm optimization and evolutionary algorithm niching techniques to deliver the task of enumeration and localization of an a priori unknown number of vibration sources on a simplified 2.5D spacecraft surface. Our algorithm is deployed on a swarm of simulated cm-scale wheeled robots. These are guided in their inspection task by sensing vibrations arising from failure points on the surface which are detected by on-board accelerometers. We study three performance metrics: (1) proximity of the localized sources to the ground truth locations, (2) time to localize each source, and (3) time to finish the inspection task given a 75% inspection coverage threshold. We find that our swarm is able to successfully localize the present so

    Swarm Robotics

    Get PDF
    Collectively working robot teams can solve a problem more efficiently than a single robot, while also providing robustness and flexibility to the group. Swarm robotics model is a key component of a cooperative algorithm that controls the behaviors and interactions of all individuals. The robots in the swarm should have some basic functions, such as sensing, communicating, and monitoring, and satisfy the following properties

    Enhancing numerical modelling efficiency for electromagnetic simulation of physical layer components.

    Get PDF
    The purpose of this thesis is to present solutions to overcome several key difficulties that limit the application of numerical modelling in communication cable design and analysis. In particular, specific limiting factors are that simulations are time consuming, and the process of comparison requires skill and is poorly defined and understood. When much of the process of design consists of optimisation of performance within a well defined domain, the use of artificial intelligence techniques may reduce or remove the need for human interaction in the design process. The automation of human processes allows round-the-clock operation at a faster throughput. Achieving a speedup would permit greater exploration of the possible designs, improving understanding of the domain. This thesis presents work that relates to three facets of the efficiency of numerical modelling: minimizing simulation execution time, controlling optimization processes and quantifying comparisons of results. These topics are of interest because simulation times for most problems of interest run into tens of hours. The design process for most systems being modelled may be considered an optimisation process in so far as the design is improved based upon a comparison of the test results with a specification. Development of software to automate this process permits the improvements to continue outside working hours, and produces decisions unaffected by the psychological state of a human operator. Improved performance of simulation tools would facilitate exploration of more variations on a design, which would improve understanding of the problem domain, promoting a virtuous circle of design. The minimization of execution time was achieved through the development of a Parallel TLM Solver which did not use specialized hardware or a dedicated network. Its design was novel because it was intended to operate on a network of heterogeneous machines in a manner which was fault tolerant, and included a means to reduce vulnerability of simulated data without encryption. Optimisation processes were controlled by genetic algorithms and particle swarm optimisation which were novel applications in communication cable design. The work extended the range of cable parameters, reducing conductor diameters for twisted pair cables, and reducing optical coverage of screens for a given shielding effectiveness. Work on the comparison of results introduced ―Colour maps‖ as a way of displaying three scalar variables over a two-dimensional surface, and comparisons were quantified by extending 1D Feature Selective Validation (FSV) to two dimensions, using an ellipse shaped filter, in such a way that it could be extended to higher dimensions. In so doing, some problems with FSV were detected, and suggestions for overcoming these presented: such as the special case of zero valued DC signals. A re-description of Feature Selective Validation, using Jacobians and tensors is proposed, in order to facilitate its implementation in higher dimensional spaces

    Soft Computing Techiniques for the Protein Folding Problem on High Performance Computing Architectures

    Get PDF
    The protein-folding problem has been extensively studied during the last fifty years. The understanding of the dynamics of global shape of a protein and the influence on its biological function can help us to discover new and more effective drugs to deal with diseases of pharmacological relevance. Different computational approaches have been developed by different researchers in order to foresee the threedimensional arrangement of atoms of proteins from their sequences. However, the computational complexity of this problem makes mandatory the search for new models, novel algorithmic strategies and hardware platforms that provide solutions in a reasonable time frame. We present in this revision work the past and last tendencies regarding protein folding simulations from both perspectives; hardware and software. Of particular interest to us are both the use of inexact solutions to this computationally hard problem as well as which hardware platforms have been used for running this kind of Soft Computing techniques.This work is jointly supported by the FundaciónSéneca (Agencia Regional de Ciencia y Tecnología, Región de Murcia) under grants 15290/PI/2010 and 18946/JLI/13, by the Spanish MEC and European Commission FEDER under grant with reference TEC2012-37945-C02-02 and TIN2012-31345, by the Nils Coordinated Mobility under grant 012-ABEL-CM-2014A, in part financed by the European Regional Development Fund (ERDF). We also thank NVIDIA for hardware donation within UCAM GPU educational and research centers.Ingeniería, Industria y Construcció

    Swarming Reconnaissance Using Unmanned Aerial Vehicles in a Parallel Discrete Event Simulation

    Get PDF
    Current military affairs indicate that future military warfare requires safer, more accurate, and more fault-tolerant weapons systems. Unmanned Aerial Vehicles (UAV) are one answer to this military requirement. Technology in the UAV arena is moving toward smaller and more capable systems and is becoming available at a fraction of the cost. Exploiting the advances in these miniaturized flying vehicles is the aim of this research. How are the UAVs employed for the future military? The concept of operations for a micro-UAV system is adopted from nature from the appearance of flocking birds, movement of a school of fish, and swarming bees among others. All of these natural phenomena have a common thread: a global action resulting from many small individual actions. This emergent behavior is the aggregate result of many simple interactions occurring within the flock, school, or swarm. In a similar manner, a more robust weapon system uses emergent behavior resulting in no weakest link because the system itself is made up of simple interactions by hundreds or thousands of homogeneous UAVs. The global system in this research is referred to as a swarm. Losing one or a few individual unmanned vehicles would not dramatically impact the swarms ability to complete the mission or cause harm to any human operator. Swarming reconnaissance is the emergent behavior of swarms to perform a reconnaissance operation. An in-depth look at the design of a reconnaissance swarming mission is studied. A taxonomy of passive reconnaissance applications is developed to address feasibility. Evaluation of algorithms for swarm movement, communication, sensor input/analysis, targeting, and network topology result in priorities of each model\u27s desired features. After a thorough selection process of available implementations, a subset of those models are integrated and built upon resulting in a simulation that explores the innovations of swarming UAVs
    corecore