42,045 research outputs found

    A performance model of multicast communication in wormhole-routed networks on-chip

    Get PDF
    Collective communication operations form a part of overall traffic in most applications running on platforms employing direct interconnection networks. This paper presents a novel analytical model to compute communication latency of multicast as a widely used collective communication operation. The novelty of the model lies in its ability to predict the latency of the multicast communication in wormhole-routed architectures employing asynchronous multi-port routers scheme. The model is applied to the Quarc NoC and its validity is verified by comparing the model predictions against the results obtained from a discrete-event simulator developed using OMNET++

    A communication model of broadcast in wormhole-routed networks on-chip

    Get PDF
    This paper presents a novel analytical model to compute communication latency of broadcast as the most fundamental collective communication operation. The novelty of the model lies in its ability to predict the broadcast communication latency in wormhole-routed architectures employing asynchronous multi-port routers scheme. The model is applied to the Quarc NoC and its validity is verified by comparing the model predictions against the results obtained from a discrete-event simulator developed using OMNET++

    Optimising Simulation Data Structures for the Xeon Phi

    Get PDF
    In this paper, we propose a lock-free architecture to accelerate logic gate circuit simulation using SIMD multi-core machines. We evaluate its performance on different test circuits simulated on the Intel Xeon Phi and 2 other machines. Comparisons are presented of this software/hardware combination with reported performances of GPU and other multi-core simulation platforms. Comparisons are also given between the lock free architecture and a leading commercial simulator running on the same Intel hardware

    Distributed Verification of Rare Properties using Importance Splitting Observers

    Get PDF
    Rare properties remain a challenge for statistical model checking (SMC) due to the quadratic scaling of variance with rarity. We address this with a variance reduction framework based on lightweight importance splitting observers. These expose the model-property automaton to allow the construction of score functions for high performance algorithms. The confidence intervals defined for importance splitting make it appealing for SMC, but optimising its performance in the standard way makes distribution inefficient. We show how it is possible to achieve equivalently good results in less time by distributing simpler algorithms. We first explore the challenges posed by importance splitting and present an algorithm optimised for distribution. We then define a specific bounded time logic that is compiled into memory-efficient observers to monitor executions. Finally, we demonstrate our framework on a number of challenging case studies

    Efficient Simulation of Structural Faults for the Reliability Evaluation at System-Level

    Get PDF
    In recent technology nodes, reliability is considered a part of the standard design ¿ow at all levels of embedded system design. While techniques that use only low-level models at gate- and register transfer-level offer high accuracy, they are too inefficient to consider the overall application of the embedded system. Multi-level models with high abstraction are essential to efficiently evaluate the impact of physical defects on the system. This paper provides a methodology that leverages state-of-the-art techniques for efficient fault simulation of structural faults together with transaction-level modeling. This way it is possible to accurately evaluate the impact of the faults on the entire hardware/software system. A case study of a system consisting of hardware and software for image compression and data encryption is presented and the method is compared to a standard gate/RT mixed-level approac

    Parallelization of cycle-based logic simulation

    Get PDF
    Verification of digital circuits by Cycle-based simulation can be performed in parallel. The parallel implementation requires two phases: the compilation phase, that sets up the data needed for the execution of the simulation, and the simulation phase, that consists in executing the parallel simulation of the considered circuit for a certain number of cycles. During the early phase of design, compilation phase has to be repeated each time a bug is found. Thus, if the time of the compilation phase is too high, the advantages stemming from the parallel approach may be lost. In this work we propose an effective version of the compilation phase and compute the corresponding execution time. We also analyze the percentage of execution time required by the different steps of the compilation phase for a set of literature benchmarks. Further, we implemented the simulation phase exploiting the GPU architecture, and we computed the execution times for a set of benchmarks obtaining values comparable with literature ones. Finally, we implemented the sequential version of the Cycle-based simulation in such a way that the execution time is optimized. We used the sequential values to compute the speedup of the parallel version for the considered set of benchmarks

    Performance evaluation of two-fuzzy based cluster head selection systems for wireless sensor networks

    Get PDF
    Sensor networks supported by recent technological advances in low power wireless communications along with silicon integration of various functionalities are emerging as a critically important computer class that enable novel and low cost applications. There are many fundamental problems that sensor networks research will have to address in order to ensure a reasonable degree of cost and system quality. Cluster formation and cluster head selection are important problems in sensor network applications and can drastically affect the network’s communication energy dissipation. However, selecting of the cluster head is not easy in different environments which may have different characteristics. In this paper, in order to deal with this problem, we propose two fuzzy-based systems for cluster head selection in sensor networks. We call these systems: FCHS System1 and FCHS System2. We evaluate the proposed systems by simulations and have shown that FCHS System2 make a good selection of the cluster head compared with FCHS System1 and another previous system.Peer ReviewedPostprint (published version

    Practical applications of probabilistic model checking to communication protocols

    Get PDF
    Probabilistic model checking is a formal verification technique for the analysis of systems that exhibit stochastic behaviour. It has been successfully employed in an extremely wide array of application domains including, for example, communication and multimedia protocols, security and power management. In this chapter we focus on the applicability of these techniques to the analysis of communication protocols. An analysis of the performance of such systems must successfully incorporate several crucial aspects, including concurrency between multiple components, real-time constraints and randomisation. Probabilistic model checking, in particular using probabilistic timed automata, is well suited to such an analysis. We provide an overview of this area, with emphasis on an industrially relevant case study: the IEEE 802.3 (CSMA/CD) protocol. We also discuss two contrasting approaches to the implementation of probabilistic model checking, namely those based on numerical computation and those based on discrete-event simulation. Using results from the two tools PRISM and APMC, we summarise the advantages, disadvantages and trade-offs associated with these techniques
    corecore