
June 28, 2017 12:37 WSPC/INSTRUCTION FILE main

Parallel Processing Letters
c© World Scientific Publishing Company

Parallelization of Cycle-based Logic Simulation

Toni Mancini, Annalisa Massini, Enrico Tronci

Computer Science Department, Sapienza University of Rome
via Salaria 113 - 00198 Rome, Italy

{tmancini,massini,tronci}@di.uniroma1.it

Received July 2016
Revised March 2017

Communicated by C. Stirling

ABSTRACT

Verification of digital circuits by Cycle-based simulation can be performed in parallel. The par-
allel implementation requires two phases: the compilation phase, that sets up the data needed for the
execution of the simulation, and the simulation phase, that consists in executing the parallel simulation
of the considered circuit for a certain number of cycles. During the early phase of design, compilation
phase has to be repeated each time a bug is found. Thus, if the time of the compilation phase is too
high, the advantages stemming from the parallel approach may be lost. In this work we propose an
effective version of the compilation phase and compute the corresponding execution time. We also
analyze the percentage of execution time required by the different steps of the compilation phase for
a set of literature benchmarks. Further, we implemented the simulation phase exploiting the GPU ar-
chitecture, and we computed the execution times for a set of benchmarks obtaining values comparable
with literature ones. Finally, we implemented the sequential version of the Cycle-based simulation in
such a way that the execution time is optimized. We used the sequential values to compute the speedup
of the parallel version for the considered set of benchmarks.

Keywords: Cycle based simulation, And Inverter Graph, GPU

1. Introduction

Design of digital circuits relies on logic simulation, that is part of the verification process.
Logic simulation is used to verify the expected behavior of a new circuit design. For this
reason, the simulation of a circuit is executed many times during the verification process,
in particular in the early phase of design. The verification process is repeated until the new
circuit design has been verified to implement the design objectives. Nevertheless, several
execution scenarios can remain unverified, and circuit designs can be released with latent
bugs.

When a circuit design consists of millions of gates, the logic simulation is a highly time
consuming task, and can be the bottleneck in the design process.

Cycle-Based Simulation (CBS), or oblivious simulation, is a commonly used technique
for the simulation of logic circuits, where each gate is evaluated during each simulation
cycle. Instead, in Event-Based Simulation (EBS), output value of a gate is computed only

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/141694629?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


June 28, 2017 12:37 WSPC/INSTRUCTION FILE main

2 Parallel Processing Letters

if at least one of its input values has changed. CBS provides a very simple scheduling
and static data structures. Conversely, EBS requires dynamic analysis for scheduling gates
producing a new output. CBS static policy of gate evaluation makes this kind of simulation
more suitable for the parallelization.

One way to accelerate the logic simulation of digital circuits is to exploit Graphics
Processing Units (GPUs) and general purpose programming models such as Compute Uni-
fied Device Architecture (CUDA), [1, 2], for the parallelization. Examples of parallel ap-
proaches to logic simulation have been proposed in [3, 4, 5, 6, 7, 8, 9, 10, 11]. Cycle-based
simulation is considered in [3] and in [8]. In particular, both solutions describe a paralleliza-
tion algorithm consisting of two phases: the compilation phase, devoted to prepare the data
structures, and the simulation phase, that simulates the considered circuit in parallel.

During the early phase of digital circuit design, the simulation can be interrupted early
because of bugs. Consequently, if the parallel version of the algorithm is used, the compi-
lation phase can be repeated many times.

In this work, we want to answer to the question: During the design process, is it more
advantageous to use the (optimized) sequential implementation for the Cycle-based sim-
ulation of the circuit, or the parallel one? This question arises from the observation that
when using the parallel version, before running the simulation phase, we need to run the
(preparatory) compilation phase. Then, we need to answer also to the question: How much
expensive is the compilation phase?

To answer these questions, we analyze the compilation phase proposed in [8], and com-
pute the execution time for a set of benchmarks. We also compute the execution time of the
different steps of this phase and study which step takes the longest time in percentage. In
order to evaluate our implementation of the compilation phase, we also implemented the
simulation phase, following the approach described in [8], thus realizing the whole parallel
algorithm. Our implementation gives execution time values comparable to those listed in
[8]. Moreover, we realized an implementation of the sequential version of the simulation
algorithm and computed the speedup of the parallel version.

In summary, the contribution of this paper is:

(1) Explicit computation of the execution time for the compilation phase, not given in
[8]. This information is useful to understand which version, among sequential and
parallel, is more convenient during the early phase of design, when compilation
phase has to be repeated each time a bug is found.

(2) Effective exploitation of the AIG simulator features resulting in a substancial re-
duction of the sequential simulation time with respect to that given in [8].

(3) A tight estimation of the speedup of the parallel version, obtained using the opti-
mized sequential execution time. It is worth noting that speedup values can appear
worse with respect to those presented in [8]. This is due to the fact that our speedup
time values refer to the optimized sequential implementation of the algorithm, that
provides lower time values.



June 28, 2017 12:37 WSPC/INSTRUCTION FILE main

Parallel Processing Letters 3

Fig. 1. A circuit consisting of AND gates and latches

2. Sequential and Parallel Cycle-based simulation

In this work we consider circuits consisting of AND gates with two inputs, NOT gates
and D-type latches having one input. To represent logic circuits, we consider And Inverter
Graphs (AIGs), since they provide an efficient representation for manipulating boolean
functions. AIGs consist of two input nodes representing AND gates, whereas the NOT
gates are represented as attributes (logical negation) of the edges. An example of circuit is
shown in Figure 1.

The sequential Cycle-based simulation of a circuit is based on the following steps:
simulation of combinational elements, simulation of sequential elements, generation of
output values using input values and present state latch values, according to the scheme
shown in Algorithm 1 (see also [8]).

1 Input: circuit, number of cycles of the simulation, input values
2 Output: output values
3 For each cycle
4 simulation of combinational elements
5 simulation of sequential elements
6 generation of output values using input values and present state latch values

Algorithm 1: Sequential Cycle-Based simulation algorithm

To parallelize the circuit simulation, the circuit can be partitioned in such a way that
each group of gates can be simulated independently. The parallelized algorithm consists of



June 28, 2017 12:37 WSPC/INSTRUCTION FILE main

4 Parallel Processing Letters

two phases, as described in [3] and [8]: namely, the compilation phase and the simulation
phase. A similar approach is also used in [12] and [13].

During the compilation phase, data for the parallel execution of the simulation are pre-
pared. To this end the levelization of gates and clustering operations are performed. Lev-
elization is used to determine the gate dependencies; gates on the same level can be sim-
ulated at the same time. Clustering is used to partition the circuit in sub-circuits, namely
clusters, each of which can be simulated independently. Each cluster will be simulated
by a CUDA block. Clustering operation consists of three steps: logic cones construction,
clustering of cones and cluster balancing. In particular, cluster balancing is used to obtain
clusters whose levels have more or less the same number of gates, that is clusters having
a rectangular shape. The aim of this step is to make the use of CUDA threads as efficient
as possible. In fact, during the simulation phase, thousands of CUDA threads will simulate
the circuit using the clusters produced by means of the compilation phase.

A scheme of the parallel algorithm is shown in Algorithm 2 (see also [8]).

1 Input: Circuit, Cycle number of the simulation
2 Output: Output values
3 Compilation Phase
4 Levelization of gates
5 Clustering
6 Logic cones construction
7 Clustering of cones
8 Cluster Balancing
9 Simulation phase

10 Data transfer from host to device (cluster representation)
11 Random input generation on the GPU
12 Parallel simulation of all clusters on the device and computation of output values
13 Output transfer from device to host

Algorithm 2: Cycle-based Parallel Simulation algorithm by using a GPU

3. Analysis and Implementation of the Compilation Phase

In this Section, we describe the compilation phase. In [8] the execution time values of
the compilation phase are not given. On the contrary, only values of the parallel simula-
tion phase are considered both for the comparison with the sequential version and for the
computation of the speedup values.

In the following, we describe our implementation of the two stages of the compilation
phase: Levelization and Clustering.



June 28, 2017 12:37 WSPC/INSTRUCTION FILE main

Parallel Processing Letters 5

3.1. Levelization

This stage is devoted to arrange gates in levels. The level where primary inputs and present
state values of sequential elements are located is denoted as Level 0 (see the example in
Figure 2). Computing the level to which a gate belongs to is equivalent to compute the max-
imum distance between the gate and level zero. In general the computation of the longest
path in a graph is an NP-hard problem. But, in the case of a direct acyclic graph, a lin-
ear algorithm can be used. Since we use AIGs to represent circuits, we have adopted the
algorithm described in [14] and sketched in Algorithm 3.

1 Find a topological order on the given DAG
2 For each vertex v of the DAG, by using the topological order, compute the length of

the longest path ending in v by adding 1 to the length of the longest path of its
adjacent neighbors.

3 If v has not adjacent neighbours, set to zero the length of the longest path ending in
v.

Algorithm 3: Length of the longest path on a DAG

Fig. 2. Circuit levelization of circuit in Figure 1

The result of the levelization operation is shown in Figure 2. Note that latches are not
shown because the levelization is performed only on combinational elements. Instead, the
present values of latches are listed as inputs (PLi), whereas the next values of latches are
shown as outputs (NLi). Note also that nodes on the lower level (Level 0) can receive only
values from Level 0. For example, gate G8 receives two values coming from Level 0, and



June 28, 2017 12:37 WSPC/INSTRUCTION FILE main

6 Parallel Processing Letters

its level is Level 0. Gate G11 receives one input value coming from Level 0, and the value
produced as output by G8 at Level 1, then G11 level is Level 1.

3.2. Clustering

The goal of the clustering stage is to obtain balanced clusters. The clustering operation
requires three steps, whose implementation is described in the following paragraphs.

3.2.1. First Step – Logic cones construction

The construction of the logic cones consists in creating cones of influence of circuit outputs
[15, 16]. During this step, we build as many cones as the number of outputs and latches.
The result of this step is shown in Figure 3.

Fig. 3. Construction of logic cones for circuit in Figure 2.

3.2.2. Second step – Clustering of cones

The cones obtained in the previous step can have very different sizes, as shown in Figure 3.
Hence, once the logic cones are built, they are merged to obtain clusters similar in size,
with the characteristic of not overlapping with each other. This constraint can require the
replication of a certain number of gates. To minimize the number of replicated gates, first
the maximum number of gates that a cluster can contain is computed. Then, a cone is
randomly chosen and it is merged with cones whose intersection with this random selected
cone is maximum. Cone merging is executed by adding a new cone to the cluster until
the maximum number of gates in the cluster is obtained. The maximum number of gates
that a cluster can contain is obtained by dividing the number of gates (considering also the



June 28, 2017 12:37 WSPC/INSTRUCTION FILE main

Parallel Processing Letters 7

replicated gates) by the number of CUDA blocks. This number depends on the considered
GPU and on characteristics of the circuit.

1 Input: cones S1, . . . , Sm

2 Output: map M mapping a key-pair (i, j) (denoting the pair of cones Si and Sj) to
the cardinality of the intersection between cones Si and Sj

3 for each cone Si

4 for each gate Gh in Si

5 E[h]← i

6 for each element h (list) in E

7 for each index i in E[h]

8 for each index j > i in E[h]

9 M [(i, j)]+ = 1

Algorithm 4: Computation of intersections among all pairs of cones.

Computing the cardinality of the intersections among all pairs of cones is a time con-
suming task, that we executed by means of the technique described in Algorithm 4. In the
pseudocode, we use the array of lists E of length the number of gates of the circuit, where
element h is associated to gate Gh, and E[h] is the list of cones containing gate Gh.

After this step, trapezoidal clusters containing almost the same number of gates are
obtained, as shown in Figure 4.

Fig. 4. A trapezoidal cluster obtained by merging triangular cones.

The implementation of Logic cones construction and Clustering of cones steps has been
parallelized by using OpenMP.



June 28, 2017 12:37 WSPC/INSTRUCTION FILE main

8 Parallel Processing Letters

3.2.3. Third step – Cluster balancing

To balance the clusters, the average width W of clusters is computed. When a level has
a number of gates greater than W , the exceeding gates are moved to the upper level. To
preserve the dependence among gates, also gates depending from a repositioned gate are
moved up. To realize the move of a gate to the upper level, we insert a dummy gate in its
place and move the gate and its depending gates to upper levels as shown in Figure 5.

Fig. 5. Node move for cluster balancing.

Note that dummy nodes are added also when on a level there are less than W gates.
Hence, dummy nodes are inserted both to increase the number of nodes on a level, and to
reduce the number of nodes on levels having too large width. At the end of this step, we
have a set of clusters having the same width, and presenting different heights. Each cluster
will be assigned to a CUDA block. Figure 6 shows an unbalanced trapezoidal shaped cluster
and a (higher) balanced rectangular shaped cluster.

An approach similar to the Cluster balancing is also used in [17, 24].

4. Simulation Phase

In this section we describe our implementation of the parallel simulation phase.
The simulation phase consists of several for-loops, namely: a loop to transfer the vari-

ables from the global memory to the shared memory, a loop to simulate all gates on a level,
level by level, and a loop to update values in global memory, values that will be transferred
during the next iteration.

Note that the next state of each latch is computed in its block, but at the end of the
execution of the simulation of the whole circuit these values must be supplied to the clusters
needing them as input. This makes necessary the synchronization among blocks, obtained
by launching another kernel.

For the implementation of the simulation phase, we introduced a different way to gen-
erate inputs with respect to [8]. Our method consists in the generation of random inputs on
the GPU and represents an optimization. In fact, the random inputs generation allows both



June 28, 2017 12:37 WSPC/INSTRUCTION FILE main

Parallel Processing Letters 9

Fig. 6. A rectangular shaped cluster after the cluster balancing step.

a quicker execution and the elimination of communication between CPU (also called host)
and GPU (also called device) to transfer the input values. For the implementation, the two
libraries cuRAND and CUDA Thrust have been experimented: cuRAND is devoted only to
the generation of random numbers, whereas CUDA Thrust provides also algorithms and
data structures for the generation of parallel applications. Tests showed that, for generat-
ing less than ten millions random values, as in the case of our testbeds, Thrust is slightly
quicker. On the contrary, cuRAND performs better for generating more than ten millions
random values.

Furthermore, we adopted several optimization strategies to obtain the best possible per-
formance from the CUDA architecture. In the following, we give a brief description of
these optimization strategies, referring to the CPU as host, and to the GPU as device.

Use of the Pinned Memory For the transfers between host and device and vice versa,
we used the asyncronous calls cudaMemcpyAsync, thus avoiding to block the computation
during trasfers. Such calls require the use of the pinned memory by the host, that is allocated
by means of the function cudaMallocHost, preventing the disk data swapping.

Coalesced access to the memory During the simulation on the GPU, input and output
gate values must be accessed. To obtain efficient accesses, information are in global mem-
ory and are accessed in coalesced manner. In fact, the best performance in accessing the
global memory is obtained when all 32 threads belonging to a warp access contigue loca-
tions. To obtain coalesced accesses, data structures for gates are modelled such that gates
on a level are adjacent, and there is an array for the three indices of each gate (first input,
second input and output).

Encoding of outputs of intermediate gates Shared memory is quite small in size. Blocks
on the same multiprocessor share the same amount of shared memory. By assigning two



June 28, 2017 12:37 WSPC/INSTRUCTION FILE main

10 Parallel Processing Letters

blocks to each multiprocessor, it follows that each block has half space available. If we use
one byte for each output value of each gate, memory is not efficiently exploited, in particu-
lar when large circuits are simulated. Therefore, exploiting the fact that outputs can assume
only 0 and 1 values, we encode 8 outputs on one byte. In our case, each multiprocessor has
48KB shared memory, then each block can use 24KB. By encoding 8 outputs on one byte,
we can represent 24576× 8 = 196608 variables per block (instead of 24576). This encod-
ing allows to simulate circuits with over 2 millions of gates (having already considered a
replication of gates of about 30%). It is worth noting that this encoding implicitly provides
coalesced accesses to memory.

5. Experimental Results

In this section we evaluate the effectiveness of our implementation and compare it with the
solution proposed in [8].

Experiments were run on an istance G2 of Amazon EC2 for graphic applications and
GPGPU, with an Intel Xeon E5-2670 processor (8 cores, 16 threads, 2.6 GHz frequency,
3.3 GHz turbo frequency), 16GB RAM and an NVIDIA grid K520 GPU with 4GB RAM
and 8 multiprocessors, each with 192 cores.

Circuits considered for the evaluation were chosen from the collection of benchmarks
IWLS [19], in particular from the subset of circuits OpenCores [20]. Our set consists of
ten circuits. In particular, we included seven circuits considered also in [8] (vga lcd -
controller vga/lcd, des perf - triple DES IP core optimized, ethernet - ethernet IP core,
wv conmax - interconnect matrix IP core, pci bridge32, aes core - AES IP core for en-
cryption/decryption, ac97 ctrl - AC 97 Audio Codec controller core). We also included
three circuits not included in the set considered in [8] (usb funct - USB 1.1 slave/device IP
core, mem ctrl - memory controller for embedded applications, systemcaes - AES encryp-
tion/decryption core). For each considered circuit, the AIGER format (an implementation
of the AIG corresponding to the circuit) [21] is generated by using the ABC tool [22, 23].

Table 2. Circuits used for the tests.
Design Variables Inputs Latches Outputs Gates L C
vga lcd 143879 89 17079 109 126711 23 16
des perf 109308 17850 8808 9038 82650 19 16
ethernet 80326 98 10544 115 69684 31 16
wb conmax 49753 1130 770 1416 47853 26 8
pci bridge32 26305 162 3359 207 22784 29 8
aes core 23371 1319 530 668 21522 25 8
usb funct 19480 192 1746 87 17542 26 8
ac97 ctrl 12624 84 2199 48 10341 8 8
mem ctrl 8044 23 1083 31 8021 35 4
systemcaes 6713 37 670 15 6676 45 4

Table 2 shows the list of circuits, specifying the number of variables, inputs, latches,
outputs, AND gates, levels L and clusters C (note that each cluster is executed by a block).
To exploit the available GPU, the number of blocks is determined according to the size



June 28, 2017 12:37 WSPC/INSTRUCTION FILE main

Parallel Processing Letters 11

of the circuit, namely the number of gates. Taking into account that our GPU consists
of 8 multiprocessors, each multiprocessor is equipped with 48KB of shared memory and
supports 2048 threads, and each CUDA block can include up to 1024 threads, we generated
16 CUDA blocks for large circuits, whereas we used 8 or 4 blocks for smaller circuits (see
Table 2).

Table 3. Execution times of steps of the compilation phase, in milliseconds.
Circuit Cone Clustering Cluster I/O Total
Design construction of cones balancing op
vga lcd 2186 35382 2745 292 40605
des perf 212 1134 59 188 1593
ethernet 506 4490 290 280 5566
wb conmax 220 513 35 136 904
pci bridge32 180 579 11 108 878
aes core 117 303 28 115 563
usb funct 73 199 6 78 356
ac97 ctrl 35 153 4 62 254
mem ctrl 122 324 1 65 512
systemcaes 121 266 4 69 460

Table 3 shows execution times of the three different steps of the Clustering stage of
the compilation phase, in milliseconds. Note that, time for the Levelization stage is not
reported in Table 3 because is negligible, whereas time for I/O operations is considered.

Fig. 7. Execution times of the three steps of the compilation phase.

We can observe from Table 3 that the Clustering of cones step is the most time con-
suming step during the compilation phase. Note that the time for Clustering of cones is



June 28, 2017 12:37 WSPC/INSTRUCTION FILE main

12 Parallel Processing Letters

particularly high in the case of vga lcd circuit. In fact, due to the structure of the circuit,
in that case we generate about 20000 cones, and we need to compute the cardinality of
intersections of all possible pairs of cones.

In Figure 7 the values of the execution time of the steps of the Clustering stage of the
compilation phase are shown. Note that in Figure 7 the cluster balancing value for mem ctrl
is on the horizontal axis visible (vertical logarithmic scale). In Figure 8 the percentage of
time of each step of the compilation phase is shown for each considered circuit.

Fig. 8. Percentage of time of the three steps of the compilation phase.

After the compilation phase, the compiled circuit is saved, so that it is always avail-
able. This way the compiled circuit can be given to the simulator without repeating the
compilation phase, for future executions.

In Table 4 and Table 5, we show the experimental results obtained by running 105 cycles
and 106 cycles, respectively, with input randomly generated on the GPU. In particular,
column Sequential shows the time of the sequential simulation computed with the tool
aigsim available with AIGER; column Parallel shows the time of the parallel simulation,
and column Parallel + Comp. shows the parallel simulation time plus the compilation time.
Columns Speedup and Speedup + Comp. show the speedup values of the parallel version
with respect to the sequential version, without and with the compilation phase, respectively.
Times are in seconds.

Comparing speedup values in Table 4 and Table 5, we can observe that the time re-
quired by the compilation phase is quite short, and it is amortized when the number of
executed cycles grows. Furthermore, results are strongly influenced by the structure of the



June 28, 2017 12:37 WSPC/INSTRUCTION FILE main

Parallel Processing Letters 13

circuit design, and speedup values are quite different depending on the characteristics of
the considered circuit.

We observe that the higher the number of variables, the more efficient the parallel ap-
proach. In fact, for the two smallest cases mem ctrl and systemcaes, which represent circuits
with less than 104 variables, the sequential version is more efficient, and the overhead due
to the parallelization is not well amortized. Neverthless, the number of variables is not the
only important parameter. In fact, a circuit having a smaller number of variables can require
a short time, if it has a small number of levels.

Table 4. Experimental results for 105 cycles.

Circuit Sequential Parallel Parallel Speedup Speedup
Design + Comp. + Comp.
vga lcd 106.968 20.688 61.293 5.2x 1.8x
des perf 62.198 11.352 12.945 5.5x 4.8x
ethernet 69.226 14.573 20.139 4.8x 3.4x
wb conmax 24.163 11.451 12.355 2.1x 2.0x
pci bridge32 20.131 11.902 12.780 1.7x 1.6x
aes core 10.958 9.185 9.748 1.2x 1.1x
usb funct 12.192 9.964 10.320 1.2x 1.2x
ac97 ctrl 12.809 6.840 7.094 1.9x 1.8x
mem ctrl 9.824 12.135 12.647 0.8x 0.8x
systemcaes 7.532 13.712 14.172 0.6x 0.5x

Table 5. Experimental results for 106 cycles.

Circuit Sequential Parallel Parallel Speedup Speedup
Design + Comp. + Comp.
vga lcd 1067.136 201.152 241.394 5.3x 4.4x
des perf 620.894 108.944 110.505 5.7x 5.6x
ethernet 690.082 140.960 146.416 4.9x 4.7x
wb conmax 241.047 110.585 111.460 2.2x 2.2x
pci bridge32 201.149 115.520 116.397 1.7x 1.7x
aes core 109.341 87.980 88.527 1.2x 1.2x
usb funct 121.683 96.288 96.647 1.3x 1.3x
ac97 ctrl 127.760 64.869 65.132 2.0x 2.0x
mem ctrl 98.207 118.056 118.568 0.8x 0.8x
systemcaes 75.412 133.731 134.208 0.6x 0.6x

The implementation of the sequential version realized for this work provides very good
sequential execution times, and represents an optimized version with respect to version pre-
sented in [8]. This implementation has been obtained by means of an optimized utilization
of the sequential simulator aigsim, available with AIGER. To complete the results discus-
sion, in Table 6 we compare the sequential version described in [8], our sequential version,
and our parallel version (that show execution times comparable to the parallel version pre-
sented in [8]).

In particular, in Table 6 we show: in column Sequential SAB2011 the sequential times
presented in [8], in column Optimized Sequential our optimized sequential times, and in
column Parallel our parallel times, all computed for 105 cycles (sequential times are ob-



June 28, 2017 12:37 WSPC/INSTRUCTION FILE main

14 Parallel Processing Letters

tained on comparable hardware).

Table 6. Speedups obtained comparing the parallel execution time with respect to the

sequential time reported in [8] and our optimized sequential time, for 105 cycles.

Circuit Sequential Optimized Parallel Speedup1 Speedup2
Design SAB2011 Sequential (SAB2011) (Our)
vga lcd 223.15 106.97 20.69 10.79 5.17
des perf 180.62 62.20 11.35 15.91 5.48
ethernet 155.51 69.23 14.57 10.67 4.75
wb conmax 94.81 24.16 11.45 8.28 2.11
pci bridge32 50.12 20.13 11.90 4.21 1.69
aes core 83.64 10.96 9.19 9.10 1.19
ac97 ctrl 58.66 12.81 6.84 8.58 1.87

Fig. 9. Comparison among sequential times and parallel times for 105 cycles simulation.

In Table 6 we also show the speedup values obtained by using the times of our parallel
version. In particular, values in column Speedup1 are computed using the sequential times
shown in [8], and values in column Speedup2 are computed using our optimized sequential
times. All time values are expressed in seconds. Note that the parallel execution times do
not include the execution time of the compilation phase. Figure 9 plots times reported in
Table 6.

Obviously, the speedup values with respect to the optimized sequential execution time
are lower, and this provides a better estimation of the speedup obtainable when parallelizing
a cycle-based simulation.



June 28, 2017 12:37 WSPC/INSTRUCTION FILE main

Parallel Processing Letters 15

6. Conclusions

In this work we have studied and analyzed the parallelization of the cycle-based simula-
tion of digital circuit. The parallel implementation consists of two phases: the compilation
phase, running on the CPU and devoted to prepare the data structures, and the simulation
phase, that is the parallel phase and runs on the GPU. In particular, we have analyzed the
compilation phase. We propose an efficient implementation, and we study the execution
time of the different steps of the compilation phase for a set of literature benchmarks. The
computation of the execution time of the compilation phase is important to understand if,
during the early phase of design, the parallel version for the Cycle-based simulation of the
circuit under verification is more advantageous with respect to the (optimized) sequential
implementation, since the parallelization entails the additional time due to the compilation
phase.

In order to complete the evaluation of our implementation of the compilation phase,
we also realized the parallel part of the algorithm, implementing the simulation phase, and
obtaining execution times for the simulation phase similar to those listed in [8]. Moreover
we have implemented the sequential version of the logic simulation algorithm by utilizing
the circuit simulator in an optimized way, and we have used the corresponding execution
time to give a tight estimation of the speedups with respect to those obtained with the
sequential version presented in [8]. In fact, despite the fact that our speedup values are
lower than those in the cited paper, they give a better estimation of the obtainable speedup,
since the sequential time considered in [8] was obtained with a not optimized sequential
version.

We plan to investigate how to integrate the approach presented in this paper with the
simulation based parallel verification techniques for hybrid systems described in [18, 25].

Acknowledgements This research has been partially supported by FP7 projects: En-
ergy Demand Aware Open Services for Smart Grid Intelligent Automation, SmartHG,
Project n. 317761, and Model Driven Computation of Treatments for Infertility Related
Endocrinological Diseases, Paeon, Project n. 600773.

References
[1] NVIDIA CUDA, http://www.nvidia.com/cuda.
[2] NVIDIA CUDA Compute Unified Device Architecture Programming Guide, NVIDIA Corpora-

tion, 2007.
[3] D. Chatterjee, A. DeOrio, and V. Bertacco, GCS: High-performance Gate-level Simulation with

GP-GPUs, Proc. Conference on Design, Automation and Test in Europe, DATE ’09, 1332–1337,
2009.

[4] B. Wang, Y. Zhu, and Y. Deng, Distributed Time, Conservative Parallel Logic Simulation on
GPUs, Proc. IEEE/ACM Design Automation Conference, 2010.

[5] H. Qian and Y. Deng, Accelerating RTL Simulation with GPUs, Proc. IEEE/ACM Int. Conf. on
ComputerAided Design, 2011.

[6] Y. Zhu, B. Wang, and Y. Deng, Massively Parallel Logic Simulation with GPUs, ACM Transac-
tion on Design Automation of Electronics Systems, Vol.16, No.3, 2011.



June 28, 2017 12:37 WSPC/INSTRUCTION FILE main

16 Parallel Processing Letters

[7] D. Chatterjee, A. De Orio, and V. Bertacco, Gate-Level Simulation with GPU Computing, ACM
Trans. Des. Autom. Electron. Syst., 2011.

[8] A. Sen, B. Aksanli, and M. Bozkurt, Speeding Up Cycle Based Logic Simulation Using Graphics
Processing Units, International Journal of Parallel Programming, 639–661, 2011.

[9] M. Chimeh, C.V. Hall, and J.T. O’Donnell, Optimisation and parallelism in synchronous digital
circuit simulators, Int. Conf. Computational Science and Engineering (CSE), 94–101, 2012.

[10] V. Bertacco, D. Chatterjee, N. Bombieri, F. Fummi, S. Vinco, A. Kaushik, and H.D. Patel, On
the use of GP-GPUs for accelerating compute-intensive EDA applications, Proc. Conference on
Design, Automation and Test in Europe, DATE ’13, 1357–1366, 2013.

[11] T. Hashiguchi, Y. Mori, M. Toyonaga, and M. Muraoka, YAPSIM: Yet Another Parallel Logic
Simulator using GP-GPU, Proc. SASIMI 2015

[12] T. Mancini, F. Mari, A. Massini, I. Melatti, F. Merli, and E. Tronci, System level formal verifi-
cation via model checking driven simulation, In Proc. CAV 2013, LNCS 8044, Springer, 2013.

[13] T. Mancini, F. Mari, A. Massini, I. Melatti, and E. Tronci, Anytime System Level Verification
via Random Exhaustive Hardware In The Loop Simulation, In Proc. 17th EuroMicro Conference
on Digital System Design (DSD), 2014.

[14] R. Sedgewick, K. Wayne, Algorithms, Addison-Wesley, 661–666, 2011.
[15] S. Smith, W. Underwood, and M.R. Mercer, An analysis of several approaches to circuit parti-

tioning for parallel logic simulation, In Proc. ICCD, 1987.
[16] K. Hering, R. Reilein, and S. Trautmann, Cone clustering principles for parallel logic simula-

tion, Proc. Int. Workshop on Modeling, Analysis, and Simulation of Computer and Telecommu-
nication Systems, 93-100, 2002.

[17] T. Mancini, F. Mari, A. Massini, I. Melatti, and E. Tronci, System Level Formal Verification
via Distributed Multi-Core Hardware in the Loop Simulation, In Proc. Parallel, Distributed and
Network-Based Processing (PDP), 2014.

[18] E. Tronci, T. Mancini, I. Salvo, F. Mari, I. Melatti, A. Massini, S. Sinisi, F. Davı́, T. Dierkes,
R. Ehrig et al. Patient-Specific Models from Inter-Patient Biological Models and Clinical
Records, In Proc. Formal Methods in Computer-Aided Design (FMCAD), 2014.

[19] IWLS, http://iwls.org/iwls2005/benchmarks.html.
[20] OpenCores, http://opencores.org
[21] AIGER, http://fmv.jku.at/aiger.
[22] ABC, http://www.eecs.berkeley.edu/˜alanmi/abc.
[23] R. Brayton and A. Mishchenko, ABC: an academic industrial-strength verification tool, Proc.

Int. Conf. Computer-Aided Verification (CAV), 2010.
[24] T. Mancini, F. Mari, A. Massini, I. Melatti, and E. Tronci, SyLVaaS: System Level Formal Veri-

fication as a Service, In Proc. Parallel, Distributed and Network-Based Processing (PDP 2015),
2015.

[25] T. Mancini, E. Tronci, I. Salvo, F. Mari, A. Massini, and I. Melatti. Computing Biological
Model Parameters by Parallel Statistical Model Checking, In Proc. Int. Work Conference on
Bioinformatics and Biomedical Engineering (IWBBIO), pages 542-554, 2015.


