167 research outputs found

    Optimization techniques for human computation-enabled data processing systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 119-124).Crowdsourced labor markets make it possible to recruit large numbers of people to complete small tasks that are difficult to automate on computers. These marketplaces are increasingly widely used, with projections of over $1 billion being transferred between crowd employers and crowd workers by the end of 2012. While crowdsourcing enables forms of computation that artificial intelligence has not yet achieved, it also presents crowd workflow designers with a series of challenges including describing tasks, pricing tasks, identifying and rewarding worker quality, dealing with incorrect responses, and integrating human computation into traditional programming frameworks. In this dissertation, we explore the systems-building, operator design, and optimization challenges involved in building a crowd-powered workflow management system. We describe a system called Qurk that utilizes techniques from databases such as declarative workflow definition, high-latency workflow execution, and query optimization to aid crowd-powered workflow developers. We study how crowdsourcing can enhance the capabilities of traditional databases by evaluating how to implement basic database operators such as sorts and joins on datasets that could not have been processed using traditional computation frameworks. Finally, we explore the symbiotic relationship between the crowd and query optimization, enlisting crowd workers to perform selectivity estimation, a key component in optimizing complex crowd-powered workflows.by Adam Marcus.Ph.D

    InterPoll: Crowd-Sourced Internet Polls

    Get PDF
    Crowd-sourcing is increasingly being used to provide answers to online polls and surveys. However, existing systems, while taking care of the mechanics of attracting crowd workers, poll building, and payment, provide little to help the survey-maker or pollster in obtaining statistically significant results devoid of even the obvious selection biases. This paper proposes InterPoll, a platform for programming of crowd-sourced polls. Pollsters express polls as embedded LINQ queries and the runtime correctly reasons about uncertainty in those polls, only polling as many people as required to meet statistical guarantees. To optimize the cost of polls, InterPoll performs query optimization, as well as bias correction and power analysis. The goal of InterPoll is to provide a system that can be reliably used for research into marketing, social and political science questions. This paper highlights some of the existing challenges and how InterPoll is designed to address most of them. In this paper we summarize some of the work we have already done and give an outline for future work

    Skyline queries computation on crowdsourced- enabled incomplete database

    Get PDF
    Data incompleteness becomes a frequent phenomenon in a large number of contemporary database applications such as web autonomous databases, big data, and crowd-sourced databases. Processing skyline queries over incomplete databases impose a number of challenges that negatively influence processing the skyline queries. Most importantly, the skylines derived from incomplete databases are also incomplete in which some values are missing. Retrieving skylines with missing values is undesirable, particularly, for recommendation and decision-making systems. Furthermore, running skyline queries on a database with incomplete data raises a number of issues influence processing skyline queries such as losing the transitivity property of the skyline technique and cyclic dominance between the tuples. The issue of estimating the missing values of skylines has been discussed and examined in the database literature. Most recently, several studies have suggested exploiting the crowd-sourced databases in order to estimate the missing values by generating plausible values using the crowd. Crowd-sourced databases have proved to be a powerful solution to perform user-given tasks by integrating human intelligence and experience to process the tasks. However, task processing using crowd-sourced incurs additional monetary cost and increases the time latency. Also, it is not always possible to produce a satisfactory result that meets the user's preferences. This paper proposes an approach for estimating the missing values of the skylines by first exploiting the available data and utilizes the implicit relationships between the attributes in order to impute the missing values of the skylines. This process aims at reducing the number of values to be estimated using the crowd when local estimation is inappropriate. Intensive experiments on both synthetic and real datasets have been accomplished. The experimental results have proven that the proposed approach for estimating the missing values of the skylines over crowd-sourced enabled incomplete databases is scalable and outperforms the other existing approaches

    Beyond AMT: An Analysis of Crowd Work Platforms

    Get PDF
    While many competitor platforms to Amazon’s Mechanical Turk (AMT) now exist, little research has considered them. Such near-exclusive focus on AMT risks its particular vagaries and limitations overly shaping our understanding of crowd work and our field’s research questions and directions. To address this, we present a qualitative content analysis of seven alternative platforms. After organizing prior AMT studies around a set of key problem types encountered, we define our process for inducing categories for qualitative assessment of platforms. We then contrast the key problem types with AMT vs. platform features from content analysis, informing both methodology of use and directions for future research. Our cross-platform analysis represents the only such study by researchers for researchers, intended to enrich diversity of research on crowd work and accelerate progress.ye

    Crowd-powered systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 217-237).Crowd-powered systems combine computation with human intelligence, drawn from large groups of people connecting and coordinating online. These hybrid systems enable applications and experiences that neither crowds nor computation could support alone. Unfortunately, crowd work is error-prone and slow, making it difficult to incorporate crowds as first-order building blocks in software systems. I introduce computational techniques that decompose complex tasks into simpler, verifiable steps to improve quality, and optimize work to return results in seconds. These techniques develop crowdsourcing as a platform so that it is reliable and responsive enough to be used in interactive systems. This thesis develops these ideas through a series of crowd-powered systems. The first, Soylent, is a word processor that uses paid micro-contributions to aid writing tasks such as text shortening and proofreading. Using Soylent is like having access to an entire editorial staff as you write. The second system, Adrenaline, is a camera that uses crowds to help amateur photographers capture the exact right moment for a photo. It finds the best smile and catches subjects in mid-air jumps, all in realtime. Moving beyond generic knowledge and paid crowds, I introduce techniques to motivate a social network that has specific expertise, and techniques to data mine crowd activity traces in support of a large number of uncommon user goals. These systems point to a future where social and crowd intelligence are central elements of interaction, software, and computation.by Michael Scott Bernstein.Ph.D

    Hybrid human-machine information systems for data classification

    Get PDF
    Over the last decade, we have seen an intense development of machine learning approaches for solving various tasks in diverse domains. Despite the remarkable advancements in this field, there are still task categories that machine learning models fall short of the required accuracy. This is the case with tasks that require human cognitive skills, such as sentiment analysis, emotional or contextual understanding. On the other hand, human-based computation approaches, such as crowdsourcing, are popular for solving such tasks. Crowdsourcing enables access to a vast number of groups with different expertise, and if managed properly, generates high-quality results. However, crowdsourcing as a standalone approach is not scalable due to the latency and cost it brings in. Addressing the challenges and limitations that the human and machine-based approaches have distinctly requires bridging the two fields into a hybrid intelligence, seen as a promising approach to solve critical and complex real-world tasks. This thesis focuses on hybrid human-machine information systems, combining machine and human intelligence and leveraging their complementary strengths: the data processing efficiency of machine learning and the data quality generated by crowdsourcing. In this thesis, we present hybrid human-machine models to address the challenges falling into three dimensions: accuracy, latency, and cost. Solving data classification tasks in different domains has different requirements concerning accuracy, latency, and cost criteria. Motivated by this fact, we introduce a master component that evaluates these criteria to find the suitable model as a trade-off solution. In hybrid human-machine information systems, incorporating human judgments is expected to improve the accuracy of the system. Therefore, to ensure this, we focus on the human intelligence component, integrating profile-aware crowdsourcing for task assignment and data quality control mechanisms in the hybrid pipelines. The proposed conceptual hybrid human-machine models materialize in conducted experiments. Motivated by challenging scenarios and using real-world datasets, we implement the hybrid models in three experiments. Evaluations show that the implemented hybrid human-machine architectures for data classification tasks lead to better results as compared to each of the two approaches individually, improving the overall accuracy at an acceptable cost and latency

    Delivering IoT Services in Smart Cities and Environmental Monitoring through Collective Awareness, Mobile Crowdsensing and Open Data

    Get PDF
    The Internet of Things (IoT) is the paradigm that allows us to interact with the real world by means of networking-enabled devices and convert physical phenomena into valuable digital knowledge. Such a rapidly evolving field leveraged the explosion of a number of technologies, standards and platforms. Consequently, different IoT ecosystems behave as closed islands and do not interoperate with each other, thus the potential of the number of connected objects in the world is far from being totally unleashed. Typically, research efforts in tackling such challenge tend to propose a new IoT platforms or standards, however, such solutions find obstacles in keeping up the pace at which the field is evolving. Our work is different, in that it originates from the following observation: in use cases that depend on common phenomena such as Smart Cities or environmental monitoring a lot of useful data for applications is already in place somewhere or devices capable of collecting such data are already deployed. For such scenarios, we propose and study the use of Collective Awareness Paradigms (CAP), which offload data collection to a crowd of participants. We bring three main contributions: we study the feasibility of using Open Data coming from heterogeneous sources, focusing particularly on crowdsourced and user-contributed data that has the drawback of being incomplete and we then propose a State-of-the-Art algorith that automatically classifies raw crowdsourced sensor data; we design a data collection framework that uses Mobile Crowdsensing (MCS) and puts the participants and the stakeholders in a coordinated interaction together with a distributed data collection algorithm that prevents the users from collecting too much or too less data; (3) we design a Service Oriented Architecture that constitutes a unique interface to the raw data collected through CAPs through their aggregation into ad-hoc services, moreover, we provide a prototype implementation

    Query-Time Data Integration

    Get PDF
    Today, data is collected in ever increasing scale and variety, opening up enormous potential for new insights and data-centric products. However, in many cases the volume and heterogeneity of new data sources precludes up-front integration using traditional ETL processes and data warehouses. In some cases, it is even unclear if and in what context the collected data will be utilized. Therefore, there is a need for agile methods that defer the effort of integration until the usage context is established. This thesis introduces Query-Time Data Integration as an alternative concept to traditional up-front integration. It aims at enabling users to issue ad-hoc queries on their own data as if all potential other data sources were already integrated, without declaring specific sources and mappings to use. Automated data search and integration methods are then coupled directly with query processing on the available data. The ambiguity and uncertainty introduced through fully automated retrieval and mapping methods is compensated by answering those queries with ranked lists of alternative results. Each result is then based on different data sources or query interpretations, allowing users to pick the result most suitable to their information need. To this end, this thesis makes three main contributions. Firstly, we introduce a novel method for Top-k Entity Augmentation, which is able to construct a top-k list of consistent integration results from a large corpus of heterogeneous data sources. It improves on the state-of-the-art by producing a set of individually consistent, but mutually diverse, set of alternative solutions, while minimizing the number of data sources used. Secondly, based on this novel augmentation method, we introduce the DrillBeyond system, which is able to process Open World SQL queries, i.e., queries referencing arbitrary attributes not defined in the queried database. The original database is then augmented at query time with Web data sources providing those attributes. Its hybrid augmentation/relational query processing enables the use of ad-hoc data search and integration in data analysis queries, and improves both performance and quality when compared to using separate systems for the two tasks. Finally, we studied the management of large-scale dataset corpora such as data lakes or Open Data platforms, which are used as data sources for our augmentation methods. We introduce Publish-time Data Integration as a new technique for data curation systems managing such corpora, which aims at improving the individual reusability of datasets without requiring up-front global integration. This is achieved by automatically generating metadata and format recommendations, allowing publishers to enhance their datasets with minimal effort. Collectively, these three contributions are the foundation of a Query-time Data Integration architecture, that enables ad-hoc data search and integration queries over large heterogeneous dataset collections
    corecore