1,141 research outputs found

    Network-aware design-space exploration of a power-efficient embedded application

    Get PDF
    The paper presents the design and multi-parameter optimization of a networked embedded application for the health-care domain. Several hardware, software, and application parameters, such as clock frequency, sensor sampling rate, data packet rate, are tuned at design- and run-time according to application specifications and operating conditions to optimize hardware requirements, packet loss, power consumption. Experimental results show that further power efficiency can be achieved by considering also communication aspects during design space exploratio

    FPGA Configuration of Intensive Multimedia Processing Tasks Modeled in UML

    Get PDF
    Recent research have demonstrate interests in a codesign framework     that allows description refinement at different abstraction level.     We have proposed such a framework that allows SoC resources     allocation for regular and repetitive tasks found in intensive     multimedia applications. Nevertheless, the framework does not directly target     reconfigurable architectures, the difficult job of placing and     routing an application on a FPGA being postponed to a dedicated     tool. In order to limit the number of synthesis on this external     tool, we propose an algorithm that, from a high level description     of an intensive multimedia application, estimates the resource     usages on a given FPGA architecture. This algorithm makes use of a     simple mathematical formalism issued from case study     implementations

    Design of Digital Advanced Systems Based on Programmable System on Chip

    Get PDF
    This chapter fills up an advanced analysis of the state-of-the-art design in programmable SoC systems, giving a critical overall vision for every designer to implement real time operating systems and concurrent processing. The content of the chapter is divided in the next four main sections. First the evolution timeline of FPGA based systems is covered from its beginning until the last AP SoC chips. They are complex devices and it is necessary to have a well-known understanding to utilise them in the more efficient form possible. The more important advance digital systems structures and architectures are described. The embedded AP SoCs are analysed and main design methodologies are covered, focusing in hardware and co-design strategies. In this section is described the development of a real open source application that covers the fundamental parts in the design of a SoC system, ranging from the hardware development until the software design involving the embedded operating system and the user interface application. Finally, the system described in the last section is tested in a real scientific experiment and the results are evaluated

    Hardware/Software Codesign

    Get PDF
    The current state of the art technology in integrated circuits allows the incorporation of multiple processor cores and memory arrays, in addition to application specific hardware, on a single substrate. As silicon technology has become more advanced, allowing the implementation of more complex designs, systems have begun to incorporate considerable amounts of embedded software [3]. Thus it becomes increasingly necessary for the system designers to have knowledge on both hardware and software to make efficient design tradeoffs. This is where hardware/software codesign comes into existence

    Using an FPGA for Fast Bit Accurate SoC Simulation

    Get PDF
    In this paper we describe a sequential simulation method to simulate large parallel homo- and heterogeneous systems on a single FPGA. The method is applicable for parallel systems were lengthy cycle and bit accurate simulations are required. It is particularly designed for systems that do not fit completely on the simulation platform (i.e. FPGA). As a case study, we use a Network-on-Chip (NoC) that is simulated in SystemC and on the described FPGA simulator. This enables us to observe the NoC behavior under a large variety of traffic patterns. Compared with the SystemC simulation we achieved a factor 80-300 of speed improvement, without compromising the cycle and bit level accuracy

    ReSP: A Nonintrusive Transaction-Level Reflective MPSoC Simulation Platform for Design Space Exploration

    Full text link
    corecore