24 research outputs found

    Multiresolution analysis as an approach for tool path planning in NC machining

    Get PDF
    Wavelets permit multiresolution analysis of curves and surfaces. A complex curve can be decomposed using wavelet theory into lower resolution curves. The low-resolution (coarse) curves are similar to rough-cuts and high-resolution (fine) curves to finish-cuts in numerical controlled (NC) machining.;In this project, we investigate the applicability of multiresolution analysis using B-spline wavelets to NC machining of contoured 2D objects. High-resolution curves are used close to the object boundary similar to conventional offsetting, while lower resolution curves, straight lines and circular arcs are used farther away from the object boundary.;Experimental results indicate that wavelet-based multiresolution tool path planning improves machining efficiency. Tool path length is reduced, sharp corners are smoothed out thereby reducing uncut areas and larger tools can be selected for rough-cuts

    A model-based sustainable productivity concept for the best decision-making in rough milling operations

    Get PDF
    [EN]There is a need in manufacturing as in machining of being more productive. However, at the same time, workshops are also urged for lesser energy waste in cutting operations. Specially, rough milling of impellers and bladed integrated disks of aircraft engines need an efficient use of energy due to the long cycle times. Indeed, to avoid dramatic tool failures and idle times, cutting conditions and operations tend to be very conservative. This is a multivariable problem, where process engineers need to handle several aspects such as milling operation type, toolpath strategies, cutting conditions, or clamping systems. There is no criterion embracing productivity and power consumption. In this sense, this work proposes a methodology that meets productivity and sustainability by using a specific cutting energy or sustainable productivity gain (SPG) factor. Three rough milling operations-slot, plunge nad trochoidal milling-were modelled and verified. A bottom-up approach based on data from developed mechanistic force models evaluated and compared different alternatives for making a slot, which is a common operation in that king of workpieces. Experimental data confirmed that serrated end milling with the highest SPG value of 1 is the best milling operation in terms of power consumption and mass removal rate (MRR). In the case of plunge milling technique achieve an SPG < 0.51 while trochoidal milling produces a very low SPG value.The authors acknowledge the support from the Spanish Government (JANO, CIEN Project, 2019.0760) and Basque Government (ELKARTEK19/46, KK-2019/00004). This research was funded by Tecnologico de Monterrey through the Research Group of Nanotechnology for Devices Design, and by the Consejo Nacional de Ciencia y Tecnologia de Mexico (Conacyt), Project Number 296176, and National Lab in Additive Manufacturing, 3D Digitizing and Computed Tomography (MADiT) LN299129. The authors also acknowledge the support from Garikoitz Goikoetxea and fruitful discussions with Mr. Jon Mendez (Guhring (c)) and Endika Monge (Hoffmann Group (c))

    Geometrical Error Analysis and Correction in Robotic Grinding

    Get PDF
    The use of robots in industrial applications has been widespread in the manufacturing tasks such as welding, finishing, polishing and grinding. Most robotic grinding focus on the surface finish rather than accuracy and precision. Therefore, it is important to advance the technology of robotic machining so that more practical and competitive systems can be developed for components that have accuracy and precision requirement. This thesis focuses on improving the level of accuracy in robotic grinding which is a significant challenge in robotic applications because of the kinematic accuracy of the robot movement which is much more complex than normal CNC machine tools. Therefore, aiming to improve the robot accuracy, this work provides a novel method to define the geometrical error by using the cutting tool as a probe whilst using Acoustic Emission monitoring to modify robot commands and to detect surfaces of the workpiece. The work also includes an applicable mathematical model for compensating machining errors in relation to its geometrical position as well as applying an optimum grinding method to motivate the need of eliminating the residual error when performing abrasive grinding using the robot. The work has demonstrated an improved machining precision level from 50µm to 30µm which is controlled by considering the process influential variables, such as depth of cut, wheel speed, feed speed, dressing condition and system time constant. The recorded data and associated error reduction provide a significant evidence to support the viability of implementing a robotic system for various grinding applications, combining more quality and critical surface finishing practices, and an increased focus on the size and form of generated components. This method could provide more flexibility to help designers and manufacturers to control the final accuracy for machining a product using a robot system

    Surface Remeshing and Applications

    Get PDF
    Due to the focus of popular graphic accelerators, triangle meshes remain the primary representation for 3D surfaces. They are the simplest form of interpolation between surface samples, which may have been acquired with a laser scanner, computed from a 3D scalar field resolved on a regular grid, or identified on slices of medical data. Typical methods for the generation of triangle meshes from raw data attempt to lose as less information as possible, so that the resulting surface models can be used in the widest range of scenarios. When such a general-purpose model has to be used in a particular application context, however, a pre-processing is often worth to be considered. In some cases, it is convenient to slightly modify the geometry and/or the connectivity of the mesh, so that further processing can take place more easily. Other applications may require the mesh to have a pre-defined structure, which is often different from the one of the original general-purpose mesh. The central focus of this thesis is the automatic remeshing of highly detailed surface triangulations. Besides a thorough discussion of state-of-the-art applications such as real-time rendering and simulation, new approaches are proposed which use remeshing for topological analysis, flexible mesh generation and 3D compression. Furthermore, innovative methods are introduced to post-process polygonal models in order to recover information which was lost, or hidden, by a prior remeshing process. Besides the technical contributions, this thesis aims at showing that surface remeshing is much more useful than it may seem at a first sight, as it represents a nearly fundamental step for making several applications feasible in practice

    Micro/Nano Manufacturing

    Get PDF
    Micro manufacturing involves dealing with the fabrication of structures in the size range of 0.1 to 1000 µm. The scope of nano manufacturing extends the size range of manufactured features to even smaller length scales—below 100 nm. A strict borderline between micro and nano manufacturing can hardly be drawn, such that both domains are treated as complementary and mutually beneficial within a closely interconnected scientific community. Both micro and nano manufacturing can be considered as important enablers for high-end products. This Special Issue of Applied Sciences is dedicated to recent advances in research and development within the field of micro and nano manufacturing. The included papers report recent findings and advances in manufacturing technologies for producing products with micro and nano scale features and structures as well as applications underpinned by the advances in these technologies

    Neural Extended Kalman Filter for State Estimation of Automated Guided Vehicle in Manufacturing Environment

    Get PDF
    To navigate autonomously in a manufacturing environment Automated Guided Vehicle (AGV) needs the ability to infer its pose. This paper presents the implementation of the Extended Kalman Filter (EKF) coupled with a feedforward neural network for the Visual Simultaneous Localization and Mapping (VSLAM). The neural extended Kalman filter (NEKF) is applied on-line to model error between real and estimated robot motion. Implementation of the NEKF is achieved by using mobile robot, an experimental environment and a simple camera. By introducing neural network into the EKF estimation procedure, the quality of performance can be improved

    Prediction of Robot Execution Failures Using Neural Networks

    Get PDF
    In recent years, the industrial robotic systems are designed with abilities to adapt and to learn in a structured or unstructured environment. They are able to predict and to react to the undesirable and uncontrollable disturbances which frequently interfere in mission accomplishment. In order to prevent system failure and/or unwanted robot behaviour, various techniques have been addressed. In this study, a novel approach based on the neural networks (NNs) is employed for prediction of robot execution failures. The training and testing dataset used in the experiment consists of forces and torques memorized immediately after the real robot failed in assignment execution. Two types of networks are utilized in order to find best prediction method - recurrent NNs and feedforward NNs. Moreover, we investigated 24 neural architectures implemented in Matlab software package. The experimental results confirm that this approach can be successfully applied to the failures prediction problem, and that the NNs outperform other artificial intelligence techniques in this domain. To further validate a novel method, real world experiments are conducted on a Khepera II mobile robot in an indoor structured environment. The obtained results for trajectory tracking problem proved usefulness and the applicability of the proposed solution

    Resource-Independent Computer Aided Inspection

    Get PDF
    corecore