7,761 research outputs found

    Interpolant-Based Transition Relation Approximation

    Full text link
    In predicate abstraction, exact image computation is problematic, requiring in the worst case an exponential number of calls to a decision procedure. For this reason, software model checkers typically use a weak approximation of the image. This can result in a failure to prove a property, even given an adequate set of predicates. We present an interpolant-based method for strengthening the abstract transition relation in case of such failures. This approach guarantees convergence given an adequate set of predicates, without requiring an exact image computation. We show empirically that the method converges more rapidly than an earlier method based on counterexample analysis.Comment: Conference Version at CAV 2005. 17 Pages, 9 Figure

    Formal Derivation of Concurrent Garbage Collectors

    Get PDF
    Concurrent garbage collectors are notoriously difficult to implement correctly. Previous approaches to the issue of producing correct collectors have mainly been based on posit-and-prove verification or on the application of domain-specific templates and transformations. We show how to derive the upper reaches of a family of concurrent garbage collectors by refinement from a formal specification, emphasizing the application of domain-independent design theories and transformations. A key contribution is an extension to the classical lattice-theoretic fixpoint theorems to account for the dynamics of concurrent mutation and collection.Comment: 38 pages, 21 figures. The short version of this paper appeared in the Proceedings of MPC 201

    A Static Analyzer for Large Safety-Critical Software

    Get PDF
    We show that abstract interpretation-based static program analysis can be made efficient and precise enough to formally verify a class of properties for a family of large programs with few or no false alarms. This is achieved by refinement of a general purpose static analyzer and later adaptation to particular programs of the family by the end-user through parametrization. This is applied to the proof of soundness of data manipulation operations at the machine level for periodic synchronous safety critical embedded software. The main novelties are the design principle of static analyzers by refinement and adaptation through parametrization, the symbolic manipulation of expressions to improve the precision of abstract transfer functions, the octagon, ellipsoid, and decision tree abstract domains, all with sound handling of rounding errors in floating point computations, widening strategies (with thresholds, delayed) and the automatic determination of the parameters (parametrized packing)

    Abstractions and sensor design in partial-information, reactive controller synthesis

    Get PDF
    Automated synthesis of reactive control protocols from temporal logic specifications has recently attracted considerable attention in various applications in, for example, robotic motion planning, network management, and hardware design. An implicit and often unrealistic assumption in this past work is the availability of complete and precise sensing information during the execution of the controllers. In this paper, we use an abstraction procedure for systems with partial observation and propose a formalism to investigate effects of limitations in sensing. The abstraction procedure enables the existing synthesis methods with partial observation to be applicable and efficient for systems with infinite (or finite but large number of) states. This formalism enables us to systematically discover sensing modalities necessary in order to render the underlying synthesis problems feasible. We use counterexamples, which witness unrealizability potentially due to the limitations in sensing and the coarseness in the abstract system, and interpolation-based techniques to refine the model and the sensing modalities, i.e., to identify new sensors to be included, in such synthesis problems. We demonstrate the method on examples from robotic motion planning.Comment: 9 pages, 4 figures, Accepted at American Control Conference 201

    Spatial Interpolants

    Full text link
    We propose Splinter, a new technique for proving properties of heap-manipulating programs that marries (1) a new separation logic-based analysis for heap reasoning with (2) an interpolation-based technique for refining heap-shape invariants with data invariants. Splinter is property directed, precise, and produces counterexample traces when a property does not hold. Using the novel notion of spatial interpolants modulo theories, Splinter can infer complex invariants over general recursive predicates, e.g., of the form all elements in a linked list are even or a binary tree is sorted. Furthermore, we treat interpolation as a black box, which gives us the freedom to encode data manipulation in any suitable theory for a given program (e.g., bit vectors, arrays, or linear arithmetic), so that our technique immediately benefits from any future advances in SMT solving and interpolation.Comment: Short version published in ESOP 201
    • …
    corecore