234 research outputs found

    A Regularized Newton Method for Computing Ground States of Bose-Einstein condensates

    Full text link
    In this paper, we propose a regularized Newton method for computing ground states of Bose-Einstein condensates (BECs), which can be formulated as an energy minimization problem with a spherical constraint. The energy functional and constraint are discretized by either the finite difference, or sine or Fourier pseudospectral discretization schemes and thus the original infinite dimensional nonconvex minimization problem is approximated by a finite dimensional constrained nonconvex minimization problem. Then an initial solution is first constructed by using a feasible gradient type method, which is an explicit scheme and maintains the spherical constraint automatically. To accelerate the convergence of the gradient type method, we approximate the energy functional by its second-order Taylor expansion with a regularized term at each Newton iteration and adopt a cascadic multigrid technique for selecting initial data. It leads to a standard trust-region subproblem and we solve it again by the feasible gradient type method. The convergence of the regularized Newton method is established by adjusting the regularization parameter as the standard trust-region strategy. Extensive numerical experiments on challenging examples, including a BEC in three dimensions with an optical lattice potential and rotating BECs in two dimensions with rapid rotation and strongly repulsive interaction, show that our method is efficient, accurate and robust.Comment: 25 pages, 6 figure

    Accurate and efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates via the nonuniform FFT

    Get PDF
    In this paper, we propose efficient and accurate numerical methods for computing the ground state and dynamics of the dipolar Bose-Einstein condensates utilising a newly developed dipole-dipole interaction (DDI) solver that is implemented with the non-uniform fast Fourier transform (NUFFT) algorithm. We begin with the three-dimensional (3D) Gross-Pitaevskii equation (GPE) with a DDI term and present the corresponding two-dimensional (2D) model under a strongly anisotropic confining potential. Different from existing methods, the NUFFT based DDI solver removes the singularity by adopting the spherical/polar coordinates in Fourier space in 3D/2D, respectively, thus it can achieve spectral accuracy in space and simultaneously maintain high efficiency by making full use of FFT and NUFFT whenever it is necessary and/or needed. Then, we incorporate this solver into existing successful methods for computing the ground state and dynamics of GPE with a DDI for dipolar BEC. Extensive numerical comparisons with existing methods are carried out for computing the DDI, ground states and dynamics of the dipolar BEC. Numerical results show that our new methods outperform existing methods in terms of both accuracy and efficiency.Comment: 26 pages, 5 figure

    Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates

    Full text link
    New efficient and accurate numerical methods are proposed to compute ground states and dynamics of dipolar Bose-Einstein condensates (BECs) described by a three-dimensional (3D) Gross-Pitaevskii equation (GPE) with a dipolar interaction potential. Due to the high singularity in the dipolar interaction potential, it brings significant difficulties in mathematical analysis and numerical simulations of dipolar BECs. In this paper, by decoupling the two-body dipolar interaction potential into short-range (or local) and long-range interactions (or repulsive and attractive interactions), the GPE for dipolar BECs is reformulated as a Gross-Pitaevskii-Poisson type system. Based on this new mathematical formulation, we prove rigorously existence and uniqueness as well as nonexistence of the ground states, and discuss the existence of global weak solution and finite time blowup of the dynamics in different parameter regimes of dipolar BECs. In addition, a backward Euler sine pseudospectral method is presented for computing the ground states and a time-splitting sine pseudospectral method is proposed for computing the dynamics of dipolar BECs. Due to the adaption of new mathematical formulation, our new numerical methods avoid evaluating integrals with high singularity and thus they are more efficient and accurate than those numerical methods currently used in the literatures for solving the problem. Extensive numerical examples in 3D are reported to demonstrate the efficiency and accuracy of our new numerical methods for computing the ground states and dynamics of dipolar BECs

    A finite element method with mesh adaptivity for computing vortex states in fast-rotating Bose-Einstein condensates

    Get PDF
    Numerical computations of stationary states of fast-rotating Bose-Einstein condensates require high spatial resolution due to the presence of a large number of quantized vortices. In this paper we propose a low-order finite element method with mesh adaptivity by metric control, as an alternative approach to the commonly used high order (finite difference or spectral) approximation methods. The mesh adaptivity is used with two different numerical algorithms to compute stationary vortex states: an imaginary time propagation method and a Sobolev gradient descent method. We first address the basic issue of the choice of the variable used to compute new metrics for the mesh adaptivity and show that simultaneously refinement using the real and imaginary part of the solution is successful. Mesh refinement using only the modulus of the solution as adaptivity variable fails for complicated test cases. Then we suggest an optimized algorithm for adapting the mesh during the evolution of the solution towards the equilibrium state. Considerable computational time saving is obtained compared to uniform mesh computations. The new method is applied to compute difficult cases relevant for physical experiments (large nonlinear interaction constant and high rotation rates).Comment: to appear in J. Computational Physic

    A finite-element toolbox for the stationary Gross-Pitaevskii equation with rotation

    Full text link
    We present a new numerical system using classical finite elements with mesh adaptivity for computing stationary solutions of the Gross-Pitaevskii equation. The programs are written as a toolbox for FreeFem++ (www.freefem.org), a free finite-element software available for all existing operating systems. This offers the advantage to hide all technical issues related to the implementation of the finite element method, allowing to easily implement various numerical algorithms.Two robust and optimised numerical methods were implemented to minimize the Gross-Pitaevskii energy: a steepest descent method based on Sobolev gradients and a minimization algorithm based on the state-of-the-art optimization library Ipopt. For both methods, mesh adaptivity strategies are implemented to reduce the computational time and increase the local spatial accuracy when vortices are present. Different run cases are made available for 2D and 3D configurations of Bose-Einstein condensates in rotation. An optional graphical user interface is also provided, allowing to easily run predefined cases or with user-defined parameter files. We also provide several post-processing tools (like the identification of quantized vortices) that could help in extracting physical features from the simulations. The toolbox is extremely versatile and can be easily adapted to deal with different physical models
    corecore