14 research outputs found

    Exploring Privacy-Preserving Disease Diagnosis: A Comparative Analysis

    Get PDF
    In the healthcare sector, data is considered as a valuable asset, with enormous amounts generated in the form of patient records and disease-related information. Leveraging machine learning techniques enables the analysis of extensive datasets, unveiling hidden patterns in diseases, facilitating personalized treatments, and forecasting potential health issues. However, the flourish of online diagnosis and prediction still faces some challenges related to information security and privacy as disease diagnosis technologies utilizes a lot of clinical records and sensitive patient data. Hence, it becomes imperative to prioritize the development of innovative methodologies that not only advance the accuracy and efficiency of disease prediction but also ensure the highest standards of privacy protection. This requires collaborative efforts between researchers, healthcare practitioners, and policymakers to establish a comprehensive framework that addresses the evolving landscape of healthcare data while safeguarding individual privacy. Addressing this constraint, numerous researchers integrate privacy preservation measures with disease prediction techniques to develop a system capable of diagnosing diseases without compromising the confidentiality of sensitive information. The survey paper conducts a comparative analysis of privacy-preserving techniques employed in disease diagnosis and prediction. It explores existing methodologies across various domains, assessing their efficacy and trade-offs in maintaining data confidentiality while optimizing diagnostic accuracy. The review highlights the need for robust privacy measures in disease prediction, shortcomings related to existing techniques of privacy preserving disease diagnosis, and provides insights into promising directions for future research in this critical intersection of healthcare and privacy preservation

    Exploring Machine Learning Models for Federated Learning: A Review of Approaches, Performance, and Limitations

    Full text link
    In the growing world of artificial intelligence, federated learning is a distributed learning framework enhanced to preserve the privacy of individuals' data. Federated learning lays the groundwork for collaborative research in areas where the data is sensitive. Federated learning has several implications for real-world problems. In times of crisis, when real-time decision-making is critical, federated learning allows multiple entities to work collectively without sharing sensitive data. This distributed approach enables us to leverage information from multiple sources and gain more diverse insights. This paper is a systematic review of the literature on privacy-preserving machine learning in the last few years based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Specifically, we have presented an extensive review of supervised/unsupervised machine learning algorithms, ensemble methods, meta-heuristic approaches, blockchain technology, and reinforcement learning used in the framework of federated learning, in addition to an overview of federated learning applications. This paper reviews the literature on the components of federated learning and its applications in the last few years. The main purpose of this work is to provide researchers and practitioners with a comprehensive overview of federated learning from the machine learning point of view. A discussion of some open problems and future research directions in federated learning is also provided

    A survey of machine and deep learning methods for privacy protection in the Internet of things

    Get PDF
    Recent advances in hardware and information technology have accelerated the proliferation of smart and interconnected devices facilitating the rapid development of the Internet of Things (IoT). IoT applications and services are widely adopted in environments such as smart cities, smart industry, autonomous vehicles, and eHealth. As such, IoT devices are ubiquitously connected, transferring sensitive and personal data without requiring human interaction. Consequently, it is crucial to preserve data privacy. This paper presents a comprehensive survey of recent Machine Learning (ML)- and Deep Learning (DL)-based solutions for privacy in IoT. First, we present an in depth analysis of current privacy threats and attacks. Then, for each ML architecture proposed, we present the implementations, details, and the published results. Finally, we identify the most effective solutions for the different threats and attacks.This work is partially supported by the Generalitat de Catalunya under grant 2017 SGR 962 and the HORIZON-GPHOENIX (101070586) and HORIZON-EUVITAMIN-V (101093062) projects.Peer ReviewedPostprint (published version

    Applications in security and evasions in machine learning : a survey

    Get PDF
    In recent years, machine learning (ML) has become an important part to yield security and privacy in various applications. ML is used to address serious issues such as real-time attack detection, data leakage vulnerability assessments and many more. ML extensively supports the demanding requirements of the current scenario of security and privacy across a range of areas such as real-time decision-making, big data processing, reduced cycle time for learning, cost-efficiency and error-free processing. Therefore, in this paper, we review the state of the art approaches where ML is applicable more effectively to fulfill current real-world requirements in security. We examine different security applications' perspectives where ML models play an essential role and compare, with different possible dimensions, their accuracy results. By analyzing ML algorithms in security application it provides a blueprint for an interdisciplinary research area. Even with the use of current sophisticated technology and tools, attackers can evade the ML models by committing adversarial attacks. Therefore, requirements rise to assess the vulnerability in the ML models to cope up with the adversarial attacks at the time of development. Accordingly, as a supplement to this point, we also analyze the different types of adversarial attacks on the ML models. To give proper visualization of security properties, we have represented the threat model and defense strategies against adversarial attack methods. Moreover, we illustrate the adversarial attacks based on the attackers' knowledge about the model and addressed the point of the model at which possible attacks may be committed. Finally, we also investigate different types of properties of the adversarial attacks

    Secure and robust machine learning for healthcare: A survey

    Get PDF
    Recent years have witnessed widespread adoption of machine learning (ML)/deep learning (DL) techniques due to their superior performance for a variety of healthcare applications ranging from the prediction of cardiac arrest from one-dimensional heart signals to computer-aided diagnosis (CADx) using multi-dimensional medical images. Notwithstanding the impressive performance of ML/DL, there are still lingering doubts regarding the robustness of ML/DL in healthcare settings (which is traditionally considered quite challenging due to the myriad security and privacy issues involved), especially in light of recent results that have shown that ML/DL are vulnerable to adversarial attacks. In this paper, we present an overview of various application areas in healthcare that leverage such techniques from security and privacy point of view and present associated challenges. In addition, we present potential methods to ensure secure and privacy-preserving ML for healthcare applications. Finally, we provide insight into the current research challenges and promising directions for future research

    Detecting Heart Attacks Using Learning Classifiers

    Get PDF
    Cardiovascular diseases (CVDs) have emerged as a critical global threat to human life. The diagnosis of these diseases presents a complex challenge, particularly for inexperienced doctors, as their symptoms can be mistaken for signs of aging or similar conditions. Early detection of heart disease can help prevent heart failure, making it crucial to develop effective diagnostic techniques. Machine Learning (ML) techniques have gained popularity among researchers for identifying new patients based on past data. While various forecasting techniques have been applied to different medical datasets, accurate detection of heart attacks in a timely manner remains elusive. This article presents a comprehensive comparative analysis of various ML techniques, including Decision Tree, Support Vector Machines, Random Forest, Extreme Gradient Boosting (XGBoost), Adaptive Boosting, Multilayer Perceptron, Gradient Boosting, K-Nearest Neighbor, and Logistic Regression. These classifiers are implemented and evaluated in Python using data from over 300 patients obtained from the Kaggle cardiovascular repository in CSV format. The classifiers categorize patients into two groups: those with a heart attack and those without. Performance evaluation metrics such as recall, precision, accuracy, and the F1-measure are employed to assess the classifiers’ effectiveness. The results of this study highlight XGBoost classifier as a promising tool in the medical domain for accurate diagnosis, demonstrating the highest predictive accuracy (95.082%) with a calculation time of (0.07995 sec) on the dataset compared to other classifiers

    LabVIEW as Power Disturbances Classification Tools

    Get PDF
    Power disturbances monitoring is one of the important aspects on dealing power quality issue in electrical system. The aims of conducting monitoring process are to identify the real culprit which contribute to the Power Quality (PQ) problem. One of the vital steps during monitoring process is the classifying various type of power disturbance. This classification process is very important to give a right direction towards proposing the correct mitigation technique. In order to produce reliable classification technique, the devices which has a flexibility on accommodating the software and hardware part need to be deployed. The software is need for algorithm development such as signal processing, Artificial Intelligent (AI) as well as statistical analysis. On the hardware part, the device’s ability to acquire the electrical parameter within the electrical system operation is very important. The data acquisition based on the voltage and current is essential to be feed in the classification algorithm in software side. On the other hand, the interfacing devices and data acquisition module need to be developed at the hardware side, LabVIEW manage to accommodate both software and hardware need and further development of the LabVIEW for this purpose will be elaborated in this chapter
    corecore