556 research outputs found

    A fault-tolerant multiprocessor architecture for aircraft, volume 1

    Get PDF
    A fault-tolerant multiprocessor architecture is reported. This architecture, together with a comprehensive information system architecture, has important potential for future aircraft applications. A preliminary definition and assessment of a suitable multiprocessor architecture for such applications is developed

    Design of a fault tolerant airborne digital computer. Volume 1: Architecture

    Get PDF
    This volume is concerned with the architecture of a fault tolerant digital computer for an advanced commercial aircraft. All of the computations of the aircraft, including those presently carried out by analogue techniques, are to be carried out in this digital computer. Among the important qualities of the computer are the following: (1) The capacity is to be matched to the aircraft environment. (2) The reliability is to be selectively matched to the criticality and deadline requirements of each of the computations. (3) The system is to be readily expandable. contractible, and (4) The design is to appropriate to post 1975 technology. Three candidate architectures are discussed and assessed in terms of the above qualities. Of the three candidates, a newly conceived architecture, Software Implemented Fault Tolerance (SIFT), provides the best match to the above qualities. In addition SIFT is particularly simple and believable. The other candidates, Bus Checker System (BUCS), also newly conceived in this project, and the Hopkins multiprocessor are potentially more efficient than SIFT in the use of redundancy, but otherwise are not as attractive

    Scalable parallel communications

    Get PDF
    Coarse-grain parallelism in networking (that is, the use of multiple protocol processors running replicated software sending over several physical channels) can be used to provide gigabit communications for a single application. Since parallel network performance is highly dependent on real issues such as hardware properties (e.g., memory speeds and cache hit rates), operating system overhead (e.g., interrupt handling), and protocol performance (e.g., effect of timeouts), we have performed detailed simulations studies of both a bus-based multiprocessor workstation node (based on the Sun Galaxy MP multiprocessor) and a distributed-memory parallel computer node (based on the Touchstone DELTA) to evaluate the behavior of coarse-grain parallelism. Our results indicate: (1) coarse-grain parallelism can deliver multiple 100 Mbps with currently available hardware platforms and existing networking protocols (such as Transmission Control Protocol/Internet Protocol (TCP/IP) and parallel Fiber Distributed Data Interface (FDDI) rings); (2) scale-up is near linear in n, the number of protocol processors, and channels (for small n and up to a few hundred Mbps); and (3) since these results are based on existing hardware without specialized devices (except perhaps for some simple modifications of the FDDI boards), this is a low cost solution to providing multiple 100 Mbps on current machines. In addition, from both the performance analysis and the properties of these architectures, we conclude: (1) multiple processors providing identical services and the use of space division multiplexing for the physical channels can provide better reliability than monolithic approaches (it also provides graceful degradation and low-cost load balancing); (2) coarse-grain parallelism supports running several transport protocols in parallel to provide different types of service (for example, one TCP handles small messages for many users, other TCP's running in parallel provide high bandwidth service to a single application); and (3) coarse grain parallelism will be able to incorporate many future improvements from related work (e.g., reduced data movement, fast TCP, fine-grain parallelism) also with near linear speed-ups

    High-level services for networks-on-chip

    Get PDF
    Future technology trends envision that next-generation Multiprocessors Systems-on- Chip (MPSoCs) will be composed of a combination of a large number of processing and storage elements interconnected by complex communication architectures. Communication and interconnection between these basic blocks play a role of crucial importance when the number of these elements increases. Enabling reliable communication channels between cores becomes therefore a challenge for system designers. Networks-on-Chip (NoCs) appeared as a strategy for connecting and managing the communication between several design elements and IP blocks, as required in complex Systems-on-Chip (SoCs). The topic can be considered as a multidisciplinary synthesis of multiprocessing, parallel computing, networking, and on- chip communication domains. Networks-on-Chip, in addition to standard communication services, can be employed for providing support for the implementation of system-level services. This dissertation will demonstrate how high-level services can be added to an MPSoC platform by embedding appropriate hardware/software support in the network interfaces (NIs) of the NoC. In this dissertation, the implementation of innovative modules acting in parallel with protocol translation and data transmission in NIs is proposed and evaluated. The modules can support the execution of the high-level services in the NoC at a relatively low cost in terms of area and energy consumption. Three types of services will be addressed and discussed: security, monitoring, and fault tolerance. With respect to the security aspect, this dissertation will discuss the implementation of an innovative data protection mechanism for detecting and preventing illegal accesses to protected memory blocks and/or memory mapped peripherals. The second aspect will be addressed by proposing the implementation of a monitoring system based on programmable multipurpose monitoring probes aimed at detecting NoC internal events and run-time characteristics. As last topic, new architectural solutions for the design of fault tolerant network interfaces will be presented and discussed

    Fault-free performance validation of fault-tolerant multiprocessors

    Get PDF
    A validation methodology for testing the performance of fault-tolerant computer systems was developed and applied to the Fault-Tolerant Multiprocessor (FTMP) at NASA-Langley's AIRLAB facility. This methodology was claimed to be general enough to apply to any ultrareliable computer system. The goal of this research was to extend the validation methodology and to demonstrate the robustness of the validation methodology by its more extensive application to NASA's Fault-Tolerant Multiprocessor System (FTMP) and to the Software Implemented Fault-Tolerance (SIFT) Computer System. Furthermore, the performance of these two multiprocessors was compared by conducting similar experiments. An analysis of the results shows high level language instruction execution times for both SIFT and FTMP were consistent and predictable, with SIFT having greater throughput. At the operating system level, FTMP consumes 60% of the throughput for its real-time dispatcher and 5% on fault-handling tasks. In contrast, SIFT consumes 16% of its throughput for the dispatcher, but consumes 66% in fault-handling software overhead

    Value-based scheduling in real-time systems

    Get PDF
    A real-time system must execute functionally correct computations in a timely manner. Most of the current real-time systems are static in nature. However in recent years, the growing need for building complex real-time applications coupled with advancements in information technology drives the need for dynamic real-time systems. Dynamic real-time systems need to be designed not only to deal with expected load scenarios, but also to handle overloads by allowing graceful degradation in system performance. Value-based scheduling is a means by which graceful degradation can be achieved by executing critical tasks that offer high values/benefits/rewards to the functioning of the system. This thesis identifies the following two issues in dynamic real-time scheduling: (i) maintaining high system reliability without affecting its schedulability and (ii) providing graceful degradation to the system during overload and maintaining high schedulability during underloads or near full loads. Further, we use value-based scheduling techniques to address these issues. The first contribution of this thesis is a reliability-aware value-based scheduler capable of maintaining high system reliability and schedulability. We use a performance index (PI) based value function for scheduling, which can capture the tradeoff between schedulability and reliability. The proposed scheduler selects a suitable redundancy level for each task so as to increase the performance index of the system. We show through our simulation studies that proposed scheduler maintains a high system value (PI). The second contribution of this thesis is an adaptive value-based scheduler that can change its scheduling behavior from deadline-based scheduling to value-based scheduling based on the system workload, so that it can maintain a high system value with fewer deadline misses. Further, the scheduler is extended to heterogeneous computing (HC) systems, wherein the computing capabilities of processors/machines are different, and propose two adaptive schedulers (Basic and Integrated) for HC systems. The performance of the proposed scheduling algorithms is studied through extensive simulation studies for both homogeneous and heterogeneous computing systems. We have concluded that the proposed adaptive scheduling scheme maintains a high system value with fewer deadlines misses for all range workloads. Amongst the schedulers for HC systems, we conclude that the Basic scheduler, which has a lesser run-time complexity, performs better for most of the workloads. The last contribution of this thesis is the design and implementation of the proposed adaptive value-based scheduler for homogeneous computing systems in a real-time Linux operating system, RT-Linux. We compare the performance of the implementation with EDF and Highest Value-Density First (HVDF) schedulers for various ranges of workloads and show that the proposed scheduler performs better in maintaining a high system value with fewer deadline misses

    C-MOS array design techniques: SUMC multiprocessor system study

    Get PDF
    The current capabilities of LSI techniques for speed and reliability, plus the possibilities of assembling large configurations of LSI logic and storage elements, have demanded the study of multiprocessors and multiprocessing techniques, problems, and potentialities. Evaluated are three previous systems studies for a space ultrareliable modular computer multiprocessing system, and a new multiprocessing system is proposed that is flexibly configured with up to four central processors, four 1/0 processors, and 16 main memory units, plus auxiliary memory and peripheral devices. This multiprocessor system features a multilevel interrupt, qualified S/360 compatibility for ground-based generation of programs, virtual memory management of a storage hierarchy through 1/0 processors, and multiport access to multiple and shared memory units

    Space Station Freedom data management system growth and evolution report

    Get PDF
    The Information Sciences Division at the NASA Ames Research Center has completed a 6-month study of portions of the Space Station Freedom Data Management System (DMS). This study looked at the present capabilities and future growth potential of the DMS, and the results are documented in this report. Issues have been raised that were discussed with the appropriate Johnson Space Center (JSC) management and Work Package-2 contractor organizations. Areas requiring additional study have been identified and suggestions for long-term upgrades have been proposed. This activity has allowed the Ames personnel to develop a rapport with the JSC civil service and contractor teams that does permit an independent check and balance technique for the DMS
    • …
    corecore