517 research outputs found

    Efficient RSA Key Generation and Threshold Paillier in the Two-Party Setting

    Get PDF
    The problem of generating an RSA composite in a distributed manner without leaking its factorization is particularly challenging and useful in many cryptographic protocols. Our first contribution is the first non-generic fully simulatable protocol for distributively generating an RSA composite with security against malicious behavior. Our second contribution is complete Paillier [Pai99] threshold encryption scheme in the two-party setting with security against malicious behavior. Furthermore, we describe how to extend our protocols to the multiparty setting with dishonest majority. Our RSA key generation is comprised of the following: (i) a distributed protocol for generation of an RSA composite, and (ii) a biprimality test for verifying the validity of the generated composite. Our Paillier threshold encryption scheme uses the RSA composite as public key and is comprised of: (i) a distributed generation of the corresponding secret-key shares and, (ii) a distributed decryption protocol for decrypting according to Paillier

    Efficient noninteractive certification of RSA moduli and beyond

    Get PDF
    In many applications, it is important to verify that an RSA public key (N; e) speci es a permutation over the entire space ZN, in order to prevent attacks due to adversarially-generated public keys. We design and implement a simple and e cient noninteractive zero-knowledge protocol (in the random oracle model) for this task. Applications concerned about adversarial key generation can just append our proof to the RSA public key without any other modi cations to existing code or cryptographic libraries. Users need only perform a one-time veri cation of the proof to ensure that raising to the power e is a permutation of the integers modulo N. For typical parameter settings, the proof consists of nine integers modulo N; generating the proof and verifying it both require about nine modular exponentiations. We extend our results beyond RSA keys and also provide e cient noninteractive zero- knowledge proofs for other properties of N, which can be used to certify that N is suitable for the Paillier cryptosystem, is a product of two primes, or is a Blum integer. As compared to the recent work of Auerbach and Poettering (PKC 2018), who provide two-message protocols for similar languages, our protocols are more e cient and do not require interaction, which enables a broader class of applications.https://eprint.iacr.org/2018/057First author draf

    Privacy-Aware Processing of Biometric Templates by Means of Secure Two-Party Computation

    Get PDF
    The use of biometric data for person identification and access control is gaining more and more popularity. Handling biometric data, however, requires particular care, since biometric data is indissolubly tied to the identity of the owner hence raising important security and privacy issues. This chapter focuses on the latter, presenting an innovative approach that, by relying on tools borrowed from Secure Two Party Computation (STPC) theory, permits to process the biometric data in encrypted form, thus eliminating any risk that private biometric information is leaked during an identification process. The basic concepts behind STPC are reviewed together with the basic cryptographic primitives needed to achieve privacy-aware processing of biometric data in a STPC context. The two main approaches proposed so far, namely homomorphic encryption and garbled circuits, are discussed and the way such techniques can be used to develop a full biometric matching protocol described. Some general guidelines to be used in the design of a privacy-aware biometric system are given, so as to allow the reader to choose the most appropriate tools depending on the application at hand

    Privacy-Preserving and Outsourced Multi-User k-Means Clustering

    Get PDF
    Many techniques for privacy-preserving data mining (PPDM) have been investigated over the past decade. Often, the entities involved in the data mining process are end-users or organizations with limited computing and storage resources. As a result, such entities may want to refrain from participating in the PPDM process. To overcome this issue and to take many other benefits of cloud computing, outsourcing PPDM tasks to the cloud environment has recently gained special attention. We consider the scenario where n entities outsource their databases (in encrypted format) to the cloud and ask the cloud to perform the clustering task on their combined data in a privacy-preserving manner. We term such a process as privacy-preserving and outsourced distributed clustering (PPODC). In this paper, we propose a novel and efficient solution to the PPODC problem based on k-means clustering algorithm. The main novelty of our solution lies in avoiding the secure division operations required in computing cluster centers altogether through an efficient transformation technique. Our solution builds the clusters securely in an iterative fashion and returns the final cluster centers to all entities when a pre-determined termination condition holds. The proposed solution protects data confidentiality of all the participating entities under the standard semi-honest model. To the best of our knowledge, ours is the first work to discuss and propose a comprehensive solution to the PPODC problem that incurs negligible cost on the participating entities. We theoretically estimate both the computation and communication costs of the proposed protocol and also demonstrate its practical value through experiments on a real dataset.Comment: 16 pages, 2 figures, 5 table

    A Survey on Homomorphic Encryption Schemes: Theory and Implementation

    Full text link
    Legacy encryption systems depend on sharing a key (public or private) among the peers involved in exchanging an encrypted message. However, this approach poses privacy concerns. Especially with popular cloud services, the control over the privacy of the sensitive data is lost. Even when the keys are not shared, the encrypted material is shared with a third party that does not necessarily need to access the content. Moreover, untrusted servers, providers, and cloud operators can keep identifying elements of users long after users end the relationship with the services. Indeed, Homomorphic Encryption (HE), a special kind of encryption scheme, can address these concerns as it allows any third party to operate on the encrypted data without decrypting it in advance. Although this extremely useful feature of the HE scheme has been known for over 30 years, the first plausible and achievable Fully Homomorphic Encryption (FHE) scheme, which allows any computable function to perform on the encrypted data, was introduced by Craig Gentry in 2009. Even though this was a major achievement, different implementations so far demonstrated that FHE still needs to be improved significantly to be practical on every platform. First, we present the basics of HE and the details of the well-known Partially Homomorphic Encryption (PHE) and Somewhat Homomorphic Encryption (SWHE), which are important pillars of achieving FHE. Then, the main FHE families, which have become the base for the other follow-up FHE schemes are presented. Furthermore, the implementations and recent improvements in Gentry-type FHE schemes are also surveyed. Finally, further research directions are discussed. This survey is intended to give a clear knowledge and foundation to researchers and practitioners interested in knowing, applying, as well as extending the state of the art HE, PHE, SWHE, and FHE systems.Comment: - Updated. (October 6, 2017) - This paper is an early draft of the survey that is being submitted to ACM CSUR and has been uploaded to arXiv for feedback from stakeholder

    Hierarchical and dynamic threshold Paillier cryptosystem without trusted dealer

    Get PDF
    We propose the first hierarchical and dynamic threshold Paillier cryptosystem without trusted dealer and prove its security in the malicious adversary model. The new cryptosystem is fully distributed, i. e., public and private key generation is performed without a trusted dealer. The private key is shared with a hierarchical and dynamic secret sharing scheme over the integers. In such a scheme not only the amount of shareholders, but also their levels in the hierarchy decide whether or not they can reconstruct the secret and new shareholders can be added or removed without reconstruction of the secret

    Peer-to-Peer Secure Multi-Party Numerical Computation Facing Malicious Adversaries

    Full text link
    We propose an efficient framework for enabling secure multi-party numerical computations in a Peer-to-Peer network. This problem arises in a range of applications such as collaborative filtering, distributed computation of trust and reputation, monitoring and other tasks, where the computing nodes is expected to preserve the privacy of their inputs while performing a joint computation of a certain function. Although there is a rich literature in the field of distributed systems security concerning secure multi-party computation, in practice it is hard to deploy those methods in very large scale Peer-to-Peer networks. In this work, we try to bridge the gap between theoretical algorithms in the security domain, and a practical Peer-to-Peer deployment. We consider two security models. The first is the semi-honest model where peers correctly follow the protocol, but try to reveal private information. We provide three possible schemes for secure multi-party numerical computation for this model and identify a single light-weight scheme which outperforms the others. Using extensive simulation results over real Internet topologies, we demonstrate that our scheme is scalable to very large networks, with up to millions of nodes. The second model we consider is the malicious peers model, where peers can behave arbitrarily, deliberately trying to affect the results of the computation as well as compromising the privacy of other peers. For this model we provide a fourth scheme to defend the execution of the computation against the malicious peers. The proposed scheme has a higher complexity relative to the semi-honest model. Overall, we provide the Peer-to-Peer network designer a set of tools to choose from, based on the desired level of security.Comment: Submitted to Peer-to-Peer Networking and Applications Journal (PPNA) 200

    Secure Integer Comparisons Using the Homomorphic Properties of Prime Power Subgroups

    Get PDF
    Secure multi party computation allows two or more parties to jointly compute a function under encryption without leaking information about their private inputs. These secure computations are vital in many fields including law enforcement, secure voting and bioinformatics because the privacy of the information is of paramount importance. One common reference problem for secure multi party computation is the Millionaires\u27 problem which was first introduced by Turing Award winner Yao in his paper Protocols for secure computation . The Millionaires\u27 problem considers two millionaires who want to know who is richer without disclosing their actual worth. There are public-key cryptosystems that currently solve this problem, however they use bitwise decomposition and Boolean algebra on encrypted bits. This type of solution is costly as it requires each bit requires its own encryption and decryption. Our solution to the Millionaires\u27 problem and secure integer comparison looks at a new approach which doesn\u27t use the decomposition method and instead encrypts the full length of the message in one encryption (within scope). This method also extends in a linear fashion, so larger integers remain efficient to compare. In this thesis, we present a new cryptosystem with a novel homomorphic property used for secure integer comparison, as well as a protocol implementing the cryptosystem and a simulation security proof for the protocol. Finally, we implemented the system and compared it to systems that are being used today
    • …
    corecore