
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

8-23-2017 12:00 AM

Secure Integer Comparisons Using the Homomorphic Properties Secure Integer Comparisons Using the Homomorphic Properties

of Prime Power Subgroups of Prime Power Subgroups

Rhys A. Carlton
The University of Western Ontario

Supervisor

Dr. Aleksander Essex

The University of Western Ontario

Graduate Program in Electrical and Computer Engineering

A thesis submitted in partial fulfillment of the requirements for the degree in Master of

Engineering Science

© Rhys A. Carlton 2017

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Information Security Commons, Other Electrical and Computer Engineering Commons, and

the Software Engineering Commons

Recommended Citation Recommended Citation
Carlton, Rhys A., "Secure Integer Comparisons Using the Homomorphic Properties of Prime Power
Subgroups" (2017). Electronic Thesis and Dissertation Repository. 4833.
https://ir.lib.uwo.ca/etd/4833

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Western

https://core.ac.uk/display/129546123?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F4833&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ir.lib.uwo.ca%2Fetd%2F4833&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=ir.lib.uwo.ca%2Fetd%2F4833&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F4833&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/4833?utm_source=ir.lib.uwo.ca%2Fetd%2F4833&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract
Secure multi party computation allows two or more parties to jointly compute a

function under encryption without leaking information about their private inputs. These
secure computations are vital in many fields including law enforcement, secure voting and
bioinformatics because the privacy of the information is of paramount importance.

One common reference problem for secure multi party computation is the Millionaires’
problem which was first introduced by Turing Award winner Yao in his paper "Protocols
for secure computation". The Millionaires’ problem considers two millionaires who
want to know who is richer without disclosing their actual worth. There are public-key
cryptosystems that currently solve this problem, however they use bitwise decomposition
and Boolean algebra on encrypted bits. This type of solution is costly as each bit requires
its own encryption and decryption.

Our solution to the Millionaires’ problem and secure integer comparison looks at a
new approach which doesn’t use the decomposition method and instead encrypts the full
length of the message in one encryption (within scope). This method also extends in
a linear fashion (with respect to the number of encryptions), so larger integers remain
efficient to compare.

In this thesis, we present a new cryptosystem with a novel homomorphic property
used for secure integer comparison, as well as a protocol implementing the cryptosystem
and a simulation security proof for the protocol. Finally, we implemented the system and
compared it to systems that are being used today.

Keywords: Prime Power Groups, Public Key Cryptosystem, Secure Integer Compar-
ison, Cryptography, Homomorphic Encryption Properties

i

Acknowlegements
First, I would like to thank my supervisor, Dr. Aleksander Essex, for his unwavering

support throughout the duration of my master’s program. There were a number of
setbacks through the last two years, but his genuine enthusiasm and his ability to provide
a nurturing learning environment were factors that I’ve found invaluable. Being the first
person to open my eyes to the field of cryptography, Dr. Essex has allowed me to seek
out my interests in the field and has fostered the curiosities that I have had. Without his
guidance and upbeat attitude, the completion of this thesis would be impossible and I
may have never delved into the field in the first place.

I would like to thank my parents who have provided me with continuous support and
unfailing encouragement throughout my scholastic endeavours and through the process of
researching and writing this thesis. This accomplishment would not have been possible
without them.

To my friends who kept me sane through my thesis. Thank you for listening, offering
me advice, and supporting me through this entire process. The nights spent playing trivia,
watching Rick McGhee and the general help you have provided over the past two years
were all greatly appreciated.

Finally thanks to Krzysztof Kapulkin, who I have co-written a publication (in sub-
mission) with. Your help with the underlying mathematics behind our protocol was
imperative and it was a pleasure working with you.

ii

Contents

Certificate of Examination i

Abstract i

Acknowlegements ii

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Organization of Thesis . 4

2 Background 5
2.1 Secure Computation . 5
2.2 Public Key Encryption . 6

2.2.1 Cryptosystem Breakdown . 7
2.2.2 Semantic Security . 9
2.2.3 IND-CPA Game . 9
2.2.4 Randomized Encryption . 10
2.2.5 Math Basics . 10

2.3 Homomorphic Encryption . 11
2.4 DGK Public Key Cryptosystem . 13

2.4.1 Modern Use . 15
2.5 Paillier Encryption . 15
2.6 ElGamal Encryption . 18

3 Our Protocol 21
3.1 Introduction . 21
3.2 Mathematical Principles . 21
3.3 Hardness Assumptions . 23
3.4 Working in Prime Power Groups . 24
3.5 Our Encryption Scheme . 25

3.5.1 Unique Homomorphic Properties 27
3.5.2 Semantic Security . 28

iii

3.6 Our Protocol . 29
3.6.1 Correctness . 30

3.7 Extension Techniques . 32

4 Protocol Security 35
4.1 Simulation Security Basics . 35
4.2 Our Simulation Environment . 36
4.3 Simulation Proof . 37

5 Implementation 42
5.1 Environment . 42
5.2 Coding Concepts . 43
5.3 Algorithms Used . 44
5.4 Analysis . 47

6 Extension to Geo-spatial Analysis 51
6.1 Overview . 51
6.2 Math Basics . 52

6.2.1 Euclidean Distance . 52
6.3 Geo-spatial Protocol . 53

6.3.1 Distance Calculation . 53
6.3.2 Shuffling . 53
6.3.3 Comparison Protocol . 53
6.3.4 Privacy Proof . 55
6.3.5 Correctness . 56

6.4 Future Work . 57

7 Conclusion and Future Work 60
7.1 Summary . 60
7.2 Discussion . 61
7.3 Future Work . 62
7.4 Conclusion . 62

Bibliography 63

Curriculum Vitae 69

iv

List of Figures

3.1 Secure integer comparison protocol evaluating (𝑚1 > 𝑚2) 31
3.2 Secure integer comparison protocol for large ranges using blocking 34

4.1 Ideal functionality of our protocol for 𝑃𝐴 37
4.2 Ideal functionality of our protocol for 𝑃𝐵 37
4.3 Simulation of 𝑃𝐵 . 40
4.4 Simulation of 𝑃𝐴 . 41

6.1 Euclidean distance sub protocol . 54
6.2 Geo-spatial comparison protocol . 55
6.3 All variations described in geo-spatial correctness 58

v

List of Tables

5.1 Table for extracting bits using squarings 44
5.2 Comparison of DGK protocol performance vs. our performance 50

6.1 Table for variations in geo-spatial correctness 59

vi

Chapter 1

Introduction

The internet has revolutionized the way that information is distributed on a day-to-day
basis. From health informatics to trustworthy voting, law records, Global Positioning
Systems, advertising and secure database linkage, personal information is more accessible
than ever before. With the availability of personal information there has been tension
between solving social problems and protecting individual privacy. This is where the
foundation on which secure computation is based; to compute answers to questions
without disclosing unnecessary information. For this problem, protocols are put in place
to hide information while still allowing coordination and evaluation of the computation.
An example situation using secure computation is proving that an election was counted
correctly without revealing individual’s votes.

The development of protocols to ensure the security of information has steadily
improved over time, but with every step forward we make in the field of computation
there is a need to reassess the current standards that are being used. Within the scope of
this thesis, we look at an arrangement of current public key cryptosystems and create a
new system that we believe can compete with the current systems in practice. To do this
we look at the field of homomorphic encryption, which allows for functions to be done
under encryption, and parties to work together without learning any excess information
about the other party. These concepts will be explained in detail in the following chapters.

1.1 Motivation

Secure multi party computation has been a cornerstone in the field of cryptography
since it was first brought in the early works of Goldwasser and Micali [31], and Micali
and Rogaway [45]. Fischlin [25] used these works to create the first definition of secure
computation. Broadly speaking,this process allows a two or more parties to compute a

1

2 Chapter 1. Introduction

function involving the private inputs of the respective parties. This function is calculated
in a way that reveals no information about another party’s input beyond what can be
determined from the output of the function itself. For an adversary to learn anything
more than the inputs of the corrupted parties and the final output of the functions would
require every party to be corrupted.

Secure computation is essential for many efficient secure protocols. One example is
its use in secure online voting. It ensures the discretionary nature of each individual
vote while also allowing a overall tally for the election to be computed. This acts as a
safeguard, affirming these results are not compromised. Without secure computation the
ability to perform the aggregation while ensuring the integrity and privacy of each vote
would not be feasible. The is just one case amongst many where secure computation
enables the integrity of the procedure, and one instance where the protocol within this
thesis could be implemented.

Within the set of secure multi party protocols, one of the largest growing areas is the
use of data analysis and aggregation. Over the last few years, the amount of data that has
been uploaded to the internet has increased drastically. This abundance of information
stretches from medical data to web access logs and its size transcends protocols used
previously. The distribution of such large amounts of information has forced developers
to create distributed protocols that are more efficient when dealing with large sets of data.
The boom in this area sparked an interest in the creation and implementation of a secure
protocol to use when dealing with comparing information using multi party computation.
In particular, within this thesis we are looking at secure integer comparison which entails
comparing secret numbers from two parties and securely returning the result of which
integer was larger.

One example of this type of application is an application using geo-spatial analysis
to identify and order the distances of different locations from a user’s current location.
This specific example was looked at in depth and the options for secure comparison for
the ordering of locations was lacklustre. Secure integer comparisons currently require
integers to be broken into their bitwise composition and evaluated using a large number
of encryptions and decryptions (one for each bit in the integer). The absence of a general
bulk comparison for integers left me unsatisfied, and it was from here that I began looking
into the creation of a new cryptosystem that allows for better secure integer comparison.

1.2 Contributions

This thesis makes three distinct contributions to the field of public key cryptography;

1.2. Contributions 3

1. The creation of a novel public-key cryptosystem exploiting a homomorphic property
that can be used for efficient secure integer comparison,

2. The creation of an efficient protocol for the secure comparison of integers based on
this new cryptosystem,

3. A simulation based security proof for the protocol,

4. An implementation of both the cryptosystem and the protocol, which allows for
comparison with other public key cryptosystems.

These four contributions will be the main focus for the majority of the thesis, with
the final chapters discussing future applications for the contributions and fields that we
have looked at implementing the new protocol in.

Initially there will be discussion about the encryption scheme of the cryptosystem
that was developed throughout this masters degree. The research and use of prime power
subgroups allow for addition under encryption that exploits the new threshold function.
This allows for the comparison of two encrypted values (𝑚1, 𝑚2) together to see if they
fit a certain mathematical criterion. The threshold discussed in this paper is denoted by 𝑡

and the function discussed is:

𝑓(𝑚1, 𝑚2) =

⎧⎪⎨⎪⎩0 𝑚1 + 𝑚2 ≥ 𝑡

𝑚1 + 𝑚2 otherwise.

Typically comparisons are done by splitting integers into individual bitwise encryptions
and computing secure Boolean operations on those encrypted bits. The approach to our
integer comparison differs from the standard approach as we are able to compare two
encrypted integers through the (nearly) direct application of the homomorphism on a
single encrypted value. Our approach avoids the need for binary decomposition which
allows us to reduce the number of encryptions and decryptions that are needed to compare
these integers. This approach can also expands in a linear fashion, so the comparison for
larger values remains efficient.

Finally we will talk about the creation of our protocol, which utilizes this new
cryptosystem in a way designed to compute secure integer comparisons using the new
homomorphism that was stated above. The structure of this protocol differs from most
common protocols because the message space and all of the calculations exist within an
exponent. The mathematics related to prime power subgroups is a relatively unexplored
direction and this protocol could be one of the first to properly harness the benefits of

4 Chapter 1. Introduction

such a structure. This also differs from most homomorphic encryption schemes because
the groups used for our message space are not large primes or of semi-prime order.

1.3 Organization of Thesis

The remainder of this thesis is organized in the following manner:

Chapter 2 contains an introduction to the principles and mathematics behind pub-
lic key cryptography. It examines the core concepts of secure computation and looks
into three modern public key cryptosystems: DGK, Paillier and ElGamal. This section
also introduces the concept of homomorphic encryption and the partially homomorphic
properties that each of these cryptosystems posses.

Chapter 3 examines the creation of a new public key cryptosystem (our cryptosystem)
that has a unique homomorphic property allowing for efficient secure integer comparison.
It explains the mathematical foundation of the cryptosystem and a protocol that was
developed to demonstrate the new homomorphic property that was discovered.

Chapter 4 looks at the security behind our protocol and introduces the concept of
simulation security. It details the environment that our protocol would be implemented
in and talks about the problems this environment causes. This chapter proves that our
protocol is secure against passive adversaries.

Chapter 5 discusses the implementation of the protocol. It describes the Sage working
environment that was used for the implementation and looks at the performance of the
protocol in comparison to other commonly used public key cryptosystems.

Chapter 6 takes a look at the field of Geo-spatial analysis and the possibility of
using our cryptosystem within that field. This thesis originated as creating a protocol for
geo-spatial analysis but was pivoted when the lack of an efficient secure integer comparison
method was noticed.

Chapter 7 talks about the implications of the work and what considerations should
be made when using or expanding upon our protocol. It also gives a synopsis of the work
that was presented throughout the thesis and lists the contributions made to the field.

Chapter 2

Background

This section will focus on important concepts that will be brought up throughout the
duration of this thesis. This includes encryption schemes that were looked at for a basis
for the secure integer comparison scheme that we created. The purpose of an encryption
scheme is primarily for preserving the confidentiality of information that is being sent
from one party to another. One of the main principles behind cryptography is Kerckhoff’s
principle (which can be found in many cryptography textbooks, for example Cryptography:
Fundamentals and applications [43], or Handbook of applied cryptography [44]).

Definition Kerckhoff’s Principle. A cryptosystem should maintain its security re-
gardless of what information, except the secret key, is known to the public.

This principle states that security of information should not rely on the concealing of
the algorithm itself, and that it should instead rely on the secrecy of the decryption key.
Within this section we will talk about the basis of sending a secure message through
an encryption and expand to talking about common day encryption schemes that were
studied for the creation of our custom encryption scheme.

2.1 Secure Computation

Secure computation is the idea that two or more parties can cooperate to compute a value
of mutual importance using their respective private inputs such that nothing other than
the output is revealed. This concept was first introduced in the form of the Millionaires’
problem by Yao [63], and expanded on by Blake and Kolesnikov [7]. Suppose there are
𝑚 parties who want to be able to compute a function 𝑓(𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑚) where 𝑥𝑖 ≥ 0 is
the input for party 𝑃𝑖 [4]. The goal is to be able to compute the function 𝑓 with all of

5

6 Chapter 2. Background

the other parties, without letting anyone else know their respective value of 𝑥 [56]. One
of the most well known instances of secure computation is the Millionaires’ problem.

Millionaires’ Problem: The Millionaires’ problem is based on the concept of two
millionaires wanting to know who is richer without revealing to each other how much
they are worth. In this instance of two party secure computation, the function is a secure
integer comparison. Given two integers 𝑥1, 𝑥2 the Millionaires’ problem is defined as:

𝑓(𝑥1, 𝑥2) =

⎧⎪⎨⎪⎩1 if 𝑥1 < 𝑥2

0 otherwise
.

Definition Secure Computation. A two party protocol is considered a secure com-
putation if no information other than the output 𝑓(𝑥1, 𝑥2) is learned where party’s 𝑃1,
𝑃2 only know their own respective inputs. The output should not give the receiver any
indication of what the other party’s initial input was into the function [24].

The millionaires problem is directly correlated to the work that we have done for
secure integer comparison. Though there are some efficient solutions already in practice
(such as the solution described in Lin et al. [40], or Ioannidis et al. [34]), we have developed
our own protocol that is able to give the resultant of the millionaire’s problem under
homomorphic encryption without leaking information about either party’s inputs. The
purpose of designing our own cryptosystem was to increase the efficiency by avoiding the
bitwise decomposition method used by previous systems.

2.2 Public Key Encryption

The purpose of public key cryptography is to provide secure communication over a public
network. With public-key encryption two people are able to communicate privately
without ever having to have met to exchange a secret key. Public key cryptography
uses two separate keys: one for encrypting messages that is public, and one used to
decrypt messages that is private. For this type of encrpytion the public keys that are
exchanged are visible on the network without obfuscation. Security in this environment is
difficult because the information that is passed through the network can be intercepted
by adversaries [60]. To be able to be truly secure over the network, a protocol using the
encryption must uphold the three key aspects of security: confidentiality, integrity and
authenticity. To do this, a protocol must preserve:

∙ Confidentiality: Not allow information to be readable while on the network

2.2. Public Key Encryption 7

∙ Integrity: Not allow the message to be modified while on the network

∙ Authenticity: Prove that the message comes from the original sender

With these three principles, an adversary who was able to intercept the information should
not be able to understand or modify the contents of any of the messages that were sent.
The purpose of a public key cryptosystem is to preserve the integrity of the messages.

For a public key cryptosystem, each party has their own set of cryptographic keys.
The public key is used for encryption and sending messages to other parties, while the
private key is used for decryption and deciphering the messages that others have sent.
These keys are called asymmetric keys because the keys used by each party within the
exchange of a message are different (sender uses public key of recipient, receiver uses own
private key). Distribution of one’s public key is important as it is used by other parties
within the encryption of their messages. In contrast, private keys should be kept secret as
the decryption of a message should only be feasible for the owner of the private key. An
allegory for this system is the physical mail system, where anyone should be able to send
you mail, while only you should be able to read the mail addressed to you. The keys are
generated together, which means that they are related mathematically, however there are
certain principles that are upheld to make finding the private key from the public key
impractical.

2.2.1 Cryptosystem Breakdown

Definition Public Key Cryptosystem: A public key cryptosystem (referred to from
here as a cryptosystem for the sake of brevity) can be broken down into the three separate
functions that are required of it [13]. Firstly, a cryptosystem must be able to generate a set
of keys in order for secure communication across the public network. Next, a cryptosystem
must allow users to encrypt messages that are sent to others. Finally, a cryptosystem
must allow for the decryption of messages that are received. The algorithms for each of
these functions are listed below.

Gen(𝜆) → (𝑝𝑘, 𝑠𝑘): Given the security parameter 𝜆 (the length of the keys that will
be created) [10], Gen returns a set of public and private keys, 𝑝𝑘, 𝑠𝑘 respectively. This is
the first action that takes place when first using a cryptosystem, as the keys are the basis
for the security.

Enc(𝑚, 𝑝𝑘) → 𝑐: This function takes in the plaintext of message 𝑚 and the public

8 Chapter 2. Background

key 𝑝𝑘 of the user that you would like to send the message to and creates a valid ciphertext
for the encryption 𝑐.

Dec(𝑐, 𝑠𝑘) → 𝑚: This function takes in a ciphertext 𝑐 and uses the private key 𝑠𝑘

to decrypt the message into its original form (the plaintext) 𝑚.

For a cryptosystem to maintain these properties, there must not be any overlapping of
ciphertexts. Every ciphertext must be able to be reverted into the original plaintext [54]
(i.e. no two separate plaintexts should produce the same ciphertext). Let 𝐾 be the set of
all possible distinct key pairs that can be created by the cryptosystem. We say that a
cryptosystem’s encryption scheme is correct if:

∀{𝑝𝑘, 𝑠𝑘} ∈ 𝐾, 𝐷𝑒𝑐(𝐸𝑛𝑐(𝑚, 𝑝𝑘), 𝑠𝑘) = 𝑚.

Regardless of the key set that you have generated, the key pairing should allow for
encryption and decryption to work cooperatively.

We have stated that every key pair generated by the cryptosystem should work, but
we have not touched on the idea of the security of the messages themselves. The use
of a public network allows for adversaries to view the ciphertexts of the messages that
are being sent, yet they must not be able to decipher the plaintext of these messages.
Although each ciphertext has a 1:1 relationship with a plaintext, multiple re-encryptions of
the same plaintext should result in different ciphertexts. This is done with randomization
which is described in Section 2.2.4. One way to provide this is through the use of perfect
secrecy.

Definition Perfect Secrecy. The ciphertexts of a cryptosystem should reveal nothing
about the initial messages. This property is called perfect secrecy. For this property to be
maintained,

∀𝑐 ∈ 𝐶, ∀𝑚0, 𝑚1 ∈𝑀, 𝑃𝑟[𝐶 = 𝑐|𝑚0] = 𝑃𝑟[𝐶 = 𝑐|𝑚1].

Where 𝐶 is the set of all possible ciphertexts and 𝑀 is the set of all possible messages.
This means that given two messages 𝑚0, 𝑚1 and a ciphertext 𝑐, the probability of the
ciphertext coming from 𝑚0 or 𝑚1 should be the same. There should be no advantages to
guessing the message based on the ciphertext. Shannon’s theory emphasizes that for this
to be possible, the secret key must be as long as the message itself [57].

2.2. Public Key Encryption 9

2.2.2 Semantic Security

Definition Negligible Function. A function 𝑓 : N→ N is called a negligible function
if for any positive polynomial 𝑝 : N→ N ⇐⇒ ∃𝑖0 ∈ Z such that 𝑓(𝑖) < 1/𝑝(𝑖) for 𝑖 ≥ 𝑖0

where 𝑖 is any integer greater than 0.

Definition Semantically Secure. A cryptosystem is considered semantically secure
if there exists no probabilistic polynomial time algorithm (PPT), that can decipher the
plaintext from a given ciphertext. Given a ciphertext, it should be computationally infeasible
to gain information about the plaintext of the message. Given two plaintexts, 𝑚0, 𝑚1, and
ciphertext 𝑐, adversary 𝐴 should have no advantage of guessing the correct plaintext.

𝐴𝑑𝑣[𝐴, 𝑐] = |𝑃𝑟(𝑚 = 𝑚0|𝑐 = 𝑐)− 𝑃𝑟(𝑚 = 𝑚1|𝑐 = 𝑐)| is negligible

2.2.3 IND-CPA Game

Semantic security is equivalent to the Indistinguishable under Chosen-Plaintext Attack
(IND-CPA) setting. Security within this setting is often defined using the following game-
like structure. For the game, "Alice" will be the adversary looking to gain information
about the scheme and "Bob" will be the oracle, who knows the keys for the encryption
scheme.

1. A set of keys is generated by Bob 𝐺𝑒𝑛(𝜆)→ (𝑝𝑘, 𝑠𝑘).

2. Alice is given 𝑝𝑘 and asks Bob to encrypt plaintexts and return their corresponding
ciphertexts.

3. Alice creates 2 messages, 𝑚0, 𝑚1 and sends them with 𝑝𝑘 to Bob.

4. Bob chooses one of the messages 𝑏←$ {0, 1} and chooses to encrypt 𝑚𝑏.

5. Bob computes 𝑐𝑏 = Encpk(mb) and returns 𝑐𝑏 Alice.

6. Alice outputs her guess 𝑔 ← {0, 1} for which message was encrypted, and wins if
𝑔 = 𝑏.

The system is considered semantically secure under IND-CPA if Alice is unable to
determine which message was picked with a probability that is significantly greater
than or less than 50%. For this to be achieved, a semantically secure cryptosystem

10 Chapter 2. Background

must be able to generate different ciphertexts for the same plaintext. Otherwise, in
a deterministic function, Alice can simply encrypt the messages herself before sending
them off as challenge messages. This means that the encryption of a ciphertext must be
probabilistic and change with each encryption (discussed in Section 2.2.4). The public key
cryptosystems DGK, Paillier and ElGamal, which we will talk about in further sections
are all semantically secure because gaining advantage in this game scenario would be
the equivalent of solving hard mathematical problems such as the residuousity problem
described later in this thesis.

2.2.4 Randomized Encryption

Randomized encryption is the use of randomness within an encryption algorithm so that
the encryption of the same message over and over will result in different ciphertexts. This
property is needed in public key cryptosystems for semantic security. In the public key
setting randomized encryption can also be called probabilistic encryption because the
probability of a ciphertext relating to any two messages should be the same. Cryptosystems
usually deal with this randomization factor by splitting their total message space into two
distinct subsections. These are the message space and the randomiser space. An example
of this is shown below:

𝑀(𝑓𝑛)→𝑀(𝑔𝑟ℎ𝑠)

Where ℳ’s total message space of 𝑛-bits can be broken down into 𝑟-bits for the message
space 𝑔 and 𝑠-bits for the randomiser space ℎ.

2.2.5 Math Basics

Below is a list of some of the key mathematical concepts that are used within public key
encryption systems.

Group: A group is an algebraic structure that is made up of two components: a set
of elements 𝒢 and a binary operation (·). A group works under closure, such that
∀𝑎, 𝑏 ∈ 𝒢, (𝑎 · 𝑏) ∈ 𝒢. Along with the closure property, there are three main axioms that
define the group (denoted as 𝒢):

1. Groups are Associative: ∀𝑎, 𝑏, 𝑐,∈ 𝒢, (𝑎 · 𝑏) · 𝑐 = 𝑎 · (𝑏 · 𝑐)

2. Groups have an Identity Element: ∃𝑖 ∈ 𝒢 | ∀𝑎 ∈ 𝒢, 𝑖 · 𝑎 = 𝑎. Here 𝑖 is the identity
element.

2.3. Homomorphic Encryption 11

3. Elements have an Inverse: ∀𝑎 ∈ 𝒢,∃𝑏 ∈ 𝒢 | 𝑎 · 𝑏 = 𝑖. Here 𝑖 is the identity element.

Abelian Group: An abelian group is a group that also has the commutative property.
This additional property states:

∀𝑎, 𝑏 ∈ 𝒢, 𝑎 · 𝑏 = 𝑏 · 𝑎.

Cyclic Group: A cyclic group, is an abelian group in group theory that can be generated
from a single element. This element is called the generator for the cyclic group. These
generators are a key concept the field of public key cryptography. Let us say that 𝒢 is a
cyclic group that can be generated by a value 𝑥 ∈ 𝒢. This would mean that every element
in 𝒢 is equal to 𝑥𝑘 for a value 𝑘 ∈ Z. This type of group structure can be divided into two
different cases, infinite cyclic groups and finite cyclic groups [22]. If 𝒢 is infinite, then all
of the 𝑥𝑘 are unique and 𝒢 is isomorphic to Z. In the case where 𝒢 has a finite order 𝑛

every element in 𝒢 can be represented as 𝑥𝑘 where 0 < 𝑘 < 𝑛 or 𝑘 ∈ {0, ..., 𝑛− 1}. Here
𝒢 is isomorphic to Z/𝑛Z Though it is stated that a single element can be used to generate
a cyclic group, there is often more than just one element that can be used as the generator
for the cyclic group that was generated [1].

Computational Indistinguishability: The concept of computational indistinguisha-
bility is based on comparing the two distributions of results based on a security parameter
𝑛 [30]. Let us take a look at two distribution ensembles {𝑅𝑛}𝑛∈N and {𝑆𝑛}𝑛∈N. We say
that these sets are computationally indistinguishable for a probabalistic polynomial time
algorithm 𝐴 if:

𝛿(𝑛) =
⃒⃒⃒⃒

Pr
𝑥←𝑅𝑛

[𝐴(𝑥) = 1]− Pr
𝑥←𝑆𝑛

[𝐴(𝑥) = 1]
⃒⃒⃒⃒

is a negligible function in 𝑛 [9]. This means that given a specific value that has come from
one of these sets, the likelihood of the value coming from both sets should be the same and
therefore there should be no advantage in guessing which set it was chosen from [61].

2.3 Homomorphic Encryption

Homomorphic Encryption is based on a property in algebra known as homomorphisms.
This property allows information to be changed into a different set of information, yet still

12 Chapter 2. Background

maintain properties and associations from the first set. While initially garbled circuits
were implemented to solve the millionaires problem, homomorphic encryption protocols
have taken over as the main was to do secure computation [33].

Definition Homomorphism. A Homomorphism is a transformation of one set into
another that preserves in the second set the relations between elements of the first. This
means that there exists a function

𝑓 : 𝐴→ 𝐵

such that an operation · from within the 𝐴 domain, can be done in the 𝐵 domain using *.
This can be shown as

𝑓(𝑥 · 𝑦) = 𝑓(𝑥) * 𝑓(𝑦).

Homomorphic encryption is a form of encryption that allows for some computations to
be performed on the ciphertext without decrypting the ciphertext. The result of the
operations is returned as an encrypted result, which when decrypted is the same as if
some operation was performed on the plaintext [17].

Definition Homomorphic Encryption. Homomorphic encryption is a type of en-
cryption where a set of operations performed on ciphertexts results in some other operation
being performed on the plaintexts [26]. This means that we can manipulate plaintexts
while they are under encryption. This can be shown as:

𝐸(𝑥) * 𝐸(𝑦) = 𝐸(𝑥 · 𝑦).

Some applications for such a system are the implementation of secure bidding systems [8],
cloud computing [38] and data aggregation [36]. There are many partially homomorphic
cryptosystems that allow for some specific operations to be performed (namely addition and
multiplication), but due to some major drawbacks of fully homomorphic encryption (such
as the intense amount of computational power needed) fully homomorphic encryption is not
very practical. Some examples of such drawbacks are processing time and implementation
complexity.
Many cryptosystems with homomorphic properties have been around for quite a while.
For example, DGK, Paillier, and ElGamal are partially homomorphic with Paillier
developed in 1999 [48]. While these systems are partially homomorphic, there are also
fully homomorphic cryptosystems that have been developed. An example of a fully
homomorphic encryption scheme is the lattice based approach by Craig Gentry [29].
Though this type of system is possible, it is not practical using today’s resources [5].

2.4. DGK Public Key Cryptosystem 13

2.4 DGK Public Key Cryptosystem

The DGK protocol was created by Damgard, Geisler and Kroigaard in 2007 [16], [18]
as an efficient solution to solving the millionaire’s problem. For the creation of the
protocol, they were forced to form an entirely new homomorphic cryptosystem. The DGK
protocol is currently being used in many applications that deal with signal processing as
well as statistical analysis on sensitive data, k-means clustering on encrypted data and
bioinformatics (for example Franz et al.’s work on bioinformatics [27]). It is also often
improved upon (for example Garay et al.’s work [28]), as over time cryptographers get more
acquainted to it. This is the cryptosystem that we will be comparing our cryptosystem
with in future chapters, as it is the most commonly used secure integer comparison method.

Key Generation: Choose two 𝑡-bit primes 𝑣𝑝 and 𝑣𝑞 and two distinct primes 𝑝, 𝑞 of
equal bit length such that

𝑣𝑝 | 𝑝− 1

𝑣𝑞 | 𝑞 − 1

then choose an ℓ-bit prime 𝑢 and a 𝑔 ∈ Z* with order 𝑢𝑣𝑝𝑣𝑞 and choose ℎ to have order
𝑣𝑝𝑣𝑞. In this construction the 𝑔 generator is considered the message space, where the
input of the message will be present and the ℎ generator is of the randomiser space and
is used to obfuscate the numbers within 𝑔. The public (encryption) key is (𝑛, 𝑔, ℎ, 𝑢) and
the private (decryption) key is (𝑝, 𝑞, 𝑣𝑝, 𝑣𝑞). In addition to the key generation, an auxiliary
lookup table is made of tuples (𝑔𝑣𝑝𝑣𝑞)𝑖 for 0 ≤ 𝑖 ≤ 𝑢 which have corresponding values of 𝑖

Encryption: The encryption of a DGK message is not only tied to the message itself, but
also requires a random 𝑟 to be generated for the ciphertext (𝑟 is chosen 𝑟 ∈ {1, . . . , 𝑛}).
Let 𝑚 be a message to be encrypted, the ciphertext for 𝑚 is

𝑐 = 𝑔𝑚ℎ𝑟 mod 𝑛

Decryption: Let 𝑐 be the ciphertext chosen for decryption, where 𝑐 ∈ Z*𝑛, The plaintext
message can be found by computing

𝑚′ = 𝑐𝑣𝑝𝑣𝑞 mod 𝑛

𝑚′ = (𝑔𝑚ℎ𝑟)𝑣𝑝𝑣𝑞 mod 𝑛

Recall that the generator ℎ has order 𝑣𝑝𝑣𝑞, this means that the generator cancels out and

14 Chapter 2. Background

becomes 1, which leaves
𝑚′ = (𝑔𝑣𝑝𝑣𝑞)𝑚 mod 𝑛.

𝑚′ can then be found within the auxiliary table that was created within the key generation.

Homomorphic Properties
The DGK is additively homomorphic and has the same homomorphic properties as the
Paillier cryptosystems as seen below.

∀𝑚1, 𝑚2 and 𝑘 ∈ Z*𝑛

Dec
(︁
Enc(𝑚1)Enc(𝑚2) mod 𝑛

)︁
= (𝑚1 + 𝑚2)𝑣𝑝𝑣𝑞 mod 𝑛

Dec
(︁
Enc(𝑚1)𝑔𝑚2 mod 𝑛

)︁
= (𝑚1 + 𝑚2)𝑣𝑝𝑣𝑞 mod 𝑛

Dec
(︁
Enc(𝑚1)𝑚2 mod 𝑛

)︁
= (𝑚1𝑚2)𝑣𝑝𝑣𝑞

Dec
(︁
Enc(𝑚2)𝑚1 mod 𝑛

)︁
= (𝑚1𝑚2)𝑣𝑝𝑣𝑞

Dec
(︁
Enc(𝑚)𝑘 mod 𝑛

)︁
= (𝑘𝑚)𝑣𝑝𝑣𝑞

Secure Integer Comparison One of the large benefits of using the DGK system is
that the use of smaller primes reduces the size of the modulus and allow multiple rapid
encryptions and decryptions. This specific property was chosen for the approach that
Damgard, Geisler and Kroigaard had towards secure integer comparison. When comparing
the bitwise decomposition of integers 𝑥 and 𝑦, their approach was to scan both bit rows
from left (the most significant part) to right searching for the first differing bit. The
outcome of the comparison of these differing bits will determine the comparison result of
both integers. Assume both integers contains ℓ bits denoted by 𝑥𝑖 and 𝑦𝑖 respectively,
this leads to a breakdown of

𝑥 = 𝑥ℓ−1 . . . 𝑥2𝑥1𝑥0

where the most significant bit of 𝑥 is denoted as 𝑥ℓ−1. Then the ciphertexts 𝑐𝑖, 0 ≤ 𝑖 < ℓ

are computed which will only be zero when 𝑥𝑗 = 𝑦𝑗 for each 𝑗, 𝑖 < 𝑗 < ℓ and at the same
time 𝑥𝑖 , 𝑦𝑖.

A more intuitive way of looking at the value for 𝑐𝑖 is as follows,

𝑐𝑖 = 𝑠 + 𝑥𝑖 − 𝑦𝑖 + 3
ℓ−1∑︁

𝑗=𝑖+1
*(𝑥𝑗 ⊕ 𝑦𝑗).

The sum of exclusive ors will be 0 exactly when 𝑥𝑗 = 𝑦𝑗 for each 𝑗, 𝑖 < 𝑗 < ℓ. The variable

2.5. Paillier Encryption 15

𝑠 can be set to either −1 or 1 depending on the comparison that is performed (greater
than or less than). For example when 𝑠 = −1, 𝑐𝑖 will only be zero when 𝑥𝑖 = 1 and 𝑦𝑖 = 0
(and 𝑥𝑗 = 𝑦𝑗 for each 𝑗, 𝑖 < 𝑗 < ℓ) which means that 𝑥 > 𝑦. To avoid one of the parties
learning the comparison result, one party will set the parameter 𝑠 and the other party
will learn if 𝑐𝑖 = 0.

2.4.1 Modern Use

While the DGK scheme was first proposed in 2007, there have been few advancements in
the field of secure integer comparison. Recent work done using secure integer comparison
like Xiang et al.’s work in the field of secure facial recognition still use this protocol in
their studies in 2016 [62]. While the implementation of the protocol represents it’s use
in industry, it is also important to note that the DGK protocol is still the baseline for
which secure comparison protocols compare themselves to [15]. In Nateghizad et al.’s
work in trying to create a protocol specifically for metering systems [46] they compare
their efficiency to the DGK protocol, stating that for their exact situation, the use of
their protocol is marginally better than DGK. Other examples of the DGK protocol being
mentioned as today’s standard include the works of Li et al. [39] and Couteau [15]. While
there have been a few advances in the efficiency of DGK itself such as Veugen’s work in
2011 [60], these advancements still have to deal with the drawback of using the binary
decomposition within DGK (the large number of encryptions and decryptions) and are
not as significant as our attempt to replace this process altogether.

2.5 Paillier Encryption

Pascal Paillier invented the Paillier encryption scheme in 1999 [48]. This scheme used
a probabilistic public-key cryptosystem structure. The hardness assumption for this
cryptosystem was based on decisional composite residuousity, which deals with the
hardness of dedciding if a number is an 𝑛th residue modulo 𝑛2 (which is computationally
difficult [19]). This cryptosystem was studied as it is often used in conjunction with the
DGK protocol for a second layer of security when making slight variations to the protocol
itself.

Paillier’s encryption scheme can be broken into it’s key generation, encryption, and
decryption algorithms [64]. They are listed as follows:

Key Generation: Two large prime numbers 𝑝 and 𝑞 are chosen at random and are

16 Chapter 2. Background

independent from one another. As long as the primes are of equal length, the property

𝑔𝑐𝑑(𝑝𝑞, (𝑝− 1)(𝑞 − 1)) = 1

stands. Here 𝑔𝑐𝑑 means the greatest common divisor (largest number that divides both
𝑝𝑞 and (𝑝− 1)(𝑞 − 1)). From these two primes, 𝑛 can be computed as

𝑛 = 𝑝𝑞

and 𝜆 = 𝑙𝑐𝑚(𝑝− 1, 𝑞 − 1). Here 𝑙𝑐𝑚 means the least common multiple (smallest number
that is divisible by both 𝑝− 1 and 𝑞 − 1). The next step in key generation is choosing a
random integer 𝑔 where 𝑔 ∈ Z*𝑛. To guarantee that 𝑛 divides the order of 𝑔 we can check
to see if there is a modular inverse 𝜇. To do this, first we create a function 𝐿 where 𝑢 is
the security parameter and

𝐿(𝑢) = (𝑢− 1)/𝑛.

Using this 𝐿 we can generate the inverse as:

𝜇 = 𝐿(𝑔𝜆 mod 𝑛2)−1 mod 𝑛.

For the encryption scheme, the public key is (𝑛, 𝑔) and the private key is (𝜆, 𝜇).

Encryption: Let 𝑚 ∈ Z*𝑛 represent a message that will be encrypted. Generate 𝑟

such that 𝑟 ∈ Z*𝑛2 . Using these two parameters, we can compute the ciphertext for a
Paillier encryption as:

𝑐 = 𝑔𝑚𝑟𝑛 mod 𝑛2.

Decryption: Given a valid ciphertext 𝑐 where 𝑐 ∈ Z*𝑛, the plaintext of the ciphertext
can be computed as:

𝑚 = 𝐿
(︂

𝑐𝜆(𝑚𝑜𝑑𝑛2)) · 𝜇
)︁

mod 𝑛

This decryption is "essentially one exponentiation modulo 𝑛2" as pointed out by Paillier
in his original paper [48].

This encryption scheme harnesses certain discrete logarithms that can be easily com-
puted to it’s advantage.

Homomorphic Properties: One of the key characteristics of Paillier’s encryption
scheme is the homomorphic properties that it possesses. Under Paillier’s encryption

2.5. Paillier Encryption 17

scheme, we have both homomorphic addition and homomorphic multiplication.

Homomorphic Addition of Plaintexts: Given 𝑟1, 𝑟2←$ Z*𝑛, let the ciphertexts in this
section be represented as 𝐸(𝑚1, 𝑝𝑘) = 𝑔𝑚1𝑟𝑛

1 (𝑚𝑜𝑑𝑛2) and 𝐸(𝑚2, 𝑝𝑘) = 𝑔𝑚2𝑟𝑛
2 (𝑚𝑜𝑑𝑛2).

Here the multiplication of two ciphertexts under encryption is equivalent to the addition
of the plaintexts within the encryption, i.e.,

Dec
(︃

Enc(𝑚1, 𝑝𝑘) · Enc(𝑚2, 𝑝𝑘) mod 𝑛2
)︃

= (𝑚1 + 𝑚2) mod 𝑛.

This can be seen when inspecting what actually happens within the multiplication:

Enc(𝑚1, 𝑝𝑘) · Enc(𝑚2, 𝑝𝑘) = (𝑔𝑚1𝑟𝑛
1)(𝑔𝑚2𝑟𝑛

2) mod 𝑛2

= 𝑔𝑚1+𝑚2(𝑟1𝑟2)𝑛 mod 𝑛2

= Enc(𝑚1 + 𝑚2, 𝑝𝑘).

This homomorphic addition also works if you multiply an encryption by a message within
the message space (in the form 𝑔𝑚). This can be shown as

Dec
(︁
Enc(𝑚1, 𝑝𝑘) · 𝑔𝑚2 mod 𝑛2

)︁
= (𝑚1 + 𝑚2) mod 𝑛.

These multiplications reduce to the addition of the plaintexts by using the "product rule"
which allows exponents of the same base to be added when they are being multiplied.
The exponent found within the randomiser space does not effect the decryption because
the decryption key nullifies the space and deals only with the message space.

Homomorphic Multiplication of Plaintexts: Another property of Paillier’s
scheme is that raising a ciphertext to the power of a plaintext results in the product of
the two plaintexts under encryption:

Dec
(︁
Enc(𝑚1, 𝑝𝑘)𝑚2 mod 𝑛2

)︁
= 𝑚1𝑚2 mod 𝑛.

This equation can be broken down further for easier analysis:

Enc(𝑚1, 𝑝𝑘)𝑚2 = (𝑔𝑚1𝑟𝑛
1)𝑚2 mod 𝑛2

= 𝑔𝑚1𝑚2(𝑟𝑚2
1)𝑛 mod 𝑛2

= Enc(𝑚1𝑚2, 𝑝𝑘).

This multiplication of the plaintexts can also be used in a scalar fashion by raising the

18 Chapter 2. Background

encryption to a power 𝑝. This will multiply the encrypted plaintext by 𝑝.

𝐷(𝐸(𝑚1, 𝑝𝑘)𝑝 mod 𝑛2) = 𝑝𝑚1 mod 𝑛

2.6 ElGamal Encryption

The ElGamal encryption scheme was invented by Taher ElGamal in 1985 [23] and uses the
Diffie-Helman key exchange as the foundation for it’s public-key algorithm. The security
of the system is based on Decisional Diffie-Helman assumption. This encrpytion scheme
is defined over a cyclic group 𝒢. ElGamal encryption is important to our protocol as we
can use it to extend the protocol, hiding the difference between the numbers within the
secure comparison.

ElGamal’s encryption scheme can be broken into it’s key generation, encryption, and
decryption algorithms [64]. They are listed as follows:

Key Generation: Party 𝑃1 determines an efficient description of a cyclic group 𝒢 with
𝑞 elements and a generator 𝑔. Here an "efficient description" just means that not all of
the elements of the group are written out for the other party (𝑃2).
𝑃1 chooses 𝑥 ∈ {1, . . . , 𝑞 − 1}. and computes

𝑦 = 𝑔𝑥.

The public key for the cryptosystem is (𝐺, 𝑞, 𝑔, 𝑦) and the private key is (𝑥). This 𝑥 value
must be kept secret.

Encryption: For the encryption of a message 𝑚, Party 𝑃2 uses the public key given by
𝑃1 (𝐺, 𝑞, 𝑔, 𝑦) and a value 𝑟←$ {1, . . . , 𝑞 − 1}. 𝑃2 computes

𝑐1 = 𝑔𝑟

and a shared secret
𝑠 = 𝑦𝑟.

𝑃2 then transforms it’s secret message 𝑚, into 𝑚′ ∈ 𝒢 and computes

𝑐2 = 𝑚′ · 𝑠.

2.6. ElGamal Encryption 19

𝑃2 then sends (𝑐1, 𝑐2) to 𝑃1.

If you know 𝑚′, it is easy to determine the 𝑦𝑟, because you can use 𝑐2 and divide out 𝑚′.
This caveat means that to ensure security the value of 𝑟 should be ephemeral. This means
a new 𝑟 should be chosen for each message causing it to change through the communication.

Decryption: For the decryption of a ciphertext (𝑐1, 𝑐2), party 𝑃1 computes the shared
secret using her private key 𝑥 as

𝑡 = 𝑐𝑥
1 .

Recall that 𝑐1 = 𝑔𝑟, which makes 𝑡 = 𝑔𝑟𝑥. 𝑃1 then computes

𝑚′ = 𝑐2𝑡
−1 = 𝑐2(𝑔𝑟𝑥)−1

where 𝑡−1 is the inverse of 𝑡 in the group 𝒢 (as explained in Section 2.2.5). 𝑃1 then
transforms 𝑚′ back into the original message 𝑚.
The equation below shows that the decryption results in the correct message:

𝑐2𝑡
−1 = (𝑚′𝑠)𝑐−𝑥

1

= 𝑚′𝑦𝑟𝑔−𝑥𝑟

= 𝑚′𝑔𝑥𝑟𝑔−𝑥𝑟

= 𝑚′.

This scheme, much like Paillier is probabilistic in that plaintexts are not limited to just one
resulting ciphertext. The expansion of the size of plaintexts to ciphertexts is a 2:1 ratio [23].
For the encryption function, ElGamal requires 2 exponentiations (pre-computable as
independent from the message) and for the decryption function only 1 exponentiation is
needed.

Homomorphic Property: ElGamal has an multiplicative homomorphic property
where the multiplication of two ciphertexts results in the multiplication of the two
plaintexts. Given the encryptions for two messages 𝑚1, 𝑚2 ∈ 𝒢 using 𝑟1, 𝑟2 which are
randomly chosen from {1, . . . , 𝑞 − 1}. The encryptions can be shown as

(𝑐11, 𝑐12) = (𝑔𝑟1 , 𝑚1𝑦
𝑟1)

(𝑐21, 𝑐22) = (𝑔𝑟2 , 𝑚2𝑦
𝑟2).

20 Chapter 2. Background

Using these encryptions it is possible to compute

(𝑐11, 𝑐12)(𝑐21, 𝑐22) = (𝑐11𝑐21, 𝑐12𝑐22)

= 𝑔𝑟1𝑔𝑟2 , (𝑚1𝑦
𝑟1)(𝑚2𝑦

𝑟2)

= 𝑔𝑟1+𝑟2 , (𝑚1𝑚2)𝑦𝑟1+𝑟2 .

This ciphertext is the encryption of 𝑚1𝑚2.
ElGamal can also be implemented where the cyclic group 𝒢 is an elliptic curve. This

results in a faster computational time than exponential ElGamal, while being based on
the same principles. Elliptic curve ElGamal is used in the implementation section of the
thesis, but it was not studied in detail and the curve used was chosen from a set provided
by the National Institute of Standards and Technology (NIST) [47]. The particular curve
that we use is the P-256 curve, also known as the sec256r1 [52].

Chapter 3

Our Protocol

3.1 Introduction

Our approach in finding a more efficient scheme for the secure comparison of integers was
to try and create something brand new. When looking at possible options for the structure
of the encryption, it was clear to us that we wanted to incorporate homomorphic properties
into the encryption so that all of our computations could be done under encryption. While
studying the different types of homomorphic properties that are used, we discovered a
new property wherein a threshold function could be used within an exponent to expose
information about the inputs. After discovering this new property (discussed further in
Section 3.5.1), we decided to base the new cryptosystem on showcasing this property
and the correct way to exploit the information learned from the threshold function. The
subsequent sections in this chapter explain the breakdown of the cryptosystem that was
developed and the protocol used for secure integer comparison using the cryptosystem.
These sections are an expansion on our paper [12].

3.2 Mathematical Principles

Within our encryption scheme we are working with an RSA modulus of 𝑛, where 𝑛 = 𝑝 · 𝑞
and 𝑝 and 𝑞 are relatively large primes. Each of these primes is comprised of a set of
generators of different order. The three sections of 𝑝 and 𝑞 are:

1. The message space 𝑏 where 𝑏 is a small prime base (e.g. 3).

2. The randomiser space 𝑝𝑠, 𝑞𝑠 which is used for obfuscation.

21

22 Chapter 3. Our Protocol

3. The padding space 𝑝𝑡, 𝑞𝑡 which is used to extend the length of the message to fit
the parameters.

Put together, these parts make up 𝑝 and 𝑞 as follows:

𝑝 = 2𝑏𝑑𝑝𝑠𝑝𝑡 + 1

𝑞 = 2𝑏𝑑𝑞𝑠𝑞𝑡 + 1

In this construction 𝑝𝑠, 𝑝𝑡, 𝑞𝑠, 𝑞𝑡 are pairwise distinct primes (meaning they are all different).
We note that we are also working in Z*𝑛 ring which encompasses all non negative integers
from 0 to 𝑛− 1. By deconstructing Z*𝑛, we can see that there are two cyclic subgroups
within the the larger space. There is a cyclic subgroup G of order 𝑏𝑑 and a unique cyclic
subgroup H of order 𝑝𝑠𝑞𝑠. These subgroups define the message and randomiser spaces of
the encryption.

Z*𝑛 � Z2𝑏𝑑𝑝𝑠𝑝𝑡
× Z2𝑏𝑑𝑞𝑠𝑞𝑡

� (Z2)2 × (Z𝑏𝑑)2 × Z𝑝𝑠𝑞𝑠 × Z𝑝𝑡𝑞𝑡

With 𝑔 ← G and ℎ ← H as random generators,the public key for the cryptosystem is
𝑝𝑘 = (𝑛, 𝑏, 𝑑, 𝑔, ℎ, 𝑢). In this key, 𝑢 represents the bit-length of 𝑝𝑠 and 𝑞𝑠 and is a security
parameter for the protocol. Let the notation 𝑥←$ 𝑆 denote a value 𝑥 sampled uniformly
at random from a set 𝑆. For the encryption of a message 𝑚 ∈ {0, . . . 𝑏𝑑 − 1}, 𝑃1 creates
a random 𝑟←$ {1, 2, . . . , 2𝑢 − 1}, and sends 𝑐 = 𝑔𝑚ℎ𝑟 mod 𝑛. The decryption of 𝑐 takes
the value of 𝑝𝑠𝑞𝑠 (which is the order of ℎ) and computes 𝑐𝑝𝑠𝑞𝑠 = (𝑔𝑚)𝑝𝑠𝑞𝑠 . By finding the
inverse of 𝑝𝑠𝑞𝑠 mod 𝑛, which we call 𝑥, we can solve the discrete logarithm problem by
computing:

𝑔𝑚 = (𝑐𝑝𝑠𝑞𝑠)𝑥.

Since 𝑔 is an element of order 𝑏𝑑 this can be done in 𝑂(𝑑
√

𝑏) operations, which is efficient
in the size of 𝑏 and 𝑑.

The last aspect of the mathematical description of the scheme, is an explanation on
how to efficiently choose the generators 𝑔 and ℎ of the respective subgroups G and H.
Generator ℎ is chosen in the same manner as the generators of the respective randomiser
spaces of the schemes of Groth and Damgård et al. [32], namely we find generator ℎ𝑝𝑠

(resp. ℎ𝑞𝑠) of the subgroup of Z*𝑝 (resp. Z*𝑞) of order 𝑝𝑠 (resp. 𝑞𝑠). The procedure for
finding ℎ𝑝𝑠 and ℎ𝑞𝑠 is straightforward, and is found in most software implementations of
the discrete logarithm problem over finite fields (e.g., Diffie-Helmman, RSA, Elgamal,

3.3. Hardness Assumptions 23

etc) [23]. Next we use the Chinese remainder theorem to find ℎ such that

ℎ ≡ ℎ𝑝𝑠 mod 𝑝

ℎ ≡ ℎ𝑞𝑠 mod 𝑞.

𝑔 is chosen in the same manner, i.e., find a generator 𝑔𝑏𝑑 of a subgroup of order 𝑏𝑑

separately in Z*𝑝 and Z*𝑞 and use the Chinese remainder theorem to compute 𝑔 in the
manner above.

3.3 Hardness Assumptions

Given the parameters as above, it should be infeasible to distinguish between a randomly
selected element of Z*𝑛 and an element of order 𝑝𝑠𝑞𝑠, without factoring 𝑛 [59]. This should
be hard, even for an adaptive adversary [11]. To prove this, we begin by looking at the
structure of the public key that is created using our algorithm.

Definition An RSA quintuple is a quintuple (𝑛, 𝑏, 𝑑, 𝑔, 𝑢) where:

1. 𝑢 is an integer such that the Discrete Logarithm Problem is infeasible in a group
whose order is a prime of bit-length 𝑢;

2. 𝑏 is a prime of bit-length less than 𝑢;

3. 𝑑 is an integer greater than 1;

4. 𝑛 is an integer 𝑛 = 𝑝𝑞, whose factorization is infeasible, where:

𝑝 = 2𝑏𝑑𝑝𝑠𝑝𝑡 + 1 and 𝑞 = 2𝑏𝑑𝑞𝑠𝑞𝑡 + 1;

and where 𝑝𝑠 and 𝑞𝑠 are primes of bit-length 𝑢, and 𝑝𝑡, 𝑞𝑡 are primes whose bit-length
is not 𝑢;

5. 𝑔 is an element of order 𝑏𝑑 in Z*𝑛, which is the message space generator.

We point out that an RSA quintuple (𝑛, 𝑏, 𝑑, 𝑔, 𝑢) is only one number short of a public
key in our encryption scheme (Section 3.6). The final parameter is used to define the
problem and the corresponding hardness assumption.

Small RSA Subgroup Decision Problem Given an RSA quintuple (𝑛, 𝑏, 𝑑, 𝑔, 𝑢) and
𝑥 ∈ Z*𝑛, determine whether or not 𝑥 has order 𝑝𝑠𝑞𝑠. From this decision, output ‘yes’ if 𝑥

has order 𝑝𝑠𝑞𝑠 and ‘no’ if it does not have the proper order.

24 Chapter 3. Our Protocol

Note that due to the requirements on the length of 𝑝𝑠, 𝑞𝑠, 𝑝𝑡, and 𝑞𝑡, this gives a well-
defined decision problem. Of course, if we could factor 𝑛, then the problem would be easy
to solve. However, without the ability to factor 𝑛, it appears to be infeasible, which leads
us to the following definition:

Small RSA Subgroup Decision Assumption Given an RSA quintuple (𝑛, 𝑏, 𝑑, 𝑔, 𝑢)
and 𝑥 ∈ Z*𝑛, we say that 𝒢 satisfies the Small RSA Subgroup Decision Assumption if for
any polynomial time algorithm 𝒜, the advantage of 𝒜 in solving the Small RSA Subgroup
Decision Problem is negligible, i.e. the only way to determine if 𝑥 has order 𝑝𝑠𝑞𝑠 is to
factor 𝑛.

This assumption is very similar to an assumption presented by Groth [32], and an
assumption by Pointcheval [50]. Even though they are similar, to our knowledge our
assumption cannot be reduced to these assumptions.

3.4 Working in Prime Power Groups

Generator of a prime power subgroup In Section 2.2.5 we talked about the concept of
generators and their role in cyclic groups and cryptography. One of the unique properties
of our protocol is that we have chosen to work in what is called a ’prime power group’.
This differs from a typical cyclic subgroup as the order that we are using is power of a
small prime instead of the typical power of a large prime. To create a secure generator
of a prime power subgroup, one must find two numbers that are relatively prime to the
order of the group. Secondly, you need to make sure that the numbers chosen are also
relatively prime to the order of the group as well. Below is an algorithm for finding a
proper generator 𝑔𝑏𝑑 of a subgroup of Z*𝑝 (for a prime 𝑝) of order 𝑏𝑑 (finding Z*𝑏𝑑 for prime
𝑝 in 𝑛 = 𝑝 · 𝑞):

while 𝑇𝑟𝑢𝑒 :

𝑥 ←$ {2 . . . 𝑝− 2}

𝑦 = 𝑥(𝑝−1)/𝑏 mod 𝑝

if 𝑦 , 1 :

return 𝑥(𝑝−1)/𝑏𝑑
.

This procedure is repeated to find a generator 𝑔𝑏𝑑 of a subgroup of Z*𝑞 (for prime 𝑞),
the Chinese remainder theorem is used to combine the two generators to produce 𝑔, a
generator of a subgroup of order 𝑔𝑏𝑑 of Z*𝑛 (where 𝑛 = 𝑝𝑞).

3.5. Our Encryption Scheme 25

3.5 Our Encryption Scheme

This section discusses the algorithms that form the basis of the cryptosystem that we
have created. The composition of our protocol is similar to the composition found in
Section 2.2.1, as we have structured our protocol to be a public key cryptosystem. Below
we list the three functions that comprise our system.

𝐺𝑒𝑛(𝜆): For our generator 𝒢 we take the input 𝜆 ∈ Z+ as the security parameter, which
in this case is the length of the keys that are to be generated. This Gen function
produces a pair (ℓ, 𝑢) where ℓ is the length where factoring the product of two
random ℓ bit primes is infeasible for a PPT-bounded machine, and where 𝑢 is
the length where solving a discrete log in a group of 𝑢 order is infeasible for a
PPT-bounded machine. After the generator obtains (ℓ, 𝑢), a small prime base 𝑏 and
message space with an upper bound of 𝑑 ∈ Z+ are chosen. Next we need to find a
modulus for the message space. This modulus 𝑛, will be generated from two primes
𝑝 and 𝑞 where 𝑛 = 𝑝𝑞. The construction of 𝑝 and 𝑞 are as follows:

𝑝 = 2𝑏𝑑𝑝𝑠𝑝𝑡 + 1

𝑞 = 2𝑏𝑑𝑞𝑠𝑞𝑡 + 1,

In this example, the composition of the primes are as follows: 2𝑏𝑑 is within the message
space, 𝑝𝑠 is the within the randomiser space, and 𝑝𝑡 is within the padding space. Let the
length of 𝑝𝑠, 𝑞𝑠 be 𝑢 bits so that solving the discrete logarithm of the randomiser generator
is computationally infeasible. Next we need to decide on the length of the padding space.
For this we need to look at ℓ and see if the length of ⌈log2(𝑏𝑑)⌉ + 𝑢 > ℓ. We need the
primes that we are using to be have sufficient length such that factorization is infeasible.
If this is the case, we can simply set 𝑝𝑡 = 𝑞𝑡 = 1 and ignore the padding space of the
message. If ⌈log2(𝑏𝑑)⌉ + 𝑢 < ℓ, we need to choose a value 𝑣 to pad the encryption so
that it is sufficiently secure. To do this we can choose 𝑣 where 𝑣 = ℓ− (⌈log2(𝑏𝑑)⌉+ 𝑢).
Since we now can account for both the ℓ and 𝑢 parameters to be fulfilled, we can create
generators for the groups. Let G be a subgroup of Z*𝑛 of order or 𝑏𝑑 modulo both 𝑝 and
𝑞. This subgroup will be what we use for the message space of our encryption. Next
we can create a subgroup for the randomiser space by finding a subgroup G𝑟 of Z*𝑛 of
order 𝑝𝑠𝑞𝑠. We are able to pick random generators 𝑔←$ G (cf. Section 2.2.5) and ℎ←$ G𝑠.
Ultimately, find 𝑥 where 𝑥′ = (𝑝𝑠𝑞𝑠)−1 mod 𝑏𝑑 and 𝑥 = 𝑝𝑠𝑞𝑠𝑥

′. This x value is used to
cancel out the randomiser space and recover solely what is found in the message space.

26 Chapter 3. Our Protocol

For our protocol, the public key is 𝑝𝑘 = (𝑛, 𝑏, 𝑑, 𝑔, ℎ, 𝑢), and the private key is 𝑠𝑘 = (𝑥).

Enc(𝑝𝑘, 𝑚): The message space for the comparison consists of integers in the range
(0 . . . 𝑏𝑑 − 1). Any number greater than 𝑏𝑑 − 1 will fill a spot in the generator that
is already occupied, which ruins the 1:1 ciphertext to plaintext relation mentioned
in Section 2.2.1. For the encryption of message 𝑚, a party uses the values from
the public key 𝑝𝑘 and picks a random 𝑟 within the constraints of the protocol,
𝑟←$ {1, . . . , 2𝑢 − 1}. With these values, a party is able to create ciphertext 𝑐 by
computing

𝑐 = 𝑔𝑚ℎ𝑟.

The random 𝑟 provides the probabilistic distribution required for perfect secrecy
and semantic security as referenced in Section 2.2.1 and Section 2.2.2.

Dec(𝑠𝑘, 𝑐): To decrypt a ciphertext 𝑐 using private key 𝑠𝑘, compute

𝑐𝑥 = 𝑐𝑝𝑠𝑞𝑠𝑥′ = (𝑔𝑚ℎ𝑟)𝑝𝑠𝑞𝑠𝑥′ = (𝑔𝑚)𝑝𝑠𝑞𝑠𝑥′
ℎ𝑟𝑝𝑠𝑞𝑠𝑥′ = 𝑔𝑚𝑝𝑠𝑞𝑠𝑥′

.

Because the order of the randomiser group is 𝑝𝑠𝑞𝑠, raising the generator ℎ to 𝑝𝑠𝑞𝑠 makes the
output of the generator 1. This isolates the message space and allows for the decryptor to
view the message without obfuscation. Since 𝑥′ was chosen such that 𝑥′ = (𝑝𝑠𝑞𝑠)−1 mod 𝑏𝑑

and we know that 𝑥′ exists because gcd(𝑏, 𝑝𝑠𝑞𝑠) = 1, 𝑝𝑠𝑞𝑠𝑥
′ ≡ 1 mod 𝑏𝑑, it will cancel itself

out within generator 𝑔.
𝑐𝑥′ = (𝑔𝑚𝑝𝑠𝑞𝑠)𝑥′ = 𝑔𝑚.

Last of all, we can recover the original message 𝑚 from 𝑔𝑚 by computing the discrete
logarithm. Since we have chosen a small prime base 𝑏, we will only have to do 𝑑

computations of the discrete logarithm of order 𝑏. This is efficiently computable due to
the size of 𝑏.

Remark Throughout this section we have been constructing our message space using
2𝑏𝑑. In the case where we want 𝑏 = 2, we can reduce the complexity of the creation for
the primes by creating 𝑝 and 𝑞 in the following manner:

𝑝 = 2𝑑𝑝𝑠𝑝𝑡 + 1,

𝑞 = 2𝑑𝑞𝑠𝑞𝑡 + 1.

Remark Within our cryptosystem we also found an interesting and unexplored homo-

3.5. Our Encryption Scheme 27

morphic property that we use for secure integer comparison. To accomplish this, we can
restrict the set of possible messages to 𝑚 ∈ {𝑏0, 𝑏1, 𝑏2, . . . , 𝑏𝑑−1}. This allows us to encrypt
a message 𝑚 ∈ {0, 1, . . . , 𝑑− 1} by putting:

𝑐 ≡ 𝑔𝑏𝑚

ℎ𝑟 mod 𝑛.

We use this set restriction as well as the unique homomorphic property in our secure
comparison protocol presented in Section 3.6.

Next we will discuss the unique homomorphic property that we found when restricting
the message space of our cryptosystem.

3.5.1 Unique Homomorphic Properties

Much like the Paillier and DGK protocols described in Chapter 2, our encryption scheme
is one with additively homomorphic properties (also described by Rivest et al. [53]).
When working in a group modulo 𝑏𝑑, multiplication of two encryptions results in the
addition of their plaintexts under encryption (shown by Bendlin et al. [6]). This can be
shown as:

Enc(𝑚1) · Enc(𝑚2) mod 𝑛 = Enc(𝑚1 + 𝑚2 mod 𝑏𝑑).

We also retain the scalar multiplicative homomorphic property of these schemes where
raising an encryption to the power of a message results in the multiplication of the two
messages under encryption:

Enc(𝑚1)𝑚2 mod 𝑛 = Enc(𝑚1𝑚2 mod 𝑏𝑑).

This scalar multiplicative property can be expanded upon when we force our messages
to be powers of our small prime base 𝑏, as referenced in Section 3.5. Using the scalar
multiplicative homomorphic property of our scheme and reducing messages to the form
𝑏𝑚, we can multiply in the message, which results in the addition of their exponents:

Enc(𝑏𝑚1)𝑏𝑚2 mod 𝑛 = Enc(𝑏𝑚1𝑏𝑚2 mod 𝑏𝑑) = Enc(𝑏𝑚1+𝑚2 mod 𝑏𝑑).

When looking at 𝑏𝑚1+𝑚2 mod 𝑏𝑑 it is evident that if 𝑚1 + 𝑚2 > 𝑑, it will be congruent to
0 and 𝑏𝑚1+𝑚2 will stay a value of 1 regardless of the difference (as 𝑏0 = 1). This results
in a threshold function where we are able to set an upper limit for our secure integer
comparison and see which side the addition falls under.

28 Chapter 3. Our Protocol

The threshold function of 𝑚1 + 𝑚2 under a modulo of 𝑏𝑑 looks as follows:

𝑏𝑚1+𝑚2 mod 𝑏𝑑 =

⎧⎨⎩ 𝑏𝑚1+𝑚2 if (𝑚1 + 𝑚2) < 𝑑

𝑏0 = 1 otherwise.

For the purpose of the encryption itself, we have:

Enc(𝑏𝑚1)𝑏𝑚2 =

⎧⎨⎩ Enc(𝑏𝑚1+𝑚2) if (𝑚1 + 𝑚2) < 𝑑

Enc(1) otherwise.

Within our protocol, we use a positive value for one message and a negative value for the
other. By doing this we are able to tell which value is larger. This modification changes
the threshold function into:

Enc(𝑏𝑑−𝑚1)𝑏𝑚2 =

⎧⎨⎩ Enc(𝑏𝑑−𝑚1+𝑚2) if 𝑚1 > 𝑚2

Enc(1) otherwise.

Note: This threshold homomorphism is not related to a threshold cryptosystem e.g. the
cryptosystem of Schoenmaker [55].

3.5.2 Semantic Security

In this section, we prove the semantic security of our system.

Theorem 3.5.1 The encryption scheme presented above is semantically secure, provided
that the Composite Order Subgroup Decision Assumption of Section 3.3 is satisfied.

To prove that our system is semantically secure, we will use proof by contradiction. This
method theorizes the possibility of an algorithm 𝒜′ that is able to break our encryption
scheme with an advantage 𝜀(𝜏) (which is not a negligible value). Since our hardness
assumption is based off of the Small RSA Subgroup Decision Problem, referenced in
Section 3.3, it is sufficient to say that the problem reduces to a polynomial time algorithm
𝒜 generated by 𝒜′. This algorithm 𝒜 must be able to decipher whether a value 𝑥 can be
tied to a valid public key for our scheme.

Proof Suppose there exists a polynomial time algorithm 𝒜′ breaking the semantic security
of our encryption scheme. Given a (possibly invalid) public key, 𝒜′ produces two messages
𝑚0 and 𝑚1. If the key was a valid public key, the probability of correctly guessing which
message was encrypted should be exactly 50% + 𝜖 where 𝜖 is the non-negligible advantage
that 𝒜′ has. If 𝒜′ is unknowingly using a key that is invalid, 𝒜′ will guess one of the

3.6. Our Protocol 29

messages at random. Using 𝒜′, we can create an algorithm 𝒜 that solves the Small RSA
Subgroup Decision Problem. 𝒜 is given a typical RSA quintuple (𝑛, 𝑏, 𝑑, 𝑔, 𝑢), and an
element 𝑥 ∈ Z*𝑛 and constructs a public key (𝑛, 𝑏, 𝑑, 𝑔, 𝑥, 𝑢) that it returns to 𝒜′. Since 𝑥

wasn’t necessarily a valid element, the key that 𝒜 sends to 𝒜′ isn’t necessarily valid. 𝒜′

then produces two plaintexts 𝑚0, 𝑚1 and a random number sampled over the message
space 𝑟←$ {1, 2, . . . , 2𝑢 − 1}. 𝒜′ randomly chooses message 𝑚𝑖 to send and creates a
ciphertext 𝑐 ≡ 𝑔𝑚𝑖𝑥𝑟 mod 𝑛. Looking at this, it is clear that breaking the Small RSA
Subgroup Decision Problem is equivalent to figuring out the randomiser generator. For 𝒜
to break our encryption scheme, it must be able to tell which message 𝒜′ chose as 𝑖. If
𝒜′ sends 𝒜 a random 𝑗 ∈ {0, 1}, we can construct the output of 𝒜 as follows:

⎧⎨⎩ yes if 𝑖 = 𝑗,

no otherwise.

The ciphertext 𝑐 is generated by 𝑥 which was selected uniformly from the group Z*𝑛,
this means that 𝑐 should be independent of the choice 𝑖. If this property is upheld the
probability of 𝒜′ guessing correctly is equal to 50%.

On the other hand, as stated above, 𝑟 < 2𝑢 and hence crucially 𝑟 < 𝑝𝑠, 𝑞𝑠 which means
that there is not uniform distribution over the entire message space. This results in a
visible difference between the two messages. This gives 𝒜′ a non negligible advantage, say
𝜀, when 𝑥 is an element of order 𝑝𝑠𝑞𝑠, and this advantage is clearly seen to transfer to
𝒜.

3.6 Our Protocol

The initial purpose for the creation of our cryptosystem, was to enable a faster way for the
secure comparison of integers. What this protocol allows is the comparison of two integer
plaintexts 𝑚1, 𝑚2 in which a resultant of Enc(1) will occur whenever 𝑚1 > 𝑚2. Though
this functionality is a threshold function, it is not binary and this leads to a leakage of
information in the case where 𝑚1 ≤ 𝑚2. The leakage in this situation is the difference
between the two numbers. This property may have value in certain applications, however
our goal for secure integer comparison was to return a binary resultant of True if 𝑚1 > 𝑚2

and False otherwise. For this property another round of encryption was necessary to hide
the difference of the two numbers.

Because the desired functionality requires an additional layer of security, for the
purpose of secure integer comparison we must use two separate cryptosystems within the

30 Chapter 3. Our Protocol

protocol. The first cryptosystem (𝐶𝑟1) is the cryptosystem described above that calculates
the threshold function in Section 3.5.1. The second cryptosystem (𝐶𝑟2) is required to
mask the difference between the two numbers, to stop either party from knowing the
other’s input. For this to work correctly, each party should have access to the private
key of one of the cryptosystems. For example 𝑃1 can hold the private key for 𝐶𝑟1 and 𝑃2

can hold the private key for 𝐶𝑟2. It is important to note that the 𝐶𝑟2 must be additively
homomorphic and should have a message space of prime order correlating to the message
space of 𝐶𝑟1. The purpose of 𝐶𝑟2 is to produce a plaintext equality test or PET to deduce
if the resultant that is received is equal to the encryption of 1. This can be represented
by:

𝑐 = PET(Enc′(𝑎), 𝑏) =

⎧⎨⎩ Enc′(1) if 𝑎 = 𝑏.

Enc′(𝑟) otherwise.

In the above equation, 𝑟 , 1 and 𝑟←$ {2 . . .ℳ′}. 𝑟 is uniformly distributed across the
message space ℳ′. To acquire uniform distribution within the PET, a randomized factor
must be integrated. We use the homomorphic properties of 𝐶𝑟2 to allow for uniform
random distribution, in particular the additive and scalar multiplicative properties. Let the
PET accept the ciphertext for an encryption 𝐴 = Enc′(𝑎), a plaintext 𝑏 and a randomized
value Φ←$ℳ. Return:

PET(𝐴/𝑏)𝑟 =
(︁
Enc′(𝑎)/𝑏

)︁𝑟
= Enc′

(︁
𝑟(𝑎− 𝑏)

)︁
=

⎧⎨⎩ Enc′(1) if 𝑎 = 𝑏

Enc′(𝑟) otherwise

The implementation of 𝐶𝑟2 and the functions (Gen′, Enc′, Dec′) can be done with any
semantically secure additively homomorphic cryptosystem. When looking at the purpose
of 𝐶𝑟2, two prime examples of acceptable protocols are the exponential variant of ElGamal,
and the elliptic curve implementation of ElGamal.
With both 𝐶𝑟1 and 𝐶𝑟2 in place we present our secure integer comparison protocol in
Figure 3.1. A security proof for the protocol is provided in Chapter 4.

3.6.1 Correctness

For the result of our secure integer comparison, we look at the mathematical structure that
lies within our encryption scheme. 𝑃1 starts be sending their message within the exponent
of the message space as 𝑏𝑚1 . Once 𝑃2 receives the message, they homomorphically compute

𝑤 = 𝑏𝑚1𝑏𝑑−𝑚2−1 + 𝑠 = 𝑏𝑑+𝑚1−𝑚2−1 + 𝑠.

3.6. Our Protocol 31

Secure Comparison

Party P1 Party P2

Private Input: Private Input:
0 ≤ 𝑚1 < 𝑑− 2 0 ≤ 𝑚2 < 𝑑− 2
𝐶𝑟1 private key 𝑥 𝐶𝑟2 private key 𝑠𝑘′

𝑟1←$ {1 . . . 2𝑢 − 1}

𝑐← 𝑔𝑏(𝑚1)
ℎ𝑟1

𝑐

𝑟2←$ {1 . . . 2𝑢 − 1}
𝑠←$ {0 . . . 𝑏𝑑 − 1} s.t.

𝑠 . 0 mod 𝑏

𝑐′ ← (𝑐)𝑏(𝑑−𝑚2−1)
𝑔𝑠ℎ𝑟2

𝐷 ← Enc′(𝑠)

𝑐′, 𝐷

𝑔𝑤 ← (𝑐′)𝑥

𝐷′ ← PET(𝐷, 𝑤)

𝐷′

𝑧 ← Dec′𝑠𝑘′(𝐷′)
Output True if 𝑧 = 1
Output False otherwise.

Figure 3.1: Secure integer comparison protocol evaluating (𝑚1 > 𝑚2)

32 Chapter 3. Our Protocol

By choosing the exponent 𝑑 + 𝑚1 −𝑚2 − 1 we are able to set out threshold to the value
of d and see how the comparison of 𝑚1 and 𝑚2 affect that threshold. In the case that
𝑚1 > 𝑚2, then 𝑚1 ≥ 𝑚2 + 1, 𝑚1 − 𝑚2 − 1 ≥ 0. Since we are adding this value to 𝑑

and we know that the value is greater than 0, the resultant of the exponent for 𝑏 will be
greater than 𝑑. This means that the 𝑏(·) term will be congruent to 0 mod 𝑏𝑑, and thus
𝑤 = 𝑠. In the other case, if 𝑚1 ≤ 𝑚2 the exponent for 𝑏 will be lower than 𝑑 so 𝑤 , 𝑠.
When 𝑃1 decrypts the message and gets 𝑤, it performs a 𝑃𝐸𝑇 with the encryption of 𝑠

to see if the two are equal. If the result is 1, then 𝑤 = 𝑠 and 𝑃2 outputs True because
𝑚1 > 𝑚2. When the result is not 1 𝑃2 outputs False because 𝑚1 ≤ 𝑚2.

3.7 Extension Techniques

When evaluating an integer comparison using Figure 3.1 one of the main limitations is the
range of 0 . . . (𝑑− 2). If the message that is intended to be sent lies outside of the range
provided by 𝑑, there are a few ways to alter the protocol to fit the new specifications. The
most basic solution is to expand the parameters such that they can include the message
within the message space. For this expansion, if a party wanted to send a message 𝑒 the
order of 𝑔 can be changed from 𝑏𝑑 to 𝑏𝑑′ where 𝑑 < 𝑒 < 𝑑′. Though this allows for the
message to be sent within one encryption, there is a hindrance in performance because
the public key has a size of 𝑂(𝑑) and the efficiency of solving the discrete logarithm of 𝑔

is directly correlated to the size of 𝑑. Instead of increasing the size of a single message, an
alternative solution is to break the message into multiple batch encryptions that can be
done in parallel (dividing the input or ’blocking’). To accomplish this, the inputs can be
represented with a base of base (𝑑− 1). This comparison will be compromised of several
parallel executions of the protocol of Figure 3.1.

To effectively use this approach we need to modify the final steps of the protocol so
that it can accommodate multiple batches within the comparison. From the example
above, consider the case where we want the comparison over the range of 0 . . . (𝑒 − 1)
for some 𝑒 > (𝑑− 1). To accomplish this, we break down our integer of range 𝑒 into 𝑘

separate parallel encryption where 𝑘 = ⌈log(𝑑−1)(𝑒)⌉. We can then restructure our integers
𝑚1, 𝑚2 into piecewise encryptions with a base of (𝑑− 1) as follows:

𝑚1 = 𝛼𝑘−1(𝑑− 1)𝑘−1 + 𝛼𝑘−2(𝑑− 1)𝑘−2 + · · ·+ 𝛼1(𝑑− 1) + 𝛼0

and
𝑚2 = 𝛽𝑘−1(𝑑− 1)𝑘−1 + 𝛽𝑘−2(𝑑− 1)𝑘−2 + · · ·+ 𝛽1(𝑑− 1) + 𝛽0

3.7. Extension Techniques 33

where 𝛼𝑖, 𝛽𝑖 ∈ {0 . . . 𝑑− 2}.
From here we are able to turn the single comparison into multiple comparisons that

produce a value of 1 if 𝛼𝑖 > 𝛽𝑖. Though this would seem as simple as looking to see if
one of the comparisons produces a value of 1, we must remember that if the result of the
first comparison says that 𝛼 < 𝛽, all subsequent results are void and not important. To
conclude that 𝛼 > 𝛽 from a block that is not the initial block, you must also prove that
all predecessors resulted in 𝛼 = 𝛽. The expansion of the following 𝑘 Boolean expressions
is as shown below, to prove that 𝑚1 > 𝑚2 exactly one of the expressions will be result in
true:

(𝛼𝑘−1 > 𝛽𝑘−1)

or
(𝛼𝑘−1 = 𝛽𝑘−1) ∧ (𝛼𝑘−2 > 𝛽𝑘−2)

or
(𝛼𝑘−1 = 𝛽𝑘−1) ∧ (𝛼𝑘−2 = 𝛽𝑘−2) ∧ (𝛼𝑘−2 > 𝛽𝑘−2)

or
...

or
(𝛼𝑘−1 = 𝛽𝑘−1) ∧ (𝛼𝑘−2 = 𝛽𝑘−2) ∧ · · · ∧ (𝛼0 > 𝛽0).

If 𝑚1 ≤ 𝑚2, all of these expressions will be false. We can now apply this fact to securely
evaluate (𝑚1 > 𝑚2) by essentially running 𝑘 parallel instances of the protocol, and
replacing individual plaintext equality tests with the Boolean tests listed above. After
running the parallel computation messages are re randomized and shuffled before being
sent back to the decrypting party. This extended protocol is given in Figure 3.2.

34 Chapter 3. Our Protocol

Secure Comparison

Party P1 Party P2

Private Input: Private Input:
𝛼0 . . . 𝛼𝑘−1 𝛽1 . . . 𝛽𝑘−1

𝐶𝑟1 private key 𝑥 𝐶𝑟2 private key 𝑠𝑘′

For 𝑖 ∈ {0 . . . 𝑘 − 1}
𝑐𝑖 ← Enc(𝑏𝛼𝑖)

𝑐0 . . . 𝑐𝑘−1

For 𝑖 ∈ {0 . . . 𝑘 − 1}
𝑠𝑖←$ {0 . . . 𝑏𝑑 − 1} s.t.

𝑠𝑖 . 0 mod 𝑏

𝑐′𝑖 ← (𝑐𝑖)𝑏(𝑑−𝛽𝑖−1)Enc(𝑠)
𝐷𝑘−1 ← Enc′(𝑠𝑘−1)

...

𝐷0 ← Enc′(𝛽𝑘−1||𝛽𝑘−2|| . . . ||𝑠0)

𝑐′0 . . . 𝑐′𝑘−1, 𝐷0 . . . 𝐷𝑘−1

For 𝑖 ∈ {0 . . . 𝑘 − 1}
𝑤𝑖 ← Dec(𝑐′𝑖)

𝐷′𝑘−1 ← PET(𝐷𝑘−1, 𝑤𝑘−1)
...

𝐷0 ← PET(𝐷0, 𝛼𝑘−1||𝛼𝑘−2|| . . . ||𝑤0)

𝐷′1 . . . 𝐷′𝑘−1

If any Dec′𝑠𝑘′(𝐷′𝑖) = 1
Output True
Output False otherwise.

Figure 3.2: Secure integer comparison protocol for large ranges using blocking

Chapter 4

Protocol Security

4.1 Simulation Security Basics

When discussing the security of a system, simulation can be used to describe a comparison
of what happens in the "real world" and what happens in an "ideal world". The concepts
of "real" vs. "ideal" are key in the understanding of the proofs that we claim in this section.
First, one can describe the "real world" as the world in which two parties are comparing
information through the use of our protocol. To compute the overall comparison of the
integer, messages will flow to and from each party and together they learn the final
output of the protocol. In contrast, the "ideal world" scenario that one can look at is like
connecting with an all knowing oracle instead of another party. This would be similar to
being able to do the calculations with just one party. With these two terms explained, the
overall definition of simulation security becomes a lot more clear. We will flesh out the
"real" and "ideal" scenarios below, where the inputs are (𝑥, 𝑦) and the security parameter
is 1𝑘:

Real: A protocol can be broken into the computations that each side does throughout
the protocol. With this we can split protocol 𝜋 into two parts: 𝜋 = 𝜋𝐴, 𝜋𝐵. Let’s say that
for this instance, we are 𝑃𝐵 who uses 𝜋𝐵 to interact with 𝑃𝐴. When 𝜋𝐵 is finished, there
will be an output that it can see, which will be called 𝑐. On the other end of the protocol
𝜋𝐴 will also result in an output 𝑑. The output for the "real world" scenario is the pair
(𝑐, 𝑑) that is generated. Ideal: Use a simulator 𝑆 to come up with an input 𝑥 that fits
within the security parameters (1𝑘) for the protocol. Calculate the ideal functionality
of 𝑐 = 𝑓𝐴(𝑥, 𝑦) and 𝑑 = 𝑓𝐵(𝑥, 𝑦). Where 𝑐 and 𝑑 are the final outputs of the simulation.
The output for the "ideal world" scenario is the pair (𝑐, 𝑑) that is generated.

If these two results are impossible to tell from one another, we have a simulation

35

36 Chapter 4. Protocol Security

secure protocol.

Definition Simulation Security: A protocol can be described as simulation secure if
For all PPT machines 𝐴 there exists a PPT machine 𝑆 such that for all 𝑥, 𝑦 the ensembles
{𝑅𝑒𝑎𝑙(𝜋, 𝑦, 𝐴, 1𝑘)}𝑘 and {𝐼𝑑𝑒𝑎𝑙(𝑓, 𝑦, 𝑆, 1𝑘)}𝑘 are computationally indistinguishable [3].

The notion of this security definition is that a party in both atmospheres would learn
a similar amount of information. By looking at the ideal world scenario it is clear that
it is impossible to learn anything from the input, because the input was just randomly
made up. This is the purpose of the simulation security proof; since someone who receives
nothing cannot learn anything about the plaintext (which is the "ideal world" perspective),
a scenario where the adversary receives a ciphertext should only be able to determine the
same amount. The ciphertexts should not give any hints as to what the plaintexts beneath
hold. We can say that an encryption scheme is secure if all of the information that is
known at the end can be directly determined through prior knowledge. The protocol does
not leak information.

To create the simulations for the following sections, there are three key components
(Described in Lindell’s solo work [41], as well as his work with Katz [37]) that a simulator
must be able to accomplish:

1. Generate views for the other party that are indistinguishable from the real view;

2. Extract the inputs used by the adversary during the execution

3. Make the view generated consistent with the output that is based on the adversary’s
input

4.2 Our Simulation Environment

Our setting of private sorting requires a function 𝐹𝑠𝑜𝑟𝑡 that runs between 𝑃𝐴 and 𝑃𝐵 with
their private integers 𝑥 and 𝑦. In this function 𝑃𝐴 has the input (𝑥, 𝑏, 𝑑, 𝑘, 𝑔, 𝑢) and uses
𝑃𝐵 (that knows 𝑠𝑘 and 𝑦) to output the resultant of a comparison between 𝑥 and 𝑦, the
two encrypted values to be sorted. The output of the function is a binary value, where a
message with 1 means that value 𝑥 is larger than value 𝑦 and any other message states
the opposite. The ideal world model of the protocol is shown in Figure 4.1. In this model,
the simulator interacts with the party through the ideal functionality of the system, and
uses this functionality to replicate what the protocol would do for the other party . In
Figure 4.1, the simulator interacts with the ideal functionality through protocol Π𝑠𝑜𝑟𝑡,
which makes the output of the function look like the real world protocol to party 𝑃𝐴.

4.3. Simulation Proof 37

𝑃𝐴start

𝐹𝑠𝑜𝑟𝑡 𝑆

[𝑥], 𝑏, 𝑑, 𝑘, 𝑔, 𝑢

Π𝑠𝑜𝑟𝑡

Figure 4.1: Ideal functionality of our protocol for 𝑃𝐴

𝑃𝐵start

𝐹𝑠𝑜𝑟𝑡 𝑆

[𝑦], 𝑏, 𝑑, 𝑘, 𝑔, 𝑢[𝑧]

Π𝑠𝑜𝑟𝑡

Figure 4.2: Ideal functionality of our protocol for 𝑃𝐵

Similarly, there exists an ideal world scenario for 𝑃𝐵 in which it interacts with the
ideal functionality and a simulator and receives the output of the protocol 𝑧. In Figure 4.2
there is a template for what the ideal functionality looks like for party 𝑃𝐵.

4.3 Simulation Proof

For the proof of our security model, we look at the security of the protocol with respect
to a semi-honest (passive) adversary in a two-party setting. This style of adversary goes
along with the correct path of the protocol, but tries to learn additional information based
on the transcript and messages exchanged throughout the protocol. As the title of this
chapter suggests, the proof that will be demonstrated is a simulation based proof. This
type of proof gives security under sequential composition, but not concurrent composition
(like the proof discussed by Damgaard in [20]). To prove this we are going to show that
the manifest created by the protocol is computationally indistinguishable from a simulated
view of the protocol that is using randomized inputs [51]. This would suggest that no
information is leaked through the protocol itself. Next we define the semi-honest notion

38 Chapter 4. Protocol Security

of simulation security:
Parties 𝑃𝐴 and 𝑃𝐵 interact in a protocol Π which computes the function of the protocol

given the expected inputs and produces the expected outputs. Let 𝐹 be a function defining
the ideal functionality of the protocol Π, taking a pair of inputs (in𝐴, in𝐵) to a pair of
outputs (out𝐴, out𝐵). The view of participant 𝑃𝑖 (where 𝑖 = 𝐴, 𝐵) will be denoted by
VIEWΠ

𝑃𝑖
(in𝐴, in𝐵) and is defined as the information 𝑃𝑖 observes and produces throughout

the protocol. Let Sim𝑖 be a simulator that takes in the inputs of party 𝑃𝑖 and the ideal
functionality of the protocol 𝐹 and produces a transcript of the protocol. With this setup,
we now give the definition of simulation security of a protocol.

Definition Secure Against Passive Adversaries: A protocol Π is secure against
passive adversaries from the point of view of 𝑃𝑖 (for 𝑖 = 𝐴, 𝐵) if a probabilistic polynomial
time simulator Sim𝑖 exists for each party such that Sim𝑖(in𝑖, 𝐹 (in𝐴, in𝐵)) is computationally
indistinguishable from (VIEWΠ

𝑃𝑖
(in𝐴, in𝐵), out𝑖). Recall the discussion of computational

indistinguishably in Section 2.2.5.
In a two party setting, we can say that the protocol Π is secure against passive

adversaries if it is secure from both the point of view of 𝑃𝐴 and the point of view of 𝑃𝐵.

For the remainder of this section we prove that the comparison protocol of Figure 3.1,
which we will reference as Π, is secure against passive adversaries. To do this we prove
the security through the eyes of 𝑃𝐴 and through 𝑃𝐵.

In our case, the ideal functionality 𝐹 is a function with the inputs (𝑚1, 𝑚2) and output
𝛼 (a binary indicator which results in True if 𝑚1 > 𝑚2 and False otherwise. It is clear
that 𝐹 defines the functionality of the protocol Π. When Π terminates, 𝑃𝐵 receives output
of 𝐹 . Let OUTPUTΠ(𝑚1, 𝑚2) be the output received by 𝑃𝐵.

Lemma 4.3.1 The protocol Π is secure against passive adversaries from the point of
view of 𝑃𝐴.

Proof In order to show that 𝑃𝐴 does not learn anything about 𝑚2 we will construct a
valid simulator Sim2 for 𝑃𝐵 with the property that

Sim2(𝑚2, 𝐹 (𝑚1, 𝑚2))
𝑐≡ VIEWΠ

𝑃𝑖
(𝑚1, 𝑚2).

Here, we write 𝑐≡ for the relation of computational indistinguishability. The simulator
Sim2 is given the input values for 𝑃𝐵 and is able to simulate 𝑃𝐵’s view by sampling random
values 𝑟, 𝑠 and 𝐶 ′ as shown in Figure 4.3. The use of semantically secure encryption for
message 𝐷 prevents party 𝑃𝐴 from being able to distinguish between real and simulated

4.3. Simulation Proof 39

plaintext. From this stage, we have to prove that the remainder of the messages are
indistinguishable from messages that would be sent in a simulation setting. Let us first
look at the value 𝑟 that is generated by 𝑃𝐵. To do this, we must define what the values of
𝑟 can be. The first random variable chosen by Sim2 is the 𝑟 value for the message space;
this should be randomly sampled through the entirety of the message space with an equal
probability for each integer in the set Z𝑏𝑑 . Next we need to find the random variable used
in the randomiser space. Let ℛ ⊂ Z𝑏𝑑 denote the set of all values 𝑟 for which 𝑟 . 0 mod 𝑏.
This restriction is necessary because we are working alongside a group of prime power
order 𝑏, anything congruent to 0 mod 𝑏 within the randomiser space would be cancelled
out. Let 𝑠←$ℛ. When 𝑃𝐴 receives the message 𝐶 ′ it is able to decrypt to find a plaintext
𝑣 but, because of the structures of the sets in which our randomisers were picked from
𝑃𝐴 is unable to tell if the message was formed by the process of 𝑣 = 𝑏𝑑+𝑚1−𝑚2−1 + 𝑠 or if
a simulator was used and the value was 𝑣 = 𝑠. The results for both of these processes
should be uniform in their distribution over the set of ℛ, which we just defined for the
simulator space.

Next we must prove that using the function 𝑣 = 𝑏𝑑+𝑚1−𝑚2−1 + 𝑠 not only limits results
to answers within the set of ℛ, but also results in a uniform distribution across the set of
ℛ. The key to the first part of this proof is that,

(𝑏𝑑+𝑚1−𝑚2−1 + 𝑠) mod 𝑏𝑑 ∈ ℛ if (𝑏𝑑+𝑚1−𝑚2−1 + 𝑠 mod 𝑏𝑑) mod 𝑏 , 0.

Looking at the second half of this equation, we can see that there is a duplicate modulus
when dealing with the 𝑠 value (it uses mod𝑏 both inside and outside the brackets). By
reducing this we get

(𝑏𝑑+𝑚1−𝑚2−1 + 𝑠) mod 𝑏 , 0.

This can be further reduced, since the first section is working in base 𝑏 and is under the
modulus of 𝑏. This reduction leaves us with 𝑠 mod 𝑏 , 0 which is part of the definition
of 𝑠. This proves that (𝑏𝑑+𝑚1−𝑚2−1 + 𝑠) ∈ ℛ. Lastly we look at the distribution of this
function over the set of ℛ. Since we know that 𝑠 is uniform over the set of ℛ and it
is the resultant of the reduction mod𝑏, 𝑏𝑑+𝑚1−𝑚2−1 + 𝑠 is uniform as well. Seeing that
both the real world and ideal world scenarios result in answers that are computationally
indistinguishable, the system is secure against passive adversaries from the point of 𝑃𝐴.

Lemma 4.3.2 The protocol Π is secure against passive adversaries from the point of
view of 𝑃𝐵.

40 Chapter 4. Protocol Security

Simulation of 𝑃𝐵

𝑃𝐴 : (𝑚1) Sim2

𝑟←$ {1 . . . 2𝑢 − 1}

𝐶 ← 𝑔𝑏(𝑚1)
ℎ𝑟

𝐶

𝐷 ← Enc′(0)
𝑟←$ {1 . . . 2𝑢 − 1}
𝑠←$ℛ
𝐶 ′ ← (𝑔𝑠)ℎ𝑟

𝐶 ′, 𝐷

𝑔𝑤 ← (𝐶 ′)𝑥

𝐷′ ← PET(𝐷, 𝑠)

𝐷′

Figure 4.3: Simulation of 𝑃𝐵

Proof Now we construct a simulator Sim1 with the property that

Sim1(𝑚1, 𝐹 (𝑚1, 𝑚2))
𝑐≡ (VIEWΠ

𝑃𝑖
(𝑚1, 𝑚2), OUTPUTΠ(𝑚1, 𝑚2)).

This simulator is presented in Figure 4.4. Since 𝑃𝐵 learns the output of the protocol,
in order for Sim1 to produce a view indistinguishable from a real execution, we must
provide it access to input messages 𝑚1 and 𝑚2 so that it can correctly simulate the result
anticipated by 𝑃𝐵. The term anticipated is used here because the distribution of the
resultant (i.e. if (𝑚1 > 𝑚2)) relies on the knowledge of 𝑚2 and where it lies within the
field of acceptable inputs. An example of this is the case in which 𝑚2 = 𝑑− 2, in this case,
𝑚2 is the largest possible number to be compared, as such 𝑃𝐵 would expect to output
False for all possible values of 𝑚1. The use of this information is only in the final message
𝐷′ that is sent to 𝑃𝐵 to show the end result. With the knowledge of 𝑚2, 𝑆𝑖𝑚1 does not
need to know the private key for decryption as it just encrypts values based on what the
value of 𝑚2 is. The two messages 𝐶 and 𝐷′ that are sent from 𝑆𝑖𝑚1 to 𝑃𝐵 must share the
same uniformity as the real world for Sim1 to be computationally indistinguishable from a
real world party (𝑃𝐴). First, we look at the message 𝐶 that is sent as the initial message.
Since Sim1 chooses a random value 𝐶 ∈ Z*𝑛, and 𝑃𝐵 does not have the secret key for the

4.3. Simulation Proof 41

encryption, 𝐶 is indistinguishable from a valid ciphertext from the view of 𝑃𝐵. This is an
example of the Small RSA Subgroup Decision Assumption presented in Section 3.3. 𝑃𝐵

then homomorphically applies its message share and returns 𝐶 ′, 𝐷 to Sim1.
From here, Sim1 looks at the probability of the resultant of (𝑚1 > 𝑚2), knowing

the input of 𝑚2 and the likelihood that a random number is larger or smaller than 𝑚2.
Sim1 provides 𝑃𝐵 with the encryption of 1 if (𝑚1 > 𝑚2). Otherwise it provides 𝑃𝐵 the
encryption of a uniform value in the message space, ℳEnc′ of Enc′. This makes 𝑃𝐵’s view
indistinguishable from a real-world execution of the protocol.

Simulation of 𝑃𝐴

Sim1 𝑃𝐵 : (𝑚2)
𝐶←$ Z*𝑛

𝐶

𝑟←$ {1 . . . 2𝑢 − 1}
𝑠←$ {1 . . . 𝑏𝑑 − 1} s.t 𝑠 . 0 mod 𝑏

𝐶 ′ ← (𝐶)𝑏𝑑−𝑚2−1
𝑔𝑠ℎ𝑟

𝐷 ← Enc′(𝑔𝑠)

𝐶 ′, 𝐷

If (𝑚1 > 𝑚2)
𝐷′ ← Enc′(1)

Else
𝑟 ←ℳEnc′

𝐷′ ← Enc′(𝑠)

𝐷′

𝑧 ← Dec′𝑠𝑘′(𝐷′)
Output True if 𝑧 = 1
Output False otherwise.

Figure 4.4: Simulation of 𝑃𝐴

Putting together Theorems 4.3.1 and 4.3.2, we obtain:

Theorem 4.3.3 Protocol Π is secure against passive adversaries.

Chapter 5

Implementation

Within this chapter we talk about an implementation of the protocol (from Figure 3.1)
that was done to evaluate the performance of our protocol vs. other protocols that
are currently used in practice. We also look into the structure of our message space
vs. the structure of the DGK message space and discuss the benefits of each structure.
Working in a mathematical field, the approach for the implementation of the protocol
was mainly done using functional programming. Separate mathematical functions such as
the encryption and decryption functions were isolated from the main program and called
as functions. This allowed for clear concise code when viewing the functions that relate
directly to the manipulation of the plaintext/ciphertext in the protocol functions. An
example of this would be the function that is called for the encryption of the first message
𝑐 in Figure 3.1. With the ability to pre-process the generation of the generators and the
finite field that the protocol is working in, the function itself is just raising the base to
the appropriate power and calling the encryption function on that specific message.

5.1 Environment

When looking into different possible environments for the implementation of this protocol,
there were many factors that had to be considered. First and foremost, the implementation
had to be done in a language that allowed for complex mathematical functions to be
calculated efficiently. These calculations were mainly using the cyclic algebraic group
structures mentioned in Section 2.2.5. When looking to find environments that would
work well with our specifications, we also considered ease of use and speed for writing
up the protocol. With one of our focusses being ease of implementation, it felt natural
to lean towards a strain of python as it is very fast to program and there are a lot of
packages that deal with mathematics [49].

42

5.2. Coding Concepts 43

In the end the protocol was implemented in SageMath which is an open source library
for python that works by combining the works of SciPy, NumPy, SymPy as well as
many more mathematical packages all into a single working environment [58]. This
string of python is typically used for research purposes and it included all of the relevant
mathematical functions that were needed for our protocol and encryption scheme (which
was presented in similar works [42]). The particular environment used was sage-windows,
which is a windows based form of sage that runs the terminal through a notebook run on
a local server. This structure allowed work to be done on many separate computers, and
was efficient when implemented with a repository.

5.2 Coding Concepts

There were a few important concepts with regards to the construction of the cryptosystem
that were studied before going through with the implementation of the system. The first
of which, was the key generation of the system. When generating the parameters for
the public key, it was important to consider the fact that 𝑝 and 𝑞 were both constructed
using the message space, the randomiser space and the padding space. To do this unique
prime numbers had to be found for each space, and specifically the pseudoprimes for the
message space needed to be relatively prime to the randomiser primes, in that they share
no similar factors. This was important as sharing a factor with the randomiser space
would severely weaken the encryption.

Another concept that was important when implementing was using exponentiation
for solving the decryption. When decrypting the message, one would receive it in the
form 𝑔𝑚ℎ𝑟. We can get rid of the ℎ𝑟 using the private key, but afterwords we need to find
the decimal number for an exponential binary number. A simple visual of the concept is
shown below:

𝑐 = 𝑔110110 → 𝑐 = 54

We need to be able to extract the bits from the exponent to get the overall value. To
do this, we use squarings, such that we can look at every binary digit one by one and
evaluate based on prior knowledge. For this we square the number until we fill all but
the first value with 0’s. Then we determine that digit and fill all but the first two values
with 0’s, etc. until all digits are found. Section 5.2 explains how this would be structured
using a 4 digit exponent on the input 1101.

44 Chapter 5. Implementation

𝑆𝑞𝑢𝑎𝑟𝑖𝑛𝑔 Breakdown of 𝑔 Subtracting negatives Result
𝑔 = 𝑔𝑥3𝑥2𝑥1𝑥0

((𝑦2)2)2 𝑔𝑥3𝑥2𝑥1𝑥0000 = 𝑔𝑥0000 𝑔 = 𝑔𝑥0000 𝑥0 = 0 if 𝑔 = 1
else 𝑥0 = 1

(𝑦2)2 𝑔𝑥3𝑥2𝑥1𝑥000 = 𝑔𝑥1𝑥000 𝑔 = 𝑔𝑥1𝑥000 · 𝑔−0𝑥000 𝑥1 = 0 if 𝑔 = 1
else 𝑥1 = 1

𝑦2 𝑔𝑥3𝑥2𝑥1𝑥00 = 𝑔𝑥2𝑥1𝑥00 𝑔 = 𝑔𝑥2𝑥1𝑥00 · 𝑔−0𝑥100 · 𝑔−00𝑥00 𝑥2 = 0 if 𝑔 = 1
else 𝑥2 = 1

𝑦 𝑔𝑥3𝑥2𝑥1𝑥0 = 𝑔𝑥3𝑥2𝑥1𝑥0 𝑔 = 𝑔𝑥3𝑥2𝑥1𝑥0 · 𝑔−0𝑥200 · 𝑔−00𝑥10 · 𝑔−000𝑥0 𝑥3 = 0 if 𝑔 = 1
else 𝑥3 = 1

Table 5.1: Table for extracting bits using squarings

5.3 Algorithms Used

This section is used to present some of the algorithms that were used when implementing
the system using SAGE. The algorithms shown in this section are broken into two main
groups: algorithms for key generation and algorithms for encryption and decryption. For
key generation we will show the creation of all of the derived parameters for the public
key (n,g, and h) and private key (x). We will not provide the algorithms used for the
protocol itself as they should be interpretable based on the diagrams from Section 3.6.

5.3. Algorithms Used 45

Algorithm 2 Creation of p from Section 3.5
1: procedure findP(𝑢)
2: while true do
3: 𝑎← 𝑟𝑎𝑛𝑑𝑖𝑛𝑡(2𝑢−1, 2𝑢)
4: if a is a prime then
5: return 𝑎
6: end if
7: end while
8: end procedure

Algorithm 4 Creation of n from Section 3.5
1: procedure MakeN(𝑏, 𝑑, 𝑢)
2: 𝑝𝑡 ← 𝑓𝑖𝑛𝑑𝑃 (1535) ◁ 2048 bit message -257 bits for 𝑔 -256 bits for ℎ
3: 𝑞𝑡 ← 𝑓𝑖𝑛𝑑𝑃 (1535)
4: while true do
5: 𝑝𝑠 ← 𝑓𝑖𝑛𝑑𝑃 (𝑢)
6: 𝑝← 𝑏𝑑𝑝𝑠𝑝𝑡 + 1
7: if p is a prime then
8: break
9: end if

10: end while
11: while true do
12: 𝑞𝑠 ← 𝑓𝑖𝑛𝑑𝑃 (𝑢)
13: 𝑞 ← 𝑏𝑑𝑞𝑠𝑞𝑡 + 1
14: if q is a prime then
15: break
16: end if
17: end while
18: 𝑛← 𝑝𝑞
19: return 𝑛
20: end procedure

46 Chapter 5. Implementation

Algorithm 6 Creation of g from Section 3.4
1: procedure makeG(𝑏, 𝑑, 𝑝, 𝑞)
2: while true do
3: 𝑥← 𝑟𝑎𝑛𝑑𝑖𝑛𝑡(2, 𝑝− 2)
4: 𝑦 ← 𝑝𝑜𝑤(𝑥, (𝑝− 1)/𝑏, 𝑝)
5: if 𝑦 , 1 then
6: 𝑔𝑝 ← 𝑝𝑜𝑤(𝑥, (𝑝− 1)/(𝑏𝑑), 𝑝
7: break
8: end if
9: end while

10: while true do
11: 𝑐← 𝑟𝑎𝑛𝑑𝑖𝑛𝑡(2, 𝑞 − 2)
12: 𝑑← 𝑝𝑜𝑤(𝑐, (𝑞 − 1)/𝑏, 𝑞)
13: if 𝑑 , 1 then
14: 𝑔𝑞 ← 𝑝𝑜𝑤(𝑐, (𝑞 − 1)/(𝑏𝑑), 𝑞
15: break
16: end if
17: end while
18: 𝑔 ← 𝑐𝑟𝑡([𝑔𝑝, 𝑔𝑞], [𝑝, 𝑞]) ◁ Chinese Remainder Theorem
19: return 𝑔
20: end procedure

Algorithm 8 Creation of h from Section 3.5
1: procedure makeH(𝑝𝑠, 𝑞𝑠, 𝑝, 𝑞)
2: while true do
3: 𝑚← 𝑝𝑜𝑤(𝑟𝑎𝑛𝑑𝑖𝑛𝑡(2, 𝑝− 2), (𝑝− 1)/𝑝𝑠, 𝑝)
4: if 𝑚 , 1 then
5: ℎ𝑝 ← 𝑚
6: break
7: end if
8: end while
9: while true do

10: 𝑛← 𝑝𝑜𝑤(𝑟𝑎𝑛𝑑𝑖𝑛𝑡(2, 𝑞 − 2), (𝑞 − 1)/𝑞𝑠, 𝑞)
11: if 𝑛 , 1 then
12: ℎ𝑞 ← 𝑛
13: break
14: end if
15: end while
16: 𝑔 ← 𝑐𝑟𝑡([ℎ𝑝, ℎ𝑞], [𝑝, 𝑞])
17: return ℎ
18: end procedure

5.4. Analysis 47

Algorithm 10 Encryption from Section 3.5
1: procedure Encrypt(𝑚)
2: 𝑟 ← 𝑟𝑎𝑛𝑑𝑖𝑛𝑡(2, 2𝑢 − 1)
3: 𝑐← (𝑝𝑜𝑤(𝑔, 𝑚, 𝑛) * 𝑝𝑜𝑤(ℎ, 𝑟, 𝑛)) mod 𝑛
4: return 𝑐
5: end procedure

Algorithm 12 Decryption from Section 3.5
1: procedure Decrypt(𝑐)
2: table← {}
3: 𝑖← 0
4: for 𝑖 < 257 do ◁ Creates table of squarings for comparison
5: 𝑡𝑎𝑏𝑙𝑒[𝑖]← 𝑐
6: 𝑐← 𝑝𝑜𝑤(2, 𝑐, 𝑛)
7: 𝑖← 𝑖 + 1
8: end for
9: 𝑛𝑡𝑟𝑎𝑐𝑘 ← 𝑑𝑒𝑞𝑢𝑒(257) ◁ Tracks 1’s to subtract

10: 𝑎𝑛𝑠𝑤𝑒𝑟 ← 𝑑𝑒𝑞𝑢𝑒(257) ◁ Holds bits for answer
11: for 𝑖 in range (256,−1,−1) do
12: for 𝑗 in range len(𝑛𝑡𝑟𝑎𝑐𝑘) do
13: 𝑛𝑡𝑟𝑎𝑐𝑘[𝑗]← 𝑛𝑡𝑟𝑎𝑐𝑘[𝑗]− 1
14: 𝑡𝑎𝑏𝑙𝑒[𝑖]← 𝑡𝑎𝑏𝑙𝑒[𝑖] · 𝑛𝑒𝑔𝑠[𝑛𝑡𝑟𝑎𝑐𝑘[𝑗]] ◁ negs is a table of negative squarings

of 𝑔
15: end for
16: if 𝑡𝑎𝑏𝑙𝑒[𝑖] , 1 then
17: 𝑛𝑡𝑟𝑎𝑐𝑘 ← 256
18: 𝑎𝑛𝑠𝑤𝑒𝑟 ← 1
19: else
20: 𝑎𝑛𝑠𝑤𝑒𝑟 ← 0
21: end if
22: end for
23: 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑖𝑛𝑡(′′.𝑗𝑜𝑖𝑛(𝑚𝑎𝑝(𝑠𝑡𝑟, 𝑎𝑛𝑠𝑤𝑒𝑟)), 2)
24: return 𝑟𝑒𝑠𝑢𝑙𝑡
25: end procedure

5.4 Analysis

Within this section, we do a comparison of the performance of our protocol in Figure 3.1
against the secure integer comparison DGK protocol of Damgård, Geisler, and Krøigaard
(DGK) [16, 18]. The primary difference between the two being the use of homomorphic
operations on bitwise encrypted values, versus encoding the entire value in a single
ciphertext. Here we use the term ’cost’ with respect to the computational complexity.

48 Chapter 5. Implementation

The basic form of the encryption is standard across both schemes

Enc(𝑚) = 𝑔𝑚ℎ𝑟 mod 𝑛.

Encryption and Re-randomization Cost.
Although the message space of the DGK cryptosystem has a small prime order, while

our message space has a large prime power order, the encryption operations are similar.
The main cost in both of these encryptions is the computation of the random factor
ℎ𝑟 mod 𝑛, which is sized equivalently in both schemes (𝑝𝑠𝑞𝑠 in ours, 𝑣𝑝𝑣𝑘 in DGK). Both
schemes allow 𝑔𝑚 to be precomputed and combined with the randomiser in one modular
multiplication, indicating that the encryption of a single ciphertext takes the same amount
of time across both schemes. Re-randomization is just the homomorphic addition of 0
which also takes an identical amount of time for both of the schemes.

Decryption Cost. Damgård et al. [18] point out that decryption in their scheme can be
performed in a short exponentiation modulo 𝑝 which is more efficient than using modulo
𝑛 = 𝑝𝑞:

𝐶𝑣𝑝 = 𝑔𝑚𝑣𝑝
𝑝 ℎ𝑣𝑝 = 𝑔𝑚𝑣𝑝 .

In the DGK protocol, decryption is just used to check if the plaintext is 0. In this case
the 𝑣𝑝 factor in the exponent of 𝑔 does not need to be removed. In our encryption scheme
we begin by eliminating the random factor identically as in DGK:

𝐶𝑝𝑠 = 𝑔𝑚𝑝𝑠
𝑝 ℎ𝑝𝑠 = 𝑔𝑚𝑝𝑠 .

In Figure 3.1 we used the factor 𝑥 to eliminate the 𝑝𝑠 term in the exponent. This
can be done more efficiently by computing the discrete logarithm to recover (𝑚𝑝𝑠),
then computing (𝑚𝑝𝑠)(𝑝−1

𝑠) mod 𝑏𝑑. Taking the discrete log is efficient for a small base
such as 𝑏 = 2, and can be optimized to the cost of about one 𝑑-bit modular exponentiation.

Cost of 𝑃2’s homomorphic addition. When 𝑃2 receives ciphertext 𝐶, it must compute
𝐶𝑏𝑑−𝑚2−1 which costs up to 𝑑 squarings.

Cost of Enc′. Our scheme uses an additional encryption scheme Enc′ for the computation
of a plaintext equality test. Here we can use an elliptic curve encryption scheme, such
ElGamal implemented over an elliptic curve group. The cost of this, however, is marginal
relative to the cost of a modular exponentiation in an RSA subgroup. Our experiments

5.4. Analysis 49

with assembly optimized elliptic curve implementations produced modular exponentiations
in around 10𝜇s, whereas an equivalent modular exponentiation in the RSA setting was in
around 2ms.

Parameterizations. For the message space, we note the optimal choice for 𝑏 in terms
of key length is 2. In our evaluation we will compare 8-bit messages, i.e., messages in
the range 0 . . . 255. This implies 𝑑 = 255 + 2 = 257. For the cryptographic parameters
we adhere to current NIST1 minimum recommended guidelines on key lengths require a
3072-bit factoring modulus, and a 256-bit discrete logarithm group.

We note Groth [32] conjectured that since the order of the randomizer space of his
cryptosystem is hidden, for performance reasons it may be possible to safely parameterize
it to a size smaller than what would typically be required to make the discrete logarithm
hard. Coron et al. [14] nonetheless found an attack on this approach essentially in
𝑂(√𝑝𝑠) time and 𝑂(√𝑝𝑠) space. Although the 𝑂(√𝑝𝑠) space requirement makes the
attack strictly worse than generic methods for solving a discrete logarithm (and in fact a
significant real-world implementation challenge), we argue it would be inadvisable to go
below minimum recommendations on discrete logarithm groups sizes. We parameterize
the bit length 𝑢 of 𝑝𝑠 and 𝑞𝑠 (and corresponding DGK randomizer space) accordingly.

Working at the 128-bit security level, this implies a parameterization of our cryp-
tosystem as follows: |𝑛| = 3072, |𝑝|, |𝑞| = 1536, 𝑢 = |𝑝𝑠|, |𝑞𝑠| = 256, and |𝑝𝑡|, |𝑞𝑡| =
1536 − 256 − ⌈log𝑏(𝑏𝑑)⌉ = 1280 − 257 = 𝑝. For the implementation of Enc′ we use
elliptic-curve ElGamal over the standard NIST curve secp256r1.2

For the DGK implementation we use the analogous parameterizations. Using the
notation of [18] we set |𝑛| = 3072, |𝑝|, |𝑞| = 1536, randomizer space |𝑣𝑝|, |𝑣𝑞| = 256, and
message space of order 𝑢 = 11, which is the next largest prime up from log2 256.

At the 256-bit security level we require a 15360-bit factoring modulus and 512-bit
discrete logarithm group. This implies |𝑛| = 15360, |𝑝|, |𝑞| = 7680, |𝑝𝑠|, |𝑞𝑠| = 512. We
also use elliptic-curve ElGamal over curve secp521r1.

Performance comparison. The goal of the implementation was to provide a basis
for comparison between the two protocols, and as such the metric of interest is the
relative (as opposed to absolute) running times. In each case we made an effort to use
optimizations (such as fixed-base exponentiations, working mod𝑝 instead of mod𝑛, etc.)
where possible.

1https://www.keylength.com/en/4/
2http://www.secg.org/SEC2-Ver-1.0.pdf

50 Chapter 5. Implementation

As a simplifying assumption we did not factor in the cost of network transmission,
though it would only impact the performance in our favour given the significant difference
in the total communication cost.

At the 128-bit security level the computation time of our protocol was approximately
4.3 times faster than DGK. Our protocol transmitted approximately 7 times less data
(896 bytes compared to DGK’s 6, 144 bytes). At the 256-bit security level the gap widens
slightly. Our protocol was 5.1 times faster in computation than DGK and transmitted
approximately 7.5 times less data (4, 096 bytes compared to DGK’s 30, 720 bytes). This
can be seen in Section 5.4.

With this expanding difference in terms of computation time and data transmission,
we can say that for any comparison using a set of integers that are larger than two binary
digits in length, our protocol outperforms the standard DGK protocol and would be more
efficient in everyday use.

128 Bit Security 256 Bit Security
Computation Time Data Transmitted Computation Time Data Transmitted

DGK Protocol 1x 6144 bytes 1x 30720 bytes
Our Protocol 0.23256x 896 bytes 0.19608x 4096 bytes
Difference 0.76744x 5248 bytes 0.80392x 26624 bytes

Table 5.2: Comparison of DGK protocol performance vs. our performance

Chapter 6

Extension to Geo-spatial Analysis

6.1 Overview

During the initial first months of the thesis, research focussed on the field of geographic
information systems (GIS). The initial direction of the thesis was to create a protocol for
the geo-spatial analysis of an area and find points of interest that were closest to a given
GPS location. Even though this geo-spatial protocol was not worked on after the pivot to
secure integer comparison, it is a prime example for where the our protocol would be able
to fit into current cryptographic practice. This type of protocol would be useful in a wide
array of applications, from helping dispatchers find the closest emergency services for an
incident to having corporations find prime locales for specific businesses [35]. This field
was very interesting with regards to cryptography as the locations sent and compared
should not be known to both parties. The complexity of this field sparked an interest in
creating a semantically secure protocol for geo-spatial analysis.

The field of geo-spatial analysis is the heart of GIS (Geographic Information Systems).
It acts as a bridge between the raw information that is stored on a device and the many
relationships that that data can have with the world around it [21]. For an application to
work in this type of field it would have to grapple with a large number of comparisons
quickly and would have to have a sorting structure for the locations that were being
compared. When examining the field, we were unable to find a tool that we felt was
adequate for comparing the encrypted values of such a large dataset while maintaining
the security and privacy of the data itself.

Initially we planned to use a protocol to make a set of comparisons with a list of
locations and find out which location was closest to the GPS coordinate that was sent.
To accomplish this, we had to break the over-arching protocol into three separate stages
and find the most effective means for each of these three stages. The three stages that we

51

52 Chapter 6. Extension to Geo-spatial Analysis

broke the comparisons down into were:

1. Distance Calculations: The distances from all data sources to the current position
were found. For this a Euclidean distance calculation under encryption was needed
between the current location and a set location from a pre-recorded list of locations.

2. Homomorphic Shuffling: This was used to hide the identities of each of the
distances that were compared, meaning that the first location would appear at a
different location within the list of distances every time. This stage helped with the
secrecy of the locations so that are unknown within the next stage of the protocol.

3. k-Nearest Neighbour Computation: Sort the list of all distances and list the
closest k locations to the current GPS location. This is the bulk of the computation
for the protocol as there needs to be a net of comparisons for the proper ordering of
the locations to be found.

While attempting to find an ideal process for the "k-nearest neighbour" computation,
we discovered that the current comparison protocols in practice were not sufficient for
what we wanted for the protocol. The number of encryptions for the process of bitwise
decomposition was not good enough (in terms of computational time and cost) in my
opinion. It was at this time that the thesis was pivoted to find a faster secure form of
integer comparison so that the time spent within the sorting process would be significantly
reduced. Even though this geo-spatial protocol was not worked on after the pivot to
secure integer comparison, it is a prime example for where the our protocol would be able
to fit into current cryptographic practice.

6.2 Math Basics

6.2.1 Euclidean Distance

In geography, the Euclidean distance is the direct distance between two points in a certain
number of dimensions (in our case we are looking at two dimensions). First we need to
define the location of a point. Let 𝑝 = {𝑥, 𝑦}, where 𝑝 is the representation of a point we
are using in our distance calculation. In an unencrypted setting, the way to calculate the
distance between points 𝑎 and 𝑏 would be to use the following formula:

𝐷(𝑝𝑎, 𝑝𝑏) = (𝑥𝑎 − 𝑥𝑏)2 + (𝑦𝑎 − 𝑦𝑏)2

This approach finds the overall distance of the unencrypted data. For the encrypted
approach we will need to compute the expanded version of this equation. It looks as

6.3. Geo-spatial Protocol 53

follows:
𝐷(𝑝𝑎, 𝑝𝑏) = 𝑥2

𝑎 + 𝑥2
𝑏 − 2𝑥𝑎𝑥𝑏 − 2𝑦𝑎𝑦𝑏 + 𝑦2

𝑎 + 𝑦2
𝑏

6.3 Geo-spatial Protocol

6.3.1 Distance Calculation

By calculating the Euclidean distance under encryption, we need to modify the Euclidean
distance equation to fit the homomorphic properties of the encryption scheme that we
are using. For this, we must use different operations which translate into the squaring,
subtraction and addition used in the plaintext space. This approach is shown in Figure 6.2

6.3.2 Shuffling

This aspect of the protocol focuses on shuffling the order of the list of distances that was
created in the first part of the protocol. It allows the comparison to be blinded, so that
the result of the comparison is only known to 𝑃𝐴 once the reverse shuffling has been done.
This is a complex procedure, and because the initial idea for the thesis pivoted, it was not
researched in detail. However, it is important to include in the structure of the protocol
because it is vital in hiding the resultant from 𝑃𝐵.

6.3.3 Comparison Protocol

For the comparison section of the protocol, we will need to be doing comparisons on the
size of the distances that have been calculated in Section 6.3.1. In these comparisons, one
party has both of the encrypted inputs and the other has the secret key for decrypting
the inputs. In our protocol (described in Section 3.6), it can be seen that each party
holds an input for the comparison. This difference means that to use our protocol in this
geo-spatial protocol, we will need to extend the protocol so that both parties have one
input, and they compute the comparison off those inputs.

We accomplish this by doing the subtraction of the integers under encryption and
then blinding the result using a randomized number. By working in a cyclic group of size
𝑛, we can abuse the fact that adding two numbers 𝑟, 𝑥 such that 𝑟, 𝑥 > 𝑛/2 will result in a
number within the first half of the total space covered by 𝑛. This property can also apply
to subtraction wherein subtracting a large number in 𝑛 from a small number in 𝑛 results
in a number that is in the second half of the space covered by 𝑛. This results in a protocol
similar to the presented by Baldimtsi et al. [2]. Below in Figure 6.3 is a set of images

54 Chapter 6. Extension to Geo-spatial Analysis

Euclidean Distance Calculation

Party P𝐴 Party P𝐵

Private Input: Private Input:
𝑥𝑎, 𝑦𝑎, 𝑥𝑏, 𝑦𝑏 (coordinates of locations x,y) private key𝑠𝑘

𝑟, 𝑠, 𝑡, 𝑢←$ {1 . . . 230}
𝑝 = ⟨[[𝑥𝑎]]𝑟, [[𝑦𝑎]]𝑠⟩
𝑝 = ⟨[[𝑥𝑎𝑟]], [[𝑦𝑎𝑠]]⟩
𝑞 = ⟨[[𝑥𝑏]]𝑡, [[𝑦𝑏]]𝑢⟩
𝑞 = ⟨[[𝑥𝑏𝑡]], [[𝑦𝑏𝑢]]⟩

𝑝, 𝑞

⟨𝑥𝑎𝑟, 𝑦𝑎𝑠⟩ → ⟨(𝑥𝑎𝑟)2, (𝑦𝑎𝑠)2⟩
⟨𝑥𝑏𝑡, 𝑦𝑏𝑢⟩ → ⟨(𝑥𝑏𝑡)2, (𝑦𝑏𝑢)2⟩
𝑝′ = ⟨[[𝑥2

𝑎𝑟2]], [[𝑦2
𝑎𝑠2]]⟩

𝑞′ = ⟨[[𝑥2
𝑏𝑡2]], [[𝑦2

𝑏 𝑢2]]⟩
𝑖 = [[−2𝑥𝑎𝑥𝑏𝑟𝑡]]
𝑗 = [[−2𝑦𝑎𝑦𝑏𝑠𝑢]]

𝑝′, 𝑞′, 𝑖, 𝑗

𝑝′′ = ⟨[[𝑥2
𝑎𝑟2]]𝑟−2

, [[𝑦2
𝑎𝑠2]]𝑠−2⟩ = ⟨[[𝑥2

𝑎]], [[𝑦2
𝑎]]⟩

𝑞′′ = ⟨[[𝑥2
𝑏𝑡2]]𝑡−2

, [[𝑦2
𝑏 𝑢2]]𝑢−2⟩ = ⟨[[𝑥2

𝑏]], [[𝑦2
𝑏]]⟩

𝑖′ = 𝑖𝑟−1𝑡−1 = [[−2𝑥𝑎𝑥𝑏]]

𝑗′ = 𝑗𝑠−1𝑢−1 = [[−2𝑦𝑎𝑦𝑏]]
𝐷 = [[𝑥𝑎]]2[[𝑥𝑏]]2[[−2𝑥𝑎𝑥𝑏]][[−2𝑦𝑎𝑦𝑏]][[𝑦𝑎]]2[[𝑦𝑏]]2

𝐷 = [[𝑥2
𝑎 + 𝑥2

𝑏 − 2𝑥𝑎𝑥𝑏 − 2𝑦𝑎𝑦𝑏 + 𝑦2
𝑎 + 𝑦2

𝑏]]
Output 𝐷

Figure 6.1: Euclidean distance sub protocol

6.3. Geo-spatial Protocol 55

Geo-spatial comparison protocol

Party P1 Party P2

Private Input: Private Input:
[a],[b],ℓ private key𝑠𝑘, ℓ

[x] = [𝑎][2ℓ][𝑏]−1

𝑟←$ {0, . . . , 2ℓ+1 − 1}
[z] = [𝑥][𝑟] = [𝑥 + 𝑟]

𝑟′ = 𝑟 mod 2ℓ 𝑧′ = 𝑧 mod 2ℓ

𝑟1 = 1st bit r’ 𝑧1 = 1st bit z’

𝑂𝑢𝑟𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙(𝑟′, 𝑧′)

𝑐 = 0 if 𝑟′ > 𝑧′

𝑐 = 1 if 𝑧′ ≥ 𝑟′

𝑠 = 𝑐⊕ 𝑧1

𝑠

𝑡 = 𝑠⊕ 𝑟′

𝑡 = 1 if 𝑎 > 𝑏, else 𝑏 ≥ 𝑎

Figure 6.2: Geo-spatial comparison protocol

that can help with the understanding of the properties that are being discussed. By using
these properties we are able to tell which integer is larger by looking on which half of 𝑛

the resultant lies in. The correctness of this is described in more detail in Section 6.3.5.

6.3.4 Privacy Proof

Privacy in our setting means that throughout the process of the protocol Party A only
learns the result of the comparison and Party B does not learn anything new throughout
the transaction. To prove this, we can look into situations where either Party A is corrupt
or where Party B is corrupt.

In the first case, let us assume that Party A is corrupt and is trying to gain information
from Party B. Since both of the inputs for the comparison are committed by Party A, the
only information that they do not currently possess and which they can retrieve is the
decryption of the inputs that they have and the secret key itself. Let us say that instead

56 Chapter 6. Extension to Geo-spatial Analysis

of picking a random number from the generation in the protocol, Party A chooses 0, so
that they have a better chance at seeing the difference between a and b. In the protocol,
the value 𝑐′ is used to decipher the bigger number in the comparison and its value solely
represents the binary result of whether 𝑧′ > 𝑟′. No information is provided that allows
either party to see the actual difference. This stops Party A from being able to discover
the difference. For example, if Party A replaced value 𝑏 with 0, the end result would state
𝑎 > 𝑏 without stating the value of 𝑎 or the difference between 𝑎 and 𝑏.

In the second case, let us assume that Party B is malicious and wants to know the
plain text values of 𝑎 and 𝑏. Party B receives 𝑧 from Party A and wants to recover 𝑟 such
that they can decipher 𝑎 · 𝑏−1. Given that 𝑟 is chosen uniformly though a large number
space, the value 𝑧 does not reveal information about the difference of a and b. Given a
scenario in which 𝑧 = 50 in cyclic group of 200, for every possible difference there is a
corresponding random value 𝑟′ that would allow you to arrive at that area. If 𝑎− 𝑏 = 1
then 𝑟 = 149, but that is just as likely as 𝑎 − 𝑏 = 2 and 𝑟 = 148, which continues for
every possible value of 𝑎 − 𝑏. The uniform distribution of the random value 𝑟 is able
to perfectly hide the value of 𝑎 − 𝑏 because in a group of 𝑛, there are 𝑛 equally likely
possibilities for the actual inputs.

6.3.5 Correctness

The protocol must terminate with the correct result in every possible case. Though the
number of individual cases will be dependent upon the size of the cyclic groups that are
being used in the protocol, there are a base 8 cases. These cases cover the different values
of 𝑟′𝑙, 𝑧′𝑙, and 𝑐′ and show that the resultant of the protocol is correct with respect to these
values. Along with the following case descriptions is Figure 6.3, which provides a visual
guide for following along. The plotted values 𝑥, 𝑟, 𝑧 represent the 𝑥, 𝑟′𝑙, 𝑧′𝑙 values from the
protocol. Recall that our goal is to find the location of 𝑥 and determine the resultant
from that. A simpler table in Section 6.3.5 is also provided for a cleaner analysis.

Note: The values of 𝑐′ are modulus 2𝑙 which means they just state which number is far-
ther into its respective segment
Case 1. 𝑟′𝑙 = 0, 𝑧′𝑙 = 0, and 𝑐′ = 0. In this case the values of 𝑟 and 𝑧 are both in the first of
the two segments of the group. The value of 𝑐′ = 0 denotes that 𝑟′𝑙 < 𝑧′𝑙. Since we subtract 𝑟

from 𝑧 to get 𝑥, we know that this still falls in the first segment of the group. This tells us that
𝑎 < 𝑏 which corresponds to the answer 0 that would be given by (𝑟′𝑙 + 𝑧′𝑙 + 𝑐′) mod 2.
Case 2. 𝑟′𝑙 = 0, 𝑧′𝑙 = 0, and 𝑐′ = 1. In this case the values of 𝑟 and 𝑧 are both in the first of

6.4. Future Work 57

the two segments of the group. The value of 𝑐′ = 1 denotes that 𝑟′𝑙 > 𝑧′𝑙. Since we subtract 𝑟

from 𝑧 to get 𝑥, we know that this cycles us to the second segment of the group. This tells us
that 𝑎 > 𝑏 which corresponds to the answer 1 that would be given by (𝑟′𝑙 + 𝑧′𝑙 + 𝑐′) mod 2.
Case 3. 𝑟′𝑙 = 0, 𝑧′𝑙 = 1, and 𝑐′ = 0. In this case 𝑟 lies in the first segment and 𝑧 lies in the
second segment of the group. The value of 𝑐′ = 0 denotes that 𝑟′𝑙 < 𝑧′𝑙. Since we subtract 𝑟

from 𝑧 to get 𝑥, we know that this keeps us in the same group. This tells us that 𝑎 > 𝑏 which
corresponds to the answer 1 that would be given by (𝑟′𝑙 + 𝑧′𝑙 + 𝑐′) mod 2.
Case 4. 𝑟′𝑙 = 0, 𝑧′𝑙 = 1, and 𝑐′ = 1. In this case 𝑟 lies in the first segment and 𝑧 lies in the
second segment of the group. The value of 𝑐′ = 1 denotes that 𝑟′𝑙 > 𝑧′𝑙. Since we subtract 𝑟 from
𝑧 to get 𝑥, we know that this brings us down to the first segment of the group. This tells us
that 𝑎 < 𝑏 which corresponds to the answer 0 that would be given by (𝑟′𝑙 + 𝑧′𝑙 + 𝑐′) mod 2.
Case 5. 𝑟′𝑙 = 1, 𝑧′𝑙 = 0, and 𝑐′ = 0. In this case 𝑟 lies in the second segment and 𝑧 lies in
the first segment of the group. The value of 𝑐′ = 0 denotes that 𝑟′𝑙 < 𝑧′𝑙. Since we subtract 𝑟

from 𝑧 to get 𝑥, we know that this cycles us to the second segment of the group. This tells us
that 𝑎 > 𝑏 which corresponds to the answer 1 that would be given by (𝑟′𝑙 + 𝑧′𝑙 + 𝑐′) mod 2.
Case 6. 𝑟′𝑙 = 1, 𝑧′𝑙 = 0, and 𝑐′ = 1. In this case 𝑟 lies in the second segment and 𝑧 lies in
the first segment of the group. The value of 𝑐′ = 1 denotes that 𝑟′𝑙 > 𝑧′𝑙. Since we subtract 𝑟

from 𝑧 to get 𝑥, we know that this cycles us to down to the first segment of the group. This tells
us that 𝑎 < 𝑏 which corresponds to the answer 0 that would be given by (𝑟′𝑙 + 𝑧′𝑙 + 𝑐′) mod 2.
Case 7. 𝑟′𝑙 = 1, 𝑧′𝑙 = 1, and 𝑐′ = 0. In this case the values of r and z are both in the second
of the two segments of the group. The value of 𝑐′ = 0 denotes that 𝑟′𝑙 < 𝑧′𝑙. Since we subtract 𝑟

from 𝑧 to get 𝑥, we know that this moves us to the first segment of the group. This tells us that
𝑎 < 𝑏 which corresponds to the answer 0 that would be given by (𝑟′𝑙 + 𝑧′𝑙 + 𝑐′) mod 2.
Case 8. 𝑟′𝑙 = 1, 𝑧′𝑙 = 1, and 𝑐′ = 1. In this case the values of r and z are both in the second
of the two segments of the group. The value of 𝑐′ = 1 denotes that 𝑟′𝑙 > 𝑧′𝑙. Since we subtract 𝑟

from 𝑧 to get 𝑥, we know that this cycles us through the first segment and back to the second
segment of the group. This tells us that 𝑎 > 𝑏 which corresponds to the answer 1 that would be
given by (𝑟′𝑙 + 𝑧′𝑙 + 𝑐′) mod 2.

6.4 Future Work

The pivot in the thesis and lack of time to return prevented us from implementing the
protocols listed above. Though these protocols should intertwine correctly, they have not
been tested and this could be an area of future work regarding our protocol. Another
area of potential future work is adapting our protocol for the circumstances that this
setting presents. Our protocol could also undergo an adaptation for the case when one

58 Chapter 6. Extension to Geo-spatial Analysis

0 2ℓ 2ℓ+1 − 1v 𝑟 v 𝑧v 𝑥

Case 𝑟′ = 0, 𝑧′ = 0, 𝑐′ = 0
0 2ℓ 2ℓ+1 − 1v 𝑥v 𝑟v 𝑧

Case 𝑟′ = 0, 𝑧′ = 0, 𝑐′ = 1
0 2ℓ 2ℓ+1 − 1v 𝑥v 𝑟 v 𝑧

Case 𝑟′ = 0, 𝑧′ = 1, 𝑐′ = 0
0 2ℓ 2ℓ+1 − 1v 𝑥 v 𝑟 v 𝑧

Case 𝑟′ = 0, 𝑧′ = 1, 𝑐′ = 1
0 2ℓ 2ℓ+1 − 1v 𝑥v 𝑟v 𝑧

Case 𝑟′ = 1, 𝑧′ = 0, 𝑐′ = 0
0 2ℓ 2ℓ+1 − 1v 𝑥 v 𝑟v 𝑧

Case 𝑟′ = 1, 𝑧′ = 0, 𝑐′ = 1
0 2ℓ 2ℓ+1 − 1v 𝑥 v 𝑟 v 𝑧

Case 𝑟′ = 1, 𝑧′ = 1, 𝑐′ = 0
0 2ℓ 2ℓ+1 − 1v 𝑥 v 𝑟v 𝑧

Case 𝑟′ = 1, 𝑧′ = 1, 𝑐′ = 1

Figure 6.3: All variations described in geo-spatial correctness

6.4. Future Work 59

𝑐′ (𝑟′ > 𝑧′) 𝑟′ 𝑧′ Result
0 0 0 𝑏 ≥ 𝑎
0 0 1 𝑎 > 𝑏
0 1 0 𝑎 > 𝑏
0 1 1 𝑏 ≥ 𝑎
1 0 0 𝑎 > 𝑏
1 0 1 𝑏 ≥ 𝑎
1 1 0 𝑏 ≥ 𝑎
1 1 1 𝑎 > 𝑏

Table 6.1: Table for variations in geo-spatial correctness

party has both of the inputs which would simplify the geo-spatial wrapper protocol.

Chapter 7

Conclusion and Future Work

This chapter summarizes the thesis of this paper and discusses the contributions that can
potentially be used in the field. It also explores the limitations of the current work and
the potential areas where future work can be done regarding our cryptosystem. Though
an example use of the threshold homomorphic property was presented, their are still
undiscovered uses for this type of property. This chapter is split into three main sections:

1. Section 7.1 provides a brief summary of the thesis restating the important aspects
of the research.

2. Section 7.2 presents a discussion on the contributions of the cryptosystem and talks
about the problems that were encountered while designing and implementing it.

3. Section 7.3 talks about potential future uses for our cryptosystem and talks about
areas in which more work can be done using the cryptosystem.

7.1 Summary

This thesis reviewed some of the public key cryptosystems that are currently used in
practice and described the main functionalities of their encryption schemes as:

1. Gen(𝜆)→ (𝑝𝑘, 𝑠𝑘)

2. Enc(𝑚, 𝑝𝑘)→ (𝑐)

3. Dec(𝑐, 𝑠𝑘)→ (𝑚)

It discussed the creation of our encryption system and broke down the encryption into the
same three basic functions as the systems currently in practice. The unique homomorphic

60

7.2. Discussion 61

properties of the system were discussed and the hardness assumptions securing the
encryption scheme that was used were explained. Alongside the explanation of the
protocol used for secure integer comparison, there was also a description for the expansion
of the protocol to include integers beyond the scope of the security parameters for the
protocol. This expansion technique allowed for linear growth (in number of encryptions)
which is sufficient when comparing it to other schemes in use. A simulation security proof
was provided to explain the security of the protocol and explain the steps put into place to
prevent information leakage. The implementation through the use of SAGE, was described
and the algorithms for the encryption decryption and key generation functions were shown.
Core concepts for these algorithms were also reviewed to allow an easier understanding.
Finally, an example use of our cryptosystem was discussed in terms of a geo-spatial
analysis protocol that was studied during the thesis. This protocol was explained in it’s
stages and showed an instance in which using the secure integer comparison from our
protocol would be useful. Future works for the implementation of the cryptosystem into
other fields was also briefly discussed.

7.2 Discussion

The main contributions that are made towards secure computation throughout this paper
are the development of our cryptosystem, the discovery of the threshold homomorphic
property, and the implementation of this property through a new protocol for secure
integer comparison.

The research and use of prime power groups allow for an exponential addition under
encryption that creates a unique threshold function. This function allows for anyone using
the scheme to compare multiple messages together to see if they fit a certain mathematical
criteria. For example the threshold function that is discussed in this paper is:

𝑓(𝑚1, 𝑚2) =

⎧⎪⎨⎪⎩0 𝑚1 + 𝑚2 ≥ 𝑡

𝑚1 + 𝑚2 otherwise.

The versatility of this threshold function is something that we do not believe we have
fully realized. However, by implementing a new protocol displaying one of the possibilities
we have gained more understanding as to some of the applications this property can be
used for.

When looking at some of the problems that were encountered during this research,
one obvious indicator was the pivot from the geo-spatial analysis protocol to the secure

62 Chapter 7. Conclusion and Future Work

integer computation protocol. The scale of the thesis was reduced when the lack of a
sufficient way to securely compute integer comparisons was discovered. The intention for
this change was to fill the absence of an efficient protocol for future researchers.

7.3 Future Work

While this thesis was able to explore the cryptosystem that was developed, there are still
an abundance of interesting paths that this research could be extended upon. In Chapter 6
there was discussion about the extension of our protocol into the larger geo-spacial protocol.
Improving on the cohesiveness of the two protocols and developing/implementing a full
protocol for the purpose of geo-spatial analysis is one area which would be interesting to
invest future works in.

Within our description of the homomorphic threshold property, we discussed the
implication of the one way security, in that information could be leaked without a second
cryptosystem. While this was not something that we were looking to use in our protocol,
it could be interesting to find research areas in which this one sided security would be
more valued and try to implement the system in that area of study.

There are a number of other fields in which secure computation is currently being
used, such as database linkage and online auctions. While we have only looked at the
threshold property in terms of addition and subtraction, there could be more variances
of what this type of property would allow. More research into the field of prime power
groups could lead to new discoveries with what you are able to do in the exponent space.

7.4 Conclusion

The wealth of information available online is growing at a staggering pace and to com-
pensate for having to process this information new breakthroughs in computation are of
the utmost importance. By making improvements in the field of secure computation, we
can reduce the strain on servers that need to process this information. The continued
research going into this field should help improve the speed at which people will be able
to jointly compute information.

Bibliography

[1] Reinhold Baer et al. Classes of finite groups and their properties. Illinois Journal of
mathematics, 1(2):115–187, 1957.

[2] Foteini Baldimtsi and Olga Ohrimenko. Sorting and searching behind the curtain.
In International Conference on Financial Cryptography and Data Security, pages
127–146. Springer, 2015.

[3] Boaz Barak and Yehuda Lindell. Strict polynomial-time in simulation and extraction.
SIAM Journal on Computing, 33(4):783–818, 2004.

[4] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols. In Proceedings of the twenty-second annual ACM symposium on Theory
of computing, pages 503–513. ACM, 1990.

[5] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In Workshop on
the Theory and Application of of Cryptographic Techniques, pages 92–111. Springer,
1994.

[6] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In EUROCRYPT, volume
6632, pages 169–188. Springer, 2011.

[7] Ian F Blake and Vladimir Kolesnikov. Conditional encrypted mapping and comparing
encrypted numbers. In International Conference on Financial Cryptography and
Data Security, pages 206–220. Springer, 2006.

[8] Christian Cachin. Efficient private bidding and auctions with an oblivious third
party. In Proceedings of the 6th ACM conference on Computer and communications
security, pages 120–127. ACM, 1999.

[9] Christian Cachin and Jan Camenisch. Optimistic fair secure computation. In
Advances in Cryptology Crypto 2000, pages 93–111. Springer, 2000.

63

64 BIBLIOGRAPHY

[10] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal
of CRYPTOLOGY, 13(1):143–202, 2000.

[11] Ran Canetti, U Friege, Oded Goldreich, and Moni Naor. Adaptively secure multi-
party computation. 1996.

[12] Rhys Carlton, Aleksander Essex, and Krzysztof Kapulkin. Threshold homomorphic
properties of prime power subgroups with applications to secure integer comparison.
In submission, Western University, Canada, 2017.

[13] Melissa Chase and Seny Kamara. Structured encryption and controlled disclo-
sure. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 577–594. Springer, 2010.

[14] Jean-Sébastien Coron, Antoine Joux, Avradip Mandal, David Naccache, and Mehdi
Tibouchi. Cryptanalysis of the RSA Subgroup Assumption from TCC 2005, pages
147–155. 2011.

[15] Geoffroy Couteau. Efficient secure comparison protocols. IACR Cryptology ePrint
Archive, 2016:544, 2016.

[16] Ivan Damgård, Martin Geisler, and Mikkel Krøigaard. Efficient and secure compar-
ison for on-line auctions. In Information Security and Privacy: 12th Australasian
Conference, ACISP 2007, Townsville, Australia, July 2-4, 2007. Proceedings, pages
416–430, 2007.

[17] Ivan Damgård, Martin Geisler, and Mikkel Krøigaard. Homomorphic encryption and
secure comparison. International Journal of Applied Cryptography, 1(1):22–31, 2008.

[18] Ivan Damgård, Martin Geisler, and Mikkel Krøigaard. A correction to “efficient and
secure comparison for online auctions”. Int. J. Appl. Cryptol., 1(4):323–324, 2009.

[19] Ivan Damgård and Mads Jurik. A generalisation, a simplification and some appli-
cations of paillier’s probabilistic public-key system. In Public Key Cryptography,
volume 1992, pages 119–136. Springer, 2001.

[20] Ivan Damgård and Jesper Nielsen. Universally composable efficient multiparty
computation from threshold homomorphic encryption. Advances in Cryptology-
CRYPTO 2003, pages 247–264, 2003.

BIBLIOGRAPHY 65

[21] Michael John De Smith, Michael F Goodchild, and Paul Longley. Geospatial analy-
sis: a comprehensive guide to principles, techniques and software tools. Troubador
Publishing Ltd, 2007.

[22] David Steven Dummit and Richard M Foote. Abstract algebra, volume 3. Wiley
Hoboken, 2004.

[23] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE transactions on information theory, 31(4):469–472, 1985.

[24] Uri Feige, Joe Killian, and Moni Naor. A minimal model for secure computation.
In Proceedings of the twenty-sixth annual ACM symposium on Theory of computing,
pages 554–563. ACM, 1994.

[25] Marc Fischlin. A cost-effective pay-per-multiplication comparison method for mil-
lionaires. In Cryptographers’ Track at the RSA Conference, pages 457–471. Springer,
2001.

[26] Caroline Fontaine and Fabien Galand. A survey of homomorphic encryption for
nonspecialists. EURASIP Journal on Information Security, 2007(1):013801, 2007.

[27] Martin Franz, Björn Deiseroth, Kay Hamacher, Somesh Jha, Stefan Katzenbeisser,
and Heike Schröder. Towards secure bioinformatics services (short paper). In
International Conference on Financial Cryptography and Data Security, pages 276–
283. Springer, 2011.

[28] Juan Garay, Berry Schoenmakers, and José Villegas. Practical and secure solutions for
integer comparison. In Public Key Cryptography, volume 7, pages 330–342. Springer,
2007.

[29] Craig Gentry et al. Fully homomorphic encryption using ideal lattices. In STOC,
volume 9, pages 169–178, 2009.

[30] Oded Goldreich. A note on computational indistinguishability. Information Processing
Letters, 34(6):277–281, 1990.

[31] Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how to play mental
poker keeping secret all partial information. In Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing, STOC ’82, pages 365–377, 1982.

66 BIBLIOGRAPHY

[32] Jens Groth. Cryptography in subgroups of 𝑧*𝑛. In Theory of Cryptography: Second
Theory of Cryptography Conference, TCC 2005, Cambridge, MA, USA, February
10-12, 2005. Proceedings, pages 50–65, 2005.

[33] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled
circuits better than custom protocols? In NDSS, 2012.

[34] Ioannis Ioannidis and Ananth Grama. An efficient protocol for yao’s millionaires’ prob-
lem. In System Sciences, 2003. Proceedings of the 36th Annual Hawaii International
Conference on, pages 6–pp. IEEE, 2003.

[35] Bin Jiang and Xiaobai Yao. Geospatial analysis and modelling of urban structure
and dynamics, volume 99. Springer Science & Business Media, 2010.

[36] Kristján Valur Jónsson, Gunnar Kreitz, and Misbah Uddin. Secure multi-party
sorting and applications. IACR Cryptology ePrint Archive, 2011:122, 2011.

[37] Jonathan Katz and Yehuda Lindell. Handling expected polynomial-time strategies
in simulation-based security proofs. In Theory of Cryptography Conference, pages
128–149. Springer, 2005.

[38] Mehmet Kuzu, Mohammad Saiful Islam, and Murat Kantarcioglu. Efficient simi-
larity search over encrypted data. In Data Engineering (ICDE), 2012 IEEE 28th
International Conference on, pages 1156–1167. IEEE, 2012.

[39] Xing-Xin Li, You-Wen Zhu, and Jian Wang. Efficient encrypted data comparison
through a hybrid method. Journal of Information Science & Engineering, 33(4),
2017.

[40] Hsiao-Ying Lin, Wen-Guey Tzeng, et al. An efficient solution to the millionaires’
problem based on homomorphic encryption. In ACNS, volume 5, pages 456–466.
Springer, 2005.

[41] Yehuda Lindell. How to simulate it-a tutorial on the simulation proof technique.
IACR Cryptology ePrint Archive, 2016:46, 2016.

[42] Quanquan Ma. The LTV Homomorphic Encryption Scheme and Implementation in
Sage. PhD thesis, Worcester Polytechnic Institute, 2013.

[43] James L Massey. Cryptography: Fundamentals and applications. In Copies of
transparencies, Advanced Technology Seminars, volume 109, page 119, 1993.

BIBLIOGRAPHY 67

[44] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of applied
cryptography. CRC press, 1996.

[45] Silvio Micali and Phillip Rogaway. Secure computation. In Annual International
Cryptology Conference, pages 392–404. Springer, 1991.

[46] Majid Nateghizad, Zekeriya Erkin, and Reginald L Lagendijk. An efficient privacy-
preserving comparison protocol in smart metering systems. EURASIP Journal on
Information Security, 2016(1):11, 2016.

[47] National Institute of Standards and Technology (NIST). Recommended elliptic
curves for federal government use, 1999.

[48] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Advances in Cryptology - EUROCRYPT 1999, pages 223–238. Springer-
Verlag, 1999.

[49] Fernando Perez, Brian E Granger, and John D Hunter. Python: an ecosystem for
scientific computing. Computing in Science & Engineering, 13(2):13–21, 2011.

[50] David Pointcheval. New public key cryptosystems based on the dependent-rsa
problems. In Eurocrypt, volume 99, pages 239–254. Springer, 1999.

[51] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In
Eurocrypt, volume 96, pages 387–398. Springer, 1996.

[52] Minghua Qu. Sec 2: Recommended elliptic curve domain parameters. 1999.

[53] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data banks and privacy
homomorphisms. Foundations of secure computation, 4(11):169–180, 1978.

[54] Ron Rothblum. Homomorphic encryption: From private-key to public-key. In TCC,
volume 6597, pages 219–234. Springer, 2011.

[55] Berry Schoenmakers and Pim Tuyls. Practical Two-Party Computation Based on
the Conditional Gate, pages 119–136. Springer Berlin Heidelberg, 2004.

[56] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

[57] Claude E Shannon. Communication theory of secrecy systems. Bell Labs Technical
Journal, 28(4):656–715, 1949.

68 BIBLIOGRAPHY

[58] William Stein and David Joyner. Sage: System for algebra and geometry experimen-
tation. ACM SIGSAM Bulletin, 39(2):61–64, 2005.

[59] Minh Van Nguyen. Number theory and the rsa public key cryptosystem. sage, 5:7,
2008.

[60] Thijs Veugen. Comparing encrypted data. Multimedia Signal Processing Group,
Delft University of Technology, The Netherlands, and TNO Information and Com-
munication Technology, Delft, The Netherlands, Tech. Rep, 2011.

[61] Yodai Watanabe, Junji Shikata, and Hideki Imai. Equivalence between semantic
security and indistinguishability against chosen ciphertext attacks. In International
Workshop on Public Key Cryptography, pages 71–84. Springer, 2003.

[62] Can Xiang, Chunming Tang, Yunlu Cai, and Qiuxia Xu. Privacy-preserving face
recognition with outsourced computation. Soft Computing, 20(9):3735–3744, 2016.

[63] Andrew C Yao. Protocols for secure computations. In Foundations of Computer
Science, 1982. SFCS’08. 23rd Annual Symposium on, pages 160–164. IEEE, 1982.

[64] Xun Yi, Russell Paulet, and Elisa Bertino. Homomorphic encryption and applications,
volume 3. Springer, 2014.

Curriculum Vitae

Name: Rhys Carlton

Post-Secondary
Education and Western University
Degrees: 2011 - 2015 B. Eng

University of Western Ontario
London, ON

Honours and Dean’s List
Awards: 2011-2015

Related Work Teaching Assistant
Experience: The University of Western Ontario

2015 - 2017

Publications:

Rhys Carlton, Aleksander Essex, and Krzysztof Kapulkin. Threshold Homomorphic
Properties of Prime Power Subgroups with Applications to Secure Integer Comparison.
In submission.

69

	Secure Integer Comparisons Using the Homomorphic Properties of Prime Power Subgroups
	Recommended Citation

	tmp.1504146749.pdf.fPHCT

