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Abstract

Certificate schemes are well-known cryptographic primitives, where an authority certifies certain
attributes (e.g. name, date of birth, bank account and salary) of a user, who can then show that
certificate to someone else. There are however scenarios where the authority as well as the user
may not want to disclose or publish the attribute values (which for instance might be the result
of some secure multiparty computation). For instance in medical surveys, we would like to use
certificate schemes to guarantee that the users’ inputs to the survey are correct without disclos-
ing (in plaintext) private sensitive medical data. Formal protocols for solving these problems are
derived in this thesis. More generally, certificate schemes and secure multiparty computation are
combined, where the encrypted outcomes of a multiparty computation are certified, either with
or without the user learning the plaintext attributes, and where the user can disclose certified
attributes in encrypted form to a verifier. The main aim of this combination is to obtain a scheme
that provides the possibility to compute statistics on encrypted inputs, while still offering privacy
and security.

In the first part of the thesis, in a general approach the algorithms and protocols required for
the combination of the two primitives, certificate schemes and secure multiparty computation, are
derived. This approach applies to any certificate scheme, and is therefore named universal. Then
we construct the required protocols for each of these two primitives. In the area of secure multi-
party computation, protocols are constructed that are either required for the extended certificate
scheme to work correctly (e.g. a Paillier to ElGamal conversion gate), or for the computation
of statistics of encrypted data (e.g. a modulo reduction gate). In the second part of the thesis
certificate schemes are considered, and the algorithms and protocols introduced in the universal
approach are constructed. In particular, an encrypted certificate scheme is constructed where the
user is issued a certificate on ElGamal encryptions without learning the plaintext values. To this
end, the definition of certificate schemes is reformulated, formalized and extended.

It turns out that it is possible to generalize the certificate scheme of Brands [Bra99] to the case
where the attributes to be certified are encrypted and unknown to the user and/or certification
authority. This extension is considered for both the ElGamal and Paillier cryptosystem. Following
this generalization together with the universal construction, a complete set of algorithms and
protocols for combining the two primitives is possible. This extension is efficient as it only requires
linear overhead (in the number of attributes) when compared to the original scheme of Brands.
By mixing different protocols one can reduce the cost (even to constant order). Security of the
new scheme is slightly weaker as it requires stronger assumptions. Although verification is not
publicly possible anymore in case the user does not learn the plaintext attributes, this verification
is possible for participants that in practice are expected to be able to verify, i.e. the certification
authorities.
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for being in the exam committee. Among my fellow students, a special word for Jochem Berndsen,
whose bright view on mathematics is magical.

The people at Philips, in particular Milan Petković for his help on medical applications of my
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1. Introduction

This thesis is concerned with two major primitives in cryptography, namely certificate schemes1

and secure multiparty computation schemes.

In a certificate scheme, users obtain certificates from organizations certifying them that they com-
ply with some condition. These certificates can subsequently be shown to other parties in order
to obtain access to a service or to obtain another certificate. For instance, the government issues
driving licenses proving the right of the owner to drive a car. These can in turn be shown at the
car rental office to rent a car (this property is commonly called ‘disclosure’, as the owner discloses
the data). Digital certificate schemes need to provide two major demands: security and privacy.
Security roughly means that it is difficult to obtain a false certificate. In practice this would for
instance mean that it should be impossible for an underage person to obtain a driving license.
Privacy means that the secret values in the certificate cannot leak and the different executions
(for instance showing a driving license at two places) cannot be linked. For real-life certificates,
the privacy requirement is not always satisfied: a passport can be used by its owner to buy beer
(more formally: he can prove that he is sufficiently old to buy beer), but the seller learns the
consumer’s name, address, etc. as well. In digital certificate schemes, preserving privacy turns out
to be possible, as it has a.o. been shown by [Bra99, CL02, CL04].

In a secure multiparty computation scheme (MPC), a number of parties jointly compute a given
function on data private to these parties, or more generally on any set of secret data. The output
of that computation can be either public (as in Yao’s millionaires problem [Yao82]), or private
(if the output will be used as input to other multiparty computations). Of course, the main goal
of multiparty computation is that the output is correct. Moreover, it needs to be secure, in the
sense that no information leaks (except anything that can be concluded from the output), even if
a subset of parties is actively malicious (i.e., deviates from the protocol). Normally, the function
to be computed itself is publicly known, but it can be secret input of one of the participants as well.

These two primitives are well understood in the literature, but combining them yields a scheme
that offers a higher level of privacy and security. For instance, Yao’s millionaires problem [Yao82]
is concerned with two millionaires, say Audrey and Bart, who want to find out who is richer
without revealing their fortunes. This can be achieved by letting the participants both encrypt
their wealths xa and xb, and use a so-called ‘comparison gate’ to compute f(xa, xb) = [xa < xb].
Multiparty protocols for this function are known that are correct and secure, yet these do not
prevent Audrey and Bart from initially lying about their wealths (a drawback already noticed by
Yao). This additional security property can be guaranteed by introducing a certificate scheme. A
service provider, the bank, provides the users with a certificate on their bank deposits and upon
comparing their values, the millionaires also verify each other’s certificate. By construction of the
certificate scheme, this verification does not leak the certified value, yet at the end of the protocol
one party convinces the other that the correct value is encrypted. This idea is visualized in Figure
1.1.

1These schemes are sometimes called ‘credential schemes’. Throughout the thesis, we use the term ‘certificate
scheme’ instead.

1



1. Introduction

Figure 1.1: Yao’s millionaires problem, preventing the participants from lying.

This millionaires example is an intuitive example, but not a very realistic one. More realistic
examples are found in the medical domain. Indeed, medical data are usually very sensitive and
many people are reluctant to distribute such information2 So the interesting question and the
main problem to be solved is how to unite certificate schemes and secure multiparty computation,
in order to construct a secure scheme for (among others) multiparty computation of statistics.
In particular, the development of the protocols for the interface between these schemes is the
main goal of this thesis. The following three examples will allow the reader to visualize how this
question can help to solve practical medical security problems in practice. Applications in non-
medical domains are imaginable as well, as follows from the two subsequent examples. In Section
3.3, these examples are studied more extensively, along the lines of a detailed universal description
of our construction.

Example 1.0.1 (Je echte leeftijd). A well-known survey in the Netherlands is the ‘je echte
leeftijd’-survey: a website that computes ‘your real age’, given your lifestyle, eating behavior,
medical history, etc. [web09b]. In this survey participants enter lots of private and sensitive
information about themselves, which would not be a big problem if privacy was guaranteed3. The
result is that it is very tempting to enter slightly different data, and this clearly influences the
correctness and reliability of the results. So on the one hand, you want the inputs to be correct,
which can be achieved by deploying a certificate scheme. On the other hand, you do not want
the website to learn anything about your lifestyle, your illnesses or any other sensitive private
information, while still having the possibility to do statistical analysis on the inputs. This can be
achieved using a multiparty computation scheme.

Example 1.0.2 (Je echte leeftijd, extended). The purpose of the ‘je echte leeftijd’-survey is in
fact to compute the ‘real age’ of the participant. Naturally, you want this data to be private, so
the outcome of the multiparty computation should only be learned by the user, and by no-one
else (not even the website itself)4. So, again the website obtains several certified values and does
multiparty computation to obtain a result, but unlike Example 1.0.1, now the result is in encrypted
form. In addition, one can think of a scenario where the output needs to be certified as well (for
further use by the user) in which case the website is a service provider that also issues certificates.

2Some governments already require persons concerned with medical data to comply with privacy standards, like
for instance the Health Insurance Portability and Accountability Act (HIPAA) in the United States [web09a].

3Ironically, the website states: ‘In order to ensure your privacy, you need to register with your name, date of
birth, e-mail, gender and address’.

4In this case the computation is done on private inputs of just one participant, but for extension to multiple
participants one can think of a computation that results in the quartile the ‘real age’ of a certain user is in, with
respect to the ‘real ages’ from all participants with the same year of birth.

2
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Example 1.0.3 (Health monitoring). The idea of health monitoring is that a participant wears
a device, that records medical data about that person. Philips for example offers such a device
and associated service that allows users to reach certain exercise level which, in turn, allows them
to have a healthier life style [web09c]. More generally, the government (or another institute) can
decide to supply a certain part of the population with a device that measures cardiac data (blood
pressure, heartbeat, etc.), and sends these measured values to a central server where statistical
analysis can be executed (for instance, the differences in the heart activity in different age groups
or social classes). Moreover, if it were possible to revoke anonymity (the certificate scheme is
naturally required to offer privacy), then it could for instance also be used to study ways in
which heart attacks can be predicted. The function of the certificate scheme in this case is to let
the observed values be certified, and the function of the multiparty computation is to compute
statistics on the measured data. Again, the schemes need to be combined to allow the complete
system to work correctly.

Example 1.0.4 (Activity monitoring). ‘Stichting Kijkonderzoek’ is a Dutch institute that mea-
sures and analyses the television viewing behavior of the Ducth audience [web09d]. Briefly, the
idea is that a representative set of households have a device attached to their TV which registers
the users’ watching preferences and sends these to a server. The server then does statistical analy-
sis on the data and publishes the results (for example, ‘yesterday ±3.141.000 people watched the
8 p.m. news broadcast’). For privacy reasons, you do not want the server to learn the watching
behavior of the users, but for the statistical analysis you do want the possibility to execute com-
putations, and in particular to link different certified data (with respect to age groups, religion,
social classes, etc.). The use of the two schemes and their connection becomes clear now.

Example 1.0.5 (Social networks). Consider a dating network where members make some of
their private information public (name, date of birth, hobbies, favorite television programs, etc.)5.
Then, a man can search over the network for a woman of his interests (or vice versa). Clearly,
this system is not anonymous, nor is it secure (users can enter wrong data). Now, we are aiming
at a completely secure and anonymous social network where, a priori, no one can be trusted. To
this end, we need a set of servers that can find out a possible match between two users, given
their private encrypted inputs. One can see a match as a session key to a virtual chat room.
The relevance of a certificate scheme becomes clear as the users’ inputs need to be correct and
anonymous. The multiparty computation system is used to match two users securely.

Related work

Put forward by Chaum [Cha83, Cha84] and Damg̊ard [Dam88], the first certificate schemes in the
literature were meant for online payment systems [CFN90, Bra93, Bra95a]. Later, more general
certificate schemes have been constructed, merely due to Brands [Bra95b, Bra99], Lysyanskaya
et al. [LRSW99] and Camenisch and Lysyanskaya [CL01, CL02, CL04]. Recently, Belenkiy et
al. [BCKL08] constructed a non-interactive certificate scheme. These certificate schemes differ in
various aspects (type of certificates, underlying assumption, efficiency, etc.). For reasons argued in
Section 3.4, in this thesis we will use Brands’ discrete log based certificate scheme [Bra99]. Brands
constructed several certificate schemes, based on the discrete log or the RSA assumption, and all
schemes providing the possibility to include attributes in a certificate and to selectively disclose
such attributes. We note that also [CL02, CL04] offer these two possibilities but unlike those,

5We note that this is a known example from literature, for instance studied by Juels and Sudan [JS06]. In their
construction, Alice locks a vault with her secret key. The key contains a set of Alice’s interests. Bob can then
open the vault if he has similar interests (which need not be exactly the same). Their construction is based on
error-correcting codes. In our example the interests are the encrypted values instead of the key, and therefore the
possibility for Bob to unlock the vault if he has similar interests is difficult. In fact some problems pointed out in
[JS06, Sec. 1.1] still apply to our solution. However, our focus is merely on the combination of certificate schemes
with multiparty computation, and as a consequence encryptions of hobbies are certified (for instance, by sporting
clubs), which makes it difficult for Alice (or Bob) to cheat. It is not studied whether the ideas by Juels and Sudan
can be combined with certificate schemes as well.

3



1. Introduction

Brands’ certificates are one-show certificates, meaning that a user owning a certificate can only
show it once (otherwise the different showing executions can be linked and privacy is violated).
To our knowledge, no research has been done to combining certificate and encryption schemes,
which is the main result of this thesis. The reader is referred to Section 2.8 for an extensive and
more fundamental survey of certificate schemes.

In 1982, Yao introduced multiparty computation [Yao82], and initiated a new area within cryp-
tography. Mainly, two flows of research on multiparty computation are known: multiparty com-
putation based on verifiable secret sharing and multiparty computation based on threshold homo-
morphic encryption. Differences between these branches are for instance in the security setting
(verifiable secret sharing based multiparty computation is unconditionally secure, while threshold
homomorphic encryption is in the cryptographic model). This thesis focuses on threshold homo-
morphic encryption based multiparty computation, originally introduced by Franklin and Haber
[FH96] and the independent papers by Jakobsson and Juels [JJ00] and Cramer, Damg̊ard and
Nielsen [CDN01]. These three papers all introduce a scheme for securely computing any circuit,
but differ in a few aspects: while [FH96] only considers passive adversaries, [JJ00, CDN01] con-
sider active adversaries as well. Moreover, the encryption scheme used by Franklin and Haber
requires all participants to help upon decryption. The mix and match scheme by Jakobsson and
Juels relies on mixing truth tables of gates in a boolean circuit, and is applicable to any discrete
logarithm based encryption scheme. The framework of [CDN01] is restricted to an RSA-setting,
but can be used for any arithmetic circuit and moreover has a smaller round complexity than the
approach of [FH96]. Cramer et al. introduced a protocol for secure multiparty multiplication for
any general additively homomorphic encryption scheme (and therewith implying a protocol for
any secure function evaluation). Succeeding [CDN01], publications by Schoenmakers and Tuyls
[ST04, ST06] and by Garay et al. [GSV07] are of particular interest, concerning several protocols
for secure computation (conditional multiplication, bit extraction and comparison). This thesis
extends these works in the sense that new protocols are constructed based on those. The reader
is referred to Section 2.9 for an extensive and more fundamental survey of secure multiparty
computation, including a mathematically oriented study of the named relevant publications.

Our Contributions

This thesis considers the combination of certificate schemes and multiparty computation. Al-
though much research has been done already in both areas, the combination has not been studied
yet. Moreover, our new scheme is of particular interest in many existing practical examples,
especially examples where either the privacy issues are ignored (e.g. in the current solution for
Example 1.0.4) or an important security item is ignored (in almost any solution to Yao’s million-
aires problem in literature it is possible for an active adversary to initially enter a wrong value,
a.o. [Yao82, FH96, Fis01, ST04, LT05, GSV07]). Our focus will be on multiparty computation
of statistics (such as computing the mean and the variance), although the proposed construction
can in principle be applied to any secure function evaluation scheme. This choice is made because
of the practical relevance of multiparty computation of statistics (compare for instance Example
1.0.3 with Yao’s millionaires problem).

Because our construction involves the combination of two existing schemes from literature, our
contributions are twofold. Firstly, in the area of multiparty computation, protocols for statistics
are considered. At first sight such protocols are straightforward, but many statistics involve in-
teger division, which is undefined in rings (and therefore in particular undefined for the ElGamal
and Paillier cryptosystems). Therefore, a smart integer division protocol is constructed, and via
this protocol statistical multiparty analysis is made possible. Furthermore, for the functionalities
of the new certificate scheme, additional gates are needed, including a gate for converting Paillier
encryptions to ElGamal and an extended gate for checking plaintext equalities of several relations
(for instance E(x1)y1

?= E(x2)y2 for secret y1, y2).
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1. Introduction

A certificate scheme by Stefan Brands [Bra99] is extended such that it can is combined with mul-
tiparty computation. Specifically, this is done as follows:
Firstly, a general construction is given, describing the protocols and algorithms required for the
certificate scheme and multiparty computation scheme, as well as the protocols required for joining
these schemes. This construction is high-level and universal in the sense that it applies to any
certificate scheme with the option of selective disclosure of attributes6. Roughly, these components
are (A) a protocol for a user to disclose attributes in encrypted form, (B) a protocol for a set of
multiparty computation servers to certify an encrypted value to a user without the servers learning
it but where the user still learns the decryption and (C) an extension to B where now even the user
does not learn the encrypted value. For the mentioned scheme of Brands, these three protocols are
constructed for the ElGamal cryptosystem, and protocols A and B also for the Paillier cryptosys-
tem. It turns out that the protocols A and B are small extensions to Brands’ scheme, but for C a
completely new scheme is constructed, and to this end the definition of ‘certificate scheme’ is re-
visited. More concretely, we reformulate and formalize Brands’ definition of certificate schemes in
such a way that it can be easily adapted to a definition of ‘encrypted certificate scheme’, scheme C.

The newly constructed encrypted certificate scheme turns out to be more expensive than Brands’
scheme, in terms of communication complexity and certificate size. This is completely intuitive
and no more than logical, but the efficiency loss turns out to be linear in the number of encrypted
attributes only! This means that if the certificate only involves two (or in general: ‘few’) attributes,
the complexity difference is constant as well. Moreover, the schemes can be easily mixed, for
instance by using the encrypted certificate scheme for the first two attributes and a ‘normal’
certificate scheme for the other attributes, in which case the complexity difference with respect
to the basic scheme becomes constant in the number of attributes again. We believe that this
general complexity loss is not dreadful, in fact the main application of this scheme is where a
service provider outputs an encrypted multiparty computation result that needs to be certified. In
many practical examples this result is just one encryption, and thus we only need two encrypted
attributes (a certificate with one encrypted attribute turns out to be impossible as it would leak
something about the encrypted value), so with complexity difference with respect to Brands’
scheme of constant order only.

Outline

First of all, Chapter 2 introduces the mathematical/cryptographical prerequisites for our scheme.
Of special interest are Sections 2.8-2.9, where the related work with respect to certificate schemes
and multiparty computation schemes is discussed. Experienced readers can skip this chapter.
Chapter 3 formalizes the problem statement. This is done in a natural and gradual way, until a
description of the required protocols for the interface between the schemes is obtained. This for-
malization is universal: it is not restricted to one particular certificate scheme, nor does it restrict
the multiparty computation scheme. Its description is done in such a way that separate discussions
on the multiparty computation protocols and the certificate schemes complete the solution to the
main problem of this thesis.

The multiparty computation protocols are discussed in Chapter 4. This chapter mainly includes
an efficient protocol for multiparty modulo reduction in Section 4.3, as well as interesting protocols
for Paillier to ElGamal conversion and extended plaintext equality tests in Sections 4.1 and 4.2,
respectively. Section 4.5 briefly discusses multiparty computation of statistics.

The main point of this thesis, the extension of certificate schemes, is divided into three chapters.
Firstly, Chapter 5 includes a reformulated definition of certificate schemes, as well as a revision of
that definition in order to make it applicable for encrypted certificate schemes. Section 5.2 briefly

6This means that the user can for instance show that age ≥ 18, without revealing any other data in the passport.
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1. Introduction

discusses the certificate scheme of Brands, which is the main building block of our scheme. Chapter
6 considers the extension of Brands’ scheme to multiparty computation with ElGamal encryption.
More concretely, the components A-C are constructed for in case the underlying cryptosystem is
ElGamal. In particular the algorithms and protocols for scheme C are discussed very detailed,
together with an extensive security discussion. In Chapter 7, protocols A and B are constructed
for the Paillier cryptosystem. We also considered scheme C for the Paillier cryptosystem, but did
not find a provably secure scheme. Therefore, a construction of this scheme remains as an open
problem.

Finally, Chapter 8 discusses some remarks on the three certificate schemes, including an extensive
efficiency analysis in which the introduced schemes and protocols are compared mutually and with
respect to Brands’ scheme. This chapter also concludes this thesis, and shows possible directions
for further research.
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2. Preliminaries

In this chapter, basic cryptographic tools and concepts are discussed. The reader is assumed to
be familiar with many of these notions, and therefore this discussion is done concisely. Sections
2.1-2.5 discuss the cryptographic basics, including the relevant commitment schemes and cryp-
tosystems, and the security model on which the thesis is built. Sections 2.6-2.7 discuss some basic
cryptographic primitives, in particular ‘proofs of knowledge’ and ‘signature schemes’. Finally, Sec-
tions 2.8-2.9 contain a concise survey of certificate schemes and multiparty computation. Readers
well acquainted with these subjects can skip directly to Chapter 3.

2.1 Cryptographic tools

A very concise introduction to the basic cryptographic tools, including some group theory, is
discussed following [Sch09, Ch. 1]. In particular, only the definitions of significant importance (for
the thesis or for understanding the used notations) are introduced here. Definitions and notations
for complexity theory are completely taken from literature.
Participants are denoted with calligraphic letters, e.g.: P. If that participant is or might be
malicious, it is denoted with an apostrophe: P ′. It becomes clear from the context in what degree
P is malicious (see Section 2.3.1). Sets of participants are denoted with Latin capital letters, e.g.:
P = {P1, . . . ,Pn}.
A p.p.t. Turing machine, or ‘probabilistic polynomial time’ Turing machine, is a Turing machine
that on input of x halts within p(|x|) time steps, where p is some polynomial function, and which
is equipped with a random tape. Throughout this thesis, all algorithms are considered to be
p.p.t. Turing machines, unless explicitly stated. A protocol is a distributed algorithm, describing
the interactions between two or more entities. By ‘x← protA(sa);B(sb)

(p)’ we denote an execution
of the protocol ‘prot’ for participants A and B with private inputs sa and sb respectively, and with
common input p, which results in output x. This output is meant for one or more of the involved
parties, depending on the context. During a protocol execution, each participant also learns a
view , which is the set of all information that a party has ‘seen’ during the protocol execution.
This view is implicit output of the protocol execution. A scheme is an ensemble of algorithms and
protocols.
Throughout, ‘log’ always denotes the discrete logarithm with respect to some base, e.g. logg h
(introduced in Section 2.1.1). In case of taking logarithms over the reals, we only consider base 2,
and to this end we use the notation ‘lg’.

2.1.1 Group theory

Formally, a group is a structure (G, ∗, 1, x 7→ x−1) consisting of a set G, an associative operation ∗
with unit element 1, and an operation x 7→ x−1 such that for all x ∈ G we have x−1∗x = x∗x−1 = 1.
Normally, we call G itself the group, and assume the group operation understood. In this thesis
only finite cyclic groups, implicitly still called ‘groups’, will be discussed. These are groups G that
can be generated by a single element g ∈ G, we write G = 〈g〉, such that there exists an n ∈ N,
called the order , satisfying gn = 1 but gm 6= 1 for all 1 ≤ m < n. Concretely this means that

G = 〈g〉 = {g0, g1, . . . , gn−1, gn = g0 = 1} = {gi | i ∈ Zn},
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2. Preliminaries

and therefore many computations will simply be done over Zn. The set Z∗
n is defined as the set

of all elements x ∈ Zn with gcd(x, n) = 1. These elements have a multiplicative inverse in Zn,
almost by definition of the gcd. By definition of the Euler totient function φ, we have |Z∗

n| = φ(n).
More definitions and properties regarding groups can be found in [CCS99].

For an element h ∈ 〈g〉, the unique value x ∈ Zn such that h = gx is called the discrete log of h,
or simply logg h. It is believed that finding x given (g, h, n) is hard if n is prime (see Assumption
2.2.1). By ‘hard’ we mean that no p.p.t. algorithm can compute x, but as a direct consequence of
the definition of ‘p.p.t. algorithm’ we require n to be of exponential size. Therefore we introduce
a security parameter k = blg nc. As of now, for prime values we will use p, q. Composite numbers
are commonly denoted by m.

2.1.2 Probability theory

For an n we consider Zn. By ‘x ∈R Zn’ we denote that x is taken uniformly at random from the
set Zn. A basic property is that for x, y ∈R Zn we also have x + y ∈R Zn. Also, if y ∈R Z∗

n,
then xy ∈R Zn. The proofs are trivial probability theory. However, if both x, y ∈R Zn, the value
xy ∈ Zn is not anymore uniformly at random: suppose for example that n = q prime, and consider
x, y ∈R Zq. Then for any α ∈ Zq:

Pr(xy = α) =

{
2q−1

q2 , if α = 0;
q−1
q2 , otherwise.

(2.1)

But one immediately sees that for q large xy is almost randomly distributed over Zq. In order
to formalize this, we need the notion of ‘negligibility ’ which can be found in [Sch09]. Without
going into detail, we pose that the function k 7→ 1/2k is negligible. It now also follows that the
distribution (2.1) is indeed negligibly close to uniformly random: we define f : N → R to be
the maximum difference between the function (2.1) and the uniformly random probability density
function:

f : q 7→ max
α∈Zq

∣∣∣∣Pr(xy = α | x, y ∈R Zq)−
1
q

∣∣∣∣ . (2.2)

One observes that f(q) ≤ q−1
q2 < 1/2k (remember that we have q > 2k for some k), which is indeed

negligible as 1/2k is negligible. These types of blinding (additive and multiplicative) turn out to
be very useful, for instance in blind signature schemes (Section 2.7). They will be used implicitly
throughout the thesis.

In many cases, we just say that a function is negligible, by writing ‘f(k) < ε(k)’ , where k is
the security parameter. A function is called ‘non-negligible’, if it is not negligible. An event A
will happen ‘with negligible probability ’ if Pr(A) < ε(k), and ‘with overwhelming probability ’ if
1− Pr(A) < ε(k).

Other relevant notions are ‘statistical distance’ and ‘indistinguishability’. These will only be
introduced briefly. Indistinguishability was introduced by Goldwasser and Micali [GM84], this
notation is taken from [Sch09].

Definition 2.1.1 (Statistical distance). Let X, Y be random variables two random variables.
Then the statistical distance ∆(X, Y ) is defined to be the following quantity:

∆(X, Y ) =
1
2

∑
v∈V

∣∣∣Pr(X = v)− Pr(Y = v)
∣∣∣,

where V denotes all possible outcomes of X and Y .

Definition 2.1.2 (Indistinguishability). Let X = {Xi}i∈L and Y = {Yi}i∈L be two probability
ensembles. These ensembles X and Y satisfy the following level of indistinguishability :
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2.2. Assumptions

• perfectly indistinguishable, if ∆(Xi, Yi) = 0 for all i ∈ L;

• statistically indistinguishable, if ∆(Xi, Yi) is negligible in |i| for all i ∈ L;

• computationally indistinguishable, if for all p.p.t. distinguishers D we have that advD(Xi, Yi)
is negligible in |i| (for all i ∈ L), where

advD(Xi, Yi) =
∣∣∣Pr(1← D(Xi))− Pr(1← D(Yi))

∣∣∣.
In other words: X and Y are perfectly indistinguishable if Xi and Yi are identically distributed
for all i ∈ L, statistically indistinguishable if the distribution of Xi is negligibly close to Yi, and
computationally indistinguishable if no polynomial time algorithm can see a significant difference.

Clearly, perfectly indistinguishable implies statistically/computationally indistinguishably. Also,
if X, Y are statistically indistinguishable, they are computationally indistinguishable [Sch09]. In
many cases it suffices to state that X and Y are ‘indistinguishable’, regardless of which kind. This

will be denoted by ‘X
d
≈ Y ’.

2.1.3 Hash functions

For the construction of our certificate scheme, we use a cryptographic hash function.

Definition 2.1.3. A function H : {0, 1}∗ → {0, 1}n, mapping bit strings of arbitrary length to a
bit string of length n, for some predefined n ∈ N, is called a cryptographic hash function if it can
be evaluated efficiently and satisfies the following properties:

• pre-image resistance: given a y ∈ {0, 1}n it is hard to find a bit string x such that H(x) = y;

• second pre-image resistance: given a tuple (x,H(x)), it is hard to find a bit string x′ 6= x
such that H(x′) = H(x);

• collision resistance: it is hard to find two different bit strings x, x′ such that H(x′) = H(x).

Without going into detail, we assume we have a cryptographic hash function at our disposal. We
assume that this function is modeled as a random oracle over Zq [BR93].

2.2 Assumptions

Just like many cryptographic systems around, the protocols in this thesis are based on some
assumptions. In the previous section, the ‘random oracle model’ (ROM) is introduced, which
guarantees nice properties of the cryptographic hash function H. Normally, this assumption does
not suffice to assure security and most cryptographic protocols are only secure under one or
more computationally hard problems. The most relevant assumptions for this thesis are discussed
here. Less important assumptions, that are only relevant in a certain part of the thesis will
be introduced where needed. For the discrete log family of cryptographic assumptions, we will
consider the discrete log (DL), the Diffie-Hellman (DH), the decisional DH (DDH) and the DL
representation (DLREP) assumptions, and for the prime factoring family we will consider the
Rivest-Shamir-Adleman (RSA), the strong RSA (SRSA) and decisional composite residuosity
(DCR) assumptions. The reader is referred to [DH76, Bon98, Bra99, BDZ03, RSA78, Pai99, DJ01]
for more extended discussions. In Section 2.2.3, these assumptions are compared.
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2.2.1 Discrete log family

For the discrete log family, we consider a group G = 〈g〉 of prime order q, with length security
parameter k. Therefore, all probabilities in the coming assumptions are taken over all constructions
of (q, g) such that q > 2k. The discrete log assumptions became of interest after the paper by
Diffie and Hellman [DH76].

Assumption 2.2.1 (The discrete log assumption (DL)). For any p.p.t. algorithm A, there exists
a negligible ε(k) such that

Pr(x← A(q, g, gx) | x ∈R Zq) < ε(k).

In other words: given g and gx ∈R G, it is hard to compute x.

Related to the discrete log assumption are the DH and the DDH assumptions. These extensions
are studied in [Bon98], variations of these two assumptions are discussed in [BDZ03]. It is clear
that DL⇐ DH⇐ DDH.

Assumption 2.2.2 (The Diffie-Hellman assumption (DH)). For any p.p.t. algorithm A, there
exists a negligible ε(k) such that

Pr(gxy ← A(q, g, gx, gy) | x, y ∈R Zq) < ε(k).

In other words: given gx, gy ∈R G, it is hard to compute gxy.

Assumption 2.2.3 (The decisional DH assumption (DDH)). For any p.p.t. algorithm D, there
exists a negligible ε(k) such that∣∣∣Pr(1← D(q, g, gx, gy, gz) | x, y, z ∈R Zq)− Pr(1← D(q, g, gx, gy, gxy) | x, y ∈R Zq)

∣∣∣ < ε(k).

In other words: given gx, gy ∈R G, it is hard to distinguish gxy from a random element from G.

Finally, for the certificate scheme in this thesis we need the DLREP assumption, by Brands [Bra99,
Sec. 2.2.2]. It is proven by Brands that DLREP ⇐⇒ DL [Bra99, Prop. 2.3.3].

Assumption 2.2.4 (The discrete log representation assumption (DLREP)). Let l ∈ N, and let
g1, . . . , gl ∈R G. Then, for any p.p.t. algorithm A, there exists a negligible ε(k) such that

Pr(0 6= (x1, . . . , xl)← A(q, g, g1, . . . , gl) such that gx1
1 · · · g

xl

l = 1) < ε(k).

In other words: given a natural number l and a list g1, . . . , gl ∈R G, it is hard to find a non-trivial
list of values x1, . . . , xl ∈ Zq such that gx1

1 · · · g
xl

l = 1.

2.2.2 Prime factoring family

In the setting for the prime factoring family, we consider a composite number m = pq of length k.
It is generally assumed that m is hard to factor. In order to withstand Pollard’s p− 1 algorithm
[Pol74], we need p and q to be such that p − 1 and q − 1 are non-smooth. For simplicity we
just consider p and q to be safe primes, i.e. p = 2p′ + 1 and q = 2q′ + 1 for some primes p′, q′.
This family of assumptions became of big interest after the paper by Rivest, Shamir and Adleman
[RSA78], who used it for their cryptosystem. All probabilities are taken over all constructions of
m = pq, with p, q safe primes of length k/2.

Assumption 2.2.5 (The Rivest-Shamir-Adleman assumption (RSA)). For any p.p.t. algorithm
A, there exists a negligible ε(k) such that

Pr(x← A(m, e, xe) | x ∈R Zm, e ∈R Z∗
φ(m)) < ε(k).

In other words: given xe ∈R Zm for some e ∈R Z∗
φ(m), it is hard to compute x.
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Note that if d := e−1 mod φ(m) is known, the RSA assumption does not hold anymore as
(xe)d ≡ x1+αφ(m) ≡ x mod m is polynomial time computable. However, by the factoring as-
sumption, finding e−1 mod φ(m) is hard. It has actually been proven recently by Aggarwal and
Maurer that in the generic group model the RSA and the factoring assumptions are equivalent
[AM09].
An extension is the strong RSA assumption, first introduced by Barić and Pfitzmann and indepen-
dently by Fujisaki and Okamoto [BP97, FO97], and widely used since, i.e. in certificate schemes
[CL02] and integer commitment schemes [DF02]. The only difference with the RSA assumption
is that e can be chosen freely now.

Assumption 2.2.6 (The strong RSA assumption (SRSA)). For any p.p.t. algorithm A, there
exists a negligible ε(k) such that

Pr((x, e)← A(m, y) | y ∈R Zm, e > 1, y = xe) < ε(k).

In other words: given a y ∈R Zm, it is hard to find non-trivial x, e such that y = xe.

Another assumption related to RSA is the decisional composite residuosity assumption, which is
the basis for the security of the Paillier cryptosystem [Pai99].

Assumption 2.2.7 (The decisional composite residuosity assumption (DCR)). For any p.p.t. al-
gorithm D, there exists a negligible ε(k) such that∣∣∣Pr(1← D(m,xm) | x ∈R Zm2)− Pr(1← D(m, y) | y ∈R Zm2)

∣∣∣ < ε(k).

In other words: given a y ∈R Zm2 , it is hard to verify whether y = xm mod m2 for some x.

Clearly RSA⇐ SRSA. It has been proven by Stern [Ste99] that RSA⇐ DCR in case e = m.

2.2.3 Comparison

Many papers have been written concerning the lengths of the security parameter. The document
[ECR08, Sec. 6.2] includes a survey of existing guidelines of these recommendations. Without
going into detail, the recommended security parameter is:

• for DL, a group with prime order q with bit length varying between 141 and 160, for groups
constructed as subgroups of appropriate finite fields or for elliptic curve constructions [Bra99,
Sec. 2.2.2];

• for RSA, a modulus m = pq with bit length varying between 1024 and 1536.

So, at first sight, DL would be more suitable, but it also has disadvantages, for instance RSA
turns out false if the algorithm knows some additional information (the trapdoor), while no such
trapdoor is believed to exist for discrete log systems.
The NIST (National Institute of Standards and Technology) suggests however to change to 224
bits and 2048 bits, as computers become more powerful. As of now, we will just assume the setup
of the system parameters to be such that the protocols are sufficiently secure.

2.3 Multiparty computation security model

Multiparty computation involves a number of participants who jointly securely compute a function
f . Informally, this computation should be ‘correct’ and ‘secure’. Yao and Goldreich et al. [Yao82,
Yao86, GMW87] were the first to study the security of multiparty protocols, and many followed
[GL90, Bea91, MR92, Can95, Can00]. We consider the framework of Cramer, Damg̊ard and
Nielsen [CDN01], which is based on the security model of Canetti [Can00]. Except when explicitly
stated, all security proofs of multiparty computation protocols in this thesis are based on this
model. In Section 2.3.2, an informal description of this framework is given. Firstly, the possible
adversarial settings are discussed in Section 2.3.1.
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2.3.1 Adversaries

An adversary is a party that corrupts some subset of participants. The adversary is commonly de-
noted by A, and the corrupted or malicious participants are denoted with an apostrophe: P ′. An
adversary is either active or passive, and either static or adaptive. In case of passive corruption,
the malicious participants follow the protocol, but the adversary obtains all their private informa-
tion. In case of active corruption, the adversary takes full control over the cheating participants
and may let them deviate from the protocol. In case of a static adversary, the subset of malicious
participants lead by the adversary is fixed from the start. In case of an adaptive adversary, the
corrupted subset is subject to change.
Apart from that, we can distinguish between an information-theoretic model and a cryptographic
model. In an information-theoretic model, it is assumed that the players can communicate over
pairwise secure channels, so the adversary only learns about communication involving at least one
corrupted party. In the cryptographic model, all participants are assumed to have access to the
data exchanged between the players. The important difference is that in the information-theoretic
model the adversary may have unlimited computer power. Other variants in adversarial behavior
are also possible [Can00].

Preferably, we want our multiparty computation scheme to be perfectly secure against active and
dynamic adversaries, since this is the strongest variant. Many protocols can however only be
proven secure against active and static adversaries. For instance, threshold decryption (defined
in Section 2.5) is a building block in many multiparty protocols that is clearly not secure against
adaptive adversaries. We will only consider active and static adversaries in the cryptographic
model.

2.3.2 Multiparty computation model

Informally, in the security framework of [CDN01] we have n parties P = {P1, . . . ,Pn}, of which
P ′ ⊂ P are corrupted by the adversary A, who want to execute a protocol for a function f . The
protocol is said to securely evaluate that function f if the real execution of the protocol can be
simulated in such a way that the two executions (real and simulated) are indistinguishable. This
simulator may use the malicious part P ′ as a subroutine. It practically means that anything
an adversary can learn from the real execution of the protocol, he could have simulated himself
as well. This model is commonly called the ‘real/ideal-model’, as the simulated executions can
be considered to be ideal executions where the adversary cannot learn anything from the honest
parties. This security model is hybrid in the sense that it suffices to prove separate sub-protocols
secure. For a secure function evaluation, these sub-protocols can be executed sequentially (but not
concurrently), and then the security of the function evaluation then holds via the security of the
separate protocols. Thus, except explicitly stated, multiparty computation protocols are secure
if they can be simulated given an in- and output. For a more formal description, the reader is
referred to [Can00] and [CDN01, full version].

2.4 Commitment schemes

The idea of a commitment scheme is to allow someone to ‘testify’ to a value x, such that he cannot
change his mind afterwards, but without leaking x to anyone. This idea was introduced by Blum
[Blu81] and formalized by Brassard et al. [BCC88]. A commitment scheme generally exists of a
commit phase, where a prover takes a uniformly random value r, computes c← commit(x, r) and
publishes the result, and a reveal phase, where the prover publishes x and r in order to let the
verifier check c

?= commit(x, r). The scheme should be hiding, meaning that for any x, x′ and
uniform values r, r′ the outcomes commit(x, r) and commit(x′, r′) are indistinguishable. It should
also be binding, in the sense that it is hard for a prover to output non-trivial values x, x′, r, r′

such that commit(x, r) = commit(x′, r′). Many commitment schemes are known nowadays, but
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we only make use of the Pedersen commitment scheme [Ped92] and integer commitments [DF02].

Definition 2.4.1 (Pedersen commitment scheme). Let G = 〈g〉 be a group of prime order q and
let h ∈ G\{1}, for which logg h is unknown. The Pedersen commitment scheme is defined by the
function C : Zq × Zq → G as

C(x, r) = gxhr,

where r is meant to be taken uniformly at random.

Without going into detail, the Pedersen commitment function is computationally binding (under
the DL assumption) and perfectly hiding. In other words, once a user committed to a value he
cannot change it, but still C(x, r) does not leak any information about x. If we work over a group
of composite order m, a similar commitment scheme can be found in [FO97].
The Pedersen commitment scheme can be used to show that for committed values a, b, c the
equation ab = c holds. However, as G is a group of order q, this equation only holds modulo q. To
get around this problem, Damg̊ard and Fujisaki introduced ‘integer commitments’ [DF02], that
generalizes the previous work of Fujisaki and Okamoto [FO97]. Briefly, their integer commitment
scheme is the following, taken from [BCL06].

Definition 2.4.2 (Integer commitment scheme). Let m = pq be a composite number of length
security parameter k, with p = 2p′ + 1 and q = 2q′ + 1 safe primes. Let h1 ∈ Z∗

m be an element of
order p′q′, and h2 ∈R 〈h1〉 with logh1

h2 unknown. The integer commitment scheme is defined by
the function IC : {0, 1}`x × {0, . . . , bm/4c − 1} → Zm as

IC(x, r) = hx
1hr

2,

where r is meant to be taken uniformly at random. Parameter `x is supposed to satisfy `x+`s = k/4
for some security parameter `s.

The scheme is statistically hiding and computationally binding (under the SRSA assumption)
[DF02]. It is a useful tool to prove properties of values over different groups.

2.5 Cryptosystems

The idea of a cryptosystem is clear: instead of sending a message in plaintext, it is encrypted so
that an outsider cannot learn the message. A cryptosystem consists of three algorithms, a key
generation algorithm together with an encryption and decryption algorithm. The main security
issue is that a ciphertext does not leak any information about the encrypted plaintext. To formalize
this, the notion of ‘semantic security’ is used, due to [GM84]. Many encryption schemes are known,
e.g. [GM84, ElG85, CS98, Pai99, BGN06, DGK07]. These cryptosystems differ in several aspects,
e.g. group settings, required computational assumptions. In this thesis, only the ElGamal and
Paillier cryptosystems are considered, both of which are ‘homomorphic’ and ‘threshold’. These
cryptosystems are introduced in Sections 2.5.1 and 2.5.2 respectively. In Section 2.5.3, the security
of the schemes is considered. Finally, Section 2.5.4 introduces some convenient notation. Firstly,
the notions ‘homomorphic cryptosystem’ and ‘threshold decryption’ are discussed.

Homomorphic cryptosystem

Both the ElGamal and Paillier cryptosystem consider three groups: the message group (M, ∗), the
randomization group (R, ◦) and the encryption group (C, ?). For both schemes, we have encryption
and decryption functions

E : M×R→ C, D : C→M.

The cryptosystem is called ‘homomorphic’ if both functions are homomorphisms. That is, for all
c, d ∈ C we have D(c ? d) = D(c) ∗ D(d), and similarly for all (x, r), (y, s) ∈ M × R we have
E(x, r)?E(y, s) = E(x∗ y, r ◦ s). Preferably, we want the functions to be additively homomorphic
in the message parameter.

13
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Threshold cryptosystem

A cryptosystem is called a (t, n)-threshold cryptosystem if the decryption key is shared among n
participants P = {P1, . . . ,Pn}, such that any t participants can jointly decrypt, but any set of less
than t participants cannot learn anything about the encrypted value. The notion of (t, n)-threshold
is derived from the analogue from secret sharing, due to Shamir and Blakley [Sha79, Bla79]. The
first to use this idea in the context of cryptosystems were Desmedt and Frankel [DF90]. Threshold
variants for the ElGamal and Paillier cryptosystems are due to Pedersen [Ped91] and Damg̊ard
and Jurik [DJ01], respectively.

2.5.1 ElGamal cryptosystem

The original ElGamal cryptosystem was introduced by ElGamal [ElG85]. The current notation
is taken from [Sch09]. On input of a security parameter k, a key generation algorithm outputs
a group G = 〈g〉 of prime order q > 2k, together with a secret key λ ∈R Zq and corresponding
public key f = gλ. The encryption and decryption functions are defined as

EG : G× Zq → G2, DG : G2 → G,

EG : (x, r) 7→ (gr, xfr), DG : (a, b) 7→ b/aλ.

Clearly, the cryptosystem is correct: for any x ∈ G, r ∈ Zq we have

DG(EG(x, r)) = DG(gr, xfr) = xfr/(gr)λ = x(f/gλ)r = x.

The cryptosystem is indeed homomorphic in the message parameter, yet multiplicatively. By
applying the isomorphism x 7→ gx, mapping (Zq,+) to (G, ·), the encryption function changes to
EG : Zq × Zq → G2 defined as

EG : (x, r) 7→ (gr, gxfr).

Consequently, the decryption function needs to be changed as well by taking DG(a, b) = logg(b/aλ),
but this only works if x is from a restricted domain, by the DL Assumption 2.2.1.

The ElGamal cryptosystem can be easily turned into an efficient threshold variant. A (t, n)-
threshold scheme for the ElGamal cryptosystem is due to [Ped91], and can be found in [Sch09,
Ch. 6]. Now, each participant Pi has a polynomial decryption share λi (i = 1, . . . , n). To avoid the
use of a dealer for the key generation, an efficient method for ‘distributed key generation’ (DKG)
[GJKR99] can be used.

2.5.2 Paillier cryptosystem

The Paillier cryptosystem was introduced by Paillier [Pai99], and generalized by Damg̊ard and
Jurik [DJ01]. We use the generalization. On input of a security parameter k, a key generation
algorithm outputs a composite number m = pq of length k, with p = 2p′ + 1 and q = 2q′ + 1
safe primes, and a value s ∈ N. We consider the group Z∗

ms+1 and we have as message space
Zms . The public key is (m, s), with secret key a value µ satisfying µ ≡ 1 mod ms and µ ≡
0 mod lcm(p− 1, q − 1). The encryption and decryption functions are defined as

EP : Zms × Z∗
ms+1 → Z∗

ms+1 , DP : Z∗
ms+1 → Zms ,

EP : (x, r) 7→ (m + 1)xrms

mod ms+1, DP : c 7→ L(cµ mod ms+1),

Where L : (1 + m)xµ mod ms+1 7→ x mod ms is a well-defined function [DJ01, Sec. 3]. Clearly,
the cryptosystem is correct: for any x ∈ Zms , r ∈ Z∗

ms+1 we have

DP (EP (x, r)) = L((m + 1)xµrµms

mod ms+1) = L((m + 1)xµ mod ms+1) = x mod ms,

where the second equality holds as rµms ≡ 1 mod ms+1 due to the properties of Carmichael’s func-
tion: Carmichael’s function is λ(m) = lcm(p − 1, q − 1), and for each a such that gcd(a,m) = 1
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we have aλ(m) ≡ 1 mod m. But λ(ms+1) = msλ(m) and as λ(m)|µ, this equation is implied.

The scheme is indeed homomorphic, in the desired fashion. To this end, observe that for any
x1, x2 ∈ Zms and any r1, r2 ∈R Z∗

ms+1 we have:

EP (x1, r1)EP (x2, r2) = (m + 1)x1rms

1 (m + 1)x2rms

2 = (m + 1)x1+x2(r1r2)ms

= EP (x1 + x2, r1r2).

Damg̊ard and Jurik showed that their extension to the Paillier cryptosystem can be easily ex-
tended to an efficient (t, n)-threshold variant [DJ01, Sec. 4.1]. Now, the decryption key is taken
such that µ ≡ 1 mod ms and µ ≡ 0 mod p′q′, and each participant Pi has a polynomial share
µi (i = 1, . . . , n). However, distributed key generation protocols for Paillier are more compli-
cated compared to for the discrete log case. Boneh and Franklin [BF97] were the first to in-
vestigate distributed key generation for shares of composite numbers pq, initiating a series of
other works [FMY98, PS98, Gil99], yet none of them considered the case of p and q being safe
primes. Algesheimer et al. [ACS02] constructed a key generation algorithm with p, q safe. Still,
the generation of such a key is far less efficient than for the ElGamal cryptosystem.

2.5.3 Security

Standardly, encryption schemes are proven secure using the definition of semantic security, intro-
duced by Goldwasser and Micali [GM84]. Many equivalent notions of semantic security are known
[MRS87, TY98, DJ01, Sho04]. We follow [Sho04], but this choice is arbitrary.

Definition 2.5.1 (Semantic security). Let (pk, sk) be a public/secret key pair generated on input
of security parameter k. Let A be a p.p.t. algorithm attacking the cryptosystem (E,D). The
scheme is called semantically secure if there exists a negligible ε(k) such that for any x0, x1 ∈ Zq

Pr
(
b← A(pk, x0, x1, c)

∣∣∣ b ∈R {0, 1}; c← E(xb)
)

<
1
2

+ ε(k).

The ElGamal cryptosystem is proven semantically secure under the DDH Assumption 2.2.3 [TY98],
and Paillier under the DCR Assumption 2.2.7 [DJ01, Thm. 1]. Trivially (as they are homomor-
phic), both schemes are only secure against chosen plaintext attacks, not against chosen ciphertext
attacks where the adversary can do decryption oracle queries as well.

Using the model of Section 2.3, it turns out that for both ElGamal and Paillier the threshold
decryption protocol can be simulated on input E(x) and x, where the simulator may use the
malicious part of P , being P ′, as a subroutine. For ElGamal, the simulated and real distributions
turn out to be perfectly indistinguishable [ST04]. For Paillier, the distributions are statistically
indistinguishable [DJ01, Thm. 2]. Both threshold cryptosystems are secure against static active
adversaries in the cryptographic model (see Section 2.3.1).

2.5.4 Notation

Instead of EG(x, r) we will write Jx, rKG, and similarly for Paillier. The subscript is left out if it
is irrelevant. In many cases also the randomization r is not important, and left out as well. By
‘c = c′’ we denote that the two encryptions are equal in C. If c = Jx, rK and c′ = Jx′, r′K, this
just means that (x, r) = (x′, r′). More interesting is the meaning of ‘c l c′’, saying that the both
values encrypt the same value: c l c′ ⇐⇒ D(c) = D(c′). In particular, c = c′ ⇒ c l c′, but
the converse is not true. The notation will also be used if c and c′ are from different encryption
schemes, in which case we will say JxKG l Jx′KP ⇐⇒ (x mod q) ≡ (x′ mod ms) mod min{q, ms}.
Under the restriction that x′, q < ms, this means that x ≡ x′ mod q, a property that will be
exploited in Sections 4.1 and 4.2.
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2.6 Proofs of knowledge

Proofs of knowledge have been studied widely in the literature for years. They originate from
Goldwasser et al. [GMR85], and studied extensively, a.o. in [FFS87, FS90, BG92, CDS94, Cra97].
Informally, a zero-knowledge proof of knowledge is a protocol for a prover to convince a verifier
that he knows something, without leaking any information other than the value of the assertion
that the prover is trying to prove (hence ‘zero-knowledge’). More specifically, we have a relation
R = {(x;w)} and for an x, common input for the prover and verifier, the prover proves in zero-
knowledge that he knows a value w (the ‘witness’) such that (x;w) ∈ R. System parameters are
normally not included in x. In this thesis, unless noted explicitly, we will only use the stronger
but more practical definition of ‘Σ-protocols’, due to Cramer [Cra97]. A convenient definition can
be found in [Sch09, Ch. 5] as well.

Definition 2.6.1 (Σ-protocol). A Σ-protocol for a relation R = {(x;w)} is a protocol between
two parties (P,V), also called the ‘prover’ and ‘verifier’, that is a three-move proof of knowledge
with conversations of the form (a, c, r) such that c chosen uniformly at random and upon receiving
r, the verifier either accepts or rejects, and that satisfies the following properties:

• (Completeness.) For any (x;w) ∈ R and (P,V) following the protocol, the verifier accepts;

• (Special soundness.) Given a common input x and two successful conversations (a, c, r) and
(a, c′, r′) with c 6= c′, one can efficiently compute a witness w such that (x;w) ∈ R. In other
words: P cannot prepare for two different challenge values, unless he knows the witness;

• (Honest-verifier zero-knowledge.) There exists a p.p.t. simulator that given any common
input x produces conversations of the protocol execution that are indistinguishable from real
conversations between honest P and V, where P uses any witness w such that (x;w) ∈ R. If,
additionally, the simulator takes c uniformly at random and simulates a conversation with
that challenge c, it is called special honest-verifier zero-knowledge.

Σ-protocols provide many possibilities. A simple example is Schnorr’s identification protocol given
in Figure 2.1 [Sch91]. In this case, we have G = 〈g〉 of order q and a value h ∈ 〈g〉, and the prover
proves knowledge of x such that h = gx. More formally, Figure 2.1 is a Σ-protocol for the relation
{(h;x) | h = gx}. Using the Fiat-Shamir heuristic [FS87], the Schnorr protocol can be turned into
a non-interactive Σ-protocol. Here, the prover takes c ← H(a) for some suitable hash function.
This will become interesting in the following section, where signature schemes are discussed.

Prover Verifier

(knows: h;x) (knows: h)
u ∈R Zq, a← gu

a−−−−−−−−−−−−−→
c ∈R Zqc←−−−−−−−−−−−−−

r ← u + cx mod q r−−−−−−−−−−−−−→
gr ?= ahc

Figure 2.1: Schnorr’s identification protocol [Sch91].

2.6.1 Proof of knowledge with integer commitments

As already mentioned in Section 2.4, integer commitments are a powerful way to prove something
over different groups. This will be used in the thesis, for instance in Sections 4.1 and 7.1. As an
example, suppose we have two different groups G1 = 〈g1〉 and G2 = 〈g2〉 of prime orders q1 and
q2, respectively. Prover P knows an x and published y1

G1← gx
1 and y2

G2← gx
2 and wants to prove
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that both commit to the same value (over the integers). Say −2`x < x < 2`x for some parameter
`x � k, where k is the security parameter which is the bit length of m (see Definition 2.4.2). The
idea is that P uses an integer commitment to commit to x by taking an r̃ ∈R {0, . . . , bm/4c − 1}
and then executes a Σ-protocol for the relation

{(y1, y2, y;x, r̃) | y1
G1= gx

1 ∧ y2
G2= gx

2 ∧ y
Z∗m= hx

1hr̃
2 ∧ (−2`x+`c+`s < x < 2`x+`c+`s)},

where `c is the challenge length and `s a security parameter and we require that 2`x+`c+`s+1 <
min{q1, q2}. We require −2`x < x < 2`x for the protocol to succeed. For making the scheme
practical for proving, the construction of y is included in the protocol. The protocol can be found
in Figure 2.2, taken from [BCL06], and is a Σ-protocol for relation

{(y1, y2;x) | y1
G1= gx

1 ∧ y2
G2= gx

2 ∧ (−2`x+`c+`s < x < 2`x+`c+`s)}. (2.3)

Prover Verifier

(knows: y1, y2;x) (knows: y1, y2)
r̃ ∈R {0, . . . , bm/4c − 1}, y ← hx

1hr̃
2

u ∈R {0, 1}`x+`c+`s

v ∈R {0, 1}k/4+`c+`s

a1
G1← gu

1 , a2
G2← gu

2

ay
Z∗m← hu

1hv
2 y,a1,a2,ay−−−−−−−−−−−−−→

c ∈R {0, 1}`c
c←−−−−−−−−−−−−−

r ← u + cx, s← v + cr̃ r,s−−−−−−−−−−−−−→
gr
1

?= a1y
c
1, gr

2
?= a2y

c
2

hr
1h

s
2

?= ayyc

r
?
∈ {0, 1}`x+`c+`s

Figure 2.2: A Σ-protocol using integer commitments [BCL06].

As an example, we prove correctness of this protocol completely. This proof will be used as a
reference in future proofs.

Proposition 2.6.2. The protocol in Figure 2.2 is a Σ-protocol for (2.3).

Proof. (Completeness). For (y1, y2;x) in relation (2.3) and honest (P,V), we prove that the verifier
always accepts. For ‘gr

2
?= a2y

c
2’, the proof is similar to the first:

gr
1 = gu+cx

1 = gu
1 (gx

1 )c = a1y
c
1,

hr
1h

s
2 = hu+cx

1 hv+cr̃
2 = hu

1hv
2(h

x
1hr̃

2)
c = ayyc.

Remains to prove that r ∈ {0, 1}`x+`c+`s . For convenience, we denote K := 2`x+`c . Note that
−K < cx < K and 0 ≤ u < K2`s . So r ∈ (−K, K2`s +K) =: R, and this is negligibly close (in `s)
to [0,K2`s) =: S: denote X = {x | x ∈R R} and Y = {y | y ∈R S}, then the statistical distance
∆(X, Y ) is (Definition 2.1.1):

∆(X, Y ) =
1
2

∑
v∈R∪S

∣∣∣Pr(X = v)− Pr(Y = v)
∣∣∣ = 1

2

∑
v∈S

∣∣∣∣ 1
|R|
− 1
|S|

∣∣∣∣+ 1
2

∑
v∈R\S

∣∣∣∣ 1
|R|
− 0
∣∣∣∣

=
2K

2K + |S|
=

1
1 + 2`s−1

< 2−`s+1.
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(Special soundness). Suppose we have two successful conversations (y, a1, a2, ay; c; r, s) and (y, a1, a2,
ay; c′; r′, s′) with c 6= c′. In particular, this means that

hr
1h

s
2 = ayyc, hr′

1 hs′

2 = ayyc′ ,

which upon combination result in hr−r′

1 hs−s′

2 = yc−c′ . Following [FO97], c− c′ must divide r − r′

and s− s′ over Z, since otherwise we find a non-trivial factor of m. Thus we find h
r−r′
c−c′
1 h

s−s′
c−c′
2

Z∗m= y,
which gives us desired witnesses x, r̃. The value for x satisfies y1

G1= gx
1 and y2

G2= gx
2 as well.

Remains to show that witness x = r−r′

c−c′ is in (−K2`s ,K2`s). But r, r′ ∈ [0,K2`s), so r − r′ ∈
(−K2`s ,K2`s), and as the factor |c− c′| ≥ 1 makes no difference, we are done.
(Honest-verifier zero-knowledge). The distribution of the real and simulated conversations are,
respectively:{

(y, a1, a2, ay; c; r, s)
∣∣∣ r̃ ∈R {0, . . . , bm/4c − 1}, y ← hx

1hr̃
2, u ∈R {0, 1}`x+`c+`s , v ∈R {0, 1}k/4+`c+`s ,

c ∈R {0, 1}`c ; a1
G1← gu

1 , a2
G2← gu

2 , ay
Z∗m← hu

1hv
2; r ← u + cx, s← v + cr̃

}
,{

(y, a1, a2, ay; c; r, s)
∣∣∣ c ∈R {0, 1}`c , y ∈R Z∗

m, r ∈R {0, 1}`x+`c+`s , s ∈R {0, 1}k/4+`c+`s ;

a1
G1← gr

1y
−c
1 , a2

G2← gr
2y

−c
2 , ay

Z∗m← hr
1h

s
2y

−c
}

.

But clearly (y, a1, a2, ay; c) are distributed perfectly indistinguishably. Only difference is in r, s.
But in the real conversation we have r ∈R (−K, K2`s + K) and in the simulated we have r ∈R

[0,K2`s), and these two distributions are statistically indistinguishable. Similar for s. As in both
distributions the c is chosen freely and uniformly at random, the protocol is special honest-verifier
zero-knowledge.

2.6.2 Interval proof of knowledge

For the multiparty computation protocol in Section 4.3, a so-called ‘interval proof of knowledge’ is
utilized. In this type of schemes, introduced by [BCDG87] and elaborated on by [Bou00], a prover
proves that a committed value is in an interval [a, b). We do not introduce the interval proof of
knowledge here, we only mention its existence. This protocol operates in constant rounds and has
broadcast complexity O(k).

2.7 Signature schemes

The idea of digital signature schemes is that a signer can autograph a message, so that it can be
verified by anyone else. Similarly to ordinary ‘pencil-and-paper’ signatures, the signer should be
the only one capable of signing with his signature. This idea originates from Diffie and Hellman
[DH76], and the first implementation is due to Rivest et al. [RSA78]. Informally, a signature
scheme for a signer and a verifier consists of a key generation algorithm, a signing protocol that
on input of a message m outputs a signature σ on it, and a verification algorithm. The signing
protocol is in principle interactive, but can as well be non-interactive. The scheme should be se-
cure, meaning that it is hard to ‘forge’ certificates in the sense that someone illegally can obtain a
signature. Following Goldwasser et al. [GMR88], the strongest notion of security is that a scheme
is secure against ‘existential forgery under chosen message attacks’, meaning that it is hard to
forge at least one signature, even under presence of a signing oracle. Other adversary models are
considered in [GMR88] as well. As of now, following [PS00] we will use the notion of ‘one-more
forgery’, meaning that the adversary queries the oracle on K ≥ 0 messages and outputs K + 1
signatures. An interesting feature is that using the Fiat-Shamir heuristic, any Σ-protocol can be
easily turned into a non-interactive signature issuing protocol, where c← H(a) should be replaced
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by c← H(a,m) for message m [FS87].

Additionally, in a blind signature scheme signing executions and issued signatures cannot be
linked. Therefore, the property of ‘blindness’ is commonly called ‘unlinkability’ as well. Its idea is
by Chaum [Cha83, Cha84], and is a basic ingredient in e-cash and certificate schemes. Concretely,
it means that if a signer issues two signatures (m,σ)0, (m,σ)1, and receives for b ∈R {0, 1} the sig-
natures (m,σ)b, (m,σ)1−b (in this order), he cannot guess b correctly with probability significantly
larger than 1

2 . Clearly, blind signature schemes cannot be non-interactive. Formal definitions of
(blind) digital signature schemes can be found in [GMR88, JLO97, Bra99, PS00, Lys02, CKW04].

Also a blind signature scheme can be easily obtained from a Σ-protocol [Sch09, Ch. 8]. Figure
2.3 shows the blind Schnorr signature scheme, deduced from Schnorr’s identification protocol in
Figure 2.1. The key generation algorithm outputs public key (q, g, h), and corresponding secret
key x such that h = gx to the signer. The signature issuing protocol is given in Figure 2.3, which
results in a signature (m, c′, r′) on m such that c′ = H(m, gr′h−c′), by which the verification
algorithm is immediately specified. Note that the signer never learns m.

Signer Verifier

(knows: h;x) (knows: h)
u ∈R Zq

a← gu
a−−−−−−−−−−−−−→

α, β ∈R Zq

c← H(m,agαhβ) + β mod qc←−−−−−−−−−−−−−
r ← u + cx mod q r−−−−−−−−−−−−−→

gr ?= ahc

r′ ← r + α mod q

c′ ← c− β mod q

Figure 2.3: Blind Schnorr signature protocol [Sch09].

Another blind signature scheme being of great interest for this thesis is by Chaum and Ped-
ersen [CP93]. In fact, it is an entanglement of two blind Schnorr signature schemes and it
uses the same key generation. A signature on a message m is a tuple (m, z, c′, r′) such that
c′ = H(m, z, gr′h−c′ ,mr′z−c′). The protocol is given in Figure 2.4.

2.7.1 Security of the blind signature schemes in Figures 2.3 and 2.4

The protocols in Figure 2.3 and 2.4 are supposed to induce blind signature schemes and hence need
to satisfy unlinkability and unforgeability. Unlinkability is perfectly resp. statistically guaranteed
due to the blinding methods. For unforgeability: a Chaum-Pedersen forgery is provably more
difficult than a Schnorr forgery (this can be proven using similar techniques as in Section 6.3).
However, the blind Schnorr signature scheme is not unforgeable if signatures may be issued in
parallel! Pointcheval and Stern [PS00] showed for the witness-indistinguishable variant of the
Schnorr signature scheme (the blind Okamoto-Schnorr signature scheme) that it is so-called ‘strong
one-more unforgeable’, meaning that the scheme can only be one-more unforgeable if K ≤ (lg k)α

for some α, where K is the maximum number of parallel executions of the signing protocol, and
k = blg qc is the security parameter, as defined in Section 2.1.1. This theorem is based on the DL
Assumption 2.2.1: a forgery to the signature scheme is reduced to breaking the DL assumption.
Furthermore, Schnorr [Sch01] showed a method to forge signatures which cannot be translated to
forging the DL assumption. It is related to the ROS assumption, roughly stated:
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Signer Verifier

(knows: h;x) (knows: h)
t ∈R Z∗

q , m0 ← m1/t
m0←−−−−−−−−−−−−−

z0 ← mx
0 , w0 ∈R Zq

a← gw0 , b← mw0
0 z0;a,b−−−−−−−−−−−−−→

u ∈R Z∗
q , v ∈R Zq

a′ ← (agv)u, b′ ← (btmv)u

z ← zt
0

c′ ← H(m, z, a′, b′)
c← c′/u mod qc←−−−−−−−−−−−−−

r ← w0 + cx mod q r−−−−−−−−−−−−−→
grh−c ?= a, mr

0z
−c
0

?= b

r′ ← (r + v)u mod q

Figure 2.4: Blind Chaum-Pedersen signature protocol [CP93].

Assumption 2.7.1 (ROS assumption (ROS)). Given a cryptographic hash function H, modeled
as a random oracle. It is hard to find an Overdetermined Solvable system of linear equations
with Random values. That is, it is hard to find a matrix A ∈ Z(l+1)×l

q and b ∈ Zl+1
q with

bi = H(ai,1, . . . , ai,l) such that Ax = b is solvable modulo q.

Schnorr proved that if one can solve the ROS problem with non-negligible probability, then he
also knows how to forge a blind Schnorr signature. In [Wag02], Wagner gave an algorithm for
solving the ROS problem in a reasonably efficient way (but still of exponential order), exploiting
the birthday attack.

Although upper bounds on the number of parallel executions are proven, unforgeability of the
mentioned schemes is still an open problem, which as of now will just be conjectured to be true.

Remark 2.7.2. For later purposes we note that forging a Chaum-Pedersen signature (the remark
also holds for the blind Schnorr signature scheme) is just as hard as forging a signature of the
form (ξ,m, z, c′, r′) such that c′ = H(ξ,m, z, gr′h−c′ ,mr′z−c′) for any arbitrary bit string ξ. This
is due to the properties of the cryptographic hash function.

2.8 Concise survey of certificate schemes

The onset of certificate schemes was put by Chaum [Cha83], and later by Damg̊ard [Dam88]. Both
papers concern themselves with payment systems, like many following papers [Bra93, Bra95a,
CFN90], which are a special kind of certificate schemes. Later, more general certificate schemes
became of interest, where a service provider issues a ‘certificate’ (in the literature, commonly the
word ‘credential’ is used, which in the context of this thesis means the same) to a user. This
certificate is in fact a signature on data about the user, e.g. name and date of birth. Pioneers in
the area of certificate schemes are Brands [Bra93, Bra95a, Bra95b, Bra95c, Bra02], with his PhD
dissertation [Bra99] comprising all of them, Lysyanskaya et al. [LRSW99], Camenisch and Lysyan-
skaya [CL01, CL02, CL04] and Verheul [Ver01]. Recently, Belenkiy et al. [BCKL08] constructed
a non-interactive certificate scheme. The main security aspects a certificate scheme should satisfy
are security and privacy. The former roughly means that the certificates are unforgeable and the
second that different activities are unlinkable and do not leak information about the data being
certified (unless if participants cheat, e.g. by sharing their certificates). For our purposes, we also
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need the possibility to include multiple attributes in the certificate, and to selectively disclose some
of those attributes. These properties are satisfied by the schemes in [Bra99] and the extension to
[CL02, CL04] by [BCL06]. We briefly compare these schemes.
Brands’ work includes a DL and an RSA variant, while [CL02, CL04] (abbreviated to ‘CL’ in
this paragraph) need slightly stronger assumptions (the SRSA and the LRSW1, respectively).
The [CL04] system is based on a bilinear mapping. Brands’ work is in the random oracle model,
which is in the CL-work only optional for obtaining non-interactive proofs (using the Fiat-Shamir
heuristic). The unlinkability property is satisfied by all schemes. Also, sharing of certificates
would require sharing private values. However for unforgeability, the CL-work is proven secure
under the underlying assumptions, while Brands’ work is only assumed to be secure. Another
difference is that Brands’ schemes concern one-show certificates, which means that the certificates
can only be used once. CL’s certificates are multi-show, they can be used a multiple number of
times. One-show certificates are useful for e-cash systems. Without going into detail, [BDD07,
Sec. 2.2] compares the DL variant of [Bra99] with [CL02, CL04]. They claim that Brands’ scheme
is the most efficient. In particular, recertification (or issuing more certificates at once) can be done
efficiently in Brands’ scheme. This thesis is based on one of Brands’ certificate schemes, as argued
in Section 3.4.

2.9 Concise survey of secure multiparty computation

Multiparty computation (MPC) was introduced in the millionaires paper by Yao [Yao82]. It em-
braces the idea of n participants jointly computing a function (Yao’s protocol for secure two-party
computation is proven secure by Lindell and Pinkas [LP04]). Using the definitions introduced in
Section 2.3.1, Ben-Or et al. [BGW88] showed that in the information-theoretic model every func-
tion can be securely computed in the presence of an adaptive passive (resp. active) adversary if
and only if the adversary corrupts < n/2 (resp. < n/3) participants. For the cryptographic model,
Goldreich et al. [GMW87] showed that, assuming the existence of trapdoor one-way permutations,
every function can be securely computed if a static and active adversary corrupts < n/2 players.
We already considered the security framework of Cramer et al. in Section 2.3, which is used for
almost all multiparty computation protocols throughout this thesis.

After Yao’s paper, research on multiparty computation mainly grew in two directions. On the one
hand, there is multiparty computation based on verifiable secret sharing. Of interest is the paper
by Cramer et al. [CDM00], which shows how to get a multiparty computation scheme from any
monotone span program. Also a paper by Damg̊ard et al. [DFK+06] is interesting, which includes
a whole spectrum of constant round complexity multiparty protocols for secret sharing (e.g. bit
representation, random bit and modulo reduction).
The other branch of the tree is multiparty computation based on threshold homomorphic encryp-
tion, after the papers by Franklin and Haber [FH96] and the independent papers by Jakobsson
and Juels [JJ00] and Cramer, Damg̊ard and Nielsen [CDN01]. These three papers all introduce a
scheme for securely computing any circuit, but differ in a few aspects: while [FH96] only considers
passive adversaries, [JJ00, CDN01] consider active adversaries as well. Moreover, the encryption
scheme used by Franklin and Haber requires all participants to help upon decryption. The mix
and match scheme by Jakobsson and Juels relies on mixing truth tables of gates in a boolean
circuit, and is applicable to any discrete logarithm based encryption scheme. The framework of
[CDN01] is restricted to an RSA-setting, but can be used for any arithmetic circuit and moreover
has a smaller round complexity than the approach in [FH96]. In this branch, most of the research
concerns the ElGamal (additively homomorphic variant) and Paillier cryptosystems, although
there are some exceptions [BGN06, DGK07]. By the homomorphic property, both cryptosystems
support addition and multiplication with known constant. Cramer et al. show how to construct
a secure multiplication gate, (JxK, JyK) 7→ JxyK, for general threshold homomorphic encryption
schemes. However, the ElGamal scheme is not considered general in this context, and under the

1Roughly stated, given gx, gy and m ∈ Zq , it is hard to find a triple (a, ay , ax+mxy). Clearly, DH ⇐ LRSW.
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DH Assumption 2.2.2 it is even impossible to construct an efficient multiplication gate [ST04]:
otherwise, on input of gx, gy for x, y ∈R Zq one can set JxK ← (gr, gxfr), JyK ← (gs, gyfs), send
these encryptions to the multiparty computation servers in order to obtain JxyK, which upon de-
cryption would result in gxy.2 This is a serious drawback of the ElGamal encryption scheme, and
although [ST04] show that a multiplication gate for ElGamal conditionally is possible, most of
the later papers use Paillier encryptions (in spite of the fact that distributed key generation for
Paillier is less efficient)3. Some protocols relevant for this thesis are the following. Some of the
protocols by Damg̊ard et al. [DFK+06] also carry over to the threshold homomorphic encryption
setting. The notion JxKb(`) denotes the set {Jx0K, . . . , Jx`−1K} of ` encrypted bits of x.

• A random value gate and random bit gate, which output an encrypted random value and bit
respectively. For generating a random encrypted bit, several protocols are known differing in
their complexities. One can minimize the round complexity using a technique of [CDN01],
or minimize broadcast complexity using a technique of [ST06];

• A bitwise addition circuit, which given bitwise encryptions JxKb(`) and JyKb(`) outputs Jx +
yKb(`+1) (including a final carry bit). Again, one can minimize with respect to broadcast or
round complexity, following a technique of [ST06] or [DFK+06], respectively;

• A bit representation gate, which outputs JxKb(`) given JxK. The protocol of [ST06] relies on
constructing ` random bits and using an addition circuit, and its efficiency depends on these
underlying primitives;

• A comparison gate, which given two encryptions JxK and JyK outputs an encrypted bit
J[x < y]K. Multiparty comparisons are typically done bitwise, for which the described bit
representation gate can be deployed. Following [GSV07], a logarithmic round complexity
protocol is known. [DFK+06] contains a constant round complexity protocol but it has a
considerably higher hidden constant, and for small values of ` (namely ` < 20) the logarithmic
round protocol is more efficient. The protocol in this thesis that requires a multiparty
comparison gate, Section 4.3, is commonly concerned with a small value `.

To summarize, some of the relevant building blocks for threshold homomorphic multiparty com-
putation are given in Table 2.1, together with their complexities. We note that all these protocols
are proven secure in the real/ideal-model from Section 2.3.2. These building blocks can be used
to implement secure function evaluation protocols. Abusing the notation of the theory of boolean
logic, such a building blocks are commonly called ‘gates’. For notation, recall that we consider a
(t, n)-threshold cryptosystem, and k is the security parameter defined in Section 2.1.1. Moreover
we write JxKb(`) to denote the set {Jx0K, . . . , Jx`−1K} of encrypted bits of x.

We note that all protocols in the table, except for the threshold decryption protocol, result in
encrypted output. The threshold decryption protocol results in plaintext output publicly known
by every participant. It can also be the case that only one participant (or more generally, a
restricted number of participants) is allowed to learn the decryption. In that case, the participants
can deploy a private output protocol. As this type of protocol is used explicitly in the remainder of
the thesis, e.g. in Sections 6.2 and 7.2, in Section 2.9.1 a protocol for private output is discussed.

2.9.1 Multiparty protocol for private output

In this section we briefly introduce a protocol for private output, taken from [ST04]. In a protocol
for private output, an encryption c = JxK is decrypted such that only one participant learns the
plaintext value x. We consider a set of n participants P = {P1, . . . ,Pn} who (t, n)-threshold

2Using pairings, [BGN06] shows a way in which multiplication in the group G is possible. This can only be
done once, since the result will not be in G anymore, but in GT (the image of the pairing). This approach however
cannot be used for ElGamal encryptions since it makes the DDH assumption false in group G.

3Clearly, if for the ElGamal encryptions we work with the bit representation, so bitrep(JxK) and bitrep(JyK) are
known, a general multiplication gate is possible. This is not considered in this work, simply because it is inefficient.
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Function broadcasti roundi remark
add : (JxK, JyK) 7→ Jx + yK O(1) O(1)
pub.mult : (JxK, y) 7→ JxyK O(1) O(1)
pr.mult : (JxK, y) 7→ JxyK O(k) O(1) P1 knows y; [ST04]
thres : JxK 7→ x O(nk) O(1) [DJ01, Sch09]
mult : (JxKP , JyKP ) 7→ JxyKP O(nk) O(1) [CDN01]ii

cmult : (JxK, JyK) 7→ JxyK O(nk) O(n) x ∈ {0, 1}; [ST04]ii

rand : ∅ 7→ JrK O(nk) O(1) [ST06]
randbit : ∅ 7→ JrK O(nk) O(n) r ∈R {0, 1}; [ST06]

O(n2k) O(1) r ∈R {0, 1}; [CDN01]
bitadd : (JxKb(`), JyKb(`)) 7→ Jx + yKb(`+1) O(nk`) O(`) [ST06]iii

O(nk` lg `) O(1) [DFK+06]iii

bitrep : (JxKP , `) 7→ JxKb(`)P O(nk`) O(n + `) [ST06]
O(n2k` lg `) O(1) [ST06]

comp : (JxKb(`), JyKb(`)) 7→ J[x < y]K O(nk`) O(lg `) [GSV07]iii

O(nk`) O(1) [DFK+06]iii

i: broadcast and round complexity.
ii: is commonly denoted as JxK ∗ JyK.
iii: in case of ElGamal encryptions we would need cmult gates, and hence have the round com-
plexity multiplied with n.

Table 2.1: Several efficient multiparty computation gates.

share the secret key for an encryption scheme (ElGamal or Paillier, following Section 2.5). We
have an encryption c = JxK, whose encrypted value x may only be learned by U (who might be
∈ P ). The protocol here discussed is interactive and works for both ElGamal and Paillier. It
will be used explicitly in Sections 6.2 and 7.2. We note that also a non-interactive private output
protocol is known, although it only works for the ElGamal cryptosystem [ST04]. This protocol is
not considered in this thesis.

Protocol 2.9.1 (Private output). Given c = JxK, the following protocol outputs x to the user U .
User U and the participants Pi (i = 1, . . . , n) perform the following steps:

1. U takes r, t ∈R Zq (ElGamal) or r ∈R Zms , t ∈R Z∗
ms+1 (Paillier) and publishes c′ ← Jr, tK

plus a proof of knowledge for relation {(c′; r, t) | c′ = Jr, tK};

2. The participants jointly compute Jx + rK and threshold decrypt it, obtaining d ← gx+r

(ElGamal) or d← x + r mod ms (Paillier);

3. U computes x← logg(d/gr) (ElGamal) or x← d− r mod ms (Paillier).

The protocol is perfectly secure. If we use ElGamal, phase 3 can only be done efficiently if x is
from a restricted domain, x ∈ ±{0, 1}`x for some `x.
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3. Detailed problem statement

This thesis is concerned with the problem of how to combine certificate schemes1 and multiparty
computation schemes. That is, we will construct protocols for users to obtain certificates on
encryptions, and for service providers to certify encryptions. If we consider the certificate scheme
as a black box which outputs ‘some type of certificates’, and the multiparty computation scheme
as a black box which computes ‘some result’ on input of a list of encrypted values, then our
problem is to find protocols for the communication between the boxes, and in particular a protocol
for using a certificate on a list of attributes for constructing an encryption of one or more of
the attributes and vice versa. Those attributes can be anything: name, date of birth, cardiac
data, etc. A visualization of the problem is given in Figure 3.1. On the left-hand side, users
can obtain certificates from service providers, and on the right-hand side, a set of computation
parties P has the ability to securely evaluate functions. The ‘certificates’ going from left to right
need to be accompanied with encryptions of the attributes, and the ‘some output’ going in the
other direction might be certified (which implicitly means that the set of multiparty computation
servers needs to be able to certify, hence is a service provider as well). The idea is that the users
send certified encryptions to the multiparty computation participants, who do some computation
(possibly statistical analysis) on these values and output the result in either encrypted or plaintext
form. This output may be certified as well.

Figure 3.1: A high-level description of the problem.

1Recall that we use the word ‘certificate scheme’ rather than ‘credential scheme’, although they have the same
meaning in the context of this thesis.

25



3. Detailed problem statement

3.1 Participants

We can identify the following participants in Figure 3.1.

• Users U = {U1, . . . ,Uv}: users obtain services from service providers. Notice that we con-
sider both certificate issuance and verification as a type of service. In our scheme, the users
provide the multiparty computation participants with encryptions, which might be certified;

• Service providers SP = {SP1, . . . ,SPw}: in the certificate scheme, the service providers
provide services or certificates to users. Verification is seen as a service as well, and through-
out this thesis the possibility to verify will be implicit. A verifier is also denoted as V. A
service provider can also be implemented as a group of participants, where a subset of the
participants needs to be honest to offer the service correctly2;

• Computation parties P = {P1, . . . ,Pn}: the computation parties (in the context of multi-
party computation simply called ‘participants’) jointly (t, n)-threshold share the secret key
for an encryption scheme, and on input of encrypted values they evaluate secure multiparty
protocols and output a result. This result can either be in plaintext or encrypted form. In
general, it is assumed to be in encrypted form. In case only one participant, or another
single entity may learn the plaintext, the participants can use a private output protocol,
which guarantees that only one participant learns the outcome. In Section 2.9.1, a private
output protocol is discussed.

Notice that there is some overlap among the different sets of participants. Most importantly, the
set P is in fact a service provider. Indeed, the computation participants offer a ‘service’ to the
users (notice that P is indeed implemented as a group of participants that threshold share a secret
key). It can moreover be the case that the computation participants jointly issue a certificate on
the output of their multiparty computation.
Remark 3.1.1. Possibly, a revoker can be added to the multiparty computation scheme. This
revoker is one single party, or more generally a set of parties, that can decrypt as well (next to any
t of the n participants), and can in particular revoke the anonymity of a user sending encryptions
in case of danger/urgency. We do not consider such a structure, and assume that revocation is
just implemented as a protocol for the n participants. For instance, in case anonymity has to be
revoked if the encrypted value x is larger than a certain value α, the participants can execute a
comparison protocol for [x > α] and decrypt the result. Also the certificate scheme might include
a revocation algorithm, to revoke the anonymity of a cheating participant (e.g. in e-cash systems
in case a participant spends a coin twice). We will not consider revocation algorithms for the
certificate scheme.

3.2 Algorithms and protocols

The main algorithms and protocols we need for the system depicted in Figure 3.1 are the following.
We first consider the certificate and multiparty computation schemes separately, and then the
interface between them.

3.2.1 Certificate scheme

At a high level, for a certificate scheme, the left-hand side of Figure 3.1, we need three components:

• (Key generation.) An algorithm that, on input of a security parameter, outputs public and
secret keys, including the system parameters;

• (Certificate issuance.) A protocol for a service provider to issue a certificate to a user. This
certificate might certify some attributes (standard ones like ‘name’ or ‘date of birth’, or more
sensitive ones like ‘bank deposit’ or ‘criminal record’);

2This is a natural way to restrict the adversarial character of a service provider to passive behavior only.
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• (Certificate verification.) A protocol for a verifier to verify a certificate owned by a user. We
require the ability of the user to selectively disclose attributes in plaintext.

These components need to provide some extra properties. Of course, the certificates should be
unforgeable, roughly meaning that if a user is issued K ≥ 0 certificates, it is hard to output K +1
certificates, or even to output any certificate on a different list of attributes [Bra99, PS00, CL01,
CL02, CL04]. It is desirable that protocol executions of issuance and verification are unlinkable,
but there are examples in which there must be a possibility to link certificates. Consider Example
1.0.3: if one wants the average of the heart rates of a user over some period, all relevant certificates
need to be linked. This can however be settled easily by reserving one attribute item for some
linkable serial number.

Certificate schemes may differ in the type of certificates. Firstly, certificates can either be single-
or multiple-use. Single-use certificates are interesting if they testify to blood pressure values, as
these values are changing continuously. For multiple-use certificate, one can moreover want them
to be valid only a restricted number of times or in a restricted time period (for instance, passports
have a restricted validity period). Also, certificates can either be static or dynamic. A static
certificate can be a name, date of birth, nationality, whereas a dynamic certificate testifies to some
value which is subject to continuous change (blood pressure values, cardiac cycle, etc.). These
dynamic certificates are in fact just static certificates updated once a while. We refer to Section
2.8 for a discussion on different schemes.

3.2.2 Multiparty computation scheme

All certificate schemes discussed in Section 2.8 are based on either a discrete log or an RSA
related assumption: in the discrete log based scheme of Brands [Bra99] the attributes are fixed in a
DLREP representation (see Assumption 2.2.4), and Camenisch and Lysyanskaya [CL02, CL04] use
Pedersen commitments in the verification protocol [BCL06]. Therefore, multiparty computation
based on threshold homomorphic encryption suits better to certificate schemes than multiparty
computation based on verifiable secret sharing, and thus the following components are required:

• (Cryptosystem.) A homomorphic cryptosystem (E,D) is required. We also require a (t, n)-
threshold decryption protocol. In the absence of a trusted dealer, also a distributed key
generation protocol is required. Both ElGamal and Paillier cryptosystems satisfy these
requirements, see Section 2.5;

• (Secure multiparty protocols.) Depending on the scenario, we have a certain function to
be computed. This function might be constructed from several building blocks, commonly
called ‘gates’.

Both the ElGamal and Paillier cryptosystem satisfy the requirements, and for both several multi-
party computation gates are known, as shown in Section 2.9. Our focus is however on multiparty
computation of statistics, and we will study protocols for these functions in this thesis. Following
the recent developments in the literature [CDN01, ST04, ST06, GSV07], security is proven in
the cryptographic model against static active adversaries. For discussion the reader is referred to
Section 2.3.

3.2.3 Interface

In Figure 3.1 we saw that we need protocols for the interface between the certificate and the
multiparty computation scheme: we need a protocol for users to disclose attributes in encrypted
form, and service providers need to be able to issue certificates on encrypted values. These compo-
nents are described more concretely below. As already stated, the complexity of these components
highly depends on the chosen certificate and multiparty computation scheme, and therefore these
schemes should be chosen so as to optimize certain parameters like communication and round
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complexity. Also, one might want to take the schemes so as to minimize the assumptions. In
Sections 8.1 and 8.3, for several different choices the efficiency and the assumptions are compared.

A: (Encrypted disclosure of attributes.) User U owns a certificate on some private attributes, and
discloses one or more attributes to the verifier in encrypted form;

B: (Attribute hiding issuance.) If the output of the secure multiparty computation is an en-
cryption which needs to be accompanied with a certificate, the multiparty computation
participants P = SP need to be able to issue a certificate on that encryption, without
learning the encrypted value. Still, U will learn the encrypted value.

Protocol B only applies to the case where U learns the encrypted value. In this case, the standard
verification protocol still works and we only need to adjust the issuing protocol of the original
certificate scheme. We can also consider the case where the user does not learn the encrypted
value. In this case we in fact need a completely new scheme, since U does not know the attributes
which he should know for the verification.

C: (Encrypted certificate scheme.) The multiparty computation participants P = SP output one
or more encryptions, which need to be accompanied with a certificate, but now also the user
U does not learn the encrypted value.

In Section 3.4 it is shown that these three components really fulfill the requirements.

3.3 Applications of the components A-C

To motivate the interface components A-C, we show how these protocols may solve the problems
described in the examples given in Chapter 1. Additionally, as scheme C is the most important
result of this thesis, we will emphasize its relevance by illustrating some other practical applications
of this scheme.

Secure and anonymous surveys

Recall Example 1.0.1, in which users send private data in encrypted form to the computation
servers, obtaining a decrypted result. This setting satisfies precisely the setting of a standard
certificate scheme (with the website being a verifier V and user U having a certificate issued by an
external party), with the small adjustment that encrypted disclosure, protocol A, is required. For
the certificate scheme we prefer the certificates to be unlinkable, although it is not a requirement.
For the interface protocols, we do not need protocols for converting an encryption into a certificate
as in this example the computation servers just publish the results. However in Example 1.0.2,
extending Example 1.0.1, the output of the secure multiparty computation is required to be
encrypted and certified. In particular, cases of medical surveys in which the user may not learn
the attributes are also possible, as is explained below. Therefore, for Example 1.0.2 also protocol
B and scheme C are desired.

Monitoring

Recall that in Examples 1.0.3 and 1.0.4 users are provided with a measurement device, which
measures and certifies data about the users. The users subsequently send the certificates to the
servers. As explained in the problem description, preferably the certificates can be linked. In
particular, possibility to revoke anonymity of a user in case the certificates show deviances (like
high blood pressure) would be desirable. For the properties of the required certificate scheme, as in
the scenario participants utilize a measurement device that measures for instance blood pressure
and heartbeat rate, we need dynamic certificates, for which single-use certificates can be used. For
the interface protocols, certification on encryptions (components B and C) is not required, but
we need protocol A for disclosure of encrypted attributes.
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Secure and anonymous social networks

Recall Example 1.0.5, where we are looking for a completely secure and anonymous social network,
meaning that a priori no-one can be trusted, not even the website. In case two members have the
same or similar interests, the website issues the two matched members a certificate, being a key to
a certain chat room where these two participants can meet in private. It means that we really need
the computation servers to be able to issue certificates, but the possibility to certify encryptions is
not needed, hence for the interface only protocol A is required. We prefer unlinkable certificates,
since for instance otherwise multiple chat room sessions might be linkable. Some certificate can
be multiple-use, like the name, date of birth, etc., but some need to be single-use, like the keys to
the chat rooms. Finally, for the multiparty computation protocols, we really need the distributed
key generation protocol as we do not allow any trusted party.

Other practical applications of scheme C

We can consider two types of applications of scheme C. In particular, scheme C applies to scenarios
where the user is not allowed to learn the attributes, as well as to cases where the user does not
want to learn the attributes. For the former possibility, one can for instance consider a scenario
where a company needs to possess certified medical data of its employees. This can be achieved
by letting doctors certify medical data of employees to the company (who acts as U in scheme
C). For privacy reasons, however, the company should not be allowed to learn the users’ data.
Using scheme C, where the company is issued encrypted certificates, it is possible to solve this
problem. One can also think of letters of recommendations as an application where the owner
of the certificate (which is the person receiving the letter of recommendations) is not allowed to
learn attributes.
Another relevant application of scheme C corresponds to the case where the user does not want to
learn the attributes. Such application can be found in the medical domain. Indeed, some people
do not want to learn about illnesses or (genetic) diseases they suffer, and by certifying these data
in encrypted form, this problem can be solved. One can also think of two parents who do not want
to learn the gender of their unborn baby, but whose friends already want to buy suitable presents
for their baby.

3.4 Architectural setting

To verify that the protocols introduced in Section 3.2 indeed suffice to construct the complete
scheme, consider one service provider, one user U and one verifier V. Without loss of generality
the service provider is a set of multiparty computation participants (the only difference between
this set P and a normal SP is that P can moreover do multiparty computation). It can be the
case that P = V as well. A discussion on considering SP and V as a set of multiparty computation
participants is included in Section 8.1.1. All possible ‘tracks’ of a certificate issued by P are given
in Figure 3.2: the result of the secure function evaluation by P is an encryption, which can be
made known to U either in plaintext or encrypted form, and it can either be certified or not. This
indeed results in the four tracks in Figure 3.2. Moreover, if U owns a certificate, he can show it to
V. He can do so by showing the certificates with plaintext3 or encrypted disclosure, but clearly in
case U is issued a certificate on encryptions, plaintext disclosure is impossible. In Figure 3.2 the
required protocols and schemes are given between parentheses. Note that these protocols indeed
satisfy the requirements.

• (encryption) → (plaintext): user U is the only participant allowed to learn the encrypted
value. This can be done by using the private output protocol of Section 2.9.1;

• (encryption) → (plaintext + certificate): now, the user U obtains a certificate on the en-
crypted value, but U still learns the plaintext. This is exactly protocol B of Section 3.2.3.

3Implicitly, we mean ‘with plaintext disclosure or with no disclosure’. Both options are supported by the
underlying certificate scheme.
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Now, plaintext disclosure is covered by the basic certificate scheme, and encrypted disclosure
is possible due to protocol A;

• (encryption)→ (encryption + certificate) → (encrypted disclosure): in this case, even the
user does not learn the plaintext. The required protocols are exactly specified by scheme C.

Figure 3.2: All possible transitions of an encryption in the extended certificate scheme.

This means that constructing the components A-C solves the problem for the interface between
the certificate scheme and the multiparty computation scheme. As the main purpose of the scheme
is doing multiparty computation of statistics on certified values, we also require the set of known
multiparty gates to be extended with statistics gates. The approach of Section 3.2 is universal, in
the sense that it applies to any certificate scheme and any multiparty computation scheme, as long
as they satisfy the requirements of Sections 3.2.1 and 3.2.2, respectively. In the following chapters,
the components A-C are considered for one certificate scheme in the literature, and for both the
ElGamal and Paillier cryptosystem. We will use a certificate scheme of Brands [Bra99], for reasons
explained below. Firstly, Chapter 4 gives several multiparty computation protocols, either required
for the construction of the three components or for enabling multiparty computation of statistics.
Then, in Chapter 5, Brands’ certificate scheme is discussed, in Chapter 6 the components A-C are
constructed for the ElGamal cryptosystem, and in Chapter 7 protocols A and B are considered
for the Paillier cryptosystem. We also considered scheme C for the Paillier cryptosystem, but did
not find a provably secure scheme. We will now introduce the basic cryptographic setting. Unless
explicitly stated, we will assume this setting throughout the remainder of the thesis.

Certificate scheme

For the certificate scheme, we use Brands’ discrete log scheme [Bra99], which is based on the
DLREP assumption (Assumption 2.2.4). We think that this scheme is the best option of the
ones discussed in Section 2.8: in particular, unlike Brands’ scheme, the schemes introduced by
Camenisch-Lysyanskaya [CL02, CL04] use multi-show certificates and it looks like therefore a con-
struction for scheme C becomes more complex for these certificate schemes4. Still, the construction
of the components A-C for the schemes of Camenisch-Lysyanskaya are briefly discussed in Section
8.3. Brands’ scheme is provided with the algorithms and protocols needed according to Section

4It looks like a construction for scheme C would be more complex in case of multi-use certificates. As argued
more extensively in Section 8.3: in the two schemes of Camenisch-Lysyanskaya [CL02, CL04] the user is issued a
certificate on a list of attributes. In the verification protocol, the user has to re-blind the certificate and to prove
that the certificate is correct. For scheme C this means that user is issued a certificate on a list of encryptions of
attributes, and that in the verification for each certified encryption c the users takes a random r, sets c′ = cJ0, rK and
sends c′ to the verifier. However, as the verifier does not know c (otherwise the issuing and verification execution
would be linkable), the user cannot simply prove knowledge of r. Therefore, if the user would set c′ = cJxK for an
unknown x, the verification protocol would succeed if x = 0, hence would succeed with probability Pr(x = 0).
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3.2.1, indeed the scheme includes a way to disclose attributes in plaintext. This scheme will be
treated briefly in Section 5.2. For the general setting we have a finite cyclic group G generated by
g of prime order q > 2k for some security parameter k (Section 2.1.1). These system parameters
will be included explicitly in the formal key generation algorithms of the schemes, Sections 5.2.1
and 6.3.1. For simplicity, for the construction of the schemes we will consider only one service
provider. In line with Brands, this service provider will be called the ‘certification authority’, or
CA. Also, we only consider one user U and one verifier V. The certification authority issues a
certificate on l attributes.

Multiparty computation scheme

For the encryption schemes, we have n participants P = {P1, . . . ,Pn} doing multiparty computa-
tion. Both ElGamal and Paillier suffice for the protocols needed, and we consider both options.
That is, for both a system parameter setup will be done, and the participants (t, n)-threshold share
the secret key for both. For simplicity, it will be assumed that the group used for the ElGamal
cryptosystem is the same G as is used for the certificate scheme, see Chapter 6. Sometimes it will
be the case that the participants P jointly act as a verifier or certification authority. In this case,
we just see them as one player. In particular, if in that case the certification authority has a secret
value y, we implicitly mean that the participants share this value using a (t, n)-threshold secret
sharing scheme. Also if the certification authority needs to generate a random value, we assume
that the random gate of Table 2.1 is utilized. This justifies this generalization.
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4. Protocols for secure multiparty
computation

This chapter elaborates on and extends the set of multiparty gates we have at our disposal, Table
2.1. The discussed gates are interesting for several reasons. For instance, Sections 4.1 and 4.2
discuss Paillier to ElGamal conversion and an extended plaintext equality test respectively, and
both turn out to be of importance in the certificate schemes of Chapters 5-7. In addition, in this
chapter it is also studied in what way multiparty computation of statistics is possible, i.e. mul-
tiparty computation of statistics functions. A well-known statistic is the ‘mean’, computing the
average of some values. Although this function looks trivial, it is not as it requires division over
the reals. Indeed, if one computes the mean of two values x and y, their sum has to be divided
by 2, and division is not defined on Zms (if we use the Paillier cryptosystem) or Zq (if we use the
ElGamal cryptosystem), and moreover 2 need not be a divisor of x + y. This implies the need of
an ‘integer division’ gate, or equivalently: a ‘modulo reduction’ gate. An efficient gate1 for this
purpose is discussed in Section 4.3. This modulo reduction gate and a sorting gate (Section 4.4)
make several protocols for statistics possible, as shown in Section 4.5.

We consider the following setting for all protocols. We have n participants P = {P1, . . . ,Pn}. For
ElGamal we consider a group G = 〈g〉 of order q > 2k for security parameter k (see also Section
2.5.1). The participants threshold share the secret decryption key λ such that f = gλ, and each
participant holds a polynomial share λi. For Paillier, we consider a modulus m = pq of length k,
with p, q safe primes, and an s ∈ N, and consider group Z∗

ms+1 with message space Zms (see also
Section 2.5.2). For the Paillier cryptosystem the participants share the secret decryption key µ,
such that t honest participants can decrypt. Each participant has a polynomial share µi.

4.1 Paillier to ElGamal conversion

Suppose we are given an ElGamal encryption JxKG with x ∈ Zq, and we want to compute a Pail-
lier encryption JxKP for the same x (provided q < ms). A multiparty gate for this operation is
infeasible. Indeed, since then using this gate one can break the DL Assumption 2.2.1 via Paillier.
It turns out that the other way around, from Paillier to ElGamal, is possible though, if we as-
sume q < ms (which is reasonable by Section 2.2.3). On input of JxKP , we obtain JxKG such that
JxKP l JxKG according to the definition given in Section 2.5.4. The main building block is integer
commitments. The gate constructed in this section focuses on x ∈ {0, . . . , q − 1}, which implies
that DP (JxKP ) = DG(JxKG) over the integers. If x was from a larger domain (with x < ms), the
gate is still possible, resulting in encryptions encrypting the same value mod q.

Although this section is about conversion for a general x ∈ Zq, we briefly consider the possibilities
if x was from a two-valued domain. Then ElGamal to Paillier conversion is possible. Informally,
the gate would be similar to the conditional gate [ST04]:
Say x ∈ {−1, 1}. The conditional gate is executed with x0 := x and y0 := 1, but with the

1Only in case the modulus is publicly known, which is the case in our situation.
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4. Protocols for secure multiparty computation

important difference that now y0 is Paillier encrypted. The proofs of knowledge are therefore
done using integer commitments (see Section 2.6.1), with `x = 1. In phase 2, xn is decrypted,
and the protocol output is JxKP ← JyKxn

P . This consequently means that if we have the bit
representation JxKb(`)G , we can get JxKb(`)P , but this gate requires ` such conversion gates, meaning
broadcast complexity O(nk`) in O(n) rounds (observe that the ` gates can be executed in parallel).

Back to the original problem, firstly an informal approach is discussed, to clarify the idea. Then
the formal protocol is given. Finally in Section 4.1.1 the efficiency of the protocol is considered.

Intuition

The main idea of the protocol is to reconsider the proof of knowledge with integer commitment of
Section 2.6.1, now with groups G1 = G and G2 = Z∗

ms+1 . The idea of that scheme is that a prover
commits to an x < 2`x+1, and if 2`x+`c+`s+1 < min{q, ms}, he proves that the two commitments
over different groups commit to the same value over the integers. But if we relax the requirement
‘< q’, the committed value over the group G might have been computed modulo q (as the order of
the group is q and x might be ≥ q), but the commitment in group Z∗

ms+1 remains unchanged. As
a consequence, both commitments commit to the same value mod q (formally, for the Σ-protocol
of Section 2.6.1: logg2

y2 mod q = logg1
y1). We stress that this minor change in the protocol does

not harm the security.

Now, given an encryption JxKP for x ∈ Zq, the idea is that the n participants all publish JriKP , JriKG
(for some random ri) plus the proof of knowledge of Figure 2.2. Then the participants individually
compute Jx′KP , where

x′ = x +
n∑

i=1

ri.

We need the ri’s to statistically hide x, so at least we need ri � q for all i, which implies that we
need the above described adaption of the proof of knowledge of Figure 2.2. Then the participants
decrypt Jx′KP , obtaining x′ mod ms (since we work in Paillier encryptions). Encrypting this value
using ElGamal would result in c′ = J(x′ mod ms) mod qKG, from which JxKG is difficult to obtain.
However, if the ri are taken such that x′ < ms, this would mean that c′ = Jx′ mod qKG. As in fact
the encrypted values in JriKG are also modulo q, we obtain

c′/
n∏

i=1

JriKG =

t(
x′ mod q −

n∑
i=1

ri mod q

)
mod q

|

G

=

t(
x′ −

n∑
i=1

ri

)
mod q

|

G

,

which equals Jx mod qKG = JxKG, as x′ = x +
∑n

i=1 ri and x ∈ Zq.

Formal protocol

We recall that we have n participants (t, n)-threshold sharing the secret key µ for Paillier decryp-
tion, and that the public key for the cryptosystem is (m, s), with message space Zms . Notice
that the participants do not need knowledge of the secret key for the ElGamal cryptosystem. We
assume the setting for integer commitments in Definition 2.4.2, and we assume that therefore
without loss of generality the Paillier modulus m is used. We recall that this setting includes
the introduction of security parameters `c and `s. For the protocol, we introduce two additional
security parameters: `r as the length of the ri’s and `s2, and we require that 2`r > q2`s2 and
n2`r+`c+`s+1 < ms.

Protocol 4.1.1 (Paillier to ElGamal (PtE)). Given an encryption JxKP with x ∈ Zq, the following
protocol outputs an encryption JxKG. The participants Pi (i = 1, . . . , n) perform the following
steps:
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4.1. Paillier to ElGamal conversion

1. Each participant individually generates ri ∈R {0, 1}`r and publishes c0i = JriKP and ci =
(c1i, c2i) = JriKG, together with a Σ-protocol using integer commitment for relation:

{(c0i, c1i, c2i; ri, s1, s2) | c0i

Z∗
ms+1
= (m + 1)risms

1 ∧ c1i
G= gs2∧

c2i
G= grifs2 ∧ (−2`r+`c+`s < ri < 2`r+`c+`s)}.

(4.1)

The protocol is given in Figure 4.1. Failing participants are discarded immediately;

2. Each participant individually computes Jx′KP ← JxKP
∏n

i=1 c0i;

3. Using threshold decryption, the participants obtain x′;

4. Each participant individually sets c′ = (1, gx′) and computes the ElGamal encryption of x:

JxKG ← c′/
n∏

i=1

ci. (4.2)

Prover Verifier

(knows: c0, c1, c2; r, s1, s2) (knows: c0, c1, c2)
r̃ ∈R {0, . . . , bm/4c − 1}, y ← hr

1h
r̃
2

ur ∈R {0, 1}`r+`c+`s , u1 ∈R Z∗
ms+1

ur̃ ∈R {0, 1}k/4+`c+`s , u2 ∈R Zq

a0

Z∗
ms+1← (m + 1)urums

1 , a1
G← gu2

a2
G← gurfu2 , ay

Z∗m← hur
1 hur̃

2 y,a0,a1,a2,ay−−−−−−−−−−−−−→
c ∈R {0, 1}`c

c←−−−−−−−−−−−−−
rr ← ur + cr, rr̃ ← ur̃ + cr̃

r1

Z∗
ms+1← u1s

c
1, r2 ← u2 + cs2 mod q rr,rr̃,r1,r2−−−−−−−−−−−−−→

(m + 1)rrrms

1
?= a0c

c
0, gr2 ?= a1c

c
1

grrfr2 ?= a2c
c
2, hrr

1 hrr̃
2

?= ayyc

rr

?
∈ {0, 1}`r+`c+`s

Figure 4.1: Σ-protocol for relation (4.1).

Lemma 4.1.2. The protocol in Figure 4.1 is a Σ-protocol for (4.1).

Proof. (Completeness & honest-verifier zero-knowledge). Similar to the proof of Proposition
2.6.2, completeness is trivial and for honest-verifier zero-knowledge we only need to add r1 ∈R

Z∗
ms+1 , r2 ∈R Zq and a0

Z∗
ms+1← (m + 1)rrrms

1 c−c
0 and a1

G← gr2c−c
1 to the simulated conversation.

(Special soundness). The proof of special soundness of Proposition 2.6.2 does not suffice any-
more for finding a witness s1. Consider two conversations (y, a0, a1, a2, ay; c; rr, rr̃, r1, r2) and
(y, a1, a2, ay; c′; r′r, r

′
r̃, r

′
1, r

′
2) with c 6= c′. Similarly to the compared proposition, we still take

r :=
rr − r′r
c− c′

, r̃ :=
rr̃ − r′r̃
c− c′

, s2 :=
r2 − r′2
c− c′

.

For s1 we have the conversations satisfying:

(m + 1)rrrms

1 = a0c
c
0, (m + 1)r′r (r′1)

ms

= a0c
c′

0 ,
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4. Protocols for secure multiparty computation

hence (m + 1)rr−r′r (r1/r′1)
ms

= cc−c′

0 . If gcd(c − c′,ms) 6= 1, with overwhelming probability we
obtained a non-trivial factor of m [Jur03, Sec. 4.3.4], which is hard by assumption. Therefore, using
extended Euclid’s algorithm we can find ρ, σ such that ρ(c− c′) + σms = 1. Now, exponentiating
the mentioned equation to ρ gives:

(m + 1)ρ(rr−r′r)(r1/r′1)
ρms

= c
ρ(c−c′)
0 = c1−σms

0 ,

which results in c0 = (m+1)ρ(rr−r′r)((r1/r′1)
ρcσ

0 )ms

, but this does not satisfy the witness r := rr−r′r
c−c′ .

But similar to Proposition 2.6.2 we have c− c′ | rr − r′r, and therefore:

ρ(rr − r′r) =
rr − r′r
c− c′

ρ(c− c′) =
rr − r′r
c− c′

(1− σms),

which results in:

c0 = (m + 1)
rr−r′r
c−c′

(
(r1/r′1)

ρcσ
0 (m + 1)−

rr−r′r
c−c′ σ

)ms

,

implying witness s1 := (r1/r′1)
ρcσ

0 (m + 1)−
rr−r′r
c−c′ σ.

We are now ready to prove correctness of the protocol.

Proposition 4.1.3 (Correctness). On input of an encryption JxKP with x ∈ Zq, the output in
(4.2) equals JxKG.

Proof. We need to prove that c′/
∏n

i=1 ci is an ElGamal encryption of x. This is proven using two
equations.
Firstly, the value x′ as computed in phase 3 satisfies x′ = x +

∑n
i=1 ri mod ms, as we work over

Paillier encryptions. But by phase 1, for each i = 1, . . . , n we have ri ∈ (−2`r+`c+`s , 2`r+`c+`s).
Therefore, |x′| = |x +

∑n
i=1 ri| < q + n2`r+`c+`s+1, which is < ms with overwhelming probability.

So with overwhelming probability the equality holds over the integers:

x′ = x +
n∑

i=1

ri. (4.3)

Secondly, as a consequence of Lemma 4.1.2, for each i the encryption ci satisfies:

ci = Jri mod qKG. (4.4)

Now we obtain for phase 4 of Protocol 4.1.1:

c′/
n∏

i=1

ci =

t(
x′ mod q −

n∑
i=1

(ri mod q)
)

mod q

|

G

{phase 4 and (4.4)}

=

t(
x +

n∑
i=1

ri −
n∑

i=1

ri

)
mod q

|

G

{equation (4.3)}

= Jx mod qKG = JxKG {as x ∈ Zq}.

Security of the protocol is proven in light of the real/ideal-model, Section 2.3.

Proposition 4.1.4 (Security). On input of encryptions JxKP , JxKG with x ∈ Zq, Protocol 4.1.1
can be simulated in a statistically indistinguishable way.

Proof. We present a simulator that simulates the protocol in a statistically indistinguishable
way. The simulator takes as input JxKP , JxKG with x ∈ Zq, and may use the malicious par-
ties P ′ = {P1, . . . ,Pt−1} ⊂ P as a subroutine.
Phase 1. The simulator lets the adversary run this phase for P1, . . . ,Pt−1, obtaining JriKP , Jri mod

36



4.2. Plaintext equality tests

qKG for ri of length less than 2`r+`c+`s+1 < ms, accompanied with a proof of knowledge. The
simulator rewinds the proofs of knowledge, obtaining values r1, . . . , rt−1 (by the special sound-
ness property). For Pt, . . . ,Pn−1 he executes phase 1 as in the real protocol, obtaining values
rt, . . . , rn−1. For Pn however, he takes rn ∈R {0, 1}`r and publishes Jr̃nKP , Jr̃n mod qKG where
r̃n = rn − x. Notice that he indeed can compute these encryptions. The required proof of knowl-
edge is simulated.
Phase 2. Executed as is. By construction, x′ = x +

∑n−1
i=1 ri + r̃n =

∑n
i=1 ri.

Phase 3. Simulated on input Jx′KP and
∑n

i=1 ri (see Section 2.5.3).
Phase 4. Executed as is.
Well now, the values r1, . . . , rn−1 are from the same set as in the real protocol. Only difference
is in r̃n versus rn. In the real protocol it is from R = [0, 2`r ), and in the simulated it is from
S = (−q, 2`r ). These sets are statistically indistinguishable in `s2 since 2`r > q2`s2 (similar to
Proposition 2.6.2):

1
2

∑
v∈R∪S

∣∣∣P (v ∈ R)− P (v ∈ S)
∣∣∣ = q

q + 2`r
=

1
1 + 2`r/q

<
1

2`s2
.

So concluding, the protocol is statistically secure under the DCR Assumption 2.2.7 (for Paillier
encryption), the DDH Assumption 2.2.3 (for ElGamal encryption) and the SRSA Assumption
2.2.6 (for the integer commitment).

4.1.1 Efficiency

Phases 1, 2 & 4 clearly have round complexity O(1) and broadcast complexity O(nk) (caused by
the proofs of knowledge). As phase 3 is only a threshold decryption, it has the same complexities
(see Table 2.1). Thus the complete protocol has round complexity O(1) and broadcast complexity
O(nk).

4.2 Plaintext equality tests

The idea of plaintext equality tests is by Jakobsson and Juels [JJ00]. For the purpose of our
scheme, we however need extensions to this test. For convenience, we start completely from
scratch and discuss the ‘standard’ plaintext equality test too. We will consider the following three
functions. We recall that we have n participants (t, n)-threshold sharing ElGamal decryption key
λ and Paillier decryption key µ.

• Standard plaintext equality test: on input of two ElGamal encryptions2, the participants
want to verify whether they encrypt the same value:

petP (λ)(JaKG, JbKG) = β =

{
1, if a = b;
0, otherwise.

(4.5)

This gate is discussed in Section 4.2.1;

• Plaintext equality test with ElGamal representation: this function considers three ElGamal
encryptions2. The participants P also (t, n)-threshold share two secret values y, z ∈R Zq,
with Y = gy, Z = gz known. To this end, the same distributed key generation protocol as
for sharing λ can be used (Section 2.5.1). The function to be computed is:

petrepP (λ,y,z)(JaKG, JbKG, JcKG) = β =

{
1, if a ≡ by + cz mod q;
0, otherwise.

(4.6)

The gate is discussed in Section 4.2.2. This function is called petrep because its structure
is similar to the one in the DLREP assumption (Assumption 2.2.4), where a tuple of secret
values (x1, . . . , xl) is required to satisfy 1 = gx1

1 · · · g
xl

l ;
2If all encryptions are Paillier, a similar protocol can be constructed.
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4. Protocols for secure multiparty computation

• Plaintext equality test with Paillier representation: additionally to petrep, now b and c are
Paillier encrypted instead (we require that b, c < ms, but they may be ≥ q). The function
to be evaluated is:

petrepP
P (λ,y,z;µ)(JaKG, JbKP , JcKP ) = β =

{
1, if a ≡ by + cz mod q;
0, otherwise.

(4.7)

The gate is discussed in Section 4.2.3.

We note that the latter two functions and corresponding protocols can be easily generalized to
l + 1 encrypted inputs. In Section 4.2.4 the efficiency of the protocols is considered.

4.2.1 Standard plaintext equality test

This section only involves ElGamal encryptions, therefore the subscript ‘G’ will be omitted.

Protocol 4.2.1 (Plaintext equality test (pet)). Given JaK, JbK for a, b ∈ Zq, the following protocol
evaluates the function (4.5). The participants Pi (i = 1, . . . , n) perform the following steps:

1. Each participant individually computes JcK ← JaK/JbK, takes ri ∈R Z∗
q and publishes JciK ←

JcKri together with a Σ-protocol for relation {(JciK; ri) | JciK = JcKri}. This protocol is trivial.
Failing participants are discarded immediately;

2. Each participant individually computes Jc̃K ←
∏n

i=1JciK;

3. Using threshold decryption, the participants obtain c̃;

4. Each participant individually computes the output as

β ←

{
1, if c̃ = 0;
0, otherwise.

(4.8)

Proposition 4.2.2 (Correctness). On input of encryptions JaK, JbK with a, b ∈ Zq, the output in
(4.8) equals β as in (4.5).

Proof. Notice that, where ∗⇐⇒ holds with overwhelming probability:

β = 1 ⇐⇒ c̃ = 0 ⇐⇒ c

(
n∑

i=1

ri

)
≡ 0 mod q

∗⇐⇒ c = 0 ⇐⇒ a = b.

Security of the protocol is proven in light of the real/ideal-model, Section 2.3.

Proposition 4.2.3 (Security). On input of encryptions JaK, JbK with a, b ∈ Zq, and a β ∈ {0, 1},
Protocol 4.2.1 can be simulated in a perfectly indistinguishable way.

Proof. We present a simulator that simulates the protocol in a perfectly indistinguishable way,
and fails with only negligible probability. The simulator takes as input JaK, JbK and a bit β, and
may use the malicious parties P ′ = {P1, . . . ,Pt−1} ⊂ P as a subroutine.
Phase 1. The simulator lets the adversary run this phase for P1, . . . ,Pt−1, obtaining JciK, for
i = 1, . . . , t − 1, accompanied with a proof of knowledge. The simulator rewinds the proofs of
knowledge, obtaining values r1, . . . , rt−1 (by the special soundness property). For Pt, . . . ,Pn−1 he
executes phase 1 as in the real protocol, obtaining values rt, . . . , rn−1. For Pn however, he takes
rn ∈R Zq, and publishes JcnK ←

r
(1− β)

∑n
i=1 ri − c

∑n−1
i=1 ri

z
. The required proof of knowledge

is simulated. Notice that the simulator indeed can compute JcnK as

JcnK =

t

(1− β)
n∑

i=1

ri − c
n−1∑
i=1

ri

|

= J1K(1−β)
Pn

i=1 riJcK−
Pn−1

i=1 ri .
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Phase 2. Executed as is.
Phase 3. The simulator actually knows c̃:

c̃ ≡ c
n−1∑
i=1

ri + cn ≡ (1− β)
n∑

i=1

ri mod q,

and therefore this phase is simulated on input Jc̃K and (1− β)
∑n

i=1 ri mod q (see Section 2.5.3).
Now, phase 4 with overwhelming probability succeeds due to the factor 1− β in c̃. As clearly all
values r1, . . . , rn−1, r̃n are taken uniformly at random from Zq, we have perfectly indistinguisha-
bility.

So concluding, the protocol is perfectly secure under the DDH Assumption 2.2.3 (for ElGamal
encryption), and fails with only negligible probability.

4.2.2 Plaintext equality test with ElGamal representation

This section only involves ElGamal encryptions, therefore the subscript ‘G’ will be omitted. We
construct a protocol for the function (4.6). The idea is to first compute Jb̃K = repP (y,z)(JbK, JcK)←
JbKyJcKz, which is done in the following sub-protocol.

Protocol 4.2.4 (Sub-protocol for pet with ElGamal representation). Given JbK, JcK for b, c ∈ Zq,
the following protocol outputs an encryption Jb̃K = JbKyJcKz. The participants Pi (i = 1, . . . , n)
perform the following steps:

1. Each participant publishes Jb̃iK = JbKyiJcKzi together with Σ-protocol for relation:

{(Jb̃iK; yi, zi) | Yi = gyi ∧ Zi = gzi ∧ Jb̃iK = JbKyiJcKzi}.

This protocol is trivial. Failing participants are discarded immediately;

2. Let A be the set of participants with a successful proof of knowledge. Outcome Jb̃K is now
computed as

Jb̃K ←
∏
i∈A

Jb̃iKλA,i ,

where λA,i =
∏

j∈A\{i}
j

j−i denote the Lagrange coefficients.

Notice that this is a slightly adjusted version of threshold decryption for ElGamal. In particular,
the complexities are equal. Correctness of Protocol 4.2.4 follows from the correctness of the
threshold decryption protocol [Sch09]. It is also secure as it can be simulated in a perfectly
indistinguishable way on input JbK, JcK, Jb̃K. This simulator is a simplification of the simulator for
threshold decryption for ElGamal [ST04]. We are now ready to construct a protocol for the petrep

function.

Protocol 4.2.5 (Plaintext equality test with ElGamal representation (petrep)). Given JaK, JbK, JcK
for a, b, c ∈ Zq, the following protocol evaluates the function (4.6). The participants Pi (i =
1, . . . , n) perform the following steps:

1. The participants jointly compute Jb̃K ← repP (y,z)(JbK, JcK) using Protocol 4.2.4;

2. The participants jointly compute and output β ← petP (λ)(JaK, Jb̃K) using Protocol 4.2.1.

Proposition 4.2.6 (Correctness). On input of encryptions JaK, JbK, JcK with a, b, c ∈ Zq, the
output of Protocol 4.2.5 equals β as in (4.6).

Proof. Notice that β = 1 ⇐⇒ a = b̃ by the correctness of Protocol 4.2.1. But in phase 1, b̃
is computed as b̃ ≡

∑
i∈A λA,i(byi + czi) ≡ by + cz mod q by the construction of the Lagrange

coefficients. So concluding, we obtain β = 1 ⇐⇒ a ≡ by + cz mod q.
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4. Protocols for secure multiparty computation

Proposition 4.2.7 (Security). On input of encryptions JaK, JbK, JcK with a, b, c ∈ Zq, and a β ∈
{0, 1}, Protocol 4.2.5 can be simulated in a computationally indistinguishable way.

Proof. We present a simulator that simulates the protocol in a computationally indistinguishable
way, and fails with only negligible probability. The simulator takes as input JaK, JbK, JcK and a bit
β, and may use the malicious parties P ′ = {P1, . . . ,Pt−1} ⊂ P as a subroutine. Following [CDN01,
Thm. 1] and [ST04, Thm. 1], firstly we consider an oracle outputting Jb̃K ← Orep(JbK, JcK).
Phase 1. Simulated using the simulator for repP (y,z), on input of (JbK, JcK, Jb̃K).
Phase 2. Simulated using the simulator for petP (λ), on input of (JaK, Jb̃K, β) (Proposition 4.2.3).
Both of the used simulators may use P ′ as a subroutine. As the two simulators simulate the parts
in a perfectly indistinguishable way, and succeed with overwhelming probability, this simulator
simulates Protocol 4.2.5 in a perfectly indistinguishable way, also succeeding with overwhelming
probability.
Now, we replace the outcome of the oracle call by a random encryption of zero: Jb̃K ← J0K. If
this significantly changes the view of the conversation, as the simulator does not use any secrets
of the honest parties, we obtain a distinguisher for J0K and JaybzK, which is hard as the ElGamal
cryptosystem is assumed to be semantically secure.

So concluding, the protocol is computationally secure under the DDH Assumption 2.2.3 (for
ElGamal encryption), and fails with only negligible probability. Note that security is not perfectly:
this is since we implicitly use a hybrid argument and the cryptosystem is only semantically secure
(see Definition 2.5.1).

4.2.3 Plaintext equality test with Paillier representation

This gate is similar to the one discussed in Section 4.2.2, except that now the PtE gate in Protocol
4.1.1 is deployed to transform Paillier encryptions to ElGamal encryptions. For simplicity we
require that b, c < q, but this restriction can be relaxed to larger domains, as argued in Section
4.1.

Protocol 4.2.8 (Plaintext equality test with Paillier representation (petrepP)). Given JaKG, JbKP ,
JcKP for a, b, c ∈ Zq, the following protocol evaluates the function (4.7). The participants Pi

(i = 1, . . . , n) perform the following steps:

1. The participants jointly compute JbKG ← PtEP (µ)(JbKP ) and JcKG ← PtEP (µ)(JcKP ) using
Protocol 4.1.1;

2. The participants jointly compute Jb̃KG ← repP (y,z)(JbKG, JcKG) using Protocol 4.2.4;

3. The participants jointly compute and output β ← petP (λ)(JaKG, Jb̃KG) using Protocol 4.2.1.

The proof of correctness is similar to Proposition 4.2.6, and security follows in the same way as
Proposition 4.2.7, but now using oracle (JbKG, JcKG, Jb̃KG)← OPtE,rep(JbKP , JcKP ).

So concluding, the protocol is computationally secure under the DCR Assumption 2.2.7 (for Paillier
encryption), the DDH Assumption 2.2.3 (for ElGamal encryption) and the SRSA Assumption 2.2.6
(for the integer commitment), and fails with only negligible probability.

Remark 4.2.9. If we extend the protocol to l + 1 encrypted inputs, the broadcast complexity of
Protocol 4.2.8 grows with a factor l, due to the first phase. Under a certain constraint on the
parameters, this can be avoided by swapping the first and second phase. More precisely, the
participants then first execute a Paillier analogue of Protocol 4.2.4 on input JbKP , JcKP , obtaining
Jb̃KP , and then they execute the PtE gate on this encryption to obtain Jb̃ mod qKG. In order
to ensure that this optimization works, we need that b̃ ≡ by + cz mod q really holds, and more
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generally that the value b̃ computed in the first phase does not exceed ms. Indeed, the value b̃
computed in phase 1 satisfies

Jb̃KP =
∏
i∈A

Jb̃iK
λA,i

P =
∏
i∈A

JbKyiλA,i

P JcKziλA,i

P =

t(
b
∑
i∈A

yiλA,i + c
∑
i∈A

ziλA,i

)
mod ms

|

P

,

where λA,i are the Lagrange coefficients and A is the set of participants that successfully executed
the first phase of Protocol 4.2.4. If b

∑
i∈A yiλA,i + c

∑
i∈A ziλA,i does not exceed ms, in phase

two this encryption is converted to an ElGamal encryption Jb̃ mod qKG with:

b̃ mod q =
(

b
∑
i∈A

yiλA,i + c
∑
i∈A

ziλA,i

)
mod ms mod q

=
(

b
∑
i∈A

yiλA,i + c
∑
i∈A

ziλA,i

)
mod q

= by + cz mod q,

where the last step follows by the construction of the shares yi and zi. Concluding, this means
that the ciphertext obtained after conversion to ElGamal encrypts by + cz mod q.
To ensure that the value b

∑
i∈A yiλA,i + c

∑
i∈A ziλA,i does not exceed ms, we need a restriction

on the involved values. We consider b, c < 2`x for some parameter `x. As the shares yi, zi, as well
as the Lagrange coefficients λA,i are computed modulo q by the construction of the distributed
key generation protocol [GJKR99], this restriction is certainly satisfied if 2 ·nq22`x+`s < ms (for `s

an additional security parameter required for the conversion from Paillier to ElGamal to function
correctly). In case this protocol is extended to l + 1 encrypted inputs, we need l ·nq22`x+`s < ms.

4.2.4 Efficiency

Firstly we consider the efficiency of the standard pet gate of Section 4.2.1. Phases 1, 2 & 4 clearly
have round complexity O(1) and broadcast complexity O(nk) (caused by the proofs of knowledge).
As phase 3 is only a threshold decryption (see Section 2.9), it has the same complexities. Thus
the complete protocol has round complexity O(1) and broadcast complexity O(nk).
The petrep gate is constructed from the pet gate and a sub-protocol having the same complexities
as threshold decryption. Therefore, this gate also has round complexity O(1) and broadcast
complexity O(nk). Also the petrepP gate has the same complexities as also the PtE gate has the
same complexities. (The reader is referred to Table 2.1 for more information about the underlying
gates.)

4.3 Modulo reduction

For some statistics such as the mean or variance, we need an integer division gate. Clearly, this
construction is for free given the existence of a modulo reduction gate: for a given x and a we
have:

xdiv a = (x− x mod a)a−1.

Our target therefore is to compute Jx mod aK. For our purposes, generally x is in encrypted form.
The value a can either be in encrypted form or in plaintext. If a is in encrypted form, the most
efficient algorithm known is a sequential protocol requiring lg x comparisons3. We only focus on
public a, as this suffices for our purposes.
We note that if the encrypted bit representation of x is unknown, no efficient solution exists for
ElGamal. Indeed, otherwise one can compute x’s least significant bit Jx0K = Jx mod 2K, which is

3For the modulus a in encrypted form, Algesheimer et al. [ACS02] constructed an algorithm, which is optimized
to constant rounds by Damg̊ard et al. [DFK+06, Sec. 7.4]. Yet the performance of this protocol is generally low,
in particular for a large number of participants, [FJ06, Ch. 8] and [Sec08, Sec. 4.6].
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4. Protocols for secure multiparty computation

hard by the DL assumption [ST06]. If the bit representation is known, a protocol of Damg̊ard et
al. [DFK+06] allows to compute Jx mod aK. We consider the protocol for the Paillier cryptosystem.

We consider input JxKP with x ∈ {0, 1}`x and a public value a such that 2`a−1 < a ≤ 2`a for
some `a, and construct a protocol for the computation of Jx mod aKP . We only consider Paillier
encryptions, and therefore the subscript ‘P ’ is omitted. Without loss of generality, we assume that
`a ≤ `x: clearly, if `a > `x then certainly a > x, in which case x mod a = x. The protocol relies
on the fact that it is unnecessary to compute the `x bits of x if the modulus a ≤ 2`a is known for
some `a ≤ `x. In particular, if a = 2`a , computing Jx mod aK can be easily done by computing
the `a least significant bits of x, as x mod a =

∑`a−1
j=0 xj2j . As in many cases `a is relatively small

compared to `x (see for instance Section 4.3.1), this reduces the costs. The protocol requires a
sub-protocol to bitwise generate a value r ∈R [0, a). We refer to this sub-protocol as the random
bitwise value generation protocol.

We recall that we have n participants (t, n)-threshold sharing the secret key for Paillier decryption,
and that the public key for the cryptosystem is (m, s), with message space Zms . We introduce a
security parameter `s, which we require to satisfy an2`x+`s < ms. We now discuss the protocol,
and its efficiency is discussed in Section 4.3.1. The reader is referred to Table 2.1 for the underlying
protocols.

Firstly, the sub-protocol for random bitwise value generation is considered. Then the modulo
reduction protocol is constructed and correctness and security are proven. In Section 4.3.1 the
efficiency is analyzed.

Protocol 4.3.1 (Random bitwise value generation). Given a publicly known value a such that
2`a−1 < a ≤ 2`a , the following protocol generates an encrypted bit representation {Jr0K, . . . , Jr`a−1K}
of r such that r ∈R [0, a). The participants Pi (i = 1, . . . , n) perform the following steps:

1. For j = 0, . . . , `a − 1, the participants jointly generate encryptions JrjK for rj ∈R {0, 1},
using `a randbit gates;

2. Using a comparison gate, J[r < a]K is computed and jointly decrypted. If [r < a] = 0, the
protocol is restarted.

The proofs of correctness and security of this protocol are straightforward. Notice that in case
a 6= 2`a , the number of restarts of the protocol is 2`a/a < 2 on average: the success probability
is a/2`a , and the number of restarts follows the geometric distribution (the participants restart
until they have success). Hence, they need 2`a/a < 2 restarts on average. We are now ready to
construct the modulo reduction protocol.

Protocol 4.3.2 (Modulo reduction (mod)). Given JxK for x ∈ {0, 1}`x and a publicly known value
a, the following protocol outputs an encryption Jx mod aK. The participants Pi (i = 1, . . . , n)
perform the following steps:

1. The participants jointly generate a random encrypted bit representation {Jr0K, . . . , Jr`a−1K}
of r ∈R [0, a), using Protocol 4.3.1. In parallel, each participant takes si ∈R {0, 1}`x+`s and
publishes Si = JsiK together with an interval proof of knowledge for relation (see Section
2.6.2)

{(Si; si) | Si = JsiK ∧ si ∈ [0, 2`x+`s)}. (4.9)

Failing participants are discarded immediately;

2. Each participant individually computes

Jx̃K ← JxKJrK−1

(
n∏

i=1

JsiK

)a

; (4.10)
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3. Using threshold decryption the participants obtain x̃, and they compute x̄← x̃ mod a;

4. Using a comparison gate the participants compute

JcK ← J[a− 1− x̄ < r]K. (4.11)

Notice that a− 1− x̄ is known in plaintext, and for r the participants know the encrypted
bit representation. In particular, the comparison gates described in Section 2.9 can be used;

5. Each participant individually computes

modP (µ)(JxK, a)← Jx̄KJrKJcK−a. (4.12)

Proposition 4.3.3 (Correctness). On input of JxK with x ∈ {0, 1}`x , and a publicly known value
a, the output in (4.12) equals Jx mod aK.

Proof. Firstly, we note that 0 ≤ x̃ < ms holds with overwhelming probability: on the one hand,
−r + a

∑n
i=1 si ≥ 0 holds with overwhelming probability, and on the other hand:

|x̃| ≤ 2`x + a + a

∣∣∣∣∣
n∑

i=1

si

∣∣∣∣∣ ≤ 2`x+1 + an2`x+`s ,

which is < ms with overwhelming probability. Secondly, observe that x̄ + r ≡ x mod a:

x̄ + r = (x̃ mod a) + r {phase 3}

=

((
x− r + a

n∑
i=1

si

)
mod ms

)
mod a + r {equation (4.10)}

=

(
x− r + a

n∑
i=1

si

)
mod a + r {0 ≤ x̃ < ms},

from which x̄ + r ≡ x mod a clearly follows. Now, the value c computed in phase 4 satisfies:

c = 0 ⇐⇒ a− 1− x̄ ≥ r ⇐⇒ x̄ + r + 1 ≤ a ⇐⇒ x̄ + r < a.

But as x̄, r ∈ [0, a), we have x̄ + r ∈ [0, 2a), and thus the output in (4.12) clearly equals x̄ +
r mod a = x mod a.

Security of the protocol is proven in light of the real/ideal-model, Section 2.3. However, we need to
adjust this model slightly using a technique of [CDN01], which is elaborated on by [ST06, GSV07].
This technique relies on ‘Yet Another Distribution’ (YAD). For a bit b ∈ {0, 1}, YADb is defined
such that for b = 0 it is perfectly indistinguishable from the distribution of ideal conversations, and
for b = 1 it is statistically indistinguishable from the distribution of real conversations. Therefore,
the real and ideal conversations are indistinguishable if and only if YAD0 and YAD1 are indis-
tinguishable. But the difference between these two distributions only depends on the encrypted
value b ∈ {0, 1}, and hence the success probability of distinguishing between YAD0 and YAD1

equals the success probability of distinguishing between J0K and J1K, which is negligible as the
Paillier cryptosystem is semantically secure (Section 2.5.3). Therefore, given two values x(0) and
x(1) drawn at random from the distributions YAD0 and YAD1, respectively, and a bit encryption
JbK, corresponding to either the ideal or real model, the real conversations need to be simulated
for encrypted input Jx(0)(1 − b) + x(1)bK. It is clear that this model is less general, but it is still
sufficiently general to fit in the framework of [CDN01], [ST06]. In this model, we now construct a
simulator that simulates Protocol 4.3.2 in a statistically indistinguishable way.

Proposition 4.3.4 (Security). On input of x(0), x(1) of length `x, JbK for b ∈ {0, 1}, and a publicly
known value a, Protocol 4.3.2 can be simulated in a statistically indistinguishable way.
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Proof. We construct a simulator for the computation of modP (µ)(JxK, a), where x = x(0)(1− b) +
x(1)b. The simulator may use the malicious parties P ′ = {P1, . . . ,Pt−1} ⊂ P as a subroutine. We
note that the random bitwise value generation protocol, Protocol 4.3.1, can be simulated on input
(JbK, r(0), r(1)) with r(0), r(1) ∈ [0, a). Moreover, threshold decryption can be simulated on input
Jx̃K, x̃ (see Section 2.5.3), and the comparison gate on input (JbK, r(0), r(1)) [GSV07].
Phase 1. The simulator takes r ∈R [0, a) and simulates phase 1 with r̃ = r̃(0)(1− b)+ r̃(1)b, where:

r̃(b) ←
(
r + x(b)

)
mod a. (4.13)

Note that the simulator knows the plaintext values r̃(b), and therefore the random bitwise value
generation can be simulated on input (JbK, r̃(0), r̃(1)). For the parallel generation of the si’s, the
simulator lets the adversary publish JsiK for i = 1, . . . , t−1, rewinding the proof (special soundness)
lets the simulator obtain si. For the participants i = t, . . . , n− 1 he executes this phase as is. For
Pn, he takes sn ∈R {0, 1}`x+`s , but he publishes Js̃nK = Js̃(0)

n (1− b) + s̃
(1)
n bK, where:

s̃(b)
n ← sn −

(
r + x(b)

)
div a. (4.14)

He simulates the proof of knowledge (4.9). By construction, r̃ and s̃n satisfy:

x− r̃ + as̃n = −r + asn. (4.15)

Phase 2. Executed as is. Note that due to (4.15) x̃ satisfies:

x̃ = x− r̃ + a
n−1∑
i=1

si + as̃n = −r + a
n∑

i=1

si.

Phase 3. Simulated on input Jx̃K and −r + a
∑n

i=1 si.
Phase 4. Simulated on input (JbK, r̃(0), r̃(1)). Notice that a− 1− x̄ is indeed known in plaintext.
Phase 5. Executed as is.
Finally, we need to prove that the simulated conversations are indistinguishable from the real
conversations. To this end, first observe that by symmetry it suffices to consider b = 0. Now,
r and r̃ are both ∈R [0, a) and thus perfectly indistinguishably. For the indistinguishability of
sn first define K := 2`x+`s . In the real conversations sn is taken from R := [0,K), and in the
simulation we have s̃n = sn − z with sn ∈R R and z := (r + x(0)) div a < 2`x a fixed value. So s̃n

is taken uniformly at random from S := [−z,K − z). Define distributions X = {x | x ∈R R} and
Y = {y | y ∈R S}. Now, the statistical distance between X and Y is the following:

2∆(X, Y ) =
∑

v∈R∪S

∣∣∣Pr(X = v)− Pr(Y = v)
∣∣∣

=
∑

v∈[−z,0)

Pr(Y = v) +
∑

v∈[0,K−z)

∣∣∣Pr(X = v)− Pr(Y = v)
∣∣∣+ ∑

v∈[K−z,K)

Pr(X = v)

= z · 1
|S|

+ (K − z) · 0 + z · 1
|R|

= 2z/K,

which is negligible in `s as z < 2`x . This completes the simulation, and by construction of the
protocol (Proposition 4.3.3) the outcome in phase 5 indeed satisfies x̄ + r̃ mod a = x mod a.

4.3.1 Efficiency

Protocol 4.3.1 consists of `a random bit generations and one comparison gate on bit representa-
tions of length `a and this protocol needs to be executed < 2 times on average. Following Table
2.1, the broadcast complexity of this protocol varies between O(nk`a) (with round complexity
O(n)) and O(n2k`a) (in constant rounds).
The modulo reduction protocol, Protocol 4.3.2, requires one execution of the random bitwise
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value generation protocol, and moreover needs one comparison on bit representations of length
`a. Therefore, the modulo reduction protocol has average broadcast complexity varying between
O(nk`a) (in O(n) rounds) and O(n2k`a) (in constant rounds).
In [DFK+06], Damg̊ard et al. construct a modulo reduction gate for verifiable secret sharing. The
threshold homomorphic encryption analogue of this gate is less efficient than the one proposed in
this section. In their proposal, they mainly need a bitrep(`x) gate and `x − 1 parallel comp(`x)
gates, resulting in a broadcast complexity varying between O(nk`2x) and O(n2k`2x) (with round
complexities O(n + `x) and O(1), respectively). Even stronger however, in many practical ap-
plications of this protocol the value `a is rather small compared to `x: consider for example a
scenario where the average fortune of 100 millionaires is securely computed. In this case `a = 7,
while `x = 37 but needs to be extended to 47 to cover billionaires as well4. Note that Damg̊ard et
al.’s construction requires to compute the complete bit representation of x, while the idea of the
proposed scheme relies on the form of a, as mentioned before.
Finally, one might want to skip the restriction that r needs to be less than a (which for Protocol
4.3.2 concretely means that in the execution of Protocol 4.3.1 phase 2 is omitted). In particular,
the protocol is continued with r ∈R [0, 2`a) instead, but still with the same x̃ in (4.10). Conse-
quently, either phase 4 requires two bit addition circuits or phase 5 requires two comparisons, in
both cases costs are decreased. It is however not known if x is sufficiently hidden in x − r + as
then.

4.4 Sorting

Some statistics, for example the median and the MAD (median absolute deviation), can be com-
puted by using a sorting gate. Also the range of l items, x(l)−x(1), is an interesting value, but the
computation of this value does not need a sorting gate: even the best sorting gate around needs
O(l lg l) comparisons, while one can simply find the maximum value using a play-off format of l−1
comparisons. Much study has been done on sorting protocols over plain values, and although there
are many efficient gates around (merge, heap- and quicksort for just to mention some), these are
not suited for secure multiparty computation. Indeed, their running time depends on the initial
order of the list, through which information about the plaintexts leaks.

Yet there is a possibility. A well-known way of sorting is using a sorting network. The idea of a
sorting network is understandably depicted in Figure 4.2 [Knu98]: vertical connections represent
comparisons, and for each comparison the two values x0 and x1 are swapped if x0 > x1.

Figure 4.2: A sorting network. Connected wires are compared and interchanged if necessary.

The most efficient among all sorting network algorithms is the so-called ‘odd-even mergesort’ by
Batcher [Bat68]. On input of l data items, it needs O(l(lg l)2) comparisons in O((lg l)2) rounds.
The idea for the multiparty gate is that the n participants P jointly execute the algorithm by
Batcher, and use a swap gate for each comparison. This swap gate can be constructed as follows
(` denotes the bit length of the encrypted values). We recall that we have n participants (t, n)-
threshold sharing the secret key for the encryption scheme (either ElGamal or Paillier), and that
JxKb(`) denotes the set {Jx0K, . . . , Jx`−1K} of encrypted bits of x.

4For simplicity we assume that the fortune of a millionaire is upper bounded by one billion. Now, the average
is computed as (x1 + . . . + x100)/100, where xi is the fortune of millionaire i. In the notation of the protocol, we
have x =

P100
i=1 xi and a = 100. Thus, `x = 37 and `a = 7.

45



4. Protocols for secure multiparty computation

Protocol 4.4.1 (Sorting two encryptions (swap)). Given (JxKb(`), JyKb(`)), the following protocol
outputs encryptions (Jmin{x, y}Kb(`), Jmax{x, y}Kb(`)). The participants Pi (i = 1, . . . , n) perform
the following steps:

1. The participants jointly compute c← comp(JxKb(`), JyKb(`));

2. The participants jointly compute sj ← Jxj − yjK ∗ c for j = 0, . . . , `− 1;

3. The participants individually simultaneously compute Jx̄jK ← sjJyjK and JȳjK ← s−1
j JxjK for

j = 0, . . . , `− 1 and output (Jx̄Kb(`), JȳKb(`)).

We note that the protocol is correct: if x ≥ y then c = J0K and hence the output is (JyKb(`), JxKb(`)),
and otherwise nothing changes. Security follows from the security of the underlying gates. We
note that phases 2 & 3 are done for each bit j = 0, . . . , `− 1 as we prefer the output to be in bit
representation as well.

4.4.1 Efficiency

For complexity of the swap gate, we see that phase 1 is just one comparison (see Table 2.1), and
phase 3 is trivial. Phase 2 involves ` multiplication gates, but they have a multiplier in common.
This makes phase 2 almost as efficient as one normal multiplication gate, but now with broad-
cast complexity multiplied by `. This results in broadcast complexity O(nk`) in constant rounds.
Consequently, the sorting protocol has broadcast complexity O(l(lg l)2nk`) in O((lg l)2) rounds
(remember that the sorting algorithm needs O(l(lg l)2) comparisons and O((lg l)2) rounds). Fi-
nally, if the encryptions are ElGamal, the round complexity needs a factor n due to the conditional
gate. (The reader is referred to Table 2.1 for more information about the underlying gates.)

4.5 Multiparty computation of statistics

It turns out that using the constructions of the modulo reduction gate and the sorting gate, the
participants P can do powerful statistical analysis. We briefly discuss the main statistics: the
mean, variance, median, MAD, range and percentile. For one of them we need an implementation
of the abs function, computing J|x − y|K from JxK, JyK. This can be easily computed using one
comparison: J|x − y|K ← Jy − xK ∗ J2[x < y] − 1K. Now it is clear that the gates in Table 2.1
together with the modulo reduction and sorting gates of Sections 4.3 and 4.4 suffice to construct
secure protocols for the following functions5. All functions below have input (Jx1K, . . . , JxlK) =: X
for some l. Division is well-defined due to Section 4.3, and we use the notation ÷.

mean : X 7→ Jx̄K =
s

x1 + · · ·+ xl

l

{
,

var : X 7→ Jσ2K =

t
1

l − 1

l∑
i=1

(xi − x̄)2
|

,

med : X 7→ Jx̃K =
s

1
2
(x(dl/2e) + x(bl/2+1c))

{
,

MAD : X 7→
r

med
(
J|x1 − x̃|K, . . . , J|xl − x̃|K

)z
,

range : X 7→ Jx(l) − x(1)K,

percentile : (X, k) 7→

t
100
l

l∑
i=1

[xi ≤ xk]

|

.

5Although most of the functions can only be constructed for Paillier encryptions or for ElGamal encryptions
with known bit representation.
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4.5. Multiparty computation of statistics

As an example, we show how participants P = {P1, . . . ,Pn}, who (t, n)-threshold share secret key
µ for the Paillier cryptosystem with public key (m, s), can compute the variance given l Paillier
encryptions {Jx1K, . . . , JxlK}.

Example 4.5.1. Let X := {Jx1K, . . . , JxlK} be a set of l Paillier encryptions, such that for each
i = 1, . . . , l we have xi < 2`x . The participants P want to compute var(X). Notice that this
function is equivalent to computing

var(X) =

t
1

l − 1

l∑
i=1

x2
i −

l

l − 1
x̄2

|

=

t
1

l(l − 1)

(
l

l∑
i=1

x2
i −

( l∑
i=1

xi

)2
)|

.

We denote V := l
∑l

i=1 x2
i − (

∑l
i=1 xi)2. Now, the participants can compute var(X) as follows.

1. Using l+1 multiplication gates (see Table 2.1), the participants jointly compute J(
∑l

i=1 xi)2K
and Jx2

i K (i = 1, . . . , l);

2. Each participant individually computes

JV K ←

(
l∏

i=1

Jx2
i K

)l

·

t( l∑
i=1

xi

)2
|−1

;

3. The participants jointly compute and output JV mod l(l − 1)K ← modP (µ)(JV K, l(l − 1))
using Protocol 4.3.2.

From this output, the ‘remainder after division’, the encryption var(X) = JV div l(l− 1)K is easily
computed. In order for the modulo reduction protocol to succeed we need nl422`x+`s < ms, where
`s is a security parameter. The complete protocol has broadcast complexity O(lnk) and round
complexity O(n).
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5. Certificate schemes:
introduction

Digital certificate schemes provide certification authorities with the possibility to issue certificates,
for instance digital driving licenses, to users. Users subsequently show these certificates to ver-
ifiers. A certificate generally certifies a list of attributes, like ‘name, date of birth, etc.’. Main
issues concerning certificate schemes are security and privacy, the former meaning that the scheme
should be resistant against any possible cheating behavior (like attempts at forging a certificate),
and the latter that executions cannot be linked, and that no private information leaks. For a
more extended discussion on certificates, the reader is referred to Sections 2.8 and 3.2.1. In the
remainder of this thesis, in line with Chapter 3 a certificate scheme will be extended so that it can
be easily combined with multiparty computation schemes. In particular, the protocols mentioned
in the architectural design in Section 3.2.3 are constructed for one particular certificate scheme
so that all transitions in Figure 3.2 are well-defined. As mentioned in Section 3.4, the underlying
scheme is chosen to be a discrete log based scheme of Brands [Bra99].

We recall some properties discussed in Section 3.4. Firstly, we consider the protocols for one user
U , one certification authority CA and one verifier V. The certification authority is a set of n
multiparty computation parties, CA = P . Moreover, certificates issued by this authority include
l attributes. Brands introduced several discrete log based certificate schemes, involving a group
G = 〈g〉 of prime order q of size at least security parameter k, and all based on the DLREP
assumption (Assumption 2.2.4). Informally, this assumption states that given g1, . . . , gl ∈R G, it
is hard to find values x1, . . . , xl ∈ Zq such that gx1

1 · · · g
xl

l = 1, except for the trivial solution.

Based on the DLREP assumption, Brands introduced a ‘standard’ certificate scheme [Bra99,
Fig. 4.7] where both the user and the certification authority need knowledge of the attributes be-
fore starting the issuing execution, a witness-indistinguishable extension to this standard scheme,
which will not be considered, and a third scheme that is based on the blind Chaum-Pedersen
signature protocol in Figure 2.4 [Bra99, Fig. 4.10], and for which CA need not know the plain-
text attributes. The Chaum-Pedersen based certificate scheme is less efficient than the standard
scheme, the certificates are larger, and moreover more pre-computation is required. Yet, the
property that the CA need not know the attributes offers many advantages: the scheme is very
useful for recertification, and in particular even the user does not need to know the attributes for
certificate issuance [Bra99, Sec. 4.5.2]. The latter property turns out to be useful for constructing
scheme C, the encrypted certificate scheme. In particular, the fact that in the standard scheme
both U and CA need knowledge of the plain attributes before starting the issuing protocol would
exclude the existence of protocol B and scheme C, or would make their constructions a lot more
complicated. Therefore, the extensions that are introduced in Section 3.2.3 and discussed in this
thesis, are based on Brands’ Chaum-Pedersen based certificate scheme. For convenience, as of
now it will simply be called ‘Brands’ certificate scheme’.

The extensions to Brands’ certificate scheme are covered in Chapters 5-7. In Section 5.1, the
formal definition of certificate schemes of Brands is reformulated and formalized, and extended
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5. Certificate schemes: introduction

to a definition for ‘encrypted certificate schemes’ (scheme C from Section 3.2.3). Brands’ cer-
tificate scheme is introduced in Section 5.2. Chapters 6 and 7 discuss the extensions to Brands’
scheme, namely the three components A-C from Section 3.2.3 for the ElGamal resp. the Paillier
cryptosystem. Finally, some remarks and an efficiency analysis are included in Chapter 8.

5.1 Definition

Intuitively, a certificate scheme is constituted of three protocols and algorithms. Firstly, a key
generation algorithm is needed for constructing public and secret keys. Secondly and thirdly, an
issuing and a verification protocol are needed. A certificate scheme needs to satisfy security and
privacy. Roughly stated, security means that a user cannot ‘forge’ certificates, either by coming
up with K + 1 certificates after K ≥ 0 issuing executions1, or by coming up with a certificate
on a different attribute list. Even stronger, the user should not be able to convince the verifier
with a corrupted certificate. Privacy is covered by requiring that no different protocol executions
can be linked and that secret values do not leak. Now, it also becomes clear why two different
definitions are required, one for the standard schemes where U learns the plaintext attributes,
and one for the schemes where U only learns encryptions of the attributes: following Brands, in
the first case the verification protocol is a zero-knowledge protocol for proving knowledge of the
attributes, but this clearly does not work in the second case as U does not know the attributes
at all. Moreover, as the second involves encryptions, it turns out that in its verification protocol
also the verifier needs knowledge of some secret values, and therefore the definition of Σ-protocols
would not suffice anymore.

We follow the definition by Brands, but we will deviate from his definition. This is done for several
reasons. Firstly, we think that the new definition is better suited for constructing the extended
definition of ‘encrypted certificate schemes’. Secondly, Brands’ definition [Bra99, Def. 4.1.1] is
layered in the sense that the definition is founded on previous definitions. Our Definition 5.1.1
is stand-alone, which makes it easier to understand, and better comparable with the definition
of the encrypted variant, Definition 5.1.2. Finally, Brands’ definition only covers the issuing
protocol, ours includes the specifications for the verification protocol as well. Moreover, the
reformulated definition is more formal compared to Brands’ definition. After Definition 5.1.1, the
new definition will be compared with Brands’ definition. Following Brands, we will call the two
schemes ‘restrictive blind certificate schemes’ and ‘restrictive blind encrypted certificate schemes’,
respectively. These two definitions will be compared at the end of this section.

Definition 5.1.1 (Restrictive blind certificate scheme). A restrictive blind certificate scheme for
a triple of parties (CA,U ,V), also called the ‘certification authority’, ‘user’ and ‘verifier’, consists
of the following components:

• ‘keygen’ is an algorithm for CA that on input of security parameter k outputs a public/secret
key pair (pk, sk), where pk includes the system parameters and a description of an attributes
set S;

• ‘issue’ is a protocol for (CA,U) that on input of pk, together with CA’s private input sk and
U ’s private input s∗ ∈ S, called the ‘attribute list ’, outputs a certificate (p, s, σ(p)) for the
user. This certificate satisfies that σ(p) is a signature on p and that inv(s) = s∗, where inv
is some polynomial time computable non-constant function, and that p is a public key part
for which s is a secret key. (A part of) s∗ might be known to CA before the issuing starts;

• ‘verify’ is a protocol for (U ,V) that on input of pk and U ’s input (p, s, σ(p)) outputs a bit,
representing either acceptance or rejection.

These three components satisfy the following properties:
1This property of unforgeability trivially does not apply to certificate schemes with multi-show certificates.

Brands’ scheme, however, works with one-show certificates.
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5.1. Definition

• (Completeness.) For any s∗ ∈ S and (CA,U ,V) following the protocol, the issuing protocol
on input of s∗ results in a valid certificate for U . More formally, for any s∗ ∈ S we have

Pr
(
1← verifyU(p,s,σ(p));V(pk)

∣∣∣ (pk, sk)← keygenCA(k);

(p, s, σ(p))← issueCA(sk);U(s∗)(pk)
)

= 1;

• (Privacy for U .) For any two issued certificates, if U followed the protocol, a malicious CA′
cannot distinguish between the public key parts of these certificates. More formally, for any
distinguisher CA′ there exists a negligible ε(k), such that for any s∗0, s

∗
1 ∈ S we have

Pr
(
b← CA′(pk, sk, (p, σ(p))b, (p, σ(p))1−b, view0, view1)

∣∣∣ (pk, sk)← keygenCA′(k);

b ∈R {0, 1}; (p, s, σ(p))j ← issueCA′(sk);U(s∗j )(pk) for j = 0, 1
)

<
1
2

+ ε(k),

where viewj denotes CA′’s view on the j-th issuing execution (j = 0, 1), i.e. all values CA′
sees during the execution (see also Section 2.1);

• (One-more unforgeability.) For any (pk, sk) ← keygenCA(k) the following holds. Suppose
that for any K ≥ 0, malicious U ′ can perform K arbitrarily interleaving certificate queries
on adaptively chosen attribute lists s∗j ∈ S (j = 1, . . . ,K). Then, the probability that U ′
outputs K + 1 distinct certificates is negligible in k. More formally, there exists a negligible
ε(k), such that for any K ≥ 0 we have

Pr
(
∀K+1

i=1

[
1← verifyU ′((p,s,σ(p))i);V(pk)

] ∣∣∣ (pk, sk)← keygenCA(k);

{(p, s, σ(p))i}K+1
i=1 ← (U ′)issueCA(sk);U′(·)(pk)

)
< ε(k),

where U ′ can query its oracle at most K times;

• (Blinding-invariance unforgeability.) For any (pk, sk) ← keygenCA(k) the following holds.
Suppose that for any K ≥ 0, malicious U ′ can perform K arbitrarily interleaving certificate
queries on adaptively chosen attribute lists s∗j ∈ S (j = 1, . . . ,K), and that U ′ outputs L

certificates ((p, s, σ(p))i)L
i=1 for some L ≤ K. Then, with overwhelming probability for each

i there exists a j such that inv(si) = s∗j (for the function inv described in the definition
of the issuing protocol), and if moreover for multiple values of i that attribute list inv(si)
occurs, then for at least as many values j that list occurs as well. More formally, there exists
a negligible ε(k), such that for any K ≥ L ≥ 0 we have2

Pr
(
∀L

i=1

[
1← verifyU ′((p,s,σ(p))i);V(pk)

]
∧ R 6⊆ {s∗j}Kj=1

∣∣∣ (pk, sk)← keygenCA(k);

R := {inv(si)}Li=1 a multiset;(
{(p, s, σ(p))i}Li=1; {s∗j}Kj=1

)
← (U ′)issueCA(sk);U′(·)(pk)

)
< ε(k),

where U ′ can query its oracle at most K times and {s∗j}Kj=1 is the multiset of queries by U ′;

• (Secure verification.) For any (pk, sk) ← keygenCA(k) and any certificate (p, s, σ(p)), the
protocol verify is a Σ-protocol for relation R = {(p, σ(p); s)}, where U pre-sent (p, σ(p)) to
V (possibly together with additional information).

2We recall from general literature that a multiset is a set in which elements may occur multiple times.
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5. Certificate schemes: introduction

Comparison of Definition 5.1.1 with Brands’ [Bra99, Def. 4.1.1]. We briefly discuss
the similarities and differences between Brands’ definition and ours. First of all, it is clear that
the components and security requirements in our definition are similar to the ones described in
the corresponding definitions by Brands [Bra99, Defs. 4.1.1, 2.6.1, 2.5.1, 2.4.3, 2.4.1]. Moreover,
these are indeed the properties required for a certificate scheme to offer ‘security’ and ‘privacy’.
The two unforgeability statements cover any possible forgery: a forger can either construct more
certificates than he is issued on (one-more forgery), or less but on different attributes (blinding-
invariance unforgeability). Also, a user cannot mislead a verifier with an incorrect certificate, by
the special soundness property of the Σ-protocol. Privacy for all participants is also guaranteed:
different executions cannot be linked by privacy for U , and in the verification protocol the secret
part of a certificate does not leak by the honest-verifier zero-knowledge property of the Σ-protocol.
Also the secret key of CA does not leak, since otherwise forgeries would be possible.

Yet there are some differences between the two definitions, apart from the construction (Brands
used instance generators, we use a key generation algorithm) and notations. Some observations:

– (Privacy for U .) Brands’ definition is stronger, saying that any issued public key part (p, σ(p))
and any view of CA′ on an execution are statistically independent. We formalized it and
switched over to indistinguishability (a generalization already suggested by Brands);

– (One-more unforgeability.) The definition is the same. Note that also in our definition the
user can adaptively choose the attributes he will be issued on;

– (Blinding-invariance unforgeability.) Similar to Brands’ definition, this second part of the
definition may seem overly complex, but as we will explain, it is needed to capture all pos-
sible forgeries not being one-more forgeries. We note that, although not immediately clear,
this definition drastically simplifies Brands’ definition by means of using ‘multisets’, while
still offering the same security property. Back to why this complex definition is necessary:
suppose we would define this type of unforgeability roughly as ‘given K issuing executions,
it is hard to output any certificate on a different attribute list’. This would mean that the
user ‘sacrifices’ the K issuing executions for one different certificate, but it does for instance
not cover the case where a user is issued K certificates on different attribute lists (s∗j )

K
j=1,

and outputs 2 different certificates on s∗1;

– (Secure verification.) We use the notion of Σ-protocols, which is stronger than the more
general definition of honest-verifier zero-knowledge proof of knowledge [Bra99, Def. 2.4.3],
but the notion of Σ-protocols suffices for the security of Brands’ scheme of Section 5.2 and
our schemes in Chapters 6 and 7.

Definition 5.1.2 (Restrictive blind encrypted certificate scheme). A restrictive blind encrypted
certificate scheme for a triple of parties (CA,U ,V), also called the ‘certification authority’, ‘user’
and ‘verifier’, consists of the following components:

• ‘keygen’ is an algorithm for CA that on input of security parameter k outputs a public/secret
key pair (pk, sk), where pk includes the system parameters. It also includes a public/secret
key pair for an encryption scheme and a description of an encrypted attributes set ES;

• ‘issue’ is a protocol for (CA,U) that on input of pk and p∗ ∈ ES, called the ‘encrypted
attribute list ’, together with CA’s private input sk, outputs a certificate (p, s, σ(p)) for the
user. This certificate satisfies that σ(p) is a signature on p and that inv(p) l p∗, where inv
is some polynomial time computable non-constant function, and that p is a public key part
for which s is a secret key;

• ‘verify’ is a protocol for (U ,V) that on input of pk and U ’s input (p, s, σ(p)) outputs a bit,
representing either acceptance or rejection. V might have secret input as well;

These three components satisfy the following properties:
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5.1. Definition

• (Completeness.) For any p∗ ∈ ES and (CA,U ,V) following the protocol, the issuing protocol
on input of p∗ results in a valid certificate for U . More formally, for any p∗ ∈ ES we have

Pr
(
1← verifyU(p,s,σ(p));V(pk)

∣∣∣ (pk, sk)← keygenCA(k);

(p, s, σ(p))← issueCA(sk);U (pk, p∗)
)

= 1;

• (Privacy for U .) For any two issued certificates, if U followed the protocol, a passively
malicious p.p.t. CA′ cannot distinguish between the public key parts of these certificates.
More formally, there exists a negligible ε(k), such that for any p∗0, p

∗
1 ∈ ES we have

Pr
(
b← CA′(pk, sk, (p, σ(p))b, (p, σ(p))1−b, view0, view1)

∣∣∣ (pk, sk)← keygenCA′(k);

b ∈R {0, 1}; (p, s, σ(p))j ← issueCA′(sk);U (pk, p∗j ) for j = 0, 1
)

<
1
2

+ ε(k),

where viewj denotes CA′’s view on the j-th issuing execution (j = 0, 1), i.e. all values CA′
sees during the execution (see also Section 2.1);

• (One-more unforgeability.) For any (pk, sk) ← keygenCA(k) the following holds. Suppose
that for any K ≥ 0, malicious U ′ can perform K arbitrarily interleaving certificate queries
on encrypted attribute lists p∗j ∈ ES (j = 1, . . . ,K). Then, the probability that U ′ outputs
K + 1 distinct certificates is negligible in k. More formally, there exists a negligible ε(k),
such that for any K ≥ 0 and for any p∗j ∈ ES (j = 1, . . . ,K) we have

Pr

(
∀K+1

i=1

[
1← verifyU ′((p,s,σ(p))i);V(pk)

] ∣∣∣∣ (pk, sk)← keygenCA(k);

{(p, s, σ(p))i}K+1
i=1 ← U

′
(
{issueCA(sk);U ′(pk, p∗j )}Kj=1

))
< ε(k);

• (Blinding-invariance unforgeability.) For any (pk, sk) ← keygenCA(k) the following holds.
Suppose that for any K ≥ 0, malicious U ′ can perform K arbitrarily interleaving certificate
queries on encrypted attribute lists p∗j ∈ ES (j = 1, . . . ,K), and that U ′ outputs L cer-
tificates ((p, s, σ(p))i)L

i=1 for some L ≤ K. Then, with overwhelming probability for each i
there exists a j such that inv(pi) l p∗j (for the function inv described in the definition of the
issuing protocol), and if moreover for multiple values of i, inv(pi) encrypts the same attribute
list, then for at least as many values j, p∗j encrypts that list as well. More formally, there
exists a negligible ε(k), such that for any K ≥ L ≥ 0 and for any p∗j ∈ ES (j = 1, . . . ,K)
we have

Pr

(
∀L

i=1

[
1← verifyU ′((p,s,σ(p))i);V(pk)

]
∧ R 6⊆ Q

∣∣∣∣ (pk, sk)← keygenCA(k);

R := {D(inv(pi))}Li=1 and Q := {D(p∗j )}Kj=1 multisets;

{(p, s, σ(p))i}Li=1 ← U ′
(
{issueCA(sk);U ′(pk, p∗j )}Kj=1

))
< ε(k);

• (Secure verification.) For any (pk, sk) ← keygenCA(k) and any certificate (p, s, σ(p)), the
protocol verify is a secure two-party protocol for proving knowledge of s such that (p, s, σ(p))
is a valid certificate, where U pre-sent (p, σ(p)) to V (possibly together with additional
information).

Comparison of Definitions 5.1.1 and 5.1.2. There are three major differences between the
schemes. Firstly, for the privacy for U of encrypted certificate schemes of Definition 5.1.2 the
certification authority may only be passively malicious and operate in probabilistic polynomial
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time. These requirements are trivially needed since the certificates involve encryptions: if CA′
was actively malicious, he can use his decryption key to decrypt inv(pb) and p∗0, in which case he
outputs b = 0 if these encrypt the same values, and b = 1 otherwise. Also, if CA′ would have
unlimited computer power the encryption scheme is insecure and he can apply the same attack.
We note that these restrictions are not harmful: in particular, as we require that CA = P is a set
of multiparty computation participants, the passively adversarial behavior is naturally enforced.
Second major difference is in the way attribute lists are defined and processed. In Definition 5.1.2,
attributes are in encrypted instead of plaintext form (to emphasize this difference, they are called
encrypted attribute lists and the notation ES is used instead of S). As a consequence, in general
also the certification authority knows p∗ and it belongs to the public key part. This leads to a
re-definition of how the attribute list is encapsulated in the final public key part p, as now the
encryptions need to be re-blinded (to maintain unlinkability). This explains the changes in the
definition of the issuing protocol. Consequently, for blinding-invariance unforgeability it should
hold that each p encapsulates a blinded version of some p∗. An important difference is that in
Definition 5.1.2 for unforgeability a forger is not anymore allowed to query the issuing protocol on
adaptively chosen encrypted attribute lists. This is done for facilitating the proof of Proposition
6.4.5: the construction of this proof requires a simulator to have knowledge of the encrypted values
in the encrypted attribute list, but for the ElGamal encryption scheme under the DL Assumption
2.2.1 this is hard to achieve, unless the simulator can construct the encryptions himself. Note that
U choosing the attributes himself contradicts the idea of encrypted certificates. Moreover, this
definition suffices for our purposes as in our scenario the CA himself comes up with an encryption
to be certified.
Finally, as in the new definition the verifier may have secret input as well, it does not suffice
to state that the verification protocol should be a Σ-protocol. See also Section 6.4.5 for a more
extended discussion.

5.2 Brands’ certificate scheme

In this section, Brands’ certificate scheme is introduced. It extends the blind Chaum-Pedersen
signature scheme as given in Figure 2.4. The scheme is discussed very briefly, the reader is referred
to [Bra99] for a more extended discussion.

5.2.1 Key generation

On input of security parameter k, the certification authority obtains public key (q, g), with q > 2k,
and (h0, g1, . . . , gl), together with secret key x0, (yi)

l
i=1 ∈R Zq satisfying

h0 = gx0 , ∀l
i=1 : gi = gyi .

The attributes set is (Zq)l. A certificate on an attribute list s∗ = (xi)
l
i=1 ∈ (Zq)l is a tuple

(h′, (xi)
l
i=1 , α1, z

′, c′0, r
′
0) satisfying:

c′0 = H(h′, z′, gr′0h
−c′0
0 , (h′)r′0(z′)−c′0) and (gx1

1 · · · g
xl

l h0)α1 = h′. (5.1)

Here, p = h′ is the public key part with corresponding secret key part s = ((xi)
l
i=1 , α1), in light

of Definition 5.1.1. The element h′ is required to be different from 1. If in the issuing it turns out
that h′ = 1, it is declared invalid and the protocol is restarted.

5.2.2 Certificate issuance

On input of the attribute list s∗, firstly the value h = gx1
1 · · · g

xl

l h0 is constructed (it may either be
constructed by CA, or U , or jointly). Now, the issuing protocol is given in Figure 5.1. In case of
multiple issuing executions on the same encrypted attribute list, the value z needs to be computed
only once.
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5.2. Brands’ certificate scheme

U CA
(knows: h) (knows: h)

z ← hx0

w0 ∈R Zq

a0 ← gw0 , b0 ← hw0
z;a0,b0←−−−−−−−−−−−−−

α1 ∈R Z∗
q , α2, α3 ∈R Zq

h′ ← hα1 , z′ ← zα1

a′0 ← hα2
0 gα3a0

b′0 ← (z′)α2(h′)α3bα1
0

c′0 ← H(h′, z′, a′0, b
′
0)

c0 ← c′0 + α2 mod q c0−−−−−−−−−−−−−→
r0 ← c0x0 + w0 mod qr0←−−−−−−−−−−−−−

a0
?= gr0h−c0

0 , b0
?= hr0z−c0

r′0 ← r0 + α3 mod q

Figure 5.1: Brands’ issuing protocol [Bra99].

5.2.3 Certificate verification

For a certificate (h′, (xi)
l
i=1 , α1, z

′, c′0, r
′
0), the verification protocol should be a Σ-protocol for prov-

ing knowledge of ((xi)
l
i=1 , α1), after the user sent (h′, z′, c′0, r

′
0) to the verifier. Brands already

recognized the usefulness of selective disclosure. His thesis includes an extended study on how to
disclose several relations on (xi)

l
i=1 [Bra99, Ch. 3], like how to show that 37x1 + x2 ≡ 5x3 mod q

without disclosing (x1, x2, x3). We will not consider these types of disclosure, we only show how
the user can disclose x1 and prove knowledge of all other values. Note that a protocol for disclos-
ing nothing (the intended protocol at the beginning of this paragraph) is a simplification of the
protocol to be constructed.

So the user needs to prove that he knows ((xi)l
i=2, α1) such that (5.1) holds. As (h′, z′, c′0, r

′
0) are

sent to V, the equality c′0 = H(h′, z′, gr′0h
−c′0
0 , (h′)r′0(z′)−c′0) can be easily checked publicly. So U

and V execute a Σ-protocol for relation

{(h′, x1; (xi)l
i=2, α1) | gx1

1 h0 = (h′)α−1
1 g−x2

2 · · · g−xl

l ∧ α1 6= 0}. (5.2)

Note that indeed α1 6= 0 should hold as h′ 6= 1. The Σ-protocol is given in Figure 5.2.
The protocol can be made non-interactive by setting c ← H(a), where a denotes all values sent
in the first round. Yet the H must include an extra value (like a unique number) to prevent
replaying by V. As of now, as the equality c′0 = H(h′, z′, gr′0h

−c′0
0 , (h′)r′0(z′)−c′0) can be easily

checked publicly, it is assumed to hold. Moreover, the public values h′, z′, c′0, r
′
0 are assumed to be

sent to V before the verification starts.

5.2.4 Security analysis

[Bra99, Sec. 4.5.2] very briefly discusses the security of this scheme. First of all it is stated that
x0 is believed to be securely hidden. In light of Definition 5.1.1: completeness, privacy for U ,
and the proof that Figure 5.2 is a Σ-protocol are trivial, and simplifications of proofs in Section
6.4. One-more unforgeability is implied by the assumed unforgeability of the Chaum-Pedersen
signature scheme (see Section 2.7), the prove is similar to the proof of Proposition 6.4.5. Blinding-
invariance unforgeability is assumed, Assumption 5.2.1 [Bra99, Ass. 4.4.5].
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U V
(knows: h′, z′, c′0, r

′
0; (xi)

l
i=1 , α1)

u2, . . . , ul, uα ∈R Zq

ah ← (h′)uαg−u2
2 · · · g−ul

l ah;h′,z′,c′0,r′0,x1−−−−−−−−−−−−−→
c ∈R Zqc←−−−−−−−−−−−−−

(ri ← ui + cxi mod q)l
i=2

rα ← uα + cα−1
1 mod q

(ri)
l
i=2,rα−−−−−−−−−−−−−→

c′0
?= H(h′, z′, gr′0h

−c′0
0 , (h′)r′0(z′)−c′0)

(h′)rαg−r2
2 · · · g−rl

l
?= (gx1

1 h0)cah

Figure 5.2: Brands’ verification protocol [Bra99].

Assumption 5.2.1. If U ′ produces, after K ≥ 0 arbitrarily interleaving executions of the pro-
tocol in Figure 5.1 on adaptively chosen (xji)

l
i=1 (j = 1, . . . ,K) a tuple (h′, (xi)

l
i=1 , α1, z

′, c′0, r
′
0),

then either this tuple does not satisfy (6.2), or with overwhelming probability there exists a
j ∈ {1, . . . ,K} such that (xi)

l
i=1 = (α1xji mod q)l

i=1.
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6. Certificate schemes: ElGamal
extensions

In this chapter the certificate scheme of Brands of Section 5.2 [Bra99, Sec. 4.5.2] is combined with
the ElGamal cryptosystem, in such a way that all transitions in Figure 3.2 are possible. More
precisely, components A-C of Section 3.2.3 are constructed. We recall these extensions:

A: (Encrypted disclosure of certificates.) In Brands’ scheme, an option to disclose plaintext
attributes in the certificate verification is included. This can be easily extended to an ‘en-
crypted disclosure’, where the user discloses the attributes in encrypted form. This is useful
if the verifier is a set of multiparty computation participants (V = P ). Its construction is
based on composing different Σ-protocols;

B: (Attribute hiding issuance.) We can consider the case where CA = P obtains many encryp-
tions (e.g. with the ‘encrypted disclosure’ method) and executes some multiparty computa-
tion protocol on it. But different to the standard interpretation of the idea of multiparty
computation, now CA not only outputs the encrypted result, but certifies it as well. More
abstractly: CA possesses an encryption c (with the plaintext unknown), and wants to certify
it. In this scenario, U still learns the attributes;

C: (Encrypted certificate scheme.) In contrast to protocol B, in this case even U does not learn
the plaintext. So CA issues a certificate on an encryption to the user, and the user shows the
certificate and the encryption to the verifier, so that the scheme is indeed a restrictive blind
encrypted certificate scheme (we need the extended Definition 5.1.2). It turns out that the
condition CA = V is required1.

Protocols A and B and scheme C are discussed in Sections 6.1-6.3, respectively, and an extensive
security analysis of scheme C is considered in Section 6.4. In Section 8.1.1 we will discuss in what
sense the restrictions ‘P = CA’, ‘P = V’ and ‘P = CA = V’ constrain the generality of the scheme.
We stress that this chapter only considers the ElGamal cryptosystem. Chapter 7 discusses the
components in case the Paillier cryptosystem is utilized.

For the ElGamal encryption scheme, we assume that the key generation is implicitly included in
the key generation algorithm of the certificate scheme. We work over the same group used for the
certificate scheme, G = 〈g〉 of prime order q > 2k for security parameter k. The public key for
encryption is f , corresponding to secret key λ. This secret key is shared among the n multiparty
computation participants P , such that t out of n parties can decrypt. Each participant holds
polynomial share λi. As this chapter is only concerned with ElGamal encryptions, these will be
denoted by JxK (without subscript ‘G’). We recall from Section 3.4 that in case the participants P
jointly act as a verifier or certification authority, we just consider them as one player. In particular,
if for instance P = CA, the secret keys obtained from the key generation algorithm are implicitly
(t, n)-threshold shared. To this end, the same distributed key generation protocol as for sharing
λ can be used (Section 2.5.1).

1If we facilitate the scheme so that CA does learn the plaintext attributes, but still U does not, it turns out that
we do not need this restriction. See Section 8.1.1.
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6. Certificate schemes: ElGamal extensions

6.1 Protocol A: encrypted disclosure

As an extension to the verification protocol in Section 5.2, the user discloses encryptions of the
attributes. It turns out that this extension can be constructed by only making modifications in
the verification protocol, Figure 5.2. Without loss of generality we assume the same setting as in
Section 5.2.3: the user has a certificate (h′, (xi)

l
i=1 , α1, z

′, c′0, r
′
0) satisfying (5.1), and he discloses

x1 in encrypted form and keeps the other attributes secret. A protocol for disclosing multiple
encryptions follows immediately. Also, using the same ideas as in [Bra99, Ch. 3], it is possible
to disclose encryptions plus a relation on the encrypted values, e.g. 37x1 + x2 ≡ 5x3 mod q. We
assume that U sends Jx1K and not its bit representation, although the latter might be more useful
if V uses the encryptions for multiparty computation (see Section 2.9). The reason for this is that
disclosing in the latter way is generally very inefficient.

Together with the public part of the certificate (h′, z′, c′0, r
′
0), the user now also sends an ElGamal

encryption of x1 to the verifier. Therefore, he takes r ∈R Zq, sets (c1, c2) = Jx1, rK = (gr, gx1fr),
and sends these values to V. The user now proves knowledge for relation

{(h′, c1, c2; (xi)
l
i=1 , α1, r) | h0 = (h′)α−1

1 g−x1
1 · · · g−xl

l ∧ α1 6= 0 ∧ c1 = gr ∧ c2 = gx1fr}. (6.1)

The Σ-protocol is given in Figure 6.1.

U V
(knows: h′, c1, c2; (xi)

l
i=1 , α1, r) (knows: h′, c1, c2)

(ui)
l
i=1 , uα, ur ∈R Zq

ah ← (h′)uαg−u1
1 · · · g−ul

l

a1 ← gur , a2 ← gu1fur
ah,a1,a2−−−−−−−−−−−−−→

c ∈R Zqc←−−−−−−−−−−−−−
(ri ← ui + cxi mod q)l

i=1

rα ← uα + cα−1
1 mod q

rr ← ur + cr mod q
(ri)

l
i=1,rα,rr−−−−−−−−−−−−−→

(h′)rαg−r1
1 · · · g−rl

l
?= ahhc

0

grr
?= a1c

c
1, gr1frr

?= a2c
c
2

Figure 6.1: Brands’ verification protocol, with ElGamal encrypted disclosure.

In light of Definition 5.1.1, we need to prove that this verification protocol is a Σ-protocol for
(6.1).

Proposition 6.1.1. The protocol in Figure 6.1 is a Σ-protocol for (6.1).

Proof. (Completeness). For the first verification equation we have:

(h′)rαg−r1
1 · · · g−rl

l = (h′)uα+cα−1
1 g−u1−cx1

1 · · · g−ul−cxl

l

= (h′)uαg−u1
1 · · · g−ul

l ((h′)α−1
1 g−x1

1 · · · g−xl

l )c

= ahhc
0.

Similarly, also the other two equations hold:

grr = gur+cr = gur (gr)c = a1c
c
1,

gr1frr = gu1+cx1fur+cr = gu1fur (gx1fr)c = a2c
c
2.
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6.2. Protocol B: attribute hiding issuance

(Special soundness). Suppose we have two successful conversations (ah, a1, a2; c; (ri)
l
i=1 , rα, rr)

and (ah, a1, a2; c′; (r′i)
l
i=1 , r′α, r′r) with c 6= c′. Then:

(h′)rαg−r1
1 · · · g−rl

l = ahhc
0 ∧ (h′)r′αg

−r′1
1 · · · g−r′l

l = ahhc′

0 ,

which gives (h′)rα−r′αg
r′1−r1
1 · · · gr′l−rl

l = hc−c′

0 , implying (as c 6= c′):

(h′)rα−r′α =

(
g

r1−r′1
c−c′

1 · · · g
rl−r′l
c−c′

l h0

)c−c′

.

As rα = r′α would contradict the DLREP assumption (Assumption 2.2.4), we can exponentiate
both sides to (rα − r′α)−1, obtaining witnesses

xi =
ri − r′i
c− c′

for i = 1, . . . , l, α1 =
c− c′

rα − r′α
6= 0.

In a similar way, from grr
?= a1c

c
1 and gr′r

?= a1c
c′

1 the witness r = rr−r′r
c−c′ can be obtained. The

witnesses x1 and r satisfy c2 = gx1fr as well.
(Honest-verifier zero-knowledge). The following distributions of real and simulated conversations
are identical:{

(ah, a1, a2; c; (ri)
l
i=1 , rα, rr)

∣∣∣ (ui)
l
i=1 , uα, ur, c ∈R Zq; ah ← (h′)uαg−u1

1 · · · g−ul

l ,

a1 ← gur , a2 ← gu1fur ; (ri ← ui + cxi mod q)l
i=1 ,

rα ← uα + cα−1
1 mod q, rr ← ur + cr mod q

}
,{

(ah, a1, a2; c; (ri)
l
i=1 , rα, rr)

∣∣∣ (ri)
l
i=1 , rα, rr, c ∈R Zq;

ah ← (h′)rαg−r1
1 · · · g−rl

l h−c
0 , a1 ← grrc−c

1 , a2 ← gr1frrc−c
2

}
.

As in both distributions the c is chosen freely and uniformly at random, the protocol is special
honest-verifier zero-knowledge.

6.2 Protocol B: attribute hiding issuance

In this case, we have CA = P who, as a team of multiparty computation servers, outputs an
encryption c1 = Jx1K that needs to be certified. Now, CA is not allowed to learn x1, but U is (for
the case in which even this is not allowed, we refer to Section 6.3).

We only consider l = 2, so we consider two attributes2 (x1, x2). It turns out that for protocol
B the verification protocol can be executed the same as previously (Section 5.2.3 or 6.1). In
particular, also the issuing protocol of Section 5.2.2 remains the same, but must be preceded by a
sub-protocol. Indeed, in the mentioned issuing protocol we require that, before the issuing starts,
CA knows h = gx1

1 gx2
2 h0 and U knows h, x1, x2. But now, both players only know c1 (it can be

assumed that U already knows c1). More formally, the general issuing protocol is given in Figure
6.2.

We briefly summarize the setting. We consider a user U and a certification authority CA, which is
represented by a set of n participants P = {P1, . . . ,Pn}. The key generation algorithm in Section
5.2.1 resulted in a group G = 〈g〉 of prime order q, as well as values h0, g1, g2 ∈ G, for which the
certification authority knows the discrete logarithms x0, y1, y2, respectively. These secret values

2Note that l = 1 is impossible since then x1 is not perfectly hidden in h = gx1
1 h0.
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6. Certificate schemes: ElGamal extensions

U CA
(knows: c1) (knows: c1)

sub-protocol←−−−−−−−−−−−−→
(knows: h;x1, x2) (knows: h)

Figure 5.1←−−−−−−−−−−−−→

Figure 6.2: Attribute hiding issuing protocol, general.

are (t, n)-threshold shared among the participants P . Furthermore, for the same group G an
ElGamal cryptosystem is set up with public key f = gλ, where λ is (t, n)-threshold shared among
the participants as well. Both U and CA know encryption c1 = (gr, gx1fr) for some r ∈R Zq, and
the sub-protocol should result in h = gx1

1 gx2
2 h0, where U knows x1 and x2 ∈R Zq.

Using a ‘private output protocol’, the required sub-protocol can be implemented easily. In a private
output protocol, only one participant (or more generally, a restricted number of participants)
learns the encrypted value. In Section 2.9.1, a protocol for private output is given. Now, the
sub-protocol can be implemented by first executing the private output protocol on c1, and then
letting the user take x2 ∈R Zq and construct h plus a Σ-protocol for proving that h is constructed
correctly. However, the fact that the ElGamal cryptosystem and the certificate scheme are over
the same group allows us to construct a more efficient protocol. Participants U and CA execute
the sub-protocol in Figure 6.3, where Σ is a Σ-protocol for proving knowledge of the construction
of c2. The protocol only works if x1 is from a restricted domain as the user would otherwise not
be able to compute this value, as explained in Section 2.5.1.

U CA
(knows: c1) (knows: c1; y1, y2, λ)

x2, t ∈R Zq, c2 ← (gt, gx2f t) c2−−−−−−−−−−−−−→
Σ←−−−−−−−−−−−−→

h← D(cy1
1 cy2

2 )h0h←−−−−−−−−−−−−−
x1 ← logg1

(h/(gx2
2 h0))

(knows: h;x1, x2) (knows: h)

Figure 6.3: Sub-protocol for attribute hiding issuing protocol, ElGamal.

We note that the equation h = gx1
1 gx2

2 h0 is satisfied:

cy1
1 = (gr, gx1fr)y1 = (gry1 , gx1y1fry1) = Jgx1

1 K,

cy2
2 = (gt, gx2f t)y2 = (gty2 , gx2y2f ty2) = Jgx2

2 K,

from which the claimed immediately follows. The participants P can compute D(cy1
1 cy2

2 )h0 by
first executing Protocol 4.2.4, resulting in an encryption c̃ = cy1

1 cy2
2 which can then be threshold

decrypted. Clearly, CA = P cannot learn the plaintext values x1, x2 as Σ is honest-verifier zero-
knowledge and c1, c2, h all perfectly hide x1, x2. Finally, the protocol does not leak y1, y2, λ, since
computing Jc̃K ← cy1

1 cy2
2 as well as its decryption can be simulated (Protocol 4.2.4 and Section

2.5.3).
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6.3. Scheme C: encrypted certificate scheme

6.3 Scheme C: encrypted certificate scheme

The main scheme of the thesis is discussed in this section. In this scenario, CA = P has an
encryption that needs to be certified. However, both CA and U are not allowed to learn the en-
crypted value. It turns out that we need CA = V. This drawback will be discussed in Section 8.1.1.

For simplicity, throughout the remainder of this chapter, an ElGamal encryption of x will be
written as JgxK = (gr, gxfr) for some r ∈R Zq (instead of JxK). This is done (a) for stressing the
construction in g, and (b) since the scheme also involves encryptions of the type Jhx

0K = (gr, hx
0fr).

We recall that the key generation setup for the cryptosystem is implicitly included in the key gen-
eration algorithm below. As we use ElGamal, we need the encrypted values to be from a restricted
domain. We consider the following scenario: as a set of multiparty computation servers, CA out-
puts encryptions c∗i = Jgx∗i K with x∗i ∈ {0, 1} for i = 1, . . . , l − 1, constituting the encrypted
attribute list (since in the issuing protocol an l-th encryption will be added, for consistency we
call the resulting certificate a certificate on l attributes). The scheme can be easily generalized to
different domains. In case we have only one multiparty output c∗1, and x2, . . . , xl−1 are attributes
known to CA (or any other generalization of this type), see Section 8.2.

Following Definition 5.1.2, the algorithms/protocols (keygen, issue, verify) are constructed in Sec-
tions 6.3.1-6.3.3, respectively. The security of the scheme is discussed in Section 6.4.

6.3.1 Key generation

On input of security parameter k, the certification authority obtains public key (q, g), with q > 2k,
and (h0, f̂ , (gi)

l
i=1 , (fi)

l−1
i=1), together with secret key x0, (yi)

l
i=1 , (φi)

l−1
i=1 ∈R Zq satisfying

h0 = gx0 , f̂ = fx0 , ∀l
i=1 : gi = gyi , ∀l−1

i=1 : fi = gφi .

The encrypted attributes set consists of tuples of l − 1 ElGamal bit encryptions. A certificate on
an encrypted attribute list p∗ = (c∗i )

l−1
i=1 =

(
Jgx∗i K

)l−1

i=1
is a tuple (h′, (c′i)

l
i=1 , α1, z

′, (z′i)
l
i=1 , c′0, r

′
0)

satisfying:

c′0 = H([c′i, z
′
i,(c

′
i)

r′0(z′i)
−c′0 ]li=1;h

′, z′, gr′0h
−c′0
0 , (h′)r′0(z′)−c′0)

and ((c′1)
y1 · · · (c′l)ylJh0K)α1 l Jh′K.

(6.2)

In light of Definition 5.1.2, p = (h′, (c′i)
l
i=1) is the public key part with corresponding secret key

part s = α1. The function inv is defined as3

inv(p) =
(
c′i(1, f−1

i )
)l−1

i=1
. (6.3)

The element h′ is required to be different from 1. If in the issuing it turns out that h′ = 1, it is
declared invalid and the protocol is restarted.

Remark 6.3.1. We elaborate on the ‘transformation’ from c∗i = Jgx∗i K to c∗i JfiK = Jgx∗i +φiK. Sup-
pose the user is issued a certificate on c∗1 instead of c∗1Jf1K. In the issuing protocol, he needs to
blind this encryption by setting c′1 ← c∗1Jg0K. However, a malicious user U ′ can set c′1 ← Jg0K, and
z′1 likewise such that the first equation in (6.2) is still satisfied. Then, it turns out that also the
second equation in (6.2) is satisfied if and only if x∗1 = 0 (so if and only if c∗1 = J1K). Consequently,
if U ′ follows the verification protocol, the verifier will accept if and only if x∗1 = 0. This means that
the user obtains an oracle for ‘x∗1

?= 0’. For c∗1Jf1K this attack fails with overwhelming probability.

3This essentially means that we have c′i l c∗i JfiK for i = 1, . . . , l − 1.
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6.3.2 Certificate issuance

On input of encrypted attribute list (c∗i )
l−1
i=1, the issuing protocol is given in Figure 6.4. In case of

multiple issuing executions on the same encrypted attribute list, the values (h, z, (ci, zi)l
i=1) need

to be computed only once. It is clear that the original protocol of Brands, depicted in Figure 5.1,
is a simplification of Figure 6.4.

U CA
(knows: (c∗i )

l−1
i=1) (knows: (c∗i )

l−1
i=1)

(ri)
l
i=1 , xl ∈R Zq

(ci ← c∗i · (gri , fif
ri))l−1

i=1

cl ← (grl , gxlfrl)
h← D(cy1

1 · · · c
yl

l )h0

z ← hx0 , (zi ← cx0
i )l

i=1

w0 ∈R Zq

a0 ← gw0 , b0 ← hw0

f̃ ← fw0 , (ei0 ← cw0
i )l

i=1h,z,(ci,zi)
l
i=1;a0,b0,f̃ ,(ei0)

l
i=1←−−−−−−−−−−−−−

α1 ∈R Z∗
q , α2, α3 ∈R Zq

h′ ← hα1 , z′ ← zα1

a′0 ← hα2
0 gα3a0

b′0 ← (z′)α2(h′)α3bα1
0 βi ∈R Zq, c′i ← ci · (g, f)βi

z′i ← zi · (h0, f̂)βi

e′i0 ← (z′i)
α2(c′i)

α3ei0 · (a0, f̃)βi

l

i=1

c′0 ← H([c′i, z
′
i, e

′
i0]

l
i=1;h

′, z′, a′0, b
′
0)

c0 ← c′0 + α2 mod q c0−−−−−−−−−−−−−→
r0 ← c0x0 + w0 mod qr0←−−−−−−−−−−−−−

a0
?= gr0h−c0

0 , b0
?= hr0z−c0

f̃
?= fr0 f̂−c0 , (ei0

?= cr0
i z−c0

i )l
i=1

r′0 ← r0 + α3 mod q

Figure 6.4: Issuing protocol for encrypted certification, ElGamal.

6.3.3 Certificate verification

If U owns a certificate (h′, (c′i)
l
i=1 , α1, z

′, (z′i)
l
i=1 , c′0, r

′
0) which he wants to show V, he needs to

prove that (6.2) holds. To this end, U sends all values except for α1 to V (in line with Definition
5.1.2), and the participants execute the two-party protocol given in Figure 6.5. After the verifica-
tion, V can obtain Jgx∗i K by computing c′iJfiK−1 (for i = 1, . . . , l − 1).

Note that the protocol is very similar to a Σ-protocol for relation (similar to the verification
protocol in Brands’ scheme in Section 5.2.3, we write the equation as follows, rather than as
Jh′K l ((c′1)

y1 · · · (c′l)ylJh0K)α. This is merely done for consistency)

{(h′, (c′i)
l
i=1 ;α1) | Jh′Kα

−1
1 l (c′1)

y1 · · · (c′l)ylJh0K ∧ α1 6= 0}.
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However, now the verifier needs secret input as well, namely the values y1, . . . , yl, λ, and therefore
the protocol cannot be seen as a Σ-protocol. A discussion on this restriction can be found in
Section 8.1.1. As a consequence, this time the scheme includes a fourth round. In the protocol of
Section 5.2.3 this round is implicit, but now V has private knowledge, so we also need to prove
that U cannot learn anything about those values. Also, since V needs private values, this protocol
cannot be made non-interactive, unlike Brands’ verification protocol. Yet, the number of rounds
can be reduced by taking c ← H(a) in a similar way as in Section 5.2.3. Again, as the equality
c′0 = H([c′i, z

′
i, (c

′
i)

r′0(z′i)
−c′0 ]li=1; h′, z′, gr′0h

−c′0
0 , (h′)r′0(z′)−c′0) can be easily checked publicly, as of

now it is assumed to hold. Moreover, the public part of the certificate, (h′, z′, (c′i, z
′
i)

l
i=1, c

′
0, r

′
0), is

assumed to be sent to V before the verification starts.

U V
(knows: h′, z′, (c′i, z

′
i)

l
i=1, c

′
0, r

′
0;α1) (knows: y1, . . . , yl, λ)

u ∈R Zq, a← (h′)u

a;h′,z′,(c′i,z
′
i)

l
i=1,c′0,r′0−−−−−−−−−−−−−→

c ∈R Zqc←−−−−−−−−−−−−−
r ← u + cα−1

1 mod q r−−−−−−−−−−−−−→
b1 ←

[
c′0

?= H([c′i, z
′
i, (c

′
i)

r′0(z′i)
−c′0 ]li=1;

h′, z′, gr′0h
−c′0
0 , (h′)r′0(z′)−c′0)

]
b2 ←

[
Jh′Kr

?
l JaK((c′1)

y1 · · · (c′l)ylJh0K)c

]
b← b1 ∧ b2b←−−−−−−−−−−−−−

Figure 6.5: Verification protocol for encrypted certification, ElGamal.

6.4 Scheme C: security analysis

In the construction of Section 6.3, for each issuing there is an encrypted attribute list p∗ = (c∗i )
l−1
i=1,

and for the public part of the issued certificate, p = (h′, (c′i)
l
i=1), we have inv(p) l p∗ with the

function inv defined in (6.3). More generally, the algorithm and protocols in Section 6.3 satisfy
the basic requirements of Definition 5.1.2. We prove that the scheme is secure with respect to
this definition. We recall from Section 3.4 that we have P = CA = V, and that we therefore see
CA = V as one participant. This is a natural way to force honest-but-curious behavior, and there-
fore this is reasonable to assume (see also Sections 3.4 and 8.1.1). In particular, due to Proposition
4.2.7 the plaintext equality test in the verification protocol can be simulated in case V is a set of
multiparty computation servers. We refer the reader to Remark 6.4.12 for a broader discussion of
this generalization.

The security proof is divided into five parts, corresponding to the properties stated in Definition
5.1.2, and proven in Sections 6.4.1-6.4.5, respectively. We will consider the five properties for
any probabilistic key generation execution (pk, sk) ← keygen(k). We assume that this algorithm
execution is done properly, i.e. that the system parameters are correctly formed.

For proving blinding-invariance unforgeability and a part of the security of the verification protocol,
we need the assumption below. In fact, this assumption is similar to the analogue of Brands’
assumption for proving his scheme blinding-invariance secure (Assumption 5.2.1). It is unclear

63



6. Certificate schemes: ElGamal extensions

how to reduce this assumption to Brands’ assumption, or to prove it differently.

Assumption 6.4.1. If U ′ produces, after K ≥ 0 arbitrarily interleaving executions of the protocol
in Figure 6.4 on

(
c∗ji

)l−1

i=1
(j = 1, . . . ,K) a tuple (h′, (c′i)

l
i=1 , α1, z

′, (z′i)
l
i=1 , c′0, r

′
0), then either this

tuple does not satisfy (6.2), or with overwhelming probability there exists a j ∈ {1, . . . ,K} such
that

U ′ knows values (βi)
l
i=1 such that (c′i)

l
i=1 =

(
cji(g, f)βi

)l
i=1

, (6.4)

where (cji)
l
i=1 is the list of encryptions coming from the first round of the j-th issuing execution.

More formally, there exists a p.p.t. extractor E that may use U ′ as a subroutine and also outputs
a tuple (h′, (c′i)

l
i=1 , α1, z

′, (z′i)
l
i=1 , c′0, r

′
0), but additionally outputs the values (hj , (cji)l

i=1)
K
j=1 on

which the user is issued certificates, and a value τ ∈ {0, . . . ,K}: τ = 0 meaning that (6.4) is not
satisfied for any j, and τ 6= 0 meaning that it is satisfied for j = τ , in which case the extractor
also outputs a tuple (βi)

l
i=1 satisfying (6.4).

In Appendix A we heuristically argue why this assumption should hold.

6.4.1 Completeness

Proposition 6.4.2. If both U and CA follow the protocol, then for any encrypted attribute list
p∗ = (c∗i )

l−1
i=1, the resulting certificate of the issuing execution will be accepted upon verification.

Proof. On input of (c∗i )
l−1
i=1, the issuing execution results in a tuple (h′, (c′i)

l
i=1 , α1, z

′, (z′i)
l
i=1 , c′0, r

′
0).

We will show that this certificate satisfies (6.2), since this would indeed result in acceptance
in the verification execution by Proposition 6.4.8. For the second equation in (6.2), Jh′K l
((c′1)

y1 · · · (c′l)ylJh0K)α1 , notice that in the beginning of the issuing execution U obtained (h, (ci)
l
i=1)

satisfying JhK l cy1
1 · · · c

yl

l Jh0K, and U blinded each encryption as c′i ← ci · (g, f)βi for βi ∈R Zq.
As moreover h′ = hα1 by construction, we obtain:

((c′1)
y1 · · · (c′l)ylJh0K)α1 l (cy1

1 · · · c
yl

l Jh0K)α1 l JhKα1 l Jh′K.

Remains to prove that the first equation in (6.2) holds, c′0 = H([c′i, z
′
i, (c

′
i)

r′0(z′i)
−c′0 ]li=1;h

′, z′,

gr′0h
−c′0
0 , (h′)r′0(z′)−c′0). But in the issuing protocol execution U puts c′0 = H([c′i, z

′
i, e

′
i0]

l
i=1;

h′, z′, a′0, b
′
0), so the claim follows if the following equations are satisfied:

∀l
i=1 : e′i0 = (c′i)

r′0(z′i)
−c′0 , a′0 = gr′0h

−c′0
0 , b′0 = (h′)r′0(z′)−c′0 . (6.5)

But, simultaneously for a′0, b
′
0:

(
gr′0h

−c′0
0 , (h′)r′0(z′)−c′0

)
=
(
gα3gr0h

−c′0
0 , (h′)α3(h′)r0(z′)−c′0

)
{r′0 ≡ r0 + α3 mod q}

=
(
gα3hα2

0 gr0h−c0
0 , (h′)α3(z′)α2(h′)r0(z′)−c0

)
{c′0 ≡ c0 − α2 mod q}

=
(
gα3hα2

0 gw0(g−x0h0)−c0 , (h′)α3(z′)α2(h′)w0((h′)−x0z′)−c0
)
{r0 ≡ w0 + c0x0 mod q}

=
(
gα3hα2

0 gw0 , (h′)α3(z′)α2hw0α1
)

{h0 = gx0 , h′ = hα1 , z′ = (h′)x0}
=
(
gα3hα2

0 a0 , (h′)α3(z′)α2bα1
0

)
{setup w0}

=(a′0 , b′0),
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6.4. Scheme C: security analysis

and for e′i0:

(c′i)
r′0(z′i)

−c′0 = (c′i)
α3(z′i)

α2(c′i)
r0(z′i)

−c0 {setup of r′0, c
′
0}

= (c′i)
α3(z′i)

α2(c′i)
w0((c′i)

−x0z′i)
−c0 {r0 ≡ w0 + c0x0 mod q}

= (c′i)
α3(z′i)

α2(c′i)
w0((c′i)

−x0zi(gx0 , fx0)βi)−c0 {z′i = zi(gx0 , fx0)βi}
= (c′i)

α3(z′i)
α2(ci)w0(g, f)βiw0(c−x0

i zi)−c0 {c′i = ci(g, f)βi}
= (c′i)

α3(z′i)
α2(ci)w0(g, f)βiw0 {zi = cx0

i }
= (c′i)

α3(z′i)
α2ei0(a0, f̃)βi {setup w0}

= e′i0.

6.4.2 Privacy for U
Proposition 6.4.3. For any pair of encrypted attribute lists p∗0, p

∗
1, if U and CA′ engaged in

the issuing execution for both lists, obtaining certificates (p, s, σ(p))0, (p, s, σ(p))1, then it is hard
for passively malicious p.p.t. CA′ to, given (p, σ(p))b and (p, σ(p))1−b with b ∈R {0, 1}, guess b
correctly.

Proof. The game played by CA′ and U is the following: given any two different encrypted attribute
lists p∗0, p

∗
1, CA

′ and U engage in an issuing execution for p∗j (j = 0, 1), U takes b ∈R {0, 1} and
sends the public parts of the b-th and (1 − b)-th certificate to CA′ (in that order). CA′ wins if
he guesses b correctly. Denote by Pr(A) the success probability of CA′ in this game. We slightly
change this game, obtaining game B. Now, in each issuing execution U sets for each i = 1, . . . , l:

c′i ← (g, f)βi , z′i ← (h0, f̂)βi , e′i0 ← (z′i)
α2(c′i)

α3(a0, f̃)βi , (6.6)

and executes the remainder as is. (Note that the resulting tuple does not yield a valid certificate as
((c′1)

y1 · · · (c′l)ylJh0K)α1 l Jh′K need not be satisfied. However, as CA′ does not know the decryption
key, he will not notice.) Denote CA′’s success probability in the new game by Pr(B). Now, the
only difference between the games is in the encryptions, and as CA′ is p.p.t. and does not have
the decryption key, if CA′ is able to distinguish between the two games, he is able to distinguish
between the constructions of one of the 6l encryptions. Hence, the success probabilities in the
different games are of negligible difference by the semantic security of the cryptosystem, Section
2.5.3. Formally, there exists a negligible ε(k) such that

|Pr(A)− Pr(B)| < ε(k). (6.7)

We consider the success probability of CA′ in game B. We will first prove that for any public
part of a certificate, and any view on an issuing execution by CA′, there is exactly one possible
secret random tuple U could have chosen. In particular this means that from CA′’s point of view,
(p, σ(p))b could have come from the 0-th or 1-th issuing execution with equal probability, and
similar for (p, σ(p))1−b. Then, as U takes his values uniformly at random, CA′ can only succeed in
guessing b correctly with probability 1

2 . Hence Pr(B) = 1
2 , which by (6.7) implies that the success

probability in the original game is upper bounded by 1
2 + ε(k) for negligible ε(k).

So we prove that for any public part of a certificate, (h′, z′, (c′i, z
′
i)

l
i=1, c

′
0, r

′
0), and all values a mali-

cious CA′ sees during the issuance execution of a certificate, (h, z, (ci, zi)
l
i=1) and (a0, b0, f̃ , (ei0)l

i=1,
c0, r0) satisfying (as U accepted)

a0 = gr0h−c0
0 , b0 = hr0z−c0 ,

f̃ = fr0 f̂−c0 , ∀l
i=1 : ei0 = cr0

i z−c0
i ,

(6.8)

there exists exactly one possible combination of random values α1, α2, α3, (βi)l
i=1 that U could

have chosen to end up with that certificate. The values α1, α2 and α3 are determined by (h, h′),
(c0, c

′
0) and (r0, r

′
0):

α1 = logh h′, α2 = c0 − c′0 mod q, α3 = r′0 − r0 mod q,
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6. Certificate schemes: ElGamal extensions

and for each i, βi is determined by c′i as

βi = logg(c
′
i)1 = logf (c′i)2.

Notice that we do not require that these random values can be computed efficiently, we just need
them to be uniquely determined. Remains to prove that this choice satisfies c′0 = H([c′i, z

′
i, e

′
i0]

l
i=1;

h′, z′, a′0, b
′
0). But the issued certificate satisfies c′0 = H([c′i, z

′
i, (c

′
i)

r′0(z′i)
−c′0 ]li=1;h

′, z′, gr′0h
−c′0
0 ,

(h′)r′0(z′)−c′0), from which the desired equality follows if (6.5) is satisfied. But:

gr′0h
−c′0
0 = gα3hα2

0 gr0h−c0
0 {setup r′0, c

′
0}

= gα3hα2
0 a0 {equation (6.8)}

= a′0,

(h′)r′0(z′)−c′0 = (h′)α3(z′)α2(h′)r0(z′)−c0 {setup r′0, c
′
0}

= (h′)α3(z′)α2
(
hr0z−c0

)α1 {setup h′, z′}
= (h′)α3(z′)α2bα1

0 {equation (6.8)}
= b′0,

(c′i)
r′0(z′i)

−c′0 = (c′i)
α3(z′i)

α2(c′i)
r0(z′i)

−c0 {setup r′0, c
′
0}

= (c′i)
α3(z′i)

α2(gr0h−c0
0 , fr0 f̂−c0)βi {equation (6.6)}

= (c′i)
α3(z′i)

α2(a0, f̃)βi {equation (6.8)}
= e′i0 {equation (6.6)}.

Remark 6.4.4. For the proof to be correct, CA′ may only be passively malicious and work in
probabilistic polynomial time, simply because different issuing executions might involve different
encryptions. However, if the two encrypted attribute lists encrypt the same values, so p∗0 l p∗1, then
the changeover to game B is unnecessary. In particular, the issuing executions become unlinkable
in an unconditioned way. This is relevant in case the certification authority issues many certificates
on the same attribute list.

6.4.3 One-more unforgeability

The proof of one-more unforgeability relies on tightly reducing the certificates to Chaum-Pedersen
signatures. We recall from Remark 2.7.2 that these are tuples (ξ, m, z, c′, r′) satisfying c′ =
H(ξ,m, z, gr′h−c′

CP ,mr′z−c′), where ξ is an arbitrary bit string.

Proposition 6.4.5. Under the assumption that the blind Chaum-Pedersen signature scheme is
secure against one-more forgeries, it is impossible for a user U ′ to, after K ≥ 0 arbitrarily in-
terleaving executions of Figure 6.4 on encrypted attribute lists p∗j = (c∗ji)

l−1
i=1 (j = 1, . . . ,K), with

non-negligible probability output K + 1 different certificates satisfying (6.2).

Proof. Suppose it is possible, so after K executions of the protocol of Figure 6.4, on (c∗ji)
l−1
i=1 for

j = 1, . . . ,K, U ′ can output K +1 different certificates (h′, (c′i)
l
i=1 , α1, z

′, (z′i)
l
i=1 , c′0, r

′
0) satisfying

(6.2), with non-negligible probability. We construct an interactive polynomial time forger F that
is issued K Chaum-Pedersen signatures by a Chaum-Pedersen signer S, possibly on different
messages m for each execution j = 1, . . . ,K, and uses U ′ to output K + 1 different Chaum-
Pedersen signatures. By assumption that is impossible, and hence we obtain a contradiction.
Let G = 〈g〉, hCP be the system parameters of the Chaum-Pedersen signature scheme, for which
S knows x = logg hCP . Now F simulates the certificate issuer for Figure 6.4 as follows:

1. Initialization: For the encryption scheme, F takes secret key λ ∈R Zq and publishes f = gλ.
Furthermore, F inherits S’s system parameters, and takes moreover (yi)l

i=1, (φi)l−1
i=1 ∈R Zq and

publishes h0 = hCP , fi = gφi (i = 1, . . . , l − 1), gi = gyi (i = 1, . . . , l), and f̂ = hλ
0 ;
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6.4. Scheme C: security analysis

2. Issuing : For each of the K issuing protocol executions, F operates as follows (see Figure 6.6)4:

i. Commitment part 1 : F takes x∗i ∈R {0, 1} and publishes encryptions c∗i = Jgx∗i K (for
i = 1, . . . , l − 1). He takes (ri)l

i=1, xl ∈R Zq, sets (xi ← x∗i + φi mod q)l−1
i=1, sets

ci ← (gri , gxifri) and zi ← (hri
0 , hxi+λri

0 ), for each i = 1, . . . , l,

and h ← gx1
1 · · · g

xl

l h0. For the setup of z, F sends m̃0 ← h to S, in order to obtain z̃0.
The forger sends z ← z̃0 to U ′;

ii. Commitment part 2 : F receives ã0, b̃0 from S, he sets (a0, b0)← (ã0, b̃0) and f̃ ← aλ
0 , and

for each i = 1, . . . , l he takes ei0 ← (ari
0 , axi+λri

0 ). He sends (a0, b0, f̃ , (ei0)l
i=1) to U ′;

iii. Challenge: F receives c0 from U ′ and sends c̃0 ← c0 to S;

iv. Response: F receives r̃0 from S and sends r0 ← r̃0 to U ′;

3. Signature forging : Now U ′ outputs, with non-negligible probability, K + 1 distinct certificates
(h′, (c′i)

l
i=1 , α1, z

′, (z′i)
l
i=1 , c′0, r

′
0). For each of these certificates F computes Chaum-Pedersen

forgery
(ξ, z, c, r,m)← ([c′i, z

′
i, (c

′
i)

r′0(z′i)
−c′0 ]li=1, z

′, c′0, r
′
0, h

′), (6.9)

and he outputs these K + 1 Chaum-Pedersen signatures.

U ′ F S
(knows: λ, (φi)

l−1
i=1 , (yi)

l
i=1) (knows: x)

(computes (c∗i )
l−1
i=1 , (ci, zi)

l
i=1 , h)

m̃0 ← h m̃0−−−−−−−−−−−−−→
z̃0←−−−−−−−−−−−−−

z ← z̃0
(c∗i )l−1

i=1,h,z,(ci,zi)
l
i=1←−−−−−−−−−−−−−

ã0,b̃0←−−−−−−−−−−−−−
a0 ← ã0, b0 ← b̃0, f̃ ← aλ

0(
ei0 ← (ari

0 , axi+λri
0 )

)l

i=1a0,b0,f̃ ,(ei0)
l
i=1←−−−−−−−−−−−−−

c0−−−−−−−−−−−−−→
c̃0 ← c0 c̃0−−−−−−−−−−−−−→

r̃0←−−−−−−−−−−−−−
r0 ← r̃0r0←−−−−−−−−−−−−−

Figure 6.6: A visualization of reducing a forgery to a Chaum-Pedersen forgery. The outlined box
denotes the adversarial side.

Remains to prove that this reduction works.
Phase 1. The distribution of the system parameters is perfectly indistinguishable from the real
system parameter distribution. This is since h0 = hCP , where hCP is taken by CA to be ∈R G, and
also (gi)l

i=1, (fi)l−1
i=1, f ∈R G, just as in the real protocol. Moreover, we have f̂ = hλ

0 = gxλ = fx.
Phase 2. We have to prove that the parameters sent in phase 2i follow the correct distribution, as
explained in Section 6.3.2. For the ci’s this is clear. (Note that this also works if the x∗i ’s come
from some multiparty computation, as F has the decryption key.) The equation z = hx holds
since by the Chaum-Pedersen issuing protocol we have z̃0 = m̃x

0 . Finally, also the zi’s are correct
as

zi = (hri
0 , hxi+λri

0 ) = (gxri , gx(xi+λri)) = cx
i .

4For ease of presentation, the first round of the original protocol in Figure 6.4, the commitment part, is separated
into two phases i and ii. That is, firstly (h, z, (ci, zi)

l
i=1) is sent to U ′, and then (a0, b0, f̃ , (ei0)l

i=1).
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6. Certificate schemes: ElGamal extensions

For phase 2ii, the values (a0, b0, f̃ , (ei0)l
i=1) need to be of the form

(gw0 , hw0 , fw0 , (cw0
i )l

i=1)

for some w0 ∈R Zq. But by the Chaum-Pedersen scheme specifications, (ã0, b̃0) = (gw̃, m̃w̃
0 ) =

(gw̃, hw̃) for some w̃ ∈R Zq. Now, following phase 2ii, we have f̃ = aλ
0 = gw̃λ = f w̃. Also the ei0’s

are correct as
ei0 = (ari

0 , axi+λri
0 ) = (gw̃ri , gw̃(xi+λri)) = cw̃

i .

For phase 2iv, notice that r̃0 satisfies gr̃0h−c̃0
CP = ã0 and m̃r̃0

0 z̃−c̃0
0 = b̃0 by the construction of the

Chaum-Pedersen signature protocol, and that therefore also

gr0h−c0
0 = gr̃0h−c̃0

CP = ã0 = a0,

hr0z−c0 = m̃r̃0
0 z̃−c̃0

0 = b̃0 = b0,

fr0 f̂−c0 = (gr0h−c0
0 )λ ∗= aλ

0
∗∗= f̃ ,

cr0
i z−c0

i = (gri , gxi+λri)r0(hri
0 , hxi+λri

0 )−c0

= ((gr0h−c0
0 )ri , (gr0h−c0

0 )xi+λri)
∗= (ari

0 , axi+λri
0 ) ∗∗= ei0,

where ∗= holds since we have gr0h−c0
0 = a0 (first line), and ∗∗= holds due to phase 2ii. So for U ′

it looks like he is executing the protocol with a real issuer, and therefore he can output K + 1
signatures, with non-negligible probability.
Phase 3. For the K + 1 tuples, we have to show that (a) these are indeed Chaum-Pedersen
signatures and (b) all these signatures are distinct.
(a). Let (h′, (c′i)

l
i=1 , α1, z

′, (z′i)
l
i=1 , c′0, r

′
0) be a certificate provided by U ′ and let F set (ξ, z, c, r,m)

as in (6.9). We have to prove that c = H(ξ,m, z, gr(hCP )−c, (m)r(z)−c), but this holds as

c = c′0 {equation (6.9)}

= H([c′i, z
′
i, (c

′
i)

r′0(z′i)
−c′0 ]li=1, h

′, z′, gr′0h
−c′0
0 , (h′)r′0(z′)−c′0) {equation (6.2)}

= H(ξ,m, z, gr(hCP )−c, (m)r(z)−c) {equation (6.9)}.

(b). Suppose that two distinct certificates σ1 = (h′, (c′i)
l
i=1 , α1, z

′, (z′i)
l
i=1 , c′0, r

′
0) and σ2 = (ĥ′,

(ĉ′i)
l
i=1 , α̂1, ẑ

′, (ẑ′i)
l
i=1 , ĉ′0, r̂

′
0), both satisfying (6.2), give rise to the same Chaum-Pedersen signa-

ture, that means by (6.9):

(h′, (c′i)
l
i=1 , z′, (z′i)

l
i=1 , c′0, r

′
0) = (ĥ′, (ĉ′i)

l
i=1 , ẑ′, (ẑ′i)

l
i=1 , ĉ′0, r̂

′
0). (6.10)

As σ1, σ2 both satisfy (6.2), we obtain:

((ĉ′1)
y1 · · · (ĉ′l)ylJh0K)α̂1 l Jĥ′K {equation (6.2)}

l Jh′K {equation (6.10)}
l ((c′1)

y1 · · · (c′l)ylJh0K)α1 {equation (6.2)}
l ((ĉ′1)

y1 · · · (ĉ′l)ylJh0K)α1 {equation (6.10)}.

But as h′ 6= 1 by (6.2), this implies that α1 = α̂1, contradicting the fact that σ1 6= σ2. Hence
we obtained K + 1 different Chaum-Pedersen signatures after only K Chaum-Pedersen issuing
executions, which is impossible by assumption.

Remark 6.4.6. The proposition essentially reduces one-more forgeries for Figure 6.4 to one-more
forgeries for the Chaum-Pedersen scheme, and it is thus at least as secure as the Chaum-Pedersen
scheme. We stress that this scheme requires K ≤ (lg k)α in order to guarantee one-more unforge-
ability, due to the security consideration in Section 2.7.1.
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6.4.4 Blinding-invariance unforgeability

The proof of blinding-invariance unforgeability relies on Assumption 6.4.1. However, this as-
sumption is not sufficient: it essentially says that a malicious user cannot with non-negligible
probability output any certificate on a different plaintext attribute list than he is issued certifi-
cates on, while blinding-invariance unforgeability more generally requires that for any attribute
list the user cannot output more certificates on it than he is issued. So similar to Brands’ scheme
[Bra99, Ass. 4.4.5], blinding-invariance unforgeability of our scheme is slightly more general than
the corresponding assumption. Therefore, it is stated without proof.

Proposition 6.4.7. If U ′ comes, after K ≥ 0 arbitrarily interleaving executions of Figure 6.4 on
encrypted attribute lists p∗j = (c∗ji)

l−1
i=1 (j = 1, . . . ,K), with L different certificates satisfying (6.2),

then with overwhelming probability for each such certificate (h′, (c′i)
l
i=1 , α1, z

′, (z′i)
l
i=1 , c′0, r

′
0) there

exists a j such that inv(h′, (c′i)
l
i=1) l p∗j , and moreover for each such inv(h′, (c′i)

l
i=1) the number

of certificates encrypting the same attribute list is at most the number of p∗j ’s encrypting that list.

6.4.5 Secure verification

We need to prove that the verification protocol depicted in Figure 6.5 is a secure two-party protocol
for proving knowledge of α1 such that (h′, (c′i)

l
i=1 , α1, z

′, (z′i)
l
i=1 , c′0, r

′
0) is a valid certificate. Let

us first make some simplifications, due to previous considerations. Firstly, recall from Section 6.3.3
that the equality c′0

?= H(·) can be assumed to hold without loss of generality. Secondly, in the
introduction of Section 6.4 we concluded that without loss of generality V can only be passively
corrupted. For a more extended discussion on this generalization the reader is referred to Remark
6.4.12. These two observations simplify the verification protocol of Figure 6.5 to Figure 6.7, where
U can be an active attacker, but V can only be passive.

U V
(knows: h′, (c′i)

l
i=1;α) (knows: h′, (c′i)

l
i=1; (yi)

l
i=1 , λ)

u ∈R Zq, a← (h′)u
a−−−−−−−−−−−−−→

c ∈R Zqc←−−−−−−−−−−−−−
r ← u + cα−1 mod q r−−−−−−−−−−−−−→

b←
[
Jh′Kr

?
l JaK((c′1)

y1 · · · (c′l)ylJh0K)c

]
b←−−−−−−−−−−−−−

Figure 6.7: Simplified verification protocol for encrypted certification, ElGamal.

So, we need to prove that the protocol in Figure 6.7 is a secure two-party protocol for U to prove
knowledge of α such that Jh′Kα

−1
l (c′1)

y1 · · · (c′l)ylJh0K. As already noted in Section 6.3.3, the
protocol looks very similar to a Σ-protocol for relation

R = {(h′, (c′i)l
i=1;α) | Jh′Kα

−1
l (c′1)

y1 · · · (c′l)ylJh0K ∧ α 6= 0}.

However, now also the verifier has private input, and U might be a malicious participant trying to
learn something about the verifier’s private input. Therefore, the original definition of Σ-protocol,
Definition 2.6.1, does not apply anymore. Yet, this definition will turn out to be useful. We define
LR = {(h′, (c′i)l

i=1) | ∃α : (h′, (c′i)
l
i=1;α) ∈ R}. We require that h′ 6= 1 (conform the construction

of Section 6.3.1). Note that the verifier’s private input ((yi)
l
i=1 , λ) is determined by the system

parameter setup, and is thus fixed from the start.

We need to prove that the protocol in Figure 6.7 is correct, i.e. that it is a proof of knowledge,
and that it is secure. Demonstrating that it is a proof of knowledge is captured by proving
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‘completeness’ and ‘special soundness’ of Definition 2.6.1, for relation R. For security, using the
real/ideal-model from Section 2.3.2, we need to prove that the adversary’s view on the protocol
can be simulated for any allowed adversary structure. As we have two possible adversary struc-
tures, V being passively corrupt or U being actively corrupt, we need to construct two simulators:
a simulator that may use passively corrupted V as a subroutine, and a simulator that may use
actively corrupted U ′ as a subroutine. Both simulators need to simulate the conversations of the
corrupted party with an honest participant in an indistinguishable way, on any common input
(h′, (c′i)

l
i=1).

Summarizing, we first prove completeness and special soundness, and then two simulators are
constructed: one for the verifier’s view and one for the prover’s view.

Proposition 6.4.8. The protocol in Figure 6.7 is complete.

Proof. For any (h′, (c′i)
l
i=1;α) ∈ R and any (U ,V) following the protocol we have:

Jh′Kr l Jh′Ku+cα−1
l J(h′)uK(Jh′Kα

−1
)c l JaK((c′1)

y1 · · · (c′l)ylJh0K)c,

where the last equality holds since (h′, (c′i)
l
i=1;α) ∈ R.

Proposition 6.4.9. The protocol in Figure 6.7 is special sound.

Proof. Given (h′, (c′i)
l
i=1) ∈ LR, and two accepting conversations (a, c, r, 1) and (a, c′, r′, 1) with

c 6= c′. In particular this means that

Jh′Kr l JaK((c′1)
y1 · · · (c′l)ylJh0K)c, Jh′Kr

′
l JaK((c′1)

y1 · · · (c′l)ylJh0K)c′ ,

which implies Jh′Kr−r′ l ((c′1)
y1 · · · (c′l)ylJh0K)c−c′ , or equivalently,

Jh′K
r−r′
c−c′ l (c′1)

y1 · · · (c′l)ylJh0K,

as c 6= c′. Suppose r = r′, this means that D((c′1)
y1 · · · (c′l)yl)h0 = 1, which is impossible as h′ 6= 1.

So r 6= r′, meaning that we obtained a witness α = c−c′

r−r′ 6= 0.

Proposition 6.4.10. For any common input (h′, (c′i)
l
i=1), the protocol in Figure 6.7 can be sim-

ulated in a perfectly indistinguishable way, for any passively adversarial verifier V ′.

Proof. Given a common input (h′, (c′i)
l
i=1). For any honest prover U and adversarial verifier V ′

following the protocol, the real conversations satisfy the following distribution5:{
(a, c, r, b)

∣∣∣∣ u, c ∈R Zq; a← (h′)u; r ← u + cα−1 mod q; b←
[
Jh′Kr

?
l JaK((c′1)

y1 · · · (c′l)ylJh0K)c
]}

.

This distribution is perfectly simulated by:{
(a, c, r, b)

∣∣∣∣ c, r ∈R Zq; a← (h′)r(D((c′1)
y1 · · · (c′l)yl)h0)−c; b←

[
Jh′Kr

?
l JaK((c′1)

y1 · · · (c′l)ylJh0K)c
]}

.

Note that the simulator knows the values ((yi)
l
i=1 , λ) as he may use V ′ as subroutine, and therefore

he can compute D((c′1)
y1 · · · (c′l)yl), where D is the decryption function. These distributions are

indeed perfectly indistinguishable: for the (a, c, r) part, in both distributions we have q2 possible
uniformly random choices, and b is computed the same in both conversations.

The construction of a simulator for the view of a malicious prover U ′ on the protocol relies on
Assumption 6.4.1. We can assume that U ′ did K ≥ 0 certificate issuing queries, and output a
tuple (h′, (c′i)

l
i=1 , α1, z

′, (z′i)
l
i=1 , c′0, r

′
0). We recall that the equation c′0 = H(·) of (6.2) is assumed

to hold.
5Effectively, b = 1 by construction. To keep the simulation clear, it is however denoted in full.
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Proposition 6.4.11. For any common input (h′, (c′i)
l
i=1), the protocol in Figure 6.7 can be sim-

ulated in a perfectly indistinguishable way, for any actively adversarial prover U ′.

Proof. Given a common input (h′, (c′i)
l
i=1). For any prover U ′ and honest verifier V, the real

conversations are as follows:

• Receive a from U ′, send c ∈R Zq to U ′, and receive r from U ′;

• Set b←
[
Jh′Kr

?
l JaK((c′1)y1 · · · (c′l)ylJh0K)c

]
, and output (a, c, r, b).

We construct a simulator that also has input (h′, (c′i)
l
i=1) and may use U ′ as a subroutine:

• Receive a from U ′, send c ∈R Zq to U ′, and receive r from U ′;

• Use the extractor E of Assumption 6.4.1 to obtain (hj , (cji)l
i=1)

K
j=1 and τ ∈ {0, . . . ,K};

• Set b←

{
1, if τ 6= 0 and (h′)r = ahc

τ ,

0, if τ = 0 or (h′)r 6= ahc
τ ;

• Output (a, c, r, b).

Remains to prove that these two distributions are indistinguishable, given any common input
(h′, (c′i)

l
i=1). But the values (a, c, r) are constructed the same in both conversations, remains to

show that b is distributed the same in both sets.
Suppose that in the real conversation b = 1. By the special soundness property (Proposition
6.4.9), with overwhelming probability U ′ knows an α such that

Jh′Kα
−1

l (c′1)
y1 · · · (c′l)ylJh0K.

By Assumption 6.4.1 (and as c′0 = H(·) holds), this implies that with overwhelming probability
there exists a j such that (6.4) holds, which by definition means that τ 6= 0. It moreover implies
that:

Jh′Kr l JaK((c′1)
y1 · · · (c′l)ylJh0K)c {since b = 1}

l JaK((cτ1)y1 · · · (cτl)ylJh0K)c {equation (6.4)}
l JaKJhτ Kc {by construction},

from which it follows that (h′)r = ahc
τ . So by construction the simulator sets b = 1 as well.

Conversely, suppose that in the simulated conversation b = 1. By construction this means that
τ 6= 0 and (h′)r = ahc

τ . By definition, τ 6= 0 implies that (6.4) is satisfied with j = τ . Now:

Jh′Kr l JaKJhτ Kc {since (h′)r = ahc
τ}

l JaK((cτ1)y1 · · · (cτl)ylJh0K)c {by construction}
l JaK((c′1)

y1 · · · (c′l)ylJh0K)c {equation (6.4)},

which implies that also in the real execution b = 1. Concluding, with overwhelming probability b
is computed the same in both conversations, and hence the real and simulated conversations are
perfectly indistinguishable with overwhelming probability.

Remark 6.4.12. In this proof we make explicit use of the fact that V can be seen as one single
honest party, a simplification which is argued in Sections 3.4 and 8.1.1. This generalization is
done merely for simplicity, but we briefly consider the case of V being a set of parties P , of which
at most t − 1 parties P ′ may be malicious. As the major part of P is honest, the value c is still
randomly chosen from Zq, so the (a, c, r) part is still constructed indistinguishably in the two
conversations. Therefore, we only need to consider the value b. Following a similar argument
as in the proof of Proposition 6.4.11, also this value is the same in both conversations, but in
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the current setting it is accompanied with a transcript of the verification by P of the equality

Jh′Kr
?
l JaK((c′1)y1 · · · (c′l)ylJh0K)c. For simplicity, note that if c = 0 this verification is trivial, and

if c 6= 0 the equality is equivalent to

J((h′)ra−1)c−1
h−1

0 K
?
l (c′1)

y1 · · · (c′l)yl .

But by construction this operation is exactly the petrep gate (4.6):

b← petrep
P (λ,(yi)l

i=1)
(J((h′)ra−1)c−1

h−1
0 K, c′1, . . . , c

′
l) =

{
1, if ((h′)ra−1)c−1

h−1
0 = D((c′1)

y1 · · · (c′l)yl);
0, otherwise,

for which in Section 4.2.2 a simulator is constructed that given values (h′, (c′i)
l
i=1 ; a, c, r, b) and

the shares of (λ, (yi)l
i=1) of the malicious parties P ′, simulates the transcript in a computationally

indistinguishable way.
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extensions

In the previous chapter, Brands’ certificate scheme is extended for the ElGamal cryptosystem. A
similar extension for Paillier is discussed in this chapter. We refer the reader to Section 3.2 and the
introduction of Chapter 6 for a discussion of the required extensions. Clearly, extending Brands’
certificate scheme with Paillier would be very useful in the context of multiparty computation: as
we noticed in Section 2.9, for the ElGamal cryptosystem a general multiplication protocol cannot
be constructed, which is an important gate in many secure function evaluations. For Paillier, this
gate is possible, and therefore a Paillier extension of Brands’ scheme would offer more function-
alities. In particular, our aim is to combine a certificate scheme with multiparty computation of
statistics and many of the functions of Section 4.5 are impossible for ElGamal encryptions with
unknown bit representation.

In this chapter, protocols A and B from Section 3.2.3 are constructed for the Paillier cryptosys-
tem. This is done in Sections 7.1 and 7.2, respectively. As the constructions are similar to the
constructions for the ElGamal cryptosystem, we consider them as an extension of the results pre-
sented in Chapter 6. Since the security analysis is analogous, this is done very briefly. We also
considered scheme C for the Paillier cryptosystem, but did not find a provably secure scheme.
Therefore, a construction of this scheme remains as an open problem.

For the cryptosystem, we assume that the key generation is performed as follows for each scheme.
Observe that this setup is implicitly included in the key generation algorithm of the certificate
scheme. We consider a modulus m = pq of length at least k, with p, q safe primes, and a value
s ∈ N. The message space is Zms . The secret decryption key is µ, which is shared among the
n multiparty computation servers P , so that any t participants can decrypt. Each participant
holds share µi. Throughout this chapter, Paillier encryptions are denoted by JxKP . We recall from
Section 3.4 that in case the participants P jointly act as a verifier or certification authority, we
just consider them as one player. In particular, if for instance P = CA, the secret keys obtained
from the key generation algorithm are implicitly (t, n)-threshold shared. To this end, the same
distributed key generation protocol as for sharing an ElGamal secret key can be used (Section
2.5.1), as the certificate scheme is over group G of prime order q as well.

7.1 Protocol A: encrypted disclosure

As an extension to the verification protocol in Section 5.2, now the user discloses encryptions of
the attributes. Similar to the case of ElGamal encryptions, we only need to adjust the verification
protocol of Section 5.2.3. The user has a certificate (h′, (xi)

l
i=1 , α1, z

′, c′0, r
′
0) satisfying (5.1), and

he discloses x1 in encrypted form and keeps the other attributes secret. So in the verification
protocol, together with the values (h′, z′, c′0, r

′
0), in the first round the user now also sends a

Paillier encryption of x1. Therefore, he takes r ∈R Z∗
ms+1 , sets c1 = Jx1, rKP = (m + 1)x1rms

, and
sends this value to V. In contrast to the ElGamal case, now the user needs to prove knowledge
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of the value x1 such that it satisfies a statement regarding two different groups. Thus we need a
verification protocol using integer commitments, Section 2.6.1 with G2 = Z∗

ms+1 . We assume that
the setup for the integer commitments as in Definition 2.4.2 is done: we have security parameters
`x, `c, `s such that 2`x+`c+`s+1 < min{q, ms}, and we require that −2`x < x1 < 2`x in order for the
protocol to succeed. The new verification protocol is the Σ-protocol in Figure 7.1 for the relation{

(h′, c0; (xi)
l
i=1 , α1, r)

∣∣∣ h0
G= (h′)α−1

1 g−x1
1 · · · g−xl

l ∧ α1 6= 0∧

c0

Z∗
ms+1
= (m + 1)x1rms

∧ (−2`x+`c+`s < x1 < 2`x+`c+`s)
}

.

U V
(knows: h′, c0; (xi)

l
i=1 , α1, r) (knows: h′, c0)

r̃ ∈R {0, . . . , bm/4c − 1}, y ← hx1
1 hr̃

2

u1 ∈R {0, 1}`x+`c+`s

u2, . . . , ul, uα ∈R Zq

ur ∈R Z∗
ms+1 , ur̃ ∈R {0, 1}k/4+`c+`s

ah
G← (h′)uαg−u1

1 · · · g−ul

l

a0

Z∗
ms+1← (m + 1)u1ums

r , ay
Z∗m← hu1

1 hur̃
2 y,ah,a0,ay−−−−−−−−−−−−−→

c ∈R {0, 1}`c
c←−−−−−−−−−−−−−

r1 ← u1 + cx1

(ri ← ui + cxi mod q)l
i=2

rα ← uα + cα−1
1 mod q

rr

Z∗
ms+1← urr

c, rr̃ ← ur̃ + cr̃
(ri)

l
i=1,rα,rr,rr̃−−−−−−−−−−−−−→

(h′)rαg−r1
1 · · · g−rl

l
?= ahhc

0

(m + 1)r1rms

r
?= a0c

c
0

hr1
1 hrr̃

2
?= ayyc, r1

?
∈ {0, 1}`x+`c+`s

Figure 7.1: Brands’ verification protocol, with Paillier encrypted disclosure.

The proof of correctness for Figure 7.1 can be obtained by combining the proofs of Lemma 4.1.2 and
Proposition 6.1.1, and is therefore omitted. We have statistical security under the DL Assumption
2.2.1 (recall that DL ⇐⇒ DLREP), the DCR Assumption 2.2.7 (for Paillier encryption) and the
SRSA Assumption 2.2.6 (for the integer commitment).

7.2 Protocol B: attribute hiding issuance

In this case, CA = P outputs, as a team of multiparty computation servers, an encryption
c1 = Jx1KP that needs to be certified. The participants (t, n)-threshold share the secret decryption
key µ. Now, CA is not allowed to learn x1 but U is. Similar to Section 6.2, we only consider l = 2,
so we consider two attributes (x1, x2). The generic approach of Section 6.2 still applies, where the
private output protocol (Protocol 2.9.1) is utilized. Recall that in a protocol for private output only
one participant (or more generally, a restricted number of participants) learns the encrypted value.
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7.2. Protocol B: attribute hiding issuance

Now, the sub-protocol of Figure 6.2 can be constructed as follows. On input of Jx1KP the protocol
results in a value h = gx1

1 gx2
2 h0 where U knows x1, x2. Naturally, again this protocol involves

integer commitments, and we assume that the setup is as in Definition 2.4.2. That is, we have
security parameters `x, `c, `s such that 2`x+`c+`s+1 < min{q, ms}, and we require that −2`x <
x1 < 2`x in order for the protocol to succeed.

U CA
(knows: c1) (knows: c1, µ)

Protocol 2.9.1 on c1←−−−−−−−−−−−−→
x2 ∈R Zq, h← gx1

1 gx2
2 h0 h−−−−−−−−−−−−−→

Σ←−−−−−−−−−−−−→
(knows: h;x1, x2) (knows: h)

Figure 7.2: Sub-protocol for attribute hiding issuing protocol, Paillier.

Here, Σ denotes a Σ-protocol for U to prove that he knows x1, x2 and that the x1 in h equals the
x1 in c1. Using the notation of Protocol 2.9.1, this is a Σ-protocol for the following relation:{

(c′, d, h;x1, x2, t)
∣∣∣ c′ Z∗

ms+1
= (m + 1)d−x1tm

s

∧ h
G= gx1

1 gx2
2 h0 ∧

(−2`x+`c+`s < x1 < 2`x+`c+`s)
}

.

The Σ-protocol is similar to the one shown in Figure 4.1 for relation (4.1), and is therefore omitted.
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8. Remarks and conclusions

In this chapter, we compare the different schemes presented throughout the thesis from an effi-
ciency perspective, and provide recommendations for further research. Some remarks regarding
the schemes in Chapters 5-7 are discussed here. In Section 8.1 the certificate schemes, and in
particular the differences between the newly discussed encrypted certificate scheme (Section 6.3)
and Brands’ certificate scheme are discussed. This section also considers the ‘restrictions’ put on
the participants. Section 8.2 discusses the possibility to mix the discussed schemes. Indeed, all
schemes are based on extreme scenarios (for instance, all attributes are encrypted or all attributes
are in plain) and these scenarios can be ‘mixed’. In particular, it turns out that the efficiency
of the scheme can be increased if different schemes are mixed. In Section 8.3, the possibilities to
construct an encrypted certificate scheme with respect to the universal construction of Chapter 3
for two Camenisch-Lysyanskaya certificate schemes [CL02, CL04] are considered.
Finally, in Section 8.4 this thesis is concluded, the major contributions are summarized and open
questions are discussed.

8.1 Efficiency analysis

In this section, we analyze the efficiency of the schemes proposed in this thesis. In particular, we
compare the schemes with Brands’ certificate scheme. We also summarize the required assumptions
and the ‘restrictions’ put on the participants.

8.1.1 Participants

In the extensions discussed throughout the thesis, we require that P = CA (in Sections 6.2 and
7.2) or even P = CA = V (in Section 6.3). Clearly, the former is no restriction at all. In fact,
considering the CA as a group of participants is a practical way to guarantee that the CA is
not actively attacking the protocol (so he acts like an honest-but-curious party). The restriction
P = CA = V however is a restriction. Indeed, it means that a certificate is not publicly verifiable
anymore. It can only be verified by the certification authority itself. We believe that this is not
a big restriction, simply because of the reason why we need the scheme in the first place: CA is
the set of multiparty computation servers. Jointly, they output an encryption and certify it for
U . Then, at a later point in time, U could come back to CA with the certified encryption, so
that CA can continue doing multiparty computation with that encryption. So in this scenario our
assumption that CA = V holds in practice.

We note however that it is possible to extend the scheme in Section 6.3 to a system where CA 6= V.
Indeed, for the verification protocol V needs the secret values λ and (yi)

l
i=1, and CA only needs

x0 for the pure issuing protocol, but he needs the other values for the preliminary setup of the
values (h, (ci)

l
i=1). This means that if CA is given these values, or in particular if CA knows

the plaintext attributes of the certificate (but U still does not learn them), certificate issuance is
possible only using x0 and (φi)

l−1
i=1. In this way, the roles of CA and V can be separated. This is

however a restriction of the original scheme, since now either the CA needs some kind of oracle
for (h, (ci)

l
i=1), or he has to learn the plaintext attributes.
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We think that it is impossible to turn the encrypted certificates into universally verifiable cer-
tificates. Indeed, the verifier needs to do a plaintext equality test since the verification predicate
involves encryptions of which the prover needs to prove some property. This plaintext equality
test can only be done by the owner of the decryption key.

8.1.2 Assumptions

Depending on the different choices of schemes, different assumptions are needed. These are dis-
cussed briefly. If more schemes are mixed (see Section 8.2) the required assumptions are the
collection of the assumptions corresponding to the separate schemes. We remind the reader of the
hierarchical structure of DL⇐ DDH, by which the term DL has disappeared in some places, but
it is nonetheless implied. See Table 8.1.

At verification: disclosure in:
plaintext ElGamal Paillier

At issuing:
U knows:

plaintext DL DDH DL+DCR+SRSA
ElGamal  DDH  

Table 8.1: Comparison of the required assumptions.

8.1.3 Complexity and overhead

Table 8.2 gives an overview of the sizes of the certificates and the communications for the different
schemes. We write |G|, |Zq|, etc. separately to denote the type of values involved. Moreover,
for simplicity elements in {0, 1}`c are just assumed to be elements in Zq. The key generation
algorithm is not considered. Also, only the communication between U and CA or U and V is
considered (so the case of CA or V being a set of participants P is ignored). Firstly, if U knows
the attributes in plain (the first row of the table), then the only differences among the schemes are
in the overhead of the verification protocols. It is clear that the differences in the communication
complexities between plaintext disclosure and encrypted disclosure are constant in the number of
attributes l. The encrypted certificate scheme from Section 6.3 is clearly more expensive than the
standard case where U learns the plaintext values, but its overhead is only of linear order in l.
For the communication complexity for CA = V = P , extra costs are in the computation of the
plaintext equality test in the verification protocol of Figure 6.5, which according to Section 4.2.4
takes O(nk) broadcast complexity. It requires about O(n + l) exponentiations. This can be seen
as the performance cost of the encrypted certificates.

U knows communication overhead of
attributes in: certificate size issuance verification, disclosure in:

plaintext 2|G|+ (l + 3)|Zq| 4|G|+ 2|Zq|

plaintext: 3|G|+ (l + 4)|Zq|
ElGamal: 7|G|+ (l + 5)|Zq|
Paillier: 3|G|+ (l + 6)|Zq|+
2|Z∗

m|+ 2|Z∗
ms+1 |

ElGamal (4l + 2)|G|+ 3|Zq| (6l + 5)|G|+ 2|Zq| (4l + 3)|G|+ 4|Zq|

Table 8.2: Comparison of the sizes of certificates and communication sizes. The overhead of the
verification protocol is based on the case where the user discloses one attribute and keeps the
other l − 1 secret. For the overhead of the issuance protocol, additional executions of the private
output protocol are not considered.
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Finally, it seems that further optimization of the scheme in Section 6.3 is not possible. For instance,
if in the issuing protocol an encryption, say c1, is left out of the hash function, then a malicious
user U ′ can set c′1 ← c1JxK, where x ∈ {0, 1} is unknown to U ′. It turns out that then the
verification protocol succeeds if and only if x = 0. So this gives U ′ and oracle for bit-decryption1.
Also, as argued in Remark 6.3.1 the values φi are really required.

8.2 Mixing different certificate schemes

The schemes described in this thesis are meant to be used for a single purpose. For instance,
the scheme with the issuing protocol of Section 6.2 considers the case where encryptions come
from multiparty computation and U learns all values, while the issuing protocol in Section 6.3
discusses the case where U does not learn any of the values. Clearly, these protocols can be
combined. In fact, also the schemes from Chapters 6 and 7 can be mixed in straightforward ways
(for instance if c1 is ElGamal encrypted and c2 Paillier). Also the disclosure protocols can be
mixed arbitrarily: it can for instance be the case that U comes up with a certificate, and wants
to show one subset of attributes in plain, and another subset using Paillier encryptions. In par-
ticular, Brands constructed protocols to disclose arbitrary relations on the attributes, for instance
x1 +2x2 ≡ 3x3 mod q∧x4 +5x3 ≡ x5 mod q, without disclosing the attributes in plaintext [Bra99,
Ch. 3]. As mentioned in Section 6.1, these methods can also be combined with disclosing the
attributes in encrypted form (protocol A). For the verification protocol of the encrypted certifi-
cate scheme of Section 6.3.3 (scheme C), these methods make no sense as the user simply sends
encryptions of the attributes to the verifier.

This generalization for ‘mixed’ scenarios is immediate. We note however that if U knows an at-
tribute xi in plaintext, he can decide among verification protocols 5.2 (plaintext disclosure) or 6.1
or 7.1 (encrypted disclosure), but if U knows xi in encrypted form (in Scheme 6.3), he is thrown
back on the verification protocol in Section 6.3.3.

Mixing different protocols can reduce the complexity, which can be seen in the following example:
Suppose CA’s multiparty computation results in a set of ElGamal encryptions c1, . . . , cl−1, and U
is not allowed to learn D(c1) (but he is allowed to learn the other decryptions). In this case, the
issuing protocols of Sections 6.2 (for the encryptions c2, . . . , cl−1) and 6.3.2 (for c1) can be mixed2.
Following Table 8.2, for this example the efficiency difference compared to the basic scheme of
Brands is of constant order.

8.3 Extending other certificate schemes

In this thesis, the universal approach of Chapter 3 is only applied to Brands’ discrete log certificate
scheme. An interesting question is how this approach applies to other certificate schemes. We
single out the two Camenisch-Lysyanskaya schemes [CL02, CL04]. Due to [BCL06], these are also
provided with a protocol for selective plaintext disclosure (as required in Section 3.2.1). It turns
out that protocols A and B from Section 3.2.3 are easily possible. For scheme C, the generalization
is not as straightforward and it remains as an open problem.

A: (Encrypted disclosure of attributes). This protocol is easily possible for both schemes. The
extension relies on exploiting Σ-protocols, possibly with the use of integer commitments
(Definition 2.4.2) if it involves different groups. A deep comparison for encrypted disclo-
sure among these schemes and Brands’ certificate scheme is not considered, but using one

1Also, if x is not a bit, the resulting scheme is an oracle for the equality ‘x
?
= 0’.

2But the l-th attribute still needs to be in line with the encrypted issuance protocol since otherwise U can learn
the value gx1

1 from h, and thus obtains some information about D(c1).

79



8. Remarks and conclusions

of the CL-schemes degrades the required assumptions compared to Brands’ scheme, as be-
comes clear from Table 8.3. It is clear that in all cases Brands’ scheme is based on weaker
assumptions3;

B: (Attribute hiding issuance). Extending the schemes for the case where the multiparty compu-
tation results in an encryption that needs to be certified, with the user still allowed to learn
the plaintext, is easily possible. The approach is also based on a private output protocol
(Section 2.9.1) and works because both [CL02, CL04] offer the possibility of ‘certification on
committed values’ (where the service provider certifies attributes that are only known by
U);

C: (Encrypted certificate scheme). Although not proven, this scheme looks impossible, or at
least more complicated to construct. This is because both schemes function with multi-show
certificates, and this multi-show functionality comes from the possibility of the user to com-
pletely blind the values in the certificate before each verification execution (independently
from the issuing protocol). Now consider an encryption c, that is certified. Upon verifi-
cation, the user blinds c to c′ = cJ0, rK for random r and sends it to the verifier. But for
both CL-schemes it is impossible for the user to prove knowledge of r as the verifier does
not know c, and therefore an attacker setting c′ = cJxK for unknown x would succeed with
probability Pr(x = 0). If x is from a restricted domain, this probability is non-negligible and
the adversary thus obtains an oracle for ‘x ?= 0’. (See also the footnote on page 30.) So while
in Brands’ one-show certificate scheme the blinding is done during the issuing execution and
the previously described attacks are prevented, for the CL-schemes this attack is possible.
This implies that a more complex operation is necessary for the CL-schemes, rather than
the approach used in this thesis.

Disclosure in: plaintext ElGamal, ElGamal, Paillier, Paillier,
same order diff. order same mod. diff. modulus

[Bra99] DL DDH SRSA+DDH  i SRSA+DL+DCR
[CL02] SRSA+DL  i SRSA+DDH SRSA+DL+ SRSA+DL+DCR

DCR
[CL04] LRSW  ii LRSW+SRSA+  i LRSW+SRSA+

DDH DCR

i: The certificate scheme and the encryption scheme work on incomparable groups.
ii: ElGamal relies on the DDH assumption, but the certificate scheme is pairing based.

Table 8.3: Comparison of the assumptions needed if the certificate scheme is extended to encrypted
disclosure, for [Bra99, CL02, CL04].

8.4 Conclusions

Via the construction of new protocols, a certificate scheme and secure multiparty computation are
connected, in such a way that several new functionalities are possible (Figure 3.2). Specifically,
the construction enables a service provider to be a set of multiparty computation participants that
obtains encryptions, possibly certified, does some multiparty computation on them and outputs an
encrypted result, again possibly certified. Although the construction in this work focuses on one
particular certificate scheme, the discrete log based scheme of Brands [Bra99], the construction as
described in Chapter 3 is universal, in the sense that it also applies to other certificate schemes,
e.g. [CL02, CL04] (as long as the components A-C of Section 3.2.3 can be constructed for the

3But unlike the CL-schemes, Brands’ scheme is at many points only assumed to be secure, implicitly implying
the use of additional assumptions.
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certificate scheme).

The most significant contributions in the area of certificate schemes are a reformulation and for-
malization of the definition of ‘certificate schemes’ by Brands [Bra99] and the generalization of
Brands’ certificate scheme for ElGamal encryptions such that the outcome of a multiparty com-
putation can be certified, regardless of the rights of the user and the certification authority to
learn the plaintext. In a restricted form, the same generalization is constructed for the Paillier
cryptosystem. Particularly, the notion of ‘encrypted certificate scheme’ is introduced in this thesis
and a concrete construction is given and proven secure. This extension is fairly efficient. To our
knowledge, such a scheme has not been studied earlier in the literature.

In the context of multiparty computation, as one of the main purposes of our scheme was to per-
form statistical analysis (on certified inputs and possibly with certified outputs), the set of available
gates is extended. Some multiparty computation gates were only needed for the construction of
the certificate schemes (discussed above), but can be seen as independent protocols as well. The
most interesting contributions in the context of multiparty computation are a generalization of
the plaintext equality test, so that it is applicable for more general purposes, and the construction
of an efficient modulo reduction gate. Moreover, computing statistics over encryptions is made
possible. The most remarkable stumbling block was the fact that statistics often require integer
divisions, which are not well-defined in finite rings (specifically for ElGamal and Paillier encryp-
tions). Using the mentioned modulo reduction gate, this problem has been solved.

All contributions together describe a complete system for combining multiparty computation and
certificate schemes, following the universal construction of Chapter 3. Yet, the concrete construc-
tion based on Brands certificate scheme [Bra99], as made in this thesis, is not for free. It lead
to two restrictions: the verification is not publicly possible and security is based on an addi-
tional assumption, and although these two restrictions are argued unavoidable (Section 8.1) and
conceivable (Appendix A) respectively, solving these restrictions remains an open problem.

8.4.1 Further research

Although the scheme proposed in this thesis is complete, its construction could accept some
optimizations. We will briefly consider some possible directions for further research.

Other encrypted certificate schemes. In this thesis, the universal approach of Chapter 3 is
only applied to Brands’ discrete log certificate scheme, and for the ElGamal cryptosystem. For
the Paillier cryptosystem, only protocols A and B of the universal approach are constructed. The
construction of an encrypted certificate scheme for the Paillier cryptosystem remains as an open
problem (see also Chapter 7). Also, it might be interesting to study this general construction
for other certificate schemes in the literature, as mentioned in Section 8.3 where two schemes of
Camenisch-Lysyanskaya [CL02, CL04] are considered. Moreover, it might be possible to construct
a ‘stand-alone’ encrypted certificate scheme, that is not based on another certificate scheme in
literature.

Proving Assumption 6.4.1. Similar to the scheme of Brands, blinding-invariance unforge-
ability turned out to be more complicated to prove, and also for the security of our scheme an
additional assumption is required. Informally, the assumption states that if a malicious user
manages to come up with a certificate, then with overwhelming probability he has been issued
a certificate on the same list of attributes. Unsuccessfully, we tried to reduce Assumption 6.4.1
to Brands’ assumption (Assumption 5.2.1), and therefore proving this assumption remains open.
Moreover, it has not been considered to prove this assumption in the case certificates are issued
sequentially.
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Publicly verifiable certificates. The proposed scheme requires that upon verification the
verifier executes a plaintext equality test. This is because the user does not know the attributes and
he has to send the encryptions instead. Therefore, the verification requires a plaintext equality test
and the verifier needs the secret key. Although this is argued to be not really a restriction (in the
original system design, the only allowed verifier was the certification authority anyway), it would
be interesting if the scheme can be constructed without the verifier needing secret information.
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A. Heuristic analysis of
Assumption 6.4.1

In this appendix, we argue why Assumption 6.4.1 should hold. This is done as follows: firstly, in
Section A.1 a proposition is introduced. We call this proposition the ‘separation proposition’, and
use it to make the analysis of the assumption easier to understand. The proposition allows us to
split the problem into smaller problems. After the proposition we exemplify what the proposition
concretely means for the coming argumentation. Then the actual analysis is given in Section A.2.
This is done in several sub-claims that together constitute the whole analysis.

A.1 Separation proposition

The proposition relies on the Schwartz-Zippel lemma, independently proven by Zippel and Schwartz
[Zip79, Sch80]. This notation is taken from [HSSV09].

Lemma A.1.1 (Schwartz-Zippel). Let p be an n-variate polynomial of degree d ≥ 0 over Zq for
some q. Let x1, . . . , xn ∈R Zq. Then, the probability that p(x1, . . . , xn) = 0 is at most d/q.

We are now ready to introduce and prove the separation proposition.

Proposition A.1.2 (Separation proposition). Given a group G = 〈g〉 or order q. For k, l ∈ N,
given l different functions φi : Zk

q → Zq defined as

φi(R1, . . . , Rk) = Rαi1
1 · · ·Rαik

k mod q,

with αi1 ∈ {0, 1}. Without loss of generality we assume αi1 = 1 for i = 1, . . . , l′ and αi1 = 0 for
i = l′ + 1, . . . , l. We require that

l′

max
i=1

deg φi =: d� q, (1)

where deg φi =
∑k

j=1 αij is the degree of the polynomial φi. Now, for r1, . . . , rk ∈R Zq let hj = grj

(j = 1, . . . , k) and gi = gφi(r1,...,rk) (i = 1, . . . , l). Suppose a forger F is given (hj)k
j=1 and

(gi, φi)l
i=1 for r1, . . . , rk ∈R Zq, and can find a non-trivial tuple (x1, . . . , xl) satisfying:

gx1
1 . . . gxl

l = 1, (2)

then, under the DL assumption this tuple satisfies

gx1
1 · · · g

xl′
l′ = 1 and g

xl′+1
l′+1 · · · g

xl

l = 1. (3)

Proof. Suppose F can find a non-trivial tuple (x1, . . . , xl) satisfying (2) such that (3) does not
hold, with probability ε. We construct a simulator S that uses F to solve the discrete log problem
on input g, h = gx. This simulator operates as follows:
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A. Heuristic analysis of Assumption 6.4.1

1. The simulator takes ρ1, . . . , ρk, σ ∈R Zq. He sets h1 = gρ1hσ and hj = gρj for j = 2, . . . , k,
and computes the gi as

gi = h
ρ

αi2
2 ···ραik

k
1 for i = 1, . . . , l′,

gi = gρ
αi2
2 ···ραik

k for i = l′ + 1, . . . , l.

He sends (hj)k
j=1 and (gi, φi)l

i=1 to F . Notice that this setup exactly corresponds to setting
r1 = ρ1 + σx and rj = ρj for j = 2, . . . , k. In particular, for i = 1, . . . , l′ we have

gi = (gρ1hσ)ρ
αi2
2 ···ραik

k = g(ρ1+σx)ρ
αi2
2 ···ραik

k ;

2. The forger outputs a tuple (x1, . . . , xl) satisfying (2) but not (3);

3. If σ
∑l′

i=1 ραi2
2 · · · ραik

k xi = 0, the simulator halts. Otherwise, he computes

x←

(
l∑

i=1

ραi1
1 ραi2

2 · · · ραik

k xi

)−σ
l′∑

i=1

ραi2
2 · · · ραik

k xi

−1

mod q,

and outputs the result.

By the condition in phase 3, x exists. Remains to prove that this value satisfies gx = h. But:

g
Pl

i=1 ρ
αi1
1 ρ

αi2
2 ···ραik

k xi = g
Pl′

i=1 ρ1ρ
αi2
2 ···ραik

k xig
Pl

i=l′+1 ρ
αi2
2 ···ραik

k xi

= g
Pl′

i=1 ρ1ρ
αi2
2 ···ραik

k xi

l∏
i=l′+1

gxi
i

= g
Pl′

i=1(ρ1+σx)ρ
αi2
2 ···ραik

k xig
Pl′

i=1 −σxρ
αi2
2 ···ραik

k xi

l∏
i=l′+1

gxi
i

=

(
l∏

i=1

gxi
i

)
g
Pl′

i=1 −σxρ
αi2
2 ···ραik

k xi

= 1 · (gx)−σ
Pl′

i=1 ρ
αi2
2 ···ραik

k xi ,

from which x =
(∑l

i=1 ραi1
1 ραi2

2 · · · ραik

k xi

)(
−σ
∑l′

i=1 ραi2
2 · · · ραik

k xi

)−1

directly follows.
We now determine the success probability of S. As the setup in phase 1 is indistinguishable from
the distribution of the real, prescribed, case, the transition from phase 1 to phase 3 takes place with
probability ε. For the success probability of phase 3, observe that there exists an i ∈ {1, . . . , l′}
such that xi 6= 0, as (3) does not hold, and therefore

p(σ, ρ2, . . . , ρk) = σ
l′∑

i=1

ραi2
2 · · · ραik

k xi

is a well-defined polynomial (in terms of Lemma A.1.1) of degree ≤ d � q by (1). Therefore, as
σ, ρ2, . . . , ρk ∈R Zq the simulator halts in phase 3 with probability at most d/q. Concluding, the
overall success probability of the simulator is at least (1− d/q)ε.

Clearly, if a forger would only know the values (hj)k
j=1 and not all values (gi)l

i=1, forging becomes
even more difficult. We give a small example on how to apply this proposition.

Example A.1.3. Let G = 〈g〉 be a group of prime order q, and consider r1, r2, r3 ∈R Zq. Define
hj = grj for j = 1, 2, 3 and g1 = gr1r2 , g2 = gr1r2

3 and g3 = gr2r3
3 . Suppose that a forger is

given (hj)3j=1 and (gi)3i=1, and can find a, b, c such that ga
1gb

2g
c
3 = 1. Then, Proposition A.1.2 on

r1 ∈R Zq implies that ga
1gb

2 = 1 and gc
3 = 1 should hold. Applying Proposition A.1.2 on ga

1gb
2 = 1

for r2 ∈R Zq results in ga
1 = 1 and gb

2 = 1. This leads to a = b = c = 0.
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A.2. Heuristic analysis of Assumption 6.4.1

It now becomes clear that this proposition allows us to split equations of the form (2) with l large.
For instance for r1, r2, r3, r4 ∈R Zq, the following equation looks complicated, but consecutive
application of the separation proposition on r1, r2, r3, r4 eventually leaves x1 = · · · = x9 = 0.

(gr1r2r3r4)x1(gr1r2r3
4 )x2(gr1r2r3)x3(gr1r2

3r4
4 )x4(gr2r3r4)x5(gr2r7

4 )x6(gr2r3)x7(gr3)x8(gr9
4 )x9 = 1.

Remark A.1.4. The restriction in Proposition A.1.2 that αi1 ∈ {0, 1} excludes the case of finding a
representation over (g, gx, gx2

) with x ∈R Zq. However, it can be shown that it is hard for a forger
to find a, b, c such that ga(gx)b(gx2

)c = 1 if he only has knowledge of g and gx. The reduction
relies on the fact that finding gx2

on input of (g, gx) is hard [BDZ03]: a forger that is able to
output (a, b, c) such that (gx2

)a(gx)bgc = 1 can be used to find gx2
as follows: If a = 0, we have

x = −cb−1, and if a 6= 0 we obtain gx2
= (gx)−ba−1

g−ca−1
.

A.2 Heuristic analysis of Assumption 6.4.1

In this section, we analyze several sub-claims, which in turn allow us to heuristically analyze As-
sumption 6.4.1. For ease of presentation we recall this proposition.

Assumption 6.4.1. If U ′ produces, after K ≥ 0 arbitrarily interleaving executions of the protocol
in Figure 6.4 on

(
c∗ji

)l−1

i=1
(j = 1, . . . ,K) a tuple (h′, (c′i)

l
i=1 , α1, z

′, (z′i)
l
i=1 , c′0, r

′
0), then either this

tuple does not satisfy (6.2), or with overwhelming probability there exists a j ∈ {1, . . . ,K} such
that

U ′ knows values (βi)
l
i=1 such that (c′i)

l
i=1 =

(
cji(g, f)βi

)l
i=1

, (6.4)

where (cji)
l
i=1 is the list of encryptions coming from the first round of the j-th issuing execution.

A.2.1 High-level approach

Roughly, the analysis is as follows. At first, in Section A.2.2 we abstract the setting, and briefly
summarize the goal of a possible forger U ′. We only consider two parallel executions on two
attributes (for simplicity, we numbered elements in the two executions with subscripts j, see also
Figure A.1). We consider an algebraic attack, where the forger exploits the algebraic properties
of the group. Then, in Section A.2.3 we summarize the values that U ′ knows before initiating the
attack (notice that the forger starts the attack after the first round in Figure A.1). The general
attack of the forger is to choose the challenges c10, c20 in the two issuing executions in a smart
way, to learn the responses r10, r20, and use those responses to complete the choice of the values
in the forged certificate (h′, c′1, c

′
2, α1, z

′, z′1, z
′
2, c

′
0, r

′
0). To this end, the forger needs to decide on

the values (h′, z′, (c′i, z
′
i)

2
i=1) before he computes c′0, as this value is the outcome of a cryptographic

hash function. The complete analysis mainly relies on the property that this value c′0, as well
as the responses in the two issuing executions, look uniformly random to the forger U ′. As the
forger learns the responses after he chooses the challenges, and as he learns c′0 after he chooses
the other values in the certificate (except for r′0), this property turns out to reduce U ′’s possible
choices. In particular, in order to succeed with non-negligible probability, the forger cannot do
anything else than setting h′ = hα1

2 for some random α1, where h2 is coming from the second
issuing execution (see Figure A.1). Notice that if the forger would follow the protocol, he would
have set h′2 = hα1

2 as well. Consequently, in Section A.2.9 it turns out that the only way for the
forger to decide on the encryptions c′i, is by setting c′i ← c2i(g, f)βi for known βi (i = 1, 2). But
this statement contradicts the goal of the forger, namely coming up with a certificate such that
(6.4) is not satisfied for any of the issuance executions.

A.2.2 General setting

We consider a group G = 〈g〉 of prime order q. Without loss of generality we only consider two
attributes (l = 2) and two parallel executions (K = 2). For j = 1, . . . ,K, U ′ is issued a certificate
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A. Heuristic analysis of Assumption 6.4.1

by CA on c∗j . To distinguish between the two different certificate issuance executions, all values
obtained or generated by CA in the issuing executions are provided with a subscript j ∈ {1, 2}.
Figure A.1 shows the complete interaction between U ′ and CA used in this analysis. The goal of
U ′ is to find a tuple (h′, c′1, c

′
2, α1, z

′, z′1, z
′
2, c

′
0, r

′
0) satisfying (6.2) for which (6.4) does not hold for

all j, with non-negligible probability. We only consider algebraic attacks, where the forger exploits
the group structure to decide on the values in the certificate. Furthermore, we only consider the
case that U ′ decides on a value h = (h′)α−1

1 instead (the analysis also holds in case we just consider
h′), and rename all the other variables to the non-prime names (except for z′1, z

′
2). Summarizing,

the goal of U ′ is to find a tuple (h, z, c1, c2, z
′
1, z

′
2, c0, r0) satisfying

c0 = H(c1, z
′
1,c

r0
1 (z′1)

−c0 ; c2, z
′
2, c

r0
2 (z′2)

−c0 ;h, z, gr0h−c0
0 , hr0z−c0)

and D(cy1
1 cy2

2 )h0 = h,
(4)

without knowing values β1, β2 such that ci = cji(g, f)βi for both i = 1, 2 for any j ∈ {1, 2}.

U ′ CA
(knows: c∗j ) (knows: c∗j )

rj1, rj2, xj2 ∈R Zq

cj1 ← c∗j · (grj1 , f1f
rj1)

cj2 ← (grj2 , gxj2frj2)
hj ← D(cy1

j1c
y2
j2)h0

zj ← hx0
j ,

(
zji ← cx0

ji

)2
i=1

wj0 ∈R Zq

aj0 ← gwj0 , bj0 ← h
wj0
j

f̃j ← fwj0 , (eji0 ← c
wj0
ji )2i=1

hj ,zj ,(cji,zji)
2
i=1;aj0,bj0,f̃j ,(eji0)

2
i=1←−−−−−−−−−−−−−

. . . cj0−−−−−−−−−−−−−→
rj0 ← cj0x0 + wj0 mod qrj0←−−−−−−−−−−−−−

aj0
?= grj0h

−cj0
0

bj0
?= h

rj0
j z

−cj0
j

f̃j
?= frj0 f̂−cj0

(eji0
?= c

rj0
ji z

−cj0
ji )2i=1

. . .

Figure A.1: The setting for the heuristic analysis of Assumption 6.4.1 (executed in parallel for
j = 1, 2). Afterwards, U ′ outputs a forgery satisfying the properties explained in Section A.2.2.

A.2.3 Initial knowledge of U ′

In the issuance of the encrypted certificates in Figure A.1, the forger is not involved in the protocol
until he obtains (hj , zj , (zji)2i=1; aj0, bj0, f̃j , (eji0)

2
i=1) for j = 1, 2. After he obtains these values,

his attack starts. Concretely, all values the forger learned up to this point are the following for
j = 1, 2:

• The public key (g, h0, f, f̂ , g1, g2, f1) by the key generation algorithm of Section 6.3.1. These
values satisfy, for x0, λ, y1, y2, φ1 ∈R Zq:

h0 = gx0 , f = gλ, f̂ = gλx0 , g1 = gy1 , g2 = gy2 , f1 = gφ1 ;
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A.2. Heuristic analysis of Assumption 6.4.1

• The values c∗j encrypting attributes x∗j ∈ {0, 1};

• The values (cj1, cj2) and hj satisfying, with rj1, rj2, xj2 ∈R Zq:

cj1 = (grj1 , gx∗j f1f
rj1), cj2 = (grj2 , gxj2frj2), hj = g

x∗j +φ1

1 g
xj2
2 h0,

as well as all other values (zj , (zji)2i=1; aj0, bj0, f̃j , (eji0)
2
i=1) from the protocol in Figure A.1.

Table A.1 summarizes the elements and their relationship to secret exponents x0, w10 and w20.
We stress that the exponents of all elements in the table are (polynomial combinations of values)
in {x0, w10, w20, φ1, λ, y1, y2, rji, xj2} ⊂R Zq, and these values are unknown to U ′. Note that U ′
indeed does not know (c∗j )

x0 although he knows cx0
j1 satisfying cj1 l c∗j (1, f1) (for j = 1, 2).

g f g1 g2 f1 c∗1 c1i h1 c∗2 c2i h2

expon. x0: h0 f̂ - - - - z1i z1 - z2i z2

expon. w10: a10 f̃1 - - - - e1i0 b10 - - -
expon. w20: a20 f̃2 - - - - - - - e2i0 b20

Table A.1: All values the forger U ′ knows at the beginning of his forging attempt.

A.2.4 General design of attack

Now, the basic strategy U ′ could have applied is that he constructs the challenges c10, c20 in
Figure A.1 in a smart way, in order to obtain r10, r20 according to the issuing protocol, and use
that knowledge to construct the certificate (h, z, c1, c2, z

′
1, z

′
2, c0, r0), where he freely chooses the

final r0, and takes c0 to be the outcome of the hash function such that the certificate satisfies (4).
The same attack is used in the argumentation why [Bra99, Ass. 4.4.5] (Assumption 5.2.1) should
hold.
So in Figure A.1, for j = 1, 2 he can choose cj0 arbitrarily, and will obtain values rj0 such that:

aj0 = grj0h
−cj0
0 , bj0 = h

rj0
j z

−cj0
j ,

(eji0 = c
rj0
ji z

−cj0
ji )2i=1, f̃j = frj0 f̂−cj0 .

(5)

The goal of U ′ is to find values (h, z, c1, c2, z
′
1, z

′
2; a0, b0, e10, e20; r0) such that

a0 = gr0h−c0
0 , b0 = hr0z−c0 , (ei0 = cr0

i (z′i)
−c0)2i=1, (6)

where c0 is computed as c0 = H(c1, z
′
1, e10; c2, z

′
2, e20;h, z, a0, b0). These values moreover need to

satisfy the second equation in (4), such that (6.4) does not hold for any j. An important observation
is that the values c0, r10, r20 can be considered to be uniformly and independently randomly
distributed in Zq, as c0 is the outcome of a cryptographic hash function and rj0 = cj0x0+wj0 mod q
for random wj0. The forger can choose r0 freely, and therefore without loss of generality we assume
this value to be chosen last.

A.2.5 Intermediate summary and overview of further analysis

Summarizing, we considered the possible attack in Section A.2.4. Briefly, the forger can query the
CA on two arbitrarily chosen values c10, c20 in order to obtain r10, r20 satisfying (5). These rj0

are mutually independent. He needs to come up with values (h, z, c1, c2, z
′
1, z

′
2; a0, b0, e10, e20; r0)

satisfying (6), with c0 the outcome of a cryptographic hash function. He will do so by setting all
values except r0 as algebraic combinations of group values of Table A.1, for instance h = hα1

1 hα2
2

for arbitrarily chosen α1, α2, and he will obtain c0 directly after he chooses all these values.
The rest of the analysis is as follows: firstly in Section A.2.6 the attack will be simplified. That
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is, for a moment we will forget about the second and third equations of (6) and only consider the
possible choice of a0. Then in Section A.2.7 we extend this scenario so that also b0 = hr0z−c0 is
considered, and we will investigate the possible choices of b0, h, z by U ′. Finally, in Section A.2.9
we extend to the last equation in (6) and the second equation of (4). It then turns out that it is
hard for U ′ to forge a certificate such that (6.4) does not hold for any j, as it becomes clear from
the conclusion in Section A.2.10.

A.2.6 Simplification to a0 = gr0h−c0
0 of (6)

In this simplification, U ′ needs to choose a0 such that a0 = gr0h−c0
0 holds, where c0 = H(a0) and

r0 is chosen arbitrarily. He can also choose challenges cj0 arbitrarily (j = 1, 2) to obtain responses
rj0 satisfying (5).

Possible choices by U ′. Using Table A.1, the simplest way for U ′ to construct the value a0 is
by setting

a0 = aγ1
10a

γ2
20h

γ3
0 gγ4 . (7)

The reason that this is the simplest option follows from the separation proposition: the right-
hand side of equation a0 = gr0h−c0

0 only consists of elements g, h0, and therefore the left-hand side
should consist of elements only having these two terms as well (recall from (5) that aj0 = grj0h

−cj0
0

for j = 1, 2). However, in the equation a0 = gr0h−c0
0 the forger can choose r0 himself, and therefore

we can without loss of generality ignore the term gγ4 in (7).
So summarizing, the forger can arbitrarily choose γ1, γ2, γ3. He can also arbitrarily choose c10, c20,
as well as r0. He obtains rj0 directly after he chooses cj0 (j = 1, 2). These rj0 are randomly and
mutually independently distributed. U ′ obtains c0 = H(a0) directly after he chooses γ1, γ2, γ3.

Interpretation of possible choices. Together with the first equations of (5) and (6), equation
(7) implies (gr10h−c10

0 )γ1(gr20h−c20
0 )γ2hγ3

0 = gr0h−c0
0 , where h0 = gx0 . Applying the separation

proposition on x0 ∈R Zq results in

r10γ1 + r20γ2 ≡ r0 mod q, (8)
−γ3 + c10γ1 + c20γ2 ≡ c0 mod q. (9)

Analysis of possible choices. Suppose γ1 = γ2 = 0. Then (9) implies that c0 = −γ3 mod q,
but this only happens with negligible probability 1/q as c0 is uniformly random obtained after
choosing γ3. Thus (γ1, γ2) 6= (0, 0). We now extend to the second equation in (6).

A.2.7 Extension to b0 = hr0z−c0 of (6)

We extend the scenario to the second equation in (6). Now, in addition to a0, the forger U ′
needs to choose values b0, h, z such that b0 = hr0z−c0 holds, where c0 = H(a0, b0, h, z) and r0 is
chosen arbitrarily. He can also choose challenges cj0 arbitrarily (j = 1, 2) to obtain responses rj0

satisfying (5). We first consider the possible choices that U ′ has for the values h, z, b0: firstly the
construction of h is analyzed using (4), and then the constructions of z, b0. Next, these possible
choices will be interpreted.

Possible choice of h by U ′. The forger can decide on h by setting it as a combination of all
values in Table A.1, that is by writing h = gα1hα2

0 · · · for arbitrarily chosen constants α1, α2, . . .. It
however turns out that, using the second equation in (4), the possible choice of h can be simplified.
In this paragraph we only focus on the form of h, the encryptions c1, c2 will be discussed later.
The approach is as follows: we consider h to be an algebraic combination of all values in Table
A.1, and then simplify h by applying the separation proposition and Remark A.1.4 to equation

h = D(cy1
1 )D(cy2

2 )h0. (10)
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Firstly, we consider the separation proposition on rji for j ∈ {1, 2}, i ∈ {1, 2}. Notice that in
Table A.1 rji only occurs in cji, zji and eji0, so for the left-hand side of (10) we are left with six
terms (notice that cji = (grji , gxjifrji) results in of two terms). For simplicity, the left-hand side
leaves (corresponding to the left equation in (3))

(grji)α1(frji)α2(gx0rji)α3(fx0rji)α4(gwj0rji)α5(fwj0rji)α6 , (11)

for arbitrarily chosen α1, . . . , α6. These terms also occur on the right-hand side of the equation,
but with an extra power yi (i = 1, 2). Then, the separation proposition on y1 and y2 leaves that the
value in (11) equals 1. Applying the separation proposition in a straightforward manner on λ, x0

and wj0 then implies that α1 = · · · = α6 = 0. Concluding, for j = 1, 2 and i = 1, 2, cji, zji, eji0

are no term of h. A similar argument holds for c∗j (j = 1, 2). This leaves

h = gα1hα2
0 aα3

10 aα4
20 fα5 f̂α6 f̃α7

1 f̃α8
2 gα9

1 gα10
2 hα11

1 zα12
1 bα13

10 hα14
2 zα15

2 bα16
20 fα17

1 , (12)

for arbitrarily chosen α1, . . . , α17.
Note that the exponent yi (i = 1, 2) may occur in (10) in squared form: encryption ci may have
term gi = gyi , which in (10) results in a term gy2

i . However, the term gy3
i does not occur in

the equation as no element in Table A.1 has term gy2
i . Accordingly, we can apply Remark A.1.4

on (10) to eliminate all factors in (10) with a term yi. In particular, the right-hand side of the

equation becomes h0. Using (12), this simplification leads to (recall that hj = g
x∗j +φ1

1 g
xj2
2 h0)

gα1hα2
0 aα3

10 aα4
20 fα5 f̂α6 f̃α7

1 f̃α8
2 hα11

0 (hx0
0 )α12(hw10

0 )α13hα14
0 (hx0

0 )α15(hw20
0 )α16fα17

1 = h0,

or equivalently,

gα1hα2+α11+α14−1
0 aα3

10 aα4
20 fα5 f̂α6 f̃α7

1 f̃α8
2 (hx0

0 )α12+α15(hw10
0 )α13(hw20

0 )α16fα17
1 = 1.

On this equality, the separation proposition on wj0 ∈R Zq (j = 1, 2) gives:

1 = (gw10)α3(gλw10)α7(gx0w10)α13 ,

1 = (gw20)α4(gλw20)α8(gx0w20)α16 ,

1 = gα1(gx0)α2+α11+α14−1(gx2
0)α12+α15(gλ)α5(gλx0)α6(gφ1)α17 .

The separation proposition and Remark A.1.4 can be applied to these equations to conclude that
all exponents need to be 0. In particular, using (12) the forger would have to choose arbitrarily
chosen constants α1, . . . , α5 such that

h = h1−α1−α2
0 hα1

1 hα2
2 gα3

1 gα4
2 zα5

1 z−α5
2 . (13)

Possible choice of b0, z by U ′. Using Table A.1, the simplest way for U ′ to construct the values
b0, z is by setting

b0 = aδ1
10a

δ2
20b

δ3
10b

δ4
20h

δ5
0 gδ6hδ7

1 hδ8
2 gδ9

1 gδ10
2 , (14)

z = zε1
1 zε2

2 hε3
1 hε4

2 hε5
0 gε6

1 gε7
2 gε8 . (15)

The reason why this is the simplest option is the same as for the choice of a0 in (7). So summarizing,
the forger can arbitrarily choose

Γ := {α1, . . . , α5, γ1, . . . , γ3, δ1, . . . , δ10, ε1, . . . , ε8}, (16)

provided that (γ1, γ2) 6= (0, 0). He can also arbitrarily choose c10, c20, as well as r0. He obtains
rj0 directly after he chooses cj0 (j = 1, 2). These rj0 are randomly and mutually independently
distributed. U ′ obtains c0 = H(a0, b0, h, z) directly after he chooses Γ.
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Interpretation of possible choices. Substituting the equations in (5) into b0 of (14), we obtain

b0 = (gr10h−c10
0 )δ1(gr20h−c20

0 )δ2(hr10
1 z−c10

1 )δ3(hr20
2 z−c20

2 )δ4hδ5
0 gδ6hδ7

1 hδ8
2 gδ9

1 gδ10
2

= gr10δ1+r20δ2+δ6h−c10δ1−c20δ2+δ5
0 gδ9

1 gδ10
2 hδ7+r10δ3

1 hδ8+r20δ4
2 z−c10δ3

1 z−c20δ4
2 . (17)

Now, substituting (13, 15, 17) into b0h
−r0zc0 = 1 results in:

gr10δ1+r20δ2+δ6+c0ε8h
−c10δ1−c20δ2+δ5−r0(1−α1−α2)+c0ε5
0 gδ9−r0α3+c0ε6

1 gδ10−r0α4+c0ε7
2

· hδ7+r10δ3−r0α1+c0ε3
1 hδ8+r20δ4−r0α2+c0ε4

2 z−c10δ3−r0α5+c0ε1
1 z−c20δ4+r0α5+c0ε2

2 = 1,
(18)

where the values (g, h0, g1, g2, h1, h2, z1, z2) can be found in Table A.1. Consecutively applying
the separation proposition on y2, xj2, x0 ∈R Zq (j = 1, 2) results in the following equations (recall

that hj = g
x∗j +φ1

1 g
xj2
2 h0 and zj = (hj)x0 with g2 = gy2):

δ10 − r0α4 + c0ε7 ≡ 0 mod q, (19)
δ7 + r10δ3 − r0α1 + c0ε3 ≡ 0 mod q, (20)
δ8 + r20δ4 − r0α2 + c0ε4 ≡ 0 mod q, (21)
−c10δ3 − r0α5 + c0ε1 ≡ 0 mod q, (22)
−c20δ4 + r0α5 + c0ε2 ≡ 0 mod q. (23)

Back to (18), this leaves

1 = gr10δ1+r20δ2+δ6+c0ε8h
−c10δ1−c20δ2+δ5−r0(1−α1−α2)+c0ε5
0 gδ9−r0α3+c0ε6

1 ,

on which the separation proposition easily results in (note that this is also implied by the DLREP
Assumption 2.2.4)

r10δ1 + r20δ2 + δ6 + c0ε8 ≡ 0 mod q, (24)
−c10δ1 − c20δ2 + δ5 − r0(1− α1 − α2) + c0ε5 ≡ 0 mod q, (25)

δ9 − r0α3 + c0ε6 ≡ 0 mod q. (26)

Analysis of possible choices. We analyzed the possible constructions of a0, b0, h, z, and con-
cluded that the choices Γ of (16) need to satisfy (8-9) and (19-26). More abstractly, the forger can
arbitrarily choose Γ, provided that (γ1, γ2) 6= (0, 0). He can also arbitrarily choose c10, c20, as well
as r0. He obtains rj0 directly after he chooses cj0 (j = 1, 2), and he obtains c0 directly after he
decides on Γ. All these values need to satisfy the mentioned equations. The values c0, r10, r20 are
independently and uniformly randomly distributed, and this observation will be used to simplify
equations (8-9, 19-26).

First of all, notice that if U ′ computes c0 after he obtained r10, r20, he has only a negligible
probability of success: as the rj0 are obtained after cj0, this means that he computes c0 after he
knows Γ and cj0 (j = 1, 2). But as c0 is uniformly random, (9) only holds with probability 1/q.
Therefore, we assume that U ′ computes c0 before he computes c20, and without loss of generality
we assume that also c10 is computed before c20. In particular this means that U ′ obtains all his
values in the following order: he chooses Γ and directly obtains c0, then he takes c20 and directly
obtains r20. Finally, he fixes r0. Note that in this approach U ′ clearly has a significant probability
of success: indeed, following the protocol, that is by taking c20 ← c0 and r0 ← r20, is included in
this approach. We will show that the forger cannot do better than following the second protocol
execution, and that he must set ci = c2i(g, f)βi for known βi (for i = 1, 2), which in particular
means that (6.4) holds for j = 2.

Until now, we have not yet considered how U ′ chooses the values c10, r10. In the following, we
elaborate on the above described strategy, and consider the values c10, r10 as well. More precisely,
the forger has the following two possibilities (we denote by ‘a R→ b’ that b is random and obtained
by U ′ directly after choosing a):
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A. c0 is computed before choosing c10, i.e. he obtains the values in the following order:

Γ R→ c0 → c10
R→ r10 → c20

R→ r20 → r0.

As (γ1, γ2) 6= (0, 0), without loss of generality (by symmetry) we can assume that γ2 6= 0;

B. c0 is computed after obtaining r10. In particular that means that the forger decides on Γ after
obtaining r10 (as c0 is obtained directly after choosing Γ). More concretely, he obtains the
values in the following order:

c10
R→ r10 → Γ R→ c0 → c20

R→ r20 → r0.

Now, suppose γ2 = 0, then by (9) we have −γ3 + c10γ1 ≡ c0 mod q, which happens with
probability 1/q as c0 is random and obtained after c10 and Γ.

So for both scenarios we require γ2 6= 0. We will now further analyze the two scenarios A and
B, and in particular what the equations (8-9, 19-26) imply for the choices by U ′ of the values
Γ, c10, c20 and r0. Therefore, we make the following steps, which apply to both scenarios:

i. Merging (8) with (20, 21) gives:

δ7 + r10(δ3 − α1γ1)− r20γ2α1 + c0ε3 ≡ 0 mod q,

δ8 + r20(δ4 − α2γ2)− r10γ1α2 + c0ε4 ≡ 0 mod q.

Notice that both equations only involve Γ, c0, r10 and r20. But in both scenarios, r20 is a
random and independently distributed value obtained after Γ, c0 and r10 are fixed. Sup-
pose that in the first equation γ2α1 6≡ 0 mod q. Then, this equation is equivalent to r20 ≡
(δ7 + r10(δ3 − α1γ1) + c0ε3)(γ2α1)−1 mod q, of which the right-hand side is fixed when r20

is computed. But as r20 is random, this equation only holds with negligible probability 1/q.
Thus, to have a non-negligible probability of success, U ′ must take Γ such that γ2α1 ≡ 0 mod q.
Similarly, he needs δ4 − α2γ2 ≡ 0 mod q. Notice that γ2α1 ≡ 0 mod q implies that α1 = 0 as
γ2 6= 0. In scenario A, for similar reasons we now moreover obtain that γ1α2 ≡ 0 mod q;

ii. Similarly to step i, using (8) and the fact that γ2 6= 0, equations (26, 19, 22) result in
α3 = α4 = α5 = 0, and (24) gives δ2 = 0;

iii. Merging (8) with (25) now gives:

−c10δ1 + δ5 − (r10γ1 + r20γ2)(1− α1 − α2) + c0ε5 ≡ 0 mod q,

where we use that δ2 = 0 by step ii. For similar reasons as in step i, and as γ2 6= 0, this
implies that 1− α1 − α2 ≡ 0 mod q. In particular, α2 = 1 since α1 = 0.

Summarizing, α1 = α3 = α4 = α5 = 0 and α2 = 1, which by (13) results in h = h2. Moreover, as
α2 = 1, step i gives δ4 = γ2. As α5 = 0, this combines (9) and (23) into

c0(ε2 − 1) ≡ γ3 − c10γ1 mod q. (27)

We now analyze this equation for the two cases A and B separately.

A. As α2 = 1, we have γ1 = 0 by step i. Therefore, (27) simplifies to c0(ε2 − 1) ≡ γ3 mod q from
which, as c0 is obtained as a random value after Γ is fixed, follows that ε2 = 1. In particular
this implies that the forger needs to set c20 ← c0γ

−1
2 mod q and r0 ← r20γ2 mod q;

B. As c0 is random, and computed after the forger chooses c10 and Γ, we again require ε2 = 1.
So in order for the forger to succeed with non-negligible probability, he needs to set c20 ←
c0γ

−1
2 mod q and r0 ← r20γ2 + δ mod q for some δ ∈ Zq (recall that U ′ chooses Γ after he

obtains r10, hence r10γ1 is just some value arbitrarily chosen by U ′).

Thus, the forger has more degrees of freedom in scenario B. He has to take his values such that
h = h2, c0 = c20γ mod q and r0 = r20γ + δ mod q for some γ, δ ∈ Zq with γ 6= 0, both chosen
before computing c0.
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A. Heuristic analysis of Assumption 6.4.1

A.2.8 Intermediate summary and overview of further analysis

Summarizing, to have non-negligible success probability, U ′ must take:

h = h2, c0 = c20γ mod q, r0 = r20γ + δ mod q, (28)

for some γ, δ ∈ Zq with γ 6= 0, chosen before computing c0. But this still leaves the forger U ′
freedom. However, as explained in Section A.2.5 we are still considering a simplified scenario
where we left out the third equation in (6): the forger also has to choose encryptions (ci, z

′
i, ei0)

satisfying ei0 = cr0
i (z′i)

−c0 (for i = 1, 2), and these encryptions moreover need to satisfy the second
equation of (4), i.e. h = D(cy1

1 cy2
2 )h0, and have to be decided upon before c0 is computed. In

Section A.2.9 we will consider the possibilities that U ′ has for choosing these values. We recall
that U ′’s original goal is to obtain a certificate such that (6.4) does not hold for any j.

A.2.9 Extension to ei0 = cr0
i (z′i)

−c0 of (6)

Until Section A.2.7, we considered the possibilities that U ′ has for choosing the values h and z.
We have shown in the previous sections that the only possibility for U ′ is to choose h, c20 and r0

as in (28), where r20 and c0 are random values and obtained after γ, δ are fixed. We will now
consider the possible choices for the values (ci, z

′
i, ei0)2i=1 such that (6) and the second equation of

(4) are satisfied.

Interpretation of possible choices. Independent of the choice of (ci, z
′
i, ei0)2i=1, by virtue of

(28) these values need to satisfy ei0 = (cr20
i (z′i)

−c20)γcδ
i for some γ, δ ∈ Zq with γ 6= 0, chosen by

U ′ before computing c0 and thus before fixing c20 and obtaining r20. As in the issuing executions
in Figure A.1, CA constructed r20 ← w20 + c20x0 mod q, this equation implies after simplification

ei0 = (cw20
i )γ(cx0

i (z′i)
−1)c0cδ

i .

But the values (ci, z
′
i, ei0, γ, δ) need to be known before c0 is computed. Therefore, the choice by

the forger really needs to satisfy that cx0
i (z′i)

−1 = 1 and that cw20
i is known before c0 is computed

(as γ 6= 0), for both i = 1, 2. So independent of the construction of ci, U ′ at least needs to know
cx0
i and cw20

i . The problem of constructing such ci is related to the KEA assumption [Dam92,
WS07, WS08]. Briefly, the KEA assumption states that if a forger is given (x0, x

a
0 , . . . , xn, xa

n)
for x0, . . . , xn ∈ G and a ∈R Zq, and outputs a pair (x, xa) for x ∈ G, then with overwhelming
probability he knows constants ω0, . . . , ωn such that x =

∏n
i=0 xωi

i . Now for the attack by U ′, by
the KEA assumption he can only succeed if he sets ci as an algebraic combination of values in
Table A.1 for which he also knows the x0-th and w20-th power. Concluding, c1, c2 can only be of
the form:

c1 = cα1
21 cα2

22 (gα3fα4hα5
2 , gα6fα7hα8

2 ),

c2 = cβ1
21cβ2

22(gβ3fβ4hβ5
2 , gβ6fβ7hβ8

2 ),

for arbitrarily chosen α1, . . . , α8, β1, . . . , β8.

Analysis of possible choices. The two encryptions c1, c2 in particular need to satisfy h =
D(cy1

1 cy2
2 )h0 of (4), where h = h2 = g

x∗2+φ1
1 gx22

2 h0. This is equivalent to stating that c1, c2 need to
satisfy

g
x∗2+φ1
1 gx22

2 = D(cy1
1 )D(cy2

2 ). (29)

First we notice that by the definition of the ElGamal decryption function,

D(c1) = (gx∗2+φ1)α1(gx22)α2gα6fα7hα8
2 (g−λ)α3(f−λ)α4(h−λ

2 )α5 ,

D(c2) = (gx∗2+φ1)β1(gx22)β2gβ6fβ7hβ8
2 (g−λ)β3(f−λ)β4(h−λ

2 )β5 .
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Using the separation proposition repeatedly on equality (29), we obtain:

for x0 ∈R Zq =⇒ 1 = (hy1
0 )α8(h−λy1

0 )α5(hy2
0 )β8(h−λy2

0 )β5

=⇒ α5 = α8 = β5 = β8 = 0,

for φ1 ∈R Zq =⇒ gy1φ1 = (gy1φ1)α1(gy2φ1)β1

=⇒ α1 = 1, β1 = 0,

for x22 ∈R Zq =⇒ gy2x22 = (gy1x22)α2(gy2x22)β2

=⇒ α2 = 0, β2 = 1.

This leaves for (29):

1 = (gy1)α6(gy1λ)α7−α3(gy1λ2
)−α4(gy2)β6(gy2λ)β7−β3(gy2λ2

)−β4 ,

which after separating for y1 ∈R Zq results in:

1 = (gy1)α6(gy1λ)α7−α3(gy1λ2
)−α4 , 1 = (gy2)β6(gy2λ)β7−β3(gy2λ2

)−β4 .

On these two equations Remark A.1.4 applies as U ′ does not know gλ2
. Hence we obtain that

ci = c2i(g, f)βi (i = 1, 2) for known (βi)
2
i=1 is the only possible choice for U ′, and this contradicts

to U ′’s original goal which was to find a certificate such that (6.4) is not satisfied for any of the
issuance executions.

A.2.10 Concluding result

For K = 2 and l = 2, we considered the possible attack strategy of a malicious forger U ′. Specifi-
cally, we analyzed the possibilities of the forger in an attack where he tries to combine the values
he knows (Table A.1) into a possible certificate. It turned out, however, that the only way in which
U ′ can have a non-negligible probability of success is by setting h = h2, where h2 = gx21

1 gx22
2 h0

is coming from the second issuance execution in Figure A.1. Even stronger: the forger needs to
set his certified encryptions ci as ci = c2i(g, f)βi for βi known (for i = 1, 2). This contradicts U ′’s
original goal: constructing a certificate satisfying (4) such that (6.4) does not hold for any j.

103


	Acknowledgements
	Table of Contents
	List of Figures
	Introduction
	Preliminaries
	Cryptographic tools
	Group theory
	Probability theory
	Hash functions

	Assumptions
	Discrete log family
	Prime factoring family
	Comparison

	Multiparty computation security model
	Adversaries
	Multiparty computation model

	Commitment schemes
	Cryptosystems
	ElGamal cryptosystem
	Paillier cryptosystem
	Security
	Notation

	Proofs of knowledge
	Proof of knowledge with integer commitments
	Interval proof of knowledge

	Signature schemes
	Security of the blind signature schemes in Figures 2.3 and 2.4

	Concise survey of certificate schemes
	Concise survey of secure multiparty computation
	Multiparty protocol for private output


	Detailed problem statement
	Participants
	Algorithms and protocols
	Certificate scheme
	Multiparty computation scheme
	Interface

	Applications of the components A-C
	Architectural setting

	Protocols for secure multiparty computation
	Paillier to ElGamal conversion
	Efficiency

	Plaintext equality tests
	Standard plaintext equality test
	Plaintext equality test with ElGamal representation
	Plaintext equality test with Paillier representation
	Efficiency

	Modulo reduction
	Efficiency

	Sorting
	Efficiency

	Multiparty computation of statistics

	Certificate schemes: introduction
	Definition
	Brands' certificate scheme
	Key generation
	Certificate issuance
	Certificate verification
	Security analysis


	Certificate schemes: ElGamal extensions
	Protocol A: encrypted disclosure
	Protocol B: attribute hiding issuance
	Scheme C: encrypted certificate scheme
	Key generation
	Certificate issuance
	Certificate verification

	Scheme C: security analysis
	Completeness
	Privacy for U
	One-more unforgeability
	Blinding-invariance unforgeability
	Secure verification


	Certificate schemes: Paillier extensions
	Protocol A: encrypted disclosure
	Protocol B: attribute hiding issuance

	Remarks and conclusions
	Efficiency analysis
	Participants
	Assumptions
	Complexity and overhead

	Mixing different certificate schemes
	Extending other certificate schemes
	Conclusions
	Further research


	Bibliography
	Index
	Heuristic analysis of Assumption 6.4.1
	Separation proposition
	Heuristic analysis of Assumption 6.4.1
	High-level approach
	General setting
	Initial knowledge of U'
	General design of attack
	Intermediate summary and overview of further analysis
	Simplification to a0=gr0h0-c0 of (6)
	Extension to b0=hr0z-c0 of (6)
	Intermediate summary and overview of further analysis
	Extension to ei0=cir0(zi')-c0 of (6)
	Concluding result



