
Privacy-Aware Processing of Biometric
Templates by Means of Secure Two-Party
Computation

R. Lazzeretti, P. Failla, and M. Barni

Abstract The use of biometric data for person identification and access control is
gaining more and more popularity. Handling biometric data, however, requires par-
ticular care, since biometric data is indissolubly tied to the identity of the owner
hence raising important security and privacy issues. This chapter focuses on the
latter, presenting an innovative approach that, by relying on tools borrowed from
Secure Two Party Computation (STPC) theory, permits to process the biometric
data in encrypted form, thus eliminating any risk that private biometric information
is leaked during an identification process. The basic concepts behind STPC are re-
viewed together with the basic cryptographic primitives needed to achieve privacy-
aware processing of biometric data in a STPC context. The two main approaches
proposed so far, namely homomorphic encryption and garbled circuits are discussed
and the way such techniques can be used to develop a full biometric matching pro-
tocol described. Some general guidelines to be used in the design of a privacy-aware
biometric system are given, so to allow the reader to choose the most appropriate
tools depending on the application at hand.

Riccardo Lazzeretti
Information Engineering Department, University of Siena, Italy
e-mail: riccardo.lazzeretti@gmail.com

Pierluigi Failla
Information Engineering Department, University of Siena, Italy
e-mail: pierluigi.failla@gmail.com

Mauro Barni
Information Engineering Department, University of Siena, Italy
e-mail: barni@dii.unisi.it

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/98342930?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 R. Lazzeretti, P. Failla, and M. Barni

1 Introduction

Our world is becoming increasingly interconnected and by using the Internet we are
able to share everything with everyone. Social networks (e.g. Facebook, Linkedin,
MySpace, Twitter) whereby people share thoughts, events, photos and videos with
friends are the most evident sign of this general trend. It is clear that behind the
distribution and storage of such a massive amount of data there are several security
and privacy issues. Potentially privacy sensitive data such as our age, health, prefer-
ences, locations, politics and religious views are being stored in computers that we
do not own and we do not control. Even worse, the data is generally transferred to
third parties in plain format (think about uploading photos or videos on Facebook):
people believe in the good will of third parties to behave and handle their data in
accordance to laws but also according to their own privacy policies that very often
people do not know or do not care about. It is clear that these new platforms and net-
works are extremely vulnerable to private data disclosures. Current ad–hoc security
methodologies, combined with a lack of security sometimes astonishing, will lead
to more weaknesses as system complexity and the amount of to-be-handled data in-
crease during the coming years. On the other side, laws aiming at protecting private
data are continuously emanated, but legal assurance does not provide a complete
answer. Once our private data, preferences or other sensitive information have been
compromised, it is virtually impossible to “make them private”again. It is vital that
privacy and security of sensitive data as well as its subsequent use be guaranteed a
priori.

In some cases, privacy and security constraints are very stringent. Think about
traveling. Many people in everyday life use airplanes to move around the world
and as everyone knows following the September 11th attacks, controls in airports
have been intensified. New electronic passports have been introduced for improved
border controls containing personal data, including a face picture and fingerprints.
Each time someone takes a flight the above information is made available to the
airport staff and to the police for identity check. To exemplify how security and
privacy can easily come at odds, let us consider the following scenario. There are
two parties, say an Intelligence Agency and a remote controller (for example the
security staff of an Airport). The Agency wants to trace the movements of a suspect
person. To do so, it exploits some biometric information of the suspect person. In
particular it tries to match the biometric sample it owns with the biometric of the
people that are going to take a flight. The Agency wants to protect the identity
of the suspect person (and hence the biometries stored in its database) while the
Airport wants to protect the privacy of the passengers. From the point of view of the
client, the question is: if I am a good guy, why should I reveal my biometric data to
other parties? At the same time flight safety must be assured, and from the point
of view of the Agency, any possible measure to reduce the risk should be taken.
More generally, we can affirm that the use of biometric data is becoming a common
approach to handle people identities (at Disney World Resort in Florida customers
use the fingerprint scanning for the clients that own a multiple-days ticket to assure

Privacy-Aware Processing of Biometric Templates 3

the not re-usability [21]), thus raising the call for the adoption of stringent privacy
protection measures.

Actually, when dealing with biometric data, the trade-off between the security
of the system that needs to be protected and the privacy of the users who provides
the biometries is not balanced and the privacy constraints are often overlooked for
the sake of security. Often government and law enforcement agencies can access
personal information to protect public safety and national security: however, abuses
of personal information can cause untold harms, wasted resources, and generally
lead to the detriment of society. Hence, there is a high demand for technologies that
permit to protect the privacy of users while preserving the possibility of performing
biometric analysis with the aim of achieving a greater security.

The most obvious and well–known way to secure personal data is to encrypt and
store it in a (trusted) database. Such an approach works only when the owner of
the data and the party in charge of processing or storing it trust each other, and the
goal of the cryptographic module is only to protect the data from a third party. This
is not the case in many practical situations where the owner of the to-be-protected
data and the party that is in charge of storing or processing it do not trust each other.
Possible examples include the storage of biometric information in a central database,
the processing of personal (e.g. medical) data for statistical analysis, or the analysis
of people behaviours (e.g. log files) for inspection purposes. How is it possible to
combine the request for privacy and the need to analyze personal information for a
legitimate purpose (possibly in the interest of the data owner itself)?

1.1 Processing Encrypted Signals

An effective and elegant way to answer the above question, it is to process the data
while it is encrypted. In the last thirty years1 the cryptographic community has
worked hardly to build a set of tools that allow to compute with encrypted data.
Though this may seem an almost impossible task, some solutions have been put
forward recently by relying on the use of:

• Homomorphic Encryption whereby some algebraic operations are mapped into
simple operations to be applied in the encrypted domain,

• Secure Multi Party Computation - SMPC where two or more non-trusted par-
ties engage in an interactive protocol to carry out a computation without revealing
their own inputs. The special case where only two parties are involved, such as
a Client and a Server, is of particular interest for biometric applications and is
usually referred to as Secure Two Party Computation (STPC).

Though the possibility of processing encrypted data (mainly by means of homo-
morphic encryption) has been advanced more than thirty years ago [63], processing
encrypted biometric signals poses some new problems due to the peculiarities of

1 The first mention is in [63] 1978 by Rivest et al.

4 R. Lazzeretti, P. Failla, and M. Barni

this kind of data with respect to the type of data commonly encountered in the cryp-
tographic literature, e.g. alphanumeric strings or bit sequences. The most straight-
forward difference is that biometric signals are often represented by means of real
numbers (and processed by means of floating point arithmetic), while all the avail-
able cryptosystems work on integer rings. Other important differences include:

• the non-exact nature of biometric signals that can change significantly from a
measurement to the other due to the presence of noise, time variability, pose,
gesture etc This property should be contrasted with the bit-precise nature of
the data cryptosystems usually deal with;

• the essential role played by the temporal or spatial structure of signals, in fact
the spatio-temporal dependency between samples of the same process is a core
peculiarity of signals.

• the large size of many signals such as audio files, still images, and video se-
quences, that poses very critical constraints on the complexity and storage re-
quirements.

Despite the above difficulties, some recent studies have shown that the applica-
tion of non-trivial signal processing tools to encrypted signals is practically feasible.

The great majority of cryptographic primitives used to process encrypted signals
relies on two basic mechanisms: homomorphic encryption [62] and garbled circuits
[69].

Homomorphic cryptosystems have the property that some elementary algebraic
operations in the plain domain are mapped into elementary operations in the en-
crypted domain. For instance, in the Pailler cryptosystem [58], an addition in the
plain domain corresponds to a multiplication in the encrypted domain. Other ex-
amples of homomorphic cryptosystems include RSA [64] that is multiplicatively
homomorphic on product, Damgaard-Jurik’s generalization of Pailler’s cryptosys-
tem [25] and Bresson et al. cryptosystem [18] (that is additively homomorphic). If
a homomorphic cryptosystem is used, it is possible for a party that does not posses
the decryption key to perform some simple operations on the encrypted messages.

The current state of the art in homomorphic encryption does not allow the effi-
cient simultaneous preservation of addition and multiplication. As a matter of fact
a very recent result by Gentry in [32] shows that algebraically homomorphic cryp-
tosystems are possible, however actually such schemes are of theoretical interest
only, given their extremely high complexity. Due to the unavailability of efficient
algebraically homomorphic cryptosystems, homomorphic encryption does not al-
low the application of non-linear operators, which, on the other side, are essential
ingredients of most non-trivial operation to be applied to the encrypted signals. To
avoid the above limitation, the general approach is to use an interactive protocol
whereby a Client and a Server collaborate and exchange data to securely compute a
given functionality.

Garbled circuits have been introduced by Yao in 1982 [69] and later refined in
[36], where it is shown that any function can be computed in a secure manner by
implementing a boolean circuit of secure gates. With Yao’s circuit approach one
can evaluate circuits in a privacy preserving scenario by using either private-key or

Privacy-Aware Processing of Biometric Templates 5

public-key primitives. Approaches based on symmetric primitives are several orders
of magnitude faster than the asymmetric approaches. In its basic (two party compu-
tation) form, garbled circuits allow two users, namely the Client (C) and the Server
(S), to securely evaluate a known function (usually in form of a boolean circuit)
using their private inputs. In other words, executing the evaluation protocol does not
reveal any knowledge about the inputs beyond what can be deduced merely from the
computed output(s). The circuit approach can be relatively efficient in different se-
curity models even if it requires to transfer a large amount of data from one party to
the other which yields an increase in the communication complexity of the protocol.

1.1.1 Application scenarios

The techniques briefly outlined above have been used in a variety of application
scenarios.

Biometry matching is one of the most important topics wherein secure computa-
tion can be used. In [27, 28] a privacy-enhanced face recognition system is proposed.
The proposed construction is based on homomorphic encryption and allows to hide
the biometric data using an encrypted version of Eigenfaces-based matching, and it
is able to hide the result of the match to the server that actually performs the match-
ing operation. A different STPC face matching algorithm based on garbled circuits
has been proposed in [65]. Similarly, in [57] an ad hoc system for face recognition
in a privacy preserving framework is proposed, specifically designed for usage in
secure computation.

In [5, 6] the authors consider a scenario where a client equipped with a finger-
print reader is interested to learn if the acquired fingerprint belongs to a database
of authorized entities managed by a server. Although privacy-preserving biometric
identification usually focuses on selecting the best matching identity in the database,
the solution proposed in [5, 6] also allows to select and report all the enrolled iden-
tities whose distance to the user’s fingercode is under a given threshold.

In remote diagnosis [19] secure computation can be used to preserve the pri-
vacy of the patients. In [7] a privacy-preserving system is described whereby the
Server classifies an ElectroCardioGram (ECG) signal without learning any informa-
tion about the ECG signal and the Client is prevented from gaining knowledge about
the classification algorithm used by the Server. The system relies on the concept of
Linear Branching Programs (LBP) and a related cryptographic protocol for secure
evaluation of private LBPs [7, 8] based on homomorphic encryption and garbled cir-
cuits. The paper faces with the study of the trade-off between signal representation
accuracy and system complexity both from practical and theoretical perspectives.
As a result, the inputs to the system are represented with the minimum number of
bits ensuring the same classification accuracy of a plain implementation. In [9] the
same classification task is addressed by applying a neural network to the encrypted
ECG signal. Quality evaluation of the ECG signals in the encrypted domain has
been addressed in [10] to avoid that noisy signals are processed returning wrong
classification results.

6 R. Lazzeretti, P. Failla, and M. Barni

Many other application fields can benefit from privacy preserving techniques. In
[30], a novel technique has been proposed to compute the well-known A∗ algorithm,
on the encrypted weights of a graph. A∗ is a best first graph search algorithm that
uses an heuristic function helping to choose the best candidates during the traversing
of common graphs [39]. Graphs are data structures widely used to represent: social
networks; computer networks; geographic maps; game moves; possible paths in a
given environment and many more, and hence working on encrypted graphs may
find several interesting applications. In the setting considered in [39] two parties
are interested to compute the shortest path between two nodes in a context where:
i) part of the graph topology (only the number of nodes) is publicly known, ii) the
client knows the weights of each edge and iii) the Server owns the heuristic used for
searching. The Client wants to keep secret the weights and the Server the heuristic
used.

In [31], a scenario in which two parties are interested in computing a given func-
tionality in a privacy preserving way has been considered, but this functionality
needs a sub–protocol that computes the Gram – Schmidt Orthogonalization on en-
crypted vectors. There are a lot of applications in which this kind of sub–protocol
could be used as a basic privacy preserving primitive, including: QR decomposition
[38]; linear least squares problems [15]; face recognition [70]; improving perfor-
mances of neural networks [56]; wavelets computation [22]; principal component
analysis [66] and image compression [50].

In [13] the authors analyze the implementation of the Fourier transform in a
privacy preserving scenario. In [42] an efficient buyer-seller protocol embedding
an encrypted watermark in a content is proposed, protecting the watermark secrets
from the buyer and preventing false infringement accusations by the seller.

Other applications include data mining [1, 47]; secure compression [41]; access
to encrypted databases [20]; encrypted strings comparison by using Levenshtein
distance [61], etc.

1.2 Processing of biometric signals

Most tasks in biometric signal processing are based on pattern recognition, it is
hence necessary to develop protocols that permit to apply at least the most basic
pattern recognition operators to encrypted signals. The number of tools and tasks
usually encompassed under the Pattern Recognition umbrella is virtually endless.
An exhaustive discussion of how such tools could be applied in the encrypted do-
main is then impractical. For this reason we focus our discussion on the pattern
recognition task most commonly used in biometric systems, namely Pattern Match-
ing. There are two basic forms of Pattern Matching: i) Verification, as a one to one
matching problem, and ii) Identification, as a typical one to many matching problem.

More specifically, the verification problem can be defined as follows: given two
patterns V1 and V2 decide whether they represent the same object or not. On the other
side, the identification problem answers the following question: given a pattern V

Privacy-Aware Processing of Biometric Templates 7

and a set of patterns V = {V1,V2, . . . ,Vn}, is there a pattern in V that corresponds to
V ? If yes, which is the index of such a pattern?

From a very general point of view, pattern matching can be seen as a two-step
process. The first step is the so called feature extraction step, in which the pattern
to be classified is transformed into an (m-long) vector whose components, called
features, describe some particular characteristics of the to-be-classified pattern. As
a first example, we may consider the classification of image regions. The region to
be classified is the pattern, while the feature vector may contain the average gray
level and the standard deviation of the pixels belonging to the region, the area of the
region, its inertia moments, etc. A second example regards the classification of heart
beats based on ECG signals. The pattern to be classified is the portion of ECG signal
corresponding to a single heart beat, while the features may be the coefficients of
the AR (autoregressive) model that better describes the signal, or a set of statistics
extracted from the ECG.

Feature extraction is a crucial and necessary step since on one side it permits to
simplify the pattern description by reducing it to a vector in Rm, and on the other
side the extracted features are supposed to describe some meaningful characteristics
of the pattern to be classified. After feature extraction the pattern to be matched (or
classified) is nothing but a vector V belonging to Rm.

The second step is the actual matching step, in which a test pattern V is matched
against one or several patterns {V1,V2, . . . ,Vn}.

The feature extraction step is highly application dependent and no general theory
exists for it. For this reason, it is not possible to define the set of primitives that need
to be developed to extract the features in the encrypted domain. Moreover, the in-
volved operations are usually highly non-linear and their implementation in a STPC
framework would be extremely cumbersome. Of course exceptions to this general
rule exist, but in the majority of the cases we can assume that features are extracted
in the plain domain and then processed securely by means of STPC techniques.

1.3 Goals and Outline of the Chapter

The goal of this chapter is to present some guidelines for developing a biometry
matching protocol working in the encrypted domain, regardless of the kind of biom-
etry being analyzed. Specifically, we will discuss several approaches to build the
basic modules of any biometric matching protocol (distance computation and min-
imum selection), and show how such modules can be conveniently used in a great
variety of different scenarios.

This rest of the chapter is organized as follows. The biometry matching problem
is rigorously defined in Sect. 2. Then we show the cryptographic primitives neces-
sary to the implementation of matching algorithms in the encrypted domain (Sect.
3). In Sect. 4 we describe how such primitives can be used to implement some of the
most basic pattern recognition building blocks. In Sect. 5 we give some hints about

8 R. Lazzeretti, P. Failla, and M. Barni

how the building blocks can be assembled to carry out a given functionality. Finally
in Sect. 6, some conclusions are provided.

2 Biometric template matching

As we said, regardless of the type of biometry and the feature extraction protocol, we
can assume that any biometric template V is represented by a vector of m features,
each assuming integer value (possibly resulting from a quantization problem) in the
set {0, . . . ,b−1}, i.e. V ∈ Zm

b .

2.1 The verification problem

As opposed to feature extraction, processing the feature vectors in a pattern match-
ing application is a rather standard (though not easy) task always following a few
number of fixed steps. It is then extremely important that these steps are defined
and their privacy requirements identified, since doing so will allow to build a rather
general theory. In this Section we start by considering the easiest problem, namely
the verification problem: “Is he who he claims to be?”.

The general verification problem can be summarized as follows:

• One party, say C knows a feature vector V1.
• Another party, say S knows another feature vector V2.
• We want to answer the question: is V1 close enough to V2?

As it can be seen, the verification problem boils down to only two operations: i)
distance calculation and ii) comparison against a threshold. As soon as an efficient
protocol is available to perform these two tasks, a secure protocol for pattern veri-
fication can be built. In order to do so, it is necessary that the privacy requirements
are defined. Though many different scenarios are possible, in most of the cases the
requirements of the protocol can be defined as follows (see also the summary in
Table 1):

• C gets yes/no.
• S gets nothing or yes/no.
• V1 and V2 are private inputs of C and S respectively and have to be kept secret.
• The distance function and the threshold may be assumed to be public parameters.
• Any intermediate value is not revealed to both parties.

Privacy-Aware Processing of Biometric Templates 9

Table 1 V isibility
of the values involved in the verification problem.

V1 V2 Intermediate values Final result
C yes no no yes
S no yes no optional

2.2 The identification problem

While the verification problem involves a one to one matching, the identification
problem corresponds to a one to many match and is used when two or more parties
are interested to answer the question “Who is he?”.

Specifically, pattern identification can be summarized as follows:

• One party, say C knows a feature vector Vtest .
• Another party, say S knows a set of feature vectors V = {V1,V2, . . . ,Vn}.
• The possible questions to be answered are:

1. Is Vtest close to at least one Vi ∈ V? Boiling down to: is the minimum distance
between Vtest and the elements in V smaller than a threshold?

2. Which is the index of the feature vector in V closest to Vtest?
3. How many elements in V are close enough to Vtest?

As it can be seen, in most of the cases identification boils down to calculation
of several distances, thresholding and/or computation of a minimum. Hence there
are two main differences with respect to verification. The first one is quantitative, in
that several distances and thresholds must be computed instead of one. The second
is qualitative, since a new operator, namely minimum computation is needed.

With regard to the privacy requirements, the situation is slightly more compli-
cated than in the verification case, however it is still possible to define a standard set
of requirements (see also Table 2):

• C gets: i) yes/no or ii) the index of the minimum distance feature vector
• S gets nothing
• Vtest (owned by C) and V (owned by S) are kept secret.
• The distance function and the threshold may be assumed to be public parameters.
• Intermediate values are not revealed to both parties.

A common alternative in which the identification is used by S to decide whether
C belongs to a set of users allowed to access a given system is the following:

• C gets nothing or yes/no
• S gets yes/no
• Vtest (owned by C) and V (owned by S) are kept secret.
• The distance function and the threshold may be assumed to be public parameters.
• Intermediate values are not revealed to both parties.

10 R. Lazzeretti, P. Failla, and M. Barni

Table 2 V isibility
of the values involved in the identification problem.

Vtest Vi Intermediate values Final result (yes/no or index)
C yes no no yes
S no yes no no

The privacy requirements of the access control problem are shown in Table 3.

Table 3 V isibility
of the values involved in the access control problem.

Vtest Vi Intermediate values Final result (yes/no)
C yes no no yes
S no yes no yes

3 Cryptographic primitives

The problem of computing with encrypted data is a central one in the field of cryp-
tography and goes back to the early days of modern cryptography, about thirty years
ago [63]. The problem has a fundamental importance both from a theoretical and a
practical perspective. Often and especially in the case of number theoretic cryp-
tosystems, the possibility of computing with encrypted data is a direct consequence
of a common property of the cryptosystems: the malleability. More in detail a cryp-
tosystem is malleable if given an encryption of a plaintext m, it is possible to gen-
erate another ciphertext which decrypts to f (m), for a known function f , without
necessarily knowing or learning m.

Although from a security point of view malleability is a weakness of a cryptosys-
tem because it allows to modify the plaintext using only the ciphertext, in our context
it is the key that allows to compute on encrypted data. Starting from the pioneering
works of Yao [69] and Goldreich, Micali and Widgerson [36] the problem has been
extensively studied in a variety of settings and under different assumptions, up to
homomorphic encryption and garbled circuits, the two main tools actually used in
SMPC.

As we said in the introduction, a specific case of SMPC particularly interesting
for biometric applications is Secure Two Party Computation where only two entities
are involved: a server S (the service provider) and the client C (a user that needs to
access to a functionality provided by the server).

Before introducing the main cryptographic tools available for STPC, we pose to
discuss two cornerstones of STPC: security and complexity.

Privacy-Aware Processing of Biometric Templates 11

Security. Mistrust among parties is usually modeled by assuming the existence
of an adversary that is allowed to corrupt some partial set of the parties, so that the
adversary can read (and possibly modify) the internal state of the corrupted play-
ers. A possible lack of reliability in the communication is modeled by allowing the
adversary to control the communications involving corrupted players. The SMPC
paradigm allows many settings and concerns to be modeled and is a strong tool in
showing that solutions exist to very general cryptographic problems. The power of
the framework is that under the assumption of partial corruption (and various set-
tings and constraints) it is possible to compile any polynomial size function into
a protocol that maintains the privacy of the inputs. Input privacy is assured facing
an adversary that is assumed to control the entire state (memory) of corrupted par-
ties (passive adversary) and one that in addition may corrupt the memory arbitrarily
(active adversary).

In STPC protocols we would like to have the same correctness and reciprocal
privacy as in a trusted domain, but this is quite difficult to achieve. For this reason
in many cases SRPC developers adopt the honest but curious model (also said semi-
honest model), according to which both parties are considered passive and follow
the protocol but try to infer additional information from the transcript of messages
seen in the protocol. So the parties may deviate from the protocol only in their
internal computation, but the messages are constricted and sent in accordance to the
protocol. Far from trivial, this model covers many typical practical settings such as
protection against insider attacks. Further, designing and evaluating the performance
of protocols in the honest but curious model is a first step toward protocols with
stronger security guarantees. Indeed, most protocols for practical privacy-preserving
applications focus on the honest but curious model [48]. In most cases sub-protocols
are stacked together to obtain more complicated functionalities, in this context it is
really important to know that if all sub-protocols are proven secure in the honest but
curious model then their sequential composition inherits this security property [35].

Sometimes it is necessary to assume that one party can act maliciously, i.e. he
behaves as an active adversary available to cheat to obtain information relative to
the other party. For sake of brevity in this chapter we will not cover such scenarios.

Complexity. General multiparty computation protocols allow to securely com-
pute any function but this results in inefficient solutions when compared to plain
protocols. For this reason, efficient ad-hoc solutions have to be designed to solve
specific cryptographic problems.

We can analyse complexity from three different points of view:

• Number of Bit Operations: this is also called computational complexity and in-
dicates the number of basic operations that the protocol needs;

• Number of Rounds: the protocols we focus on are client–server protocols, i.e.
they require some message exchanges to carry out the computation, a measure of
the efficiency of this kind of protocols is the number of unidirectional transmis-
sion of information they require;

• Bandwidth: it is the amount of bits exchanged during protocol execution.

12 R. Lazzeretti, P. Failla, and M. Barni

To measure the number of bit operations we use the Big-O notation [43]. An-
alyzing some basic operations needed in a STPC scenario and assuming that the
largest number involved in the computation is represented by ` bits, i.e. the size of
a ciphertext is ` bits, we have that the cost of an addition between two numbers is
add=O(`); that of a multiplication mult=O(`2); and that of an exponentiation
expo = O(`3). Computing an hash function has a constant complexity that does
not depend on `. For the sake of simplicity in the rest of this chapter we will use as
measure of computational complexity the operation having the largest complexity
among all the operations involved in the protocol.

While the number of rounds is a very simple concept, we spend a few words
about the bandwidth. The bandwidth depends on many factors, but probably the
most important one is the cryptosystem and so the size of the ciphertext. Some
cryptosystems require to transmit only the values used during the evaluation, while
others need to transmit other information relative to the functionality, moreover each
value is usually represented by long ciphertexts, resulting in big amount of data
exchanged between the parties.

3.1 Symmetric vs asymmetric encryption

Cryptographic systems can be divided in symmetric systems, where encryption and
decryption are performed by using the same key, and asymmetric systems where the
public encryption key and the secret decryption key are distinct.

3.1.1 Symmetric Encryption

Symmetric key cryptography is one of the oldest methods in security systems and
provides the confidentiality of a service. The most important properties of these al-
gorithms are ease of operation and high speed [53]. In protocols based on symmetric
encryption both the sender and receiver have a common secret key which is used for
encryption and decryption of messages. It is assumed that decrypting a message is
easy when the key is known and otherwise difficult. Indeed the encryption acts as a
secure communication channel between sender and receiver (as shown in Fig. 1) an
eavesdropped does not have access to.

There are several kinds of symmetric key systems proposed in the literature and
used in practice like triple DES and AES (see [23] and [4]).

3.1.2 Asymmetric Encryption

Symmetric key systems are useful and efficient, but their application requires spe-
cial infrastructures to be setup. Some examples are setting up the initial keys or
managing keys among several users. A solution is using public key encryption in

Privacy-Aware Processing of Biometric Templates 13

Key K

Alice Bob

Eve

-� Secure Channel

Fig. 1 The typical scenario for symmetric key cryptography. Alice and Bob are legitimate users of
the system, whereas Eve is malicious and wants to eavesdrop the channel. The key K is the com-
mon secret key between Alice and Bob and creates a secure channel for communication between
legitimate users.

which encryption and decryption are performed using two different keys. The first
one (public key) is published, whereas the second one (secret key) must be kept
secret.

The first efficient public key encryption scheme was the RSA system [64], based
on the difficulty of factoring large composite numbers.

An important class of public key cryptosystems are systems based on probabilis-
tic encryption proposed for the first time in [37]. In these systems a given plaintext
is encrypted into a different message at each new encryption. This is useful when,
e.g., encrypting and transmitting single bits. If the encryption was deterministic,
the adversary could encrypt the bits zero and one, and always see which of these
encryptions has been transmitted.

The most popular public key cryptosystem with semantic security (IND-CPA) is
the Paillier cryptosystem (see Sect. 3.2.1), introduced for the first time in [58] and
based on the difficulty of deciding if a number is an n-th power in ZN2 , for a large
enough N.

Many public key encryption schemes have homomorphic properties and can be
used as cryptographic primitives in SMPC applications.

3.2 Homomorphic encryption

A homomorphic encryption (HE) scheme over an algebraic ring, can allow additive,
multiplicative or algebraically homomorphisms. In particular it permits to perform
an algebraic operation • between encrypted numbers that returns, after decryption,
the same result of the operation + performed on the same values in the plain domain:

a+b =D(JaK• JbK)); (1)

or permits an operation ◦ on ciphertexts such that

14 R. Lazzeretti, P. Failla, and M. Barni

a∗b =D(JaK◦ JbK)); (2)

where J·K and D(·) indicate respectively encryption and decryption. In the first case
we say that the cryptosystem is additively homomorphic while in the second one it
is multiplicatively homomorphic. Finally a cryptosystem is said to be algebraically
homomorphic if both operations • and ◦ exist such they have a mapping in the
algebraic addition and multiplication.

Table 4 shows a list of cryptosystems with their homomorphic properties.

Table 4 Homomorphic Properties and Homomorphic Cryptosystem.

Cryptosystem Add Mult Both
RSA (1978, [64]) NO YES NO
Goldwasser-Micali (1982, [37]) YES NO NO
ElGamal (1985, [26]) NO YES NO
Benaloh (1994, [12]) YES NO NO
Paillier (1999, [58]) YES NO NO
Boneh-Goh-Nissim (2004, [16]) YES only 1 YES
Gentry (2009, [32]) YES YES YES

The most popular homomorphic cryptosystems permit to evaluate the sum among
ciphertexts [58], while El-Gamal cryptosystem [26] permits to evaluate the product.
For several years the researcher community tried to propose a fully homomorphic
cryptosystem with no significant results, but in 2009 in a breakthrough result by
Gentry [32, 67], the first fully homomorphic encryption scheme was finally pro-
posed. Gentry’s paper shows how to use ideal lattices to construct an encryption
scheme that allows to encrypt single bits and that is homomorphic with respect to
addition and multiplication. Even though this result is a major theoretical achieve-
ment because secure fully homomorphic encryption was suspected to be impossible
to achieve [17], the scheme itself and its recent improvements are still too inefficient
to be used in practice. Very recently Melchor et al. in [52] and Gentry et al. in [33]
have conceived less general forms of homomorphic encryption schemes based on
lattices which are more efficient than existing fully homomorphic schemes but still
unsuitable for most applications. Such schemes are less general in the sense that
they allow only a limited number of multiplications.

3.2.1 Paillier Cryptosystem

The most popular homomorphic cryptosystem, used extensively in several SMPC
protocols, is Pailler cryptosystem. To illustrate the way Paillier cryptosystem works,
we start by defining its public and private keys generation, the encryption and the
decryption.

• Key generation: given an RSA modulus N = pq and λ = lcm(p− 1,q− 1) and
selected an integer generator g ∈ Z∗N2 such that N|ord(g) (N divides the order of

Privacy-Aware Processing of Biometric Templates 15

g), meaning that:
GCD(L(gλ mod N2),N) = 1,

the public (encryption) key is PuK = (N,g) and the private (decryption) key
is PrK = (λ ,µ), where µ = (L(gλ mod N2))−1 mod N, and L(·) is an integer
function defined by

L(u) = b(u−1)/Nc.
• Encryption: the encryption of the message m ∈ ZN is JmK when

JmK = gmrN mod N2, (3)

where r ∈R Z∗N .
• Decryption: given the encryption JmK ∈ ZN2 , the original message m can be ob-

tained as:
m = L(JmKλ mod N2)µ mod N.

Paillier cryptosystem has several interesting properties. In the following we point
out the most important ones.

Given x,y,k,r ∈ Z∗N we have:

Proposition 1. Additive Homomorphism.

• D(JxKJyK mod N2) = x+ y mod N

Proposition 2. Scalar Homomorphism.

• D(JxKk mod N2) = kx mod N

Proposition 3. Self–Blinding.

• D(JxKrN mod N2) = x mod N

The security of the Paillier cryptosystem is provided under the Composite Resid-
uosity Problem and Decisional Composite Residuosity Problem. These problems
are considered intractable and so suitable as basis for a cryptosystem (a detailed dis-
cussion can be found in [58]). It can be also proven that under the assumption that
the Decisional Composite Residuosity Problem is untractable, Paillier cryptosystem
is a randomized IND-CPA2 cryptosystem.

In general we indicate with T = dlog2 Ne the Paillier security parameter and we
define 2T the bit size of a ciphertext. The most updated NIST3 recommendation for
security parameters is to use at least T = 1024 (more detail in [3]).

Note that for Paillier cryptosystem the computational complexity is: enc ≈
dec ≈ expo, hence the computation complexity of a homomorphic protocol can
be related to the number of expo necessary to its execution.

2 Indistinguishability under chosen-plaintext attack (IND-CPA) assures that given two plain mes-
sages and the encryption of one of them, the adversary, can not identify the message choice with
probability significantly better than 1/2
3 National Institute of Standard and Technology. The mission of the Institute is to: ”promote U.S.
innovation and industrial competitiveness by advancing measurement science, standards, and tech-
nology in ways that enhance economic security and improve quality of life.”

16 R. Lazzeretti, P. Failla, and M. Barni

3.2.2 Non linear computation by using blinding

Most protocols require that non linear functions are computed. In a privacy pre-
serving scenario such functions can not be computed by relying on homomorphic
properties only and interaction among the parties is required. In those cases S asks
to C some help to carry out a portion of the computation. This introduces an inter-
action between the parties during which everything must be kept secret. Formally
S has some data JxK encrypted with the public key of C and needs to compute the
functionality f (·) with the help of C. Since C owns the private key, it is able to obtain
x, but S does not want to reveal it to C, because it can be used to extrapolate some
information owned by S. Hence S chooses a random r and by homomorphic prop-
erties computes Jx+ rK and sends it to C. C decrypts the message obtaining x+ r
from which it cannot retrieve x. At this point C computes J f (x+ r)K and sends it
back to S that obtains the required computation. Obviously, it is necessary that f̃ (·)
exists such that

f̃ (J f (x+ r)K,r) = J f (x)K.
Fig. 2 summarizes the flow of actions in blinding-based SMPC.

Client C Server S

×

JxK JrK

Jx+ rKD (·)

f

x+ r

Jf(x+ r)K
f̃(·)

Jf(x)K

P
P
L

JrKr

Fig. 2 Blind Computation with Encrypted Data (PPL indicated the Privacy Preserving Line and×
denotes the product).

The security of this kind of schemes stems from the information theoretic se-
curity of additive blinding (the mutual information between x and x+ r decreases
exponentially fast with the number of bits necessary to represent r), so it provides a
perfectly secure and practical approach for computing on encrypted data. Additive
blinding is used quite often, and several sub–protocols have been developed by us-
ing this approach. Here we present the EncMul, EncSquare and BitMin protocols
that will be used later in Sect. 4.

• EncMul protocol: to exemplify the blinding procedure outlined above, we now
describe the sub–protocol, EncMul, that allows to compute the product of two

Privacy-Aware Processing of Biometric Templates 17

Paillier ciphertexts obtaining JxyK= EncMul(JxK,JyK). Suppose (See Fig. 3) that
S owns JxK and JyK encrypted with the public key of C. It can obfuscate both
chyphertexts by adding two random numbers due to homomorphic additive prop-
erties and obtain Jx+ rxK and Jy+ ryK. Upon reception of Jx+ rxK and Jy+ ryK, C
decrypts and multiplies them obtaining w = xy+ xry + yrx + rxry. A this point C
encrypts w and sends it back to S that computes:

JwKJxK−ryJyK−rxJ−rxryK = JwKJ−xryKJ−yrxKJ−rxryK =
= Jw− xry− yrx− rxryK =
= Jxy+ xry + yrx + rxry︸ ︷︷ ︸

w

−xry− yrx− rxryK =

= JxyK (4)

Client C Server S

×

JxK JrxK

D (·)

P
P
L

×

JyK JryK

Jx+ rxK

Jy + ryK

×

x+ rx y + ry

JwK

JyK −ryJxK −rx

∧ ∧

J−rxryK×
JxyK

Fig. 3 The protocol EncMul.

Computing EncMul requires 2 rounds (one from S to send the obfuscated cipher-
texts and one from C to send back the result) and a bandwidth of 3× 2T bits (3
ciphertexts are exchanged having size 2T bits, where T is the Paillier security pa-
rameter introduced in 3.2.1) with a computational complexity equal to: 3 enc to
encrypt the obfuscation values rx, ry, − rxry, 2 expo needed to compute JxK−ry

and JyK−rx ; 5 mult needed to obfuscate JxK, JyK and to compute the additions to
JwK; 2 dec to obtain in plain x+ rx and y+ ry and finally 1 enc to encrypt the
result, for an asymptotic complexity of 8 expo operations.

• EncSquare protocol: the EncMul protocol can be optimized to compute the
square of a value, resulting in the EncSquare protocol. S owns JxK, obfuscates
it by adding a random number rx and obtains Jx+ rxK. At this point S sends the

18 R. Lazzeretti, P. Failla, and M. Barni

cyphertexts to C that decrypts it, computes the square value w = (x+ rx)
2 and

sends it back to S, after encryption. Finally S computes

JwKJxK−2rxJ−r2
xK = JwKJ−2xrxKJ−r2

xK =
= Jw−2xrx− r2

xK =
= Jx2 +2xrx + r2

x︸ ︷︷ ︸
w

−2xrx− r2
xK = Jx2K (5)

obtaining the square value of x encrypted. The protocol EncSquare requires
the same number of rounds of EncMul but only 2× 2T bits (2 ciphertexts) are
transmitted. Even the computational complexity is reduced to a total asymptotic
number of 5 expo operations.

• BitMin protocol: the protocol BitMin is a widely used building block that com-
putes the minimum between two encrypted values. In Fig. 4 the flow of the pro-
tocol is depicted.

Client C Server SP
P
L

D (.)

JXK, JY K

JdK = JzKJrK r

Jd̂K = Jd mod 2λK
DGK

r̂ = r mod 2λ

JbK =(
JzKJdK−1Jr̂KJρK−2λ

)2−λ

JρK

JzK = J2λKJXKJY K−1

Fig. 4 The Protocol BitMin.

Given two encrypted values JxK, JyK, where x and y are `-bit long, the main
idea is to obtain the encryption of a bit b that assumes the value 0 if x < y, 1
otherwise. This can be done by computing the difference between the two values
and extracting the sign bit. Even if this is a very simple operation when computed
on plain values, it is not trivial when the values are encrypted. In the BitMin, S
starts by computing JzK = J2`+ x− yK by relying on homomorphic encryption,
obtaining an `+ 1-bit integer. The most significant bit of z (which we denote
z`) is 0 if and only if x < y. Computing z` can be done as follows. S additively
blinds z with a suitable random value r, obtaining JdK, then it sends JdK to C. At

Privacy-Aware Processing of Biometric Templates 19

this point S and C run a comparison protocol [24] after which S will learn JρK
such that ρ = 0⇔ [d̂ < r̂] = [d mod 2` < r mod 2`]. We notice that given ρ it is
possible to compute z` as:

b = z` = 2−`(z− ẑ) = 2−`(z− ((d− r) mod 2`)), (6)

where (d− r) mod 2` = (d mod 2`)− (r mod 2`)+ρ ·2`.
The DGK comparison protocol allows both parties (i.e. C and S) to learn the bit
ρ of the predicate d < r, where d and r are two `-bit integers owned by C and S
respectively, by decomposing encrypted values into the encryptions of the single
bits and returning the encryption of the most significant bit. For sake of brevity
we do not describe the DGK protocol, interested readers may directly refer to
[24].

Table 5 Computational Complexities – DGK sub-protocol.

#exp Bandwidth Rounds

4` 2`T
3 +1 3

Considering the DGK protocol complexities shown in Tab. 5, the BitMin requires
a number of rounds equal to 4: 1 to exchange the result and 3 due to DGK proto-
col. Only 1 ciphertext is sent from S to C, so the bandwidth is a Paillier cipher-
text plus the bandwidth of DGK, thus: 2T + 2`T

3 +1 = 2T (1+ `
3)+1. Finally the

asymptotic computation complexity is 1 expo to compute JdK, 1 dec+ 1 enc
to obtain Jd̂K and 3 expo to compute JbK; that is 6 expo. Considering that DGK
requires 4` exponentiations we have: (6+4`) expo.

3.2.3 Composite signal representation

A problem with the use of homomorphic encryption is that signals need to be en-
crypted sample-wise. Samplewise encryption of signals poses some severe com-
plexity problems since it introduces a huge expansion factor between the original
signal sample and the encrypted one.

To fix the ideas, let us assume that the Paillier cryptosystem is used; in this case
each encrypted sample is an element of ZN2 , i.e. the set of integer numbers modulo
N2 with N being at least 1024 bit long, that is each encrypted sample needs at least
2048 bits to be represented. By considering that plain signal samples are usually
represented by a few bits (e.g. 8 bits for images or 16 bits for ECG signals), we
conclude that due to encryption, signals are expanded by a factor ranging from 125
to 250. For instance, the size of a grey level 1000 × 1000 image will pass from
1Mbyte in the clear to 250 Mbytes in the encrypted domain. This huge expansion
factor is clearly not affordable in many practical applications.

20 R. Lazzeretti, P. Failla, and M. Barni

In order to solve these problems, in [14] an alternative representation of signals
has been proposed. This representation permits to greatly reduce the expansion fac-
tor introduced by encryption, while still allowing the exploitation of the homomor-
phic properties of the underlying cryptosystem to process signals in the encrypted
domain. In addition to limiting the storage requirement, this representation allows
the parallel processing of different samples, thus providing a considerable reduction
of computational complexity in terms of operations between encrypted messages.

The main idea behind the representation is to pad multiple data samples to form
a composite encrypted message. To be specific, letM be the message space and C
the cypher space and let signal samples be l-bit long. It is possible to bundle R l-bit
messages m1, . . . ,mR within a single composite message x as follows:

x = m1 ·20 +m2 ·2L + . . .+mR ·2L(R−1). (7)

If L is larger than l, samples will remain distinct in the composite representation;
moreover, if L is sufficiently large, adding two composite messages will result in
the addition of the single messages composing them, and multiplying the composite
message by a constant factor, will be equivalent to multiplying each single message
by the same factor. In [14] other ways to pack more messages together that permit
more complex operations, such as linear filtering, have been proposed.

3.3 Garbled Circuits

Yao demonstrated in [69] that any function can be securely evaluated in a con-
stant number of rounds and polynomial communication and computation overhead,
proposing the garbled circuit (GC) protocol. While Yao’s protocol has been thought
to be of theoretical interest only for a long time, recent works have shown its effi-
ciency [49, 46, 60] and usability by compilers for automatic generation of GC-based
STPC protocols [51, 59].

Yao’s Garbled Circuit approach [68] is one of the most efficient methods for
secure evaluation of a boolean circuit C. To describe garbled circuits in a few words,
we can say that Yao’s idea is to encrypt (or garble) the nodes and the transitions of a
boolean circuit such that who evaluates it may follow only a single evaluation path,
defined by the circuit and the input attribute vector. Given a public boolean function
y = f (xC ,xS), where xC is the set of (binary) inputs belonging to C and xS those to
S, it is possible to represent f (·) by a boolean circuit C. C and S are interested to
evaluate the circuit, without disclosing their inputs. At the end of the protocol the
output will be available to C and optionally to S.

The circuit, together with xC and xS , is an input of a generic GC scheme, where
one party (S) constructs the circuit, then discloses the secrets necessary for the eval-
uation to the other party (C) and C uses them to evaluate the circuit.

A garbled circuit (Fig. 5) can be associated to any function described by a
boolean circuit and is composed by the following blocks:

Privacy-Aware Processing of Biometric Templates 21

Constructor

Evaluator

Client C Server S
xS C

Parallel OT

Input Secret Exchange

xC

ŵxC w̃
xS,j

j

w̃
xC,j
j

C̃

y

Garbled Circuit

Fig. 5 General scheme for Garbled Circuits.

• Constructor: The circuit constructor, on S side, creates a garbled circuit C̃:

– for each input, intermediate and output wire Wi of the circuit, the constructor
randomly chooses a complementary garbled value ŵi =

〈
w̃0

i , w̃
1
i
〉

consisting
of two secrets, w̃0

i and w̃1
i , where w̃ j

i is the garbled value of Wi’s value j, i.e.
w̃ j

i is a randomly chosen secret associated to j that does not reveal j;
– for each gate Gi, S creates a garbled table T̃i with the following property:

given a set of garbled values of Gi’s inputs, T̃i allows to recover the garbled
value of the corresponding Gi’s output, and nothing else.

Each secret is randomly chosen and is uniformly distributed in the interval (0,2t)
(normally t = 80). Once the secrets are generated, for each gate, given the secrets
ŵi and ŵ j associated to the gate inputs wires and the secret ŵo associated to the
gate output wire, the corresponding T̃ is generated in the following way:

Encw̃0
i ,w̃

0
j
(w̃g(0,0)

o)

Encw̃0
i ,w̃

1
j
(w̃g(0,1)

o)

Encw̃1
i ,w̃

0
j
(w̃g(1,0)

o)

Encw̃1
i ,w̃

1
j
(w̃g(1,1)

o)

(8)

where g(bi,b j) is the output of the gate. As to symmetric encryption, any algo-
rithm having the following properties can be used:

22 R. Lazzeretti, P. Failla, and M. Barni

– elusive range: an encryption under one key is in the range of an encryption
with a different key with negligible probability;

– efficiently verifiable range: given a key, a user can efficiently verify that a
ciphertext is in the range of that key.

The rows of the tables are finally randomly scrambled to avoid that the evaluator
understands the input values by the row successfully decrypted.

• Input Secret Exchange: Garbled values corresponding to C’s inputs x j are
(obliviously) transferred to C with a parallel oblivious transfer (OT) protocol.
An OT protocol [29] is a STPC tool where one party (S) inputs two messages
m0 and m1, while the other party (C) inputs a bit b; at the end of the protocol C
obtains the message mb while nothing is revealed to S. In the parallel OT inside
the GC protocol, S inputs complementary garbled values ŵ j, while C inputs xC, j
and obtains w̃

xC, j
j as outputs. Oblivious Transfer can be instantiated efficiently as

shown in [54, 2], and by relying on elliptic curve cryptography. In addition, as
shown in [11], the OTs can be pre-computed in a setup phase, such that they are
not the performance bottleneck in Yao’s protocol. Finally, the number of com-
putationally expensive public-key operations in the setup phase can be reduced
to a constant number with the extensions proposed in [40]. By considering these
instantiations, a parallel OT of n secrets each t-bit long requires 2 rounds where
2nt bits are transmitted. After the OT, S transmits the secrets w̃

xS, j
j relative to its

input xS, j and the tables T̃i of the circuit.
• Evaluator: C simply evaluates the garbled circuit C̃ gate by gate, using the gar-

bled tables T̃i, to obtain the garbled output. In each table the evaluator decrypts
each row by using the input secrets previously obtained until it successfully per-
forms a decryption. In the first gates only input secrets are used, while succes-
sively input secrets and/or secrets obtained as output from other tables are used.
Finally, C determines the plain values corresponding to the obtained garbled out-
put values using an output translation table received by S. If the output is needed
by S, C transmits the garbled output.

The basic GC protocol outlined above can be improved in many ways as shown
in [51] and [46]. In particular, in [51] the authors suggest to replace encryption by
Hash functions and the scheme proposed in [46] allows “free” evaluation of XOR
gates so that a garbled XOR gate has no garbled table and its evaluation consists
of XOR-ing its garbled input values, resulting in no communication and negligible
computation.

From a computational point of view, GCs have lower complexity than homomor-
phic encryption protocols, replacing exponentiations computed on large numbers
with simple hash functions. On the other side the amount of transmitted data can
grow quickly, considering that, given the number of bits ` necessary to represent
each input value, we have to transmit the secrets relative to the bits of the S inputs
(O(`)), the data necessary for the parallel OT that returns the secrets relative to C
inputs (O(`)) and the garbled table (O(f (`))), where f (·) depends on the partic-
ular functionality implemented by the circuit. Finally the number of rounds is the

Privacy-Aware Processing of Biometric Templates 23

same for any circuit (2) and it does not change if we assemble many building blocks
together.

3.3.1 Basic building blocks

Many basic building blocks can be built by relying on GC theory. Fig. 6 and Fig.
7 show the circuits implementing the blocks that we will use later in Sect. 4 to
build the primitives necessary to construct pattern matching protocols working on
encrypted data. Being the figures self–explicative, we remind to the original papers
for their detailed descriptions.

In the following we describe the implementations for the product and square
protocols that are only outlined in [44]).

• Product MULT` [44]: to multiply two unsigned integers x and y represented with
` bits, we can construct a circuit according to the scholar method for multiplica-
tion, i.e., adding up the bitwise multiplications (logical AND) of yi and x left
shifted of i positions: x · y = ∑

`−1
i=0 (yi∧ x)2i. The circuit is composed of `2 AND

gates (Fig. 7(e)) yielding the matrix

y0x`−1 · · · y0x1 y0x0
y1x`−1 · · · y1x1 y1x0

· · ·
y`−1x`−1 · · · y`−1x1 y`−1x0

(9)

and `− 1 adders (Fig. 7(f)). Instead of using adders of 2` bits we can set (x ·
y)0 = x0 ∧ y0 and then add (y0 · x)`−1,...,1 with y1 · x setting (x · y)1 equal to the
least significant bit of the result and then adding the other bits to x2 · y, etc. In
this way adders of values represented with ` bits are used. The circuit requires
`2 +(`−1)`= 2`2− ` non-XOR gates.

• Square SQUARE`: a circuit computing the square of an unsigned integer x can
be obtained by optimizing the product circuit, that is replacing the circuit of Fig.
7(e) with the circuit of Fig. 7(g). By considering that xi ∧ xi = xi and xi ∧ x j =
x j ∧ xi we can rebuild the matrix of (9) as:

x0x`−1 · · · x0x1 x0
x1x`−1 · · · x1 x0x1

· · ·
x`−1 · · · x1x`−1 x0x`−1

(10)

In this way only `− 1+ `− 2+ · · ·+ 1 = `(`− 1)/2 AND gates are evaluated,
obtaining 3

2`(`−1) gates for the whole circuit.

Reminding that the circuit complexity is related to the number of non-XOR gates
(each having a table of size 4t bits associated), Table 6 shows the complexity of the
circuits as a function of the number of non-XOR gates.

24 R. Lazzeretti, P. Failla, and M. Barni

si

ci+1

xi yi

ci

(a) 1-bit adder

. . . c0 = 0

y0y1y`−1x`−1 x1 x0

s` s`−1 s1 s0

ADD

(b) ADD` circuit implemented by using sub-circuit
of Fig. 6(a)

si

ci+1

xi yi

ci

(c) 1-bit subtractor

. . . c0 = 1

y0y1y`−1x`−1 x1 x0

s` s`−1 s1 s0

SUB

(d) SUB` circuit implemented by using sub-circuit
of Fig. 6(c)

ADD2

x0x1x2x3x4x5x6

COUNT7

y0y1y2

(e) COUNT7

ADDk−1

x0x1x `−1
2 +1

x`−1

COUNT`=2k−1

y0yk−1

COUNT2k−1−1 COUNT2k−1−1

x `−1
2

· · · · · ·

· · ·

· · · · · ·

(f) COUNT`=2k−1 recursively developed
with smaller COUNT`=2k−1−1. Generic
COUNT` can be obtained by optimizing
greater [COUNT2k−1.

Fig. 6 Logical circuits implementing the basic building blocks used in Sect. 4 (first part).

Privacy-Aware Processing of Biometric Templates 25

ci+1

xi yi

ci

(a) 1-bit comparison

. . . c0

y0y1y`−1x`−1 x1 x0

z

CMP

(b) Comparison circuit circuit implemented
by using sub-circuit of Fig. 7(a)

bi

xi yi

ci

Y

(c) Y block

. . . c

y0y1y`−1x`−1 x1 x0

b`−1 b1 b0

MUX

Y Y Y

(d) MUX` circuit implemented by using
sub-circuit of Fig. 7(c)

y0

x0x1x`−1

y1

y`−1

y0 · x`−1 y0 · x1 y0 · x0

y1 · x`−1 y1 · x1 y1 · x0

y`−1 · x`−1 y`−1 · x1 y`−1 · x0

. . .

. . .

. . .

...

(e) First part of MULT`

0 y0x`−1 y0x2 y0x1
y1x`−1 y1x`−2 y1x1 y1x0

y2x`−1 y2x`−2 y2x0

· · ·

· · ·

· · ·

y`−1x`−1 y`−1x0
· · ·

· · · · · ·x · y:

x0y0

...

(xy)0(xy)2`−1

ADD`

ADD`

ADD`

(f) Second part of MULT`

x0

x1x2x`−1

x1

x`−2

x0 · x`−1 x0 · x1 x0 · x1

x1 · x`−1 x1 · x2

x`−2 · x`−1

. . .

. . .

...

(g) First part of SQUARE` (The sec-
ond part is similar to Fig. 7(f))

Fig. 7 Logical circuits implementing the basic building blocks used in Sect. 4 (second part).

26 R. Lazzeretti, P. Failla, and M. Barni

Table 6 Complexity of GCs implementing the basic building blocks used in Sect. 4.

Circuit Inputs (bit length) Output (bitlength) # non-XOR gates
ADD` [44], Fig. 6(b) x (`), y (`) s (`+1) `
SUB` [44], Fig. 6(d) x (`), y (`) s (`+1) `

COUNT` [10], Fig. 6(f) x (`) y (k ≈ log2(`+1)) ≈ `− k
<` [44], Fig. 6(d) x (`), y (`) z (1) `

MUX` [46], Fig. 7(d) x (`), y (`), c (1) b (`) `

MULT` [44], Fig. 7(e),7(f) x (`), y (`) z (2`) 2`2− `

SQUARE`, Fig. 7(g) x (`) z (2`) 3
2 `

2− 3
2 `

3.4 Hybrid protocols

Given STPC protocols implementing several basic functions it is possible to obtain
more complicated protocols by composing them. Homomorphic Encryption is par-
ticularly useful when it is possible to move the computation on S’s side (almost)
without interaction, while Garbled Circuits are more performing when the data is
represented by few bits or whenever it is not possible to perform some operations
by HE. As a result, it is possible that complex protocols contain blocks having an
efficient HE implementation, while others can be more efficiently implemented by
using GCs. To pass from HE to GC and viceversa it is necessary to disclose interme-
diate values to C (that owns the decryption key of the homomorphic cryptosystem),
but this involves a privacy leakage. To solve this problem we can use blinding [45]:
the intermediate data is first of all blinded by adding a random value (known only
by S) and then disclosed to C. The following HE or GC sub-protocol will remove
the obfuscation before continuing the computation.

For example, to convert an Homomorphic value JxK into a Garbled value x̃, S
adds a random value r under homomorphic encryption, sends the blinded value
Jx̄K = Jx+ rK = JxK · JrK to C who decrypts it and uses the x̄ value as input to the
subsequenting GC. S inputs the value r to the GC and the constructor will prepare a
garbled circuit that first computes the subtraction between x̄ and r and then evaluates
the desired block. A similar method can be used for converting a Garbled value x̃
into a Homomorphic value JxK.

4 Building blocks for privacy-aware pattern matching

We now describe the building blocks necessary to carry out the general secure pat-
tern matching algorithms described in Sect. 2.

The first problem to be considered is the verification problem. Pattern verification
boils down to the computation of a certain distance function and its comparison
against a threshold, as shown in Fig. 8(a). It is easy to realize that the verification
problem can be considered as special case of the identification problem, shown in

Privacy-Aware Processing of Biometric Templates 27

Fig.8(b). Verification only needs that the distance between V1 (now playing the role
of Vtest) and V2 is computed and the minimum between such a distance and the
verification threshold evaluated. So, in the following we will treat the two problems
together.

Distance Computation

Minimum selection

V1 V2

th

yes/no

Client C Server S

δ

Yes
No

(a) Verification problem

Distance Computation

Idmin/No

Client C Server S

Vtest Vn

Minimum Selection

Distance Computation V1

...

· · ·

Id1
Idn
· · ·

th

No

δ1 δn

(b) Identification problem

Fig. 8 STPC blocks necessary for the Matching problems

Specifically we will describe the single blocks necessary for secure evaluation
of the Matching Problems: distance computation and minimum selection. For each
block the implementation by using HE and GC will be provided. The comparison
among the different implementations and their composition will be then analyzed in
Sect. 5.

4.1 Distance Computation

This Section is devoted to sketch the sub-protocols for securely computing the dis-
tance δ between two feature vectors. We will describe two possible solutions: the
former relying on homomorphic encryption, the latter on garbled circuits. Due to
the great difference in complexities and performances of these approaches, we will
provide an analysis of our constructions in the following Sect. 5, trying to delin-
eate the different contexts in which one approach should be preferred to the other.
Considering the verification problem the distance δ is computed between V1 and V2,
while in the identification problem n distances δi are evaluated between the feature
vector Vtest provided by C and the feature vectors Vi stored in the database owned
by S. Reminding that each biometry feature vector can be represented by a point in
Zm

b , as presented in Sect. 2, for sake of notation simplicity the distance computation

28 R. Lazzeretti, P. Failla, and M. Barni

is here evaluated between two points P,Q ∈ Zm
b and the final result belongs to Zm′ ,

where m′ is chosen to correctly represent the distance.

4.1.1 Euclidean Distance

The Euclidean distance is defined as

δ = dE(P,Q) :=

√
m

∑
j=1

(p j−q j)2

for j = 1, . . . ,m : p j,q j ∈ [0, . . . ,b) ⊆ {0,1}`. As the Euclidean distance is non-
negative, in many cases it is replaced by δ 2 = ∑

m
j=1(p j− q j)

2, namely the square
of the Euclidean distance, whose minimum coincides with the minimum among
Euclidean distances. Considering that P,Q ∈ Zm

b , we can observe easily that δ 2 ∈
Zm′ , where m′ = m∗ (2b)2.

Homomorphic Protocol

The encryption of the square of the Euclidean distance Jδ 2
i K = JdE(Pi,Q)2K can be

computed by using additively homomorphic encryption together with an additional
round for squaring as proposed in [28]. As depicted in Fig. 9, S is able to compute
all the differences Jp j− q jK by using the additive homomorphic property, then the
interactive EncSquare protocol is needed to compute the squared values of the
summands, to let S obtain J(p j−q j)

2K.
Considering that many calls to EncSquare are required, they can be evaluated

in parallel. In this way, with just two rounds 2mn cyphertexts of size 2T bits are
exchanged between C and S (n > 1 when more distances are parallel evaluated).

Finally by the homomorphic properties S can compute δ 2 by multiplying in the
encrypted domain (equivalent to adding in the plain domain) all the squared values.

GC protocol

To build a GC-based STPC for computing the euclidean distance, we need to pay
particular attention to the correct number of bits used to represent each value in-
volved in the computation. In this case a Boolean circuit computing ∑

m
j=1(p j−q j)

2

is evaluated. Supposing that each feature of the biometry is represented with ` bits
(the base used for the feature representation is 2`−1 ≤ b < 2`), the point P and Q are
represented with m` bits each. The differences between each couple of features are
represented with `+1 bits and the square values of the difference needs 2`+2 bits
for their representation. Finally δ is obtained by adding all the square differences
and is represented with 2`+2+ dlog2 me bits.

Privacy-Aware Processing of Biometric Templates 29

Client C Server S

Jp1K, ..., JpmK

P
P
L

q1, ..., qm

JpjK−qj ∀j

EncSquare ∀j

JδK = ∏m

j=1
J(pj − qj)

2K

δ

Fig. 9 Euclidean Distance via Homomorphic Encryption.

SUB` SUB` SUB`

SQUARE`+1 SQUARE`+1 SQUARE`+1

ADD2`+2+dlog2 me

ADD2`+2+dlog2 me

δ

...

ADD2`+2+dlog2 me

. . .

. . .

pmqmp2q2q1p1

Fig. 10 Euclidean Distance via Garbled Circuits.

The circuit, shown in Fig. 10, requires m SUB`, m SQUARE`+1 and (m−
1) ADD2`+2+dlog2 me.

To transmit the circuit (m`+ 3m
2 (`+1)`+(m−1)(2`+2+dlog2 me))4t bits are

transferred from S to C.

4.1.2 Hamming Distance

The Hamming distance is often used when biometries are represented by vectors of
boolean features (i.e. points P,Q∈Zm

2), and is defined as dH(P,Q) :=∑
m
j=1 p j⊕q j ∈

Zm′ , where m′ = dlog2 me.

30 R. Lazzeretti, P. Failla, and M. Barni

Homomorphic Protocol

To evaluate the Hamming distance in a privacy preserving fashion, the m XOR
operators needed for the distance evaluation are computed by using homomorphic
encryption. Let us assume that we want to evaluate a generic Jp j ⊕ q jK where p j
and q j are bit values available in encrypted format, i.e. S knows Jp jK and Jq jK,
where encryption is carried out by using C’s PuK. In this setting S does not want
to reveal neither p j nor q j to C, so it chooses two additional random bits rp j and

rq j and computes Jp j⊕ rp jK = Jp j + rp j −2p jrp jK = Jp jK1−2rp j Jrp jK and similarly
Jq j ⊕ rq jK then it sends these values to C. The obfuscated bits can be packed in a
single cyphertext by computing Jp j⊕ rp jK2Jq j⊕ rq jK = J2(p j⊕ rp j)+ (p j⊕ rp j)K.
Note that p j and q j are perfectly obfuscated by the xor-ing with rp j and rq j , so C
can safely decrypt the cyphertexts, obtain the single bits, compute the encryption of
J(p j⊕ rp j)⊕ (q j⊕ rq j)K and send the result back to S. At this point S can remove
rp j ⊕ rq j from the result and obtain Jp j⊕q jK. The whole protocol is shown in Fig.
11.

Client C Server S
JxK rx

D (.)

P
P
L

JyK ry

Jx⊕ rxK

Jy ⊕ ryK
x⊕ rx y ⊕ ry

J(x⊕ rx)⊕ (y ⊕ ry)K

⊕

⊕

⊕

⊕

rx ry

Jx⊕ yK

Fig. 11 Sub protocol XOR with JxK and JyK.

Since S needs to compute the XOR function, C computes two decryptions and
one encryption and the complexity is 4 expo+2 dec+1 enc' 7 expo.

Since computing the Hamming distance requires m XOR operations, the com-
munication complexity can be reduced by packing all the nm p j⊕ rp j (n > 1 when
several distances are parallel computed) and all the nm q j⊕ rq j in a single cypher-
text during the transmission from S to C answers with nm cyphertexts. The round
complexity is 2.

Privacy-Aware Processing of Biometric Templates 31

GC protocol

In Hamming distance calculation each feature is represented by 1 bit, hence the
points P and Q are represented with m bits. The XOR among the two points is
again represented with m bits, while the distance can be represented with dlog2(m)e
bits. The circuit computing the Hamming distance is composed by m XOR (having
no tables associated thanks to the Free-XOR) and their binary results are summed
together by using a COUNTm having / m− log2(m+1) non-XOR gates. The gar-
bled gates transmitted are hence relative only to the COUNT circuit, implying the
transmission of less than (m− log2(m+1))4t bits.

4.2 Minimum Selection

The computation of the minimum among a set of values is the second essential
operation needed in a matching protocol. When the minimum has to be computed
among n+1 values, and the index of the minimum value is required, we can use the
cascade of several minimum blocks as depicted in Fig. 12.

x0
x1

Id0
Id1

x2
x3

Id2
Id3

xn−4

xn−3

Idn−4

Idn−3

xn−2

xn−1

Idn−2

Idn−1

MIN

xmin Idxmin

· · ·

...

MIN MIN

MINMIN

MIN MIN

Fig. 12 Circuit for Minimum search among n values

Due to this we can solve the problem of Minimum Selection by repeatedly appli-
cation of a basic building block able to compute the minimum and the related index
on a couple of values.

Suppose we have two integer values x,y represented with ` bits obtained from
a previous computation and two identification labels Idx, Idy associated to x and y
respectively and represented with κ bits. The goal of Minimum Selection is to select
min{x,y} and the Id{x,y} associated to the minimum.

32 R. Lazzeretti, P. Failla, and M. Barni

Homomorphic protocol

Given the sub-protocol BitMin described in Sect. 3.2.2, allowing S to compute the
encrypted bit JbK such that:

b =

{
0 if x < y
1 if x≥ y, , (11)

S can compute Jmin{x,y}K = EncMul(J1−bK,JxKJyK−1)JyK = J(1−b)(x−y)+yK
and JIdmin{x,y}K=EncMul(J1−bK,JIdxKJIdyK−1)JIdyK= J(1−b)(Idx−Idy)+IdyK.
Note that the two EncMul can be performed in parallel and b is transmitted only
once, resulting in the transmission of 5 cyphertexts.

When the minimum among n+1 values is evaluated returning its index, as in the
identification problem where there is the necessity to choose among n distances and
a threshold, we need to evaluate n minimum functions as shown in Fig. 12. For each
minimum block 2T (6+ `

3)+1 bits are transmitted and 14+4` expo are evaluated
during the computation. The reverse tree has dlog2(n+1)e levels and 6 rounds are
required for each level.

GC protocol

The minimum circuit (MIN) which selects the minimum value min{x,y} among
two values x and y together with the associated Id is shown in Fig. 13. The circuit is

x y Idx Idy

min{x, y} Idmin{x,y}

MUX MUX

MIN

Fig. 13 The circuit which selects the minimum value min{x,y} among x and y together with the
Id associated.

composed by a comparison circuit having ` non-XOR gates and two MUX circuits.
The one that selects among x,y has ` non-XOR gates, while that selecting among
the Ids has κ non-XOR gates, totally resulting in 2`+κ tables of size 4t bits each.
If only the Id of the minimum value is required the MUX selecting among x and y
has to be removed, resulting in a total size of `+κ gates.

Privacy-Aware Processing of Biometric Templates 33

When the minimum has to be computed among more than two values we can use
a reverse tree structure, as in Fig. 12. The minimum value and minimum identifier
are selected pairwise in a tournament-like way using a reverse tree of minimum
blocks, were the intermediate blocks choose among the outputs of the previous
blocks. Given n+ 1 pairs (xi, Idi) the circuit needs n MIN block, hence the total
size of the garbled circuit is n(2`+κ) tables of 4t bits. If only the Id of the mini-
mum value is required, in the last MIN block the MUX selecting among the values
can be removed, resulting in a total size of n(2`+κ)− ` gates.

5 Design principles for privacy-aware biometric matching

By composing the building blocks described in Sect. 4, a privacy-aware matching
protocol can be easily built. In this Section we give some general guidelines that
can be used to choose the proper implementation of the basic building blocks so to
achieve an efficient protocol suited to the application at hand.

From a computational point of view, HE is preferrable when the parties have
enough computing power since they need to compute many exponentiations, while
GC requires the computation of (many) simple Hash functions. From a communica-
tion point of view HE protocols transmit few long cyphertexts (2T bits each, where
T is at least 1024) in a number of rounds that depends on the application, while GC
has to transfer a secret for any S input bit (t = 80 bits long each), a table for each
non-XOR gate (4t bits) and exchange the secrets relative to the C input bits by OT
(2t bits transferred for each input bit), resulting in a high bandwidth, even if all the
transmissions are performed in only 2 rounds.

Comparing the HE and the GC implementations of the subprotocol (detailed in
Sect. 4) from a computational point of view is not easy, since the answer finally
depends on the number of bits used to represented biometric vectors and hence on
the representation accuracy needed to achieve a given recognition rate. Usually a
HE protocol is composed by few difficult operations performed on large numbers;
in a Paillier homomorphic protocol, where cyphertexts are represented by 2T bits
(T = 1024), the most complex basic operation is the exponentiation, having O(T 3)
complexity. On the other side to evaluate a GC a big number of hash functions,
having small constant complexity, are computed. Moreover we have to consider
that the complexity of these operations can change from a system to an other, for
example in the presence of dedicated hardware. Finally we have to consider that
in the future longer cyphertexts will be required to guarantee security, due to the
increase of available computational resources. While the security parameter T of an
asymmetric scheme (necessary to HE) grows exponentially, the security parameter t
of the symmetric cryptosystem (used in GC) grows linearly [34], making GC more
performing than HE.

We now analyze the different implementations of the building blocks described
in Sect. 4, from a communication point of view.

34 R. Lazzeretti, P. Failla, and M. Barni

We remind that any matching protocol starts with the computation of distances (1
distance in the verification scenario and n distances in the identification scenario),
and then terminates with a minimum selection, computed between two values (the
distance and a threshold) in the verification protocol or n+1 values (the n distances
and a threshold) in the identification protocol. A label represented with κ bits is
associated to each distance (for example “Yes” in the verification protocol or an
identifier in the identification protocol) and to the threshold (the “No” string).

Given a feature vector composed by m features represented with ` < T (usu-
ally ` << T) bits each, if the euclidean distance is computed by HE, C transmits
m cyphertexts to S and during the computation other 2m cyphertexts are transmit-
ted for each distance (note that it is possible to reduce the transmission from S
to C by packing several values in a single ciphertext), resulting in the transmis-
sion of O(nmT) bits in 3 rounds and the distances are finally available to S in en-
crypted form. In a GC protocol C has to obtain m` secrets by the parallel OT (2m`t
bits); receives nm` secrets relative to the feature vectors representing the biome-
tries owned by S (nm`t bits); receives m`+ 3m

2 (`+1)`+(m−1)(2`+2+dlog2 me)
garbled tables for each distance computation (n(m`+ 3m

2 (`+ 1)`+ (m− 1)(2`+
2 + dlog2 me))4t bits), obtaining a total communication complexity of O(nm`2t)
bits. Finally the output secrets are available to C. We can observe easily that GC is
preferable to HE only when ` is small.

When ` = 1, Euclidean distance is replaced by Hamming distance. HE still re-
quires the transmission of m cyphertexts from C to S at the beginning of the proto-
col, but then the communication complexity is reduced to nm+ 1 cyphertexts. The
asymptotic communication complexity resultsO(nmT) bits. The GC computing the
Hamming distance requires a parallel OT for m secrets (2mt bits), the transmission
of nm secrets (nmt bits) and / n(m− log2(m+ 1)) non-XOR gates of size 4t bits,
with an asymptotic communication complexity of O(nmt) bits. Concluding, when
Hamming distance can be computed, GC is preferable to HE also from a communi-
cation complexity point of view.

Regarding the minimum selection GC is indeed more efficient than HE. In fact in
a GC solution only two rounds are necessary (there are no additional rounds if the
distance computation is also carried out by GC) and O(n`dt) bits are transferred,
where `d is the number of bits necessary to represent a distance, while the HE solu-
tion requires 6 log2(n+1) rounds where O(n`dT) bits are transmitted.

The asymptotic complexities are summarized in Tab. 7.

Table 7 Asymptotic communication complexities of the different implementation for the ad-
dressed subprotocols.

Euclidean distance Hamming distance Minimum selection
Bandwidth Rounds Bandwidth Rounds Bandwidth Rounds

HE O(nmT) 3 O(nmT) 3 O(n`dT) 6 log2(n+1)
GC O(nm`2t) 2 O(nmt) 2 O(n`dt) 2

Privacy-Aware Processing of Biometric Templates 35

To conclude, for both verification and identification, we suggest to use a hybrid
protocol where the distance is computed by HE and the minimum is selected by GC.
When the biometries can be represented by binary vectors, we suggest to evaluate
the Hamming distance by using GC, obtaining a unique GC that computes distances
and the minimum index.

6 Conclusions

Multiparty computation has been studied for three decades by cryptographers, how-
ever only recently the state of the art in the field, and the computational power and
bandwidth made available by information and communication technology have per-
mitted to deploy such techniques for real life applications. Among the most promis-
ing applications of SMPC (and specifically STPC), privacy-aware processing of bio-
metric data occupies a central role. As a matter of fact, biometric applications raise
important privacy issues that can be conveniently solved by resorting to STPC. In
this chapter we have reviewed the basic concepts behind STPC and described the
basic cryptographic primitives needed to achieve privacy-aware processing of bio-
metric data in a STPC context. The two main approaches proposed so far, namely
homomorphic encryption and garbled circuits have been discussed and the way such
techniques can be used to develop a full biometric matching protocol described.
Some general rules designers should follow to select the most appropriate tools
have also been given.

Even if the state of the art already permits the development of real-life applica-
tions based on the tools described in this chapter, several advances are still needed
before we assist to a widespread use of STPC techniques in biometric applications.

The most pressing demand is surely a request for a better efficiency. The impor-
tance of this request lies in a very simple fact: privacy has a price and if we want
that someone pays for improving the privacy of a system this price must be rea-
sonably low. Actually it is surprising how few people are willing to pay for privacy
measures despite the continuous call for privacy raising from various sources. While
everybody agree that sensitive data need to be protected and that personal privacy is
worth protection, very few users would be willing to pay for a secure service if an
insecure, but faster, service is offered to them for free or at a lower price.

A second line of research that needs to be considered regards the security model.
According to the current state of the art, efficient privacy preserving protocols are
available only under the assumption of semi-honest parties. This is a rather com-
mon assumption, however its applicability in practical scenarios is doubtful. In most
cases, in fact, we should assume that our adversary is willing to deviate from the
correct protocol if in this way he can steal some supposed-to-be-secret information.
Some interesting results in this sense have been shown in [55]. We expect that fur-
ther improvements will follow hence making privacy protection in the presence of a
malicious adversary practical.

36 R. Lazzeretti, P. Failla, and M. Barni

Finally, we mention the importance that specific biometric processing algorithms
are devised tailored to the need of a privacy-preserving implementation. Indeed, the
approach used so far has been that of taking a classical algorithm and transforming
it into a protocol to be run on encrypted signals. It is arguable that much better
results could be obtained by developing a class of processing tools that are explicitly
thought to ease a STPC implementations, e.g. by considering in advance which are
the most complex operations to be carried out in a secure way and try to avoid them,
or by trying to minimize the number of bits used to represent the biometric templates
to reduce the communication or computational complexity of the protocols.

References

1. R. Agrawal and R. Srikant. Privacy-preserving data mining. Sigmod Record – ACM,
29(2):439–450, 2000.

2. B. Aiello, Y. Ishai, and O. Reingold. Priced oblivious transfer: How to sell digital goods.
Advances in Cryptology - EUROCRYPT 2001, pages 119–135, 2001.

3. E. Barker, W. Burr, A. Jones, T. Polk, S. Rose, M. Smid, and Q. Dang. Recommendation for
Key Management. NIST special publication, 800:57, 2009.

4. W. C. Barker. Recommendation for the Triple Data Encryption Algorithm (TDEA) Block
Cipher. NIST special publication, May 2004.

5. M. Barni, T. Bianchi, D. Catalano, M. Di Raimondo, R. Donida Labati, P. Failla, D. Fiore,
R. Lazzeretti, V. Piuri, F. Scotti, and A. Piva. Privacy-preserving fingercode authentication. In
Multimedia and security, Proceedings of the 12th ACM workshop on, pages 231–240. ACM,
2010.

6. M. Barni, T. Bianchi, D. Catalano, M. Di Raimondo, R.D. Labati, P. Failla, D. Fiore,
R. Lazzeretti, V. Piuri, A. Piva, and F. Scotti. A privacy-compliant fingerprint recognition
system based on homomorphic encryption and fingercode templates. In Biometrics: Theory
Applications and Systems – BTAS 2010, Fourth IEEE International Conference on, pages 1–7.
IEEE, 2010.

7. M. Barni, P. Failla, V. Kolensikov, R. Lazzeretti, A. Paus, A. Sadeghi, and T. Schneider. Effi-
cient Privacy-Preserving Classification of ECG Signals. In Information Forensics and Security
– WIFS 2009, Workshop on, 2009.

8. M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti, A.R. Sadeghi, and T. Schneider. Secure eval-
uation of private linear branching programs with medical applications. Research in Computer
Security – ESORICS 2009, European Symposium on, pages 424–439, 2010.

9. M. Barni, P. Failla, R. Lazzeretti, A.R. Sadeghi, and T. Schneider. Privacy-Preserving ECG
Classification with Branching Programs and Neural Networks. Information Forensics and
Security – TIFS, IEEE Transactions on, Jun. 2011.

10. M. Barni, J. Guajardo, and R. Lazzeretti. Privacy preserving evaluation of signal quality
with application to ECG analysis. In Information Forensics and Security – WIFS 2010, IEEE
International Workshop on, pages 1–6. IEEE, 2010.

11. D. Beaver. Precomputing oblivious transfer. In Advances in Cryptology – CRYPTO’95, vol-
ume 963 of LNCS, pages 97–109. Springer, 1995.

12. J. Benaloh. Dense probabilistic encryption. In Selected Areas of Cryptography, Proceedings
of the Workshop on, pages 120–128. Citeseer, 1994.

13. T. Bianchi, A. Piva, and M. Barni. On the implementation of the discrete Fourier transform in
the encrypted domain. Information Forensics and Security, IEEE Transactions on, 4(1):86–97,
2009.

14. T. Bianchi, A. Piva, and M. Barni. Composite signal representation for fast and storage-
efficient processing of encrypted signals. Information Forensics and Security, IEEE Transac-
tions on, 5(1):180–187, 2010.

Privacy-Aware Processing of Biometric Templates 37

15. A. Bjorck. Solving linear least squares problems by Gram-Schmidt orthogonalization. BIT
Numerical Mathematics, 7(1):1–21, 1967.

16. D. Boneh, E.J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts. Theory of
Cryptography, pages 325–341, 2005.

17. D. Boneh and R. Lipton. Algorithms for black-box fields and their application to cryptogra-
phy. In Advances in Cryptology - CRYPTO96, pages 283–297. Springer, 1996.

18. E. Bresson, D. Catalano, and D. Pointcheval. A simple public-key cryptosystem with a double
trapdoor decryption mechanism and its applications. Advances in Cryptology-ASIACRYPT
2003, 1:37–54, 2003.

19. J. Brickell, D.E. Porter, V. Shmatikov, and E. Witchel. Privacy-preserving remote diagnostics.
In Computer and communications security, Proceedings of the 14th ACM conference on, page
507. ACM, 2007.

20. R. Brinkman, J. Doumen, and W. Jonker. Using secret sharing for searching in encrypted data.
Secure Data Management, 1:18–27, 2004.

21. JL Camp. Digital identity. IEEE Technology and Society Magazine, 23(3):34–41, 2004.
22. C.K. Chui and E. Quak. Wavelets on a bounded interval. Numerical methods of approximation

theory, 9(1):53–57, 1992.
23. J. Daemen and V. Rijmen. The Rijndael block cipher. AES Proposal, Mar. 1999.
24. I. Damgård, M. Geisler, and M. Krøigaard. Efficient and secure comparison for on-line auc-

tions. In Information Security and Privacy, pages 416–430. Springer, 2007.
25. I. Damgård and M. Jurik. A Generalization, a Simplification and Some Applications of Pail-

lier’s Probabilistic Public-Key System. In Public Key Cryptography, pages 119–136. Springer,
2001.

26. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
Information Theory, IEEE Transactions on, IT-31(4):469–472, 1985.

27. Z. Erkin. Secure signal processing: Privacy preserving cryptographic protocols for multime-
dia. PhD thesis, Delft University of Technology, The Netherlands, 2010.

28. Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and T. Toft. Privacy-preserving
face recognition. In Privacy Enhancing Technologies, pages 235–253. Springer, 2009.

29. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts. Com-
munications of the ACM, 28(6):647, 1985.

30. P. Failla. Heuristic Search in Encrypted Graphs. Emerging Security Information,Systems and
Technologies – SECURWARE’10, Fourth International Conference on, pages 82–87, 2010.

31. P. Failla and M. Barni. Gram - Schmidt Orthogonalization on Encrypted Vectors. In Digital
Communications – ITWDC 2010, 21st International Tyrrhenian Workshop on, 2010.

32. C. Gentry. Fully homomorphic encryption using ideal lattices. In Theory of Computing,
Proceedings of the 41st annual ACM symposium on, pages 169–178. ACM, 2009.

33. C. Gentry, S. Halevi, and V. Vaikuntanathan. A simple BGN-type cryptosystem from LWE.
Advances in Cryptology–EUROCRYPT 2010, pages 506–522, 2010.

34. D. Giry and J.J. Quisquater. Cryptographic key length recommendation, 2010.
35. O. Goldreich. Foundations of cryptography. Cambridge University Press, 2004.
36. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Theory of

computing, Proceedings of the nineteenth annual ACM symposium on, pages 218–229. ACM,
1987.

37. S. Goldwasser and S. Micali. Probabilistic encryption* 1. Journal of Computer and System
Sciences, 28(2):270–299, 1984.

38. G.H. Golub and C.F. Van Loan. Matrix computations. Johns Hopkins Univ Pr, 1996.
39. P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of

minimum cost paths. Systems Science and Cybernetics, IEEE transactions on, 4(2):100–107,
1968.

40. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently. In
Advances in Cryptology – CRYPTO’03, volume 2729 of LNCS. Springer, 2003.

41. M. Johnson, P. Ishwar, V. Prabhakaran, D. Schonberg, and K. Ramchandran. On compressing
encrypted data. Signal Processing, IEEE Transactions on, 52(10):2992–3006, 2004.

38 R. Lazzeretti, P. Failla, and M. Barni

42. S. Katzenbeisser, A. Lemma, M.U. Celik, M. van der Veen, and M. Maas. A buyer–seller
watermarking protocol based on secure embedding. Information Forensics and Security –
TIFS, IEEE Transactions on, 3(4):783–786, 2008.

43. N. Koblitz. A course in number theory and cryptography. Springer, 1994.
44. V. Kolesnikov, A.R. Sadeghi, and T. Schneider. Improved garbled circuit building blocks and

applications to auctions and computing minima. Cryptology and Network Security, pages
1–20, 2009.

45. V. Kolesnikov, A.R. Sadeghi, and T. Schneider. Modular design of efficient secure
function evaluation protocols. Technical report, Cryptology ePrint Archive, Report
2010/079, 2010, http://eprint. iacr. org/2010/079/.[Online]. Available: http://thomaschneider.
de/papers/KSS10. pdf, 2010.

46. V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and applications.
In International Colloquium on Automata, Languages and Programming (ICALP’08), volume
5126 of LNCS, pages 486–498. Springer, 2008.

47. Y. Lindell and B. Pinkas. Privacy preserving data mining. Journal of cryptology, 15(3):177–
206, 2008.

48. Y. Lindell and B. Pinkas. A proof of security of Yao’s protocol for two-party computation.
Journal of cryptology, 22(2):161–188, 2009.

49. Y. Lindell, B. Pinkas, and N. Smart. Implementing two-party computation efficiently with
security against malicious adversaries. In Security and Cryptography for Networks – SCN’08,
volume 5229 of LNCS, pages 2–20. Springer, 2008.

50. Y.D. Ma, C.L. Qi, Z.B. Qian, F. Shi, and Z.F. Zhang. A novel image compression coding
algorithm based on pulse-coupled neural network and Gram-Schmidt orthogonal base. Dianzi
Xuebao(Acta Electronica Sinica), 34(7):1255–1259, 2006.

51. D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay — a secure two-party computation
system. In USENIX, 2004. http://fairplayproject.net.

52. C.A. Melchor, P. Gaborit, and J. Herranz. Additively Homomorphic Encryption with t-
Operand Multiplications. Crypto 2010, 1996.

53. A.J. Menezes, P.C. Van Oorschot, and S.A. Vanstone. Handbook of applied cryptography.
CRC, 1997.

54. M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In Discrete Algorithms –
SODA’01, ACM-SIAM Symposium On, pages 448–457. Society for Industrial and Applied
Mathematics, 2001.

55. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A
new approach to practical active-secure two-party computation. Cryptology ePrint Archive,
Report 2011/091, 2011. http://eprint.iacr.org/.

56. S.J. Orfanidis. Gram-Schmidt neural nets. Neural Computation, 2(1):116–126, 1990.
57. M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich. SCiFI-a system for secure face identi-

fication. In Security and Privacy, 2010 IEEE Symposium on, pages 239–254. IEEE, 2010.
58. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Ad-

vances in Cryptology - EUROCRYPT99, pages 223–238. Springer, 1999.
59. A. Paus, A.-R. Sadeghi, and T. Schneider. Practical secure evaluation of semi-private func-

tions. In Applied Cryptography and Network Security – ACNS’09, volume 5536 of LNCS,
pages 89–106. Springer, 2009. http://www.trust.rub.de/FairplaySPF.

60. B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. Secure two-party computation is
practical. In Advances in Cryptology – ASIACRYPT 2009, volume 5912 of LNCS. Springer,
Dec. 2009. Full version available at http://eprint.iacr.org/2009/314.

61. S. Rane and W. Sun. Privacy preserving string comparisons based on Levenshtein distance.
In Information Forensics and Security – WIFS 2010, IEEE International Workshop on, pages
1–6. IEEE, 2010.

62. D.K. Rappe. Homomorphic cryptosystems and their applications. Volume Ph.D., 2004.
63. R.L. Rivest, L. Adleman, and M.L. Dertouzos. On data banks and privacy homomorphisms.

Foundations of Secure Computation, pages 169–178, 1978.
64. R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-

key cryptosystems. Communications of the ACM, 21(2):126, 1978.

Privacy-Aware Processing of Biometric Templates 39

65. A.R. Sadeghi, T. Schneider, and I. Wehrenberg. Efficient privacy-preserving face recognition.
In Information Security and Cryptology – ICISC 2009, International Conference on. Springer,
2009.

66. A. Sharma and K.K. Paliwal. Fast principal component analysis using fixed-point algorithm.
Pattern Recognition Letters, 28(10):1151–1155, 2007.

67. M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption
over the integers. Advances in Cryptology–EUROCRYPT 2010, pages 24–43, 2010.

68. A. C. Yao. How to generate and exchange secrets. In IEEE Symposium on Foundations of
Computer Science (FOCS’86), pages 162–167. IEEE, 1986.

69. A.C. Yao. Protocols for secure computations. In Foundations of Computer Science, Proceed-
ings of the 23rd Annual IEEE Symposium on, volume 23, pages 160–164. Citeseer, 1982.

70. W. Zheng, C. Zou, and L. Zhao. Real-time face recognition using Gram-Schmidt orthogonal-
ization for LDA. Pattern Recognition, 2:403–406, 2004.

