9 research outputs found

    SupeRNAlign: a new tool for flexible superposition of homologous RNA structures and inference of accurate structure-based sequence alignments

    Get PDF
    RNA has been found to play an ever-increasing role in a variety of biological processes. The function of most non-coding RNA molecules depends on their structure. Comparing and classifying macromolecular 3D structures is of crucial importance for structure-based function inference and it is used in the characterization of functional motifs and in structure prediction by comparative modeling. However, compared to the numerous methods for protein structure superposition, there are few tools dedicated to the superimposing of RNA 3D structures. Here, we present SupeRNAlign (v1.3.1), a new method for flexible superposition of RNA 3D structures, and SupeRNAlign-Coffee—a workflow that combines SupeRNAlign with T-Coffee for inferring structure-based sequence alignments. The methods have been benchmarked with eight other methods for RNA structural superposition and alignment. The benchmark included 151 structures from 32 RNA families (with a total of 1734 pairwise superpositions). The accuracy of superpositions was assessed by comparing structure-based sequence alignments to the reference alignments from the Rfam database. SupeRNAlign and SupeRNAlign-Coffee achieved significantly higher scores than most of the benchmarked methods: SupeRNAlign generated the most accurate sequence alignments among the structure superposition methods, and SupeRNAlign-Coffee performed best among the sequence alignment methods

    A data science approach to pattern discovery in complex structures with applications in bioinformatics

    Get PDF
    Pattern discovery aims to find interesting, non-trivial, implicit, previously unknown and potentially useful patterns in data. This dissertation presents a data science approach for discovering patterns or motifs from complex structures, particularly complex RNA structures. RNA secondary and tertiary structure motifs are very important in biological molecules, which play multiple vital roles in cells. A lot of work has been done on RNA motif annotation. However, pattern discovery in RNA structure is less studied. In the first part of this dissertation, an ab initio algorithm, named DiscoverR, is introduced for pattern discovery in RNA secondary structures. This algorithm works by representing RNA secondary structures as ordered labeled trees and performs tree pattern discovery using a quadratic time dynamic programming algorithm. The algorithm is able to identify and extract the largest common substructures from two RNA molecules of different sizes, without prior knowledge of locations and topologies of these substructures. One application of DiscoverR is to locate the RNA structural elements in genomes. Experimental results show that this tool complements the currently used approaches for mining conserved structural RNAs in the human genome. DiscoverR can also be extended to find repeated regions in an RNA secondary structure. Specifically, this extended method is used to detect structural repeats in the 3\u27-untranslated region of a protein kinase gene

    FPGA-based acceleration of the RMAP short read mapping tool

    Get PDF
    Bioinformatics is a quickly emerging field. Next generation sequencing technologies are producing data up to several gigabytes per day, making bioinformatics applications increasingly computationally intensive. In order to achieve greater speeds for processing this data, various techniques have been developed. These techniques involve parallelizing algorithms and/or spreading data across many computing nodes composed of devices such as Microprocessors, Graphics Processing Units (GPUs), and Field Programmable Gate Arrays (FPGAs). In this thesis, an FPGA is used to accelerate a bioinformatics application called RMAP, which is used for Short-Read Mapping. The most computationally intensive function in RMAP, the read mapping function, is implemented on the FPGA\u27s reconfigurable hardware fabric. This is a first step in a larger effort to develop a more optimal hardware/software co-design for RMAP. The Convey HC-1 Hybrid Computing System was used as the platform for development. The short-read mapping functionality of RMAP was implemented on one of the four Xilinx Virtex 5 FPGAs available in the HC-1 system. The RMAP 2.0 software was rewritten to separate the read mapping function to facilitate its porting over to hardware. The implemented design was evaluated by varying input parameters such as genome size and number of reads. In addition, the hardware design was analyzed to find potential bottlenecks. The implementation results showed a speedup of ~5x using datasets with varying number of reads and a fixed reference genome, and ~2x using datasets with varying genome size and a fixed number of reads, for the hardware-implemented short-read mapping function of RMAP

    Data mining in computational proteomics and genomics

    Get PDF
    This dissertation addresses data mining in bioinformatics by investigating two important problems, namely peak detection and structure matching. Peak detection is useful for biological pattern discovery while structure matching finds many applications in clustering and classification. The first part of this dissertation focuses on elastic peak detection in 2D liquid chromatographic mass spectrometry (LC-MS) data used in proteomics research. These data can be modeled as a time series, in which the X-axis represents time points and the Y-axis represents intensity values. A peak occurs in a set of 2D LC-MS data when the sum of the intensity values in a sliding time window exceeds a user-determined threshold. The elastic peak detection problem is to locate all peaks across multiple window sizes of interest in the dataset. A new method, called PeakID, is proposed in this dissertation, which solves the elastic peak detection problem in 2D LC-MS data without yielding any false negative. PeakID employs a novel data structure, called a Shifted Aggregation Tree or AggTree for short, to find the different peaks in the dataset. This method works by first constructing an AggTree in a bottom-up manner from the dataset, and then searching the AggTree for the peaks in a top-down manner. PeakID uses a state-space algorithm to find the topology and structure of an efficient AggTree. Experimental results demonstrate the superiority of the proposed method over other methods on both synthetic and real-world data. The second part of this dissertation focuses on RNA pseudoknot structure matching and alignment. RNA pseudoknot structures play important roles in many genomic processes. Previous methods for comparative pseudoknot analysis mainly focus on simultaneous folding and alignment of RNA sequences. Little work has been done to align two known RNA secondary structures with pseudoknots taking into account both sequence and structure information of the two RNAs. A new method, called RKalign, is proposed in this dissertation for aligning two known RNA secondary structures with pseudoknots. RKalign adopts the partition function methodology to calculate the posterior log-odds scores of the alignments between bases or base pairs of the two RNAs with a dynamic programming algorithm. The posterior log-odds scores are then used to calculate the expected accuracy of an alignment between the RNAs. The goal is to find an optimal alignment with the maximum expected accuracy. RKalign employs a greedy algorithm to achieve this goal. The performance of RKalign is investigated and compared with existing tools for RNA structure alignment. An extension of the proposed method to multiple alignment of pseudoknot structures is also discussed. RKalign is implemented in Java and freely accessible on the Internet. As more and more pseudoknots are revealed, collected and stored in public databases, it is anticipated that a tool like RKalign will play a significant role in data comparison, annotation, analysis, and retrieval in these databases

    Computational Methods for Comparative Non-coding RNA Analysis: from Secondary Structures to Tertiary Structures

    Get PDF
    Unlike message RNAs (mRNAs) whose information is encoded in the primary sequences, the cellular roles of non-coding RNAs (ncRNAs) originate from the structures. Therefore studying the structural conservation in ncRNAs is important to yield an in-depth understanding of their functionalities. In the past years, many computational methods have been proposed to analyze the common structural patterns in ncRNAs using comparative methods. However, the RNA structural comparison is not a trivial task, and the existing approaches still have numerous issues in efficiency and accuracy. In this dissertation, we will introduce a suite of novel computational tools that extend the classic models for ncRNA secondary and tertiary structure comparisons. For RNA secondary structure analysis, we first developed a computational tool, named PhyloRNAalifold, to integrate the phylogenetic information into the consensus structural folding. The underlying idea of this algorithm is that the importance of a co-varying mutation should be determined by its position on the phylogenetic tree. By assigning high scores to the critical covariances, the prediction of RNA secondary structure can be more accurate. Besides structure prediction, we also developed a computational tool, named ProbeAlign, to improve the efficiency of genome-wide ncRNA screening by using high-throughput RNA structural probing data. It treats the chemical reactivities embedded in the probing information as pairing attributes of the searching targets. This approach can avoid the time-consuming base pair matching in the secondary structure alignment. The application of ProbeAlign to the FragSeq datasets shows its capability of genome-wide ncRNAs analysis. For RNA tertiary structure analysis, we first developed a computational tool, named STAR3D, to find the global conservation in RNA 3D structures. STAR3D aims at finding the consensus of stacks by using 2D topology and 3D geometry together. Then, the loop regions can be ordered and aligned according to their relative positions in the consensus. This stack-guided alignment method adopts the divide-and-conquer strategy into RNA 3D structural alignment, which has improved its efficiency dramatically. Furthermore, we also have clustered all loop regions in non-redundant RNA 3D structures to de novo detect plausible RNA structural motifs. The computational pipeline, named RNAMSC, was extended to handle large-scale PDB datasets, and solid downstream analysis was performed to ensure the clustering results are valid and easily to be applied to further research. The final results contain many interesting variations of known motifs, such as GNAA tetraloop, kink-turn, sarcin-ricin and t-loops. We also discovered novel functional motifs that conserved in a wide range of ncRNAs, including ribosomal RNA, sgRNA, SRP RNA, GlmS riboswitch and twister ribozyme

    Estudio de la diversidad conformacional en ARNs

    Get PDF
    El siguiente trabajo se centra en el estudio de la diversidad conformacional de ARNs. Además introduce al lector en los aspectos de la biología estructural de los ARNs, su historia y definiciones de los conceptos principales. Se desarrolla el estado del arte de las bases de datos estructurales de ARNs y se presenta el desarrollo preliminar, con posterior análisis, de una base de datos de diversidad conformacional de ARNs.Facultad de Ciencias Exacta
    corecore