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Abstract 
 

Genomic methods including genome wide association analysis (GWAS), genomic selection (GS) 

and RNA-seq allow for faster selection of superior breeding lines and for identification and 

resolution of candidate genes. A panel of 240 soft red winter wheat (Triticum aestivum L.) 

cultivars and breeding lines were subjected to soil waterlogging stress over two seasons at 

Stuttgart, AR and St. Joseph, LA, US. Total concentrations of P, K, Ca, Mg, Mn, Fe, Al, B, Cu, 

Na, S and Zn were determined in wheat shoots post-waterlogging using inductively coupled 

plasma spectroscopy. Yield components kernel number per spike (KNPS), kernel weight per 

spike (KWS) and thousand kernel weight (TKW) were measured at plant maturity. Negative 

correlations between TKW and KWS with aluminum and iron concentrations indicated the 

impact of elemental toxicity on grain production. A ten-fold cross-validation (CV) analysis and 

ridge regression BLUP (RR-BLUP) model found GS prediction accuracies (rgs) of micro and 

macronutrient concentrations to range from rgs = 0.06 to 0.52 and improved as more site-years 

were included in the analysis. The ratio of genomic to phenotypic prediction accuracy (rgs /H
1/2) 

was greater than 0.50 for eight of the twelve elements, indicating the potential for using GS to 

select for shoot micro and macronutrient concentrations in the absence of phenotypic data. 

GWAS identified forty-seven highly significant (p < 0.00001), twenty-three very significant and 

consistent (p < 0.0005) and eight significant and consistent (p < 0.001) marker trait associations 

(MTA) for the twelve micro and macronutrients measured. Lastly, RNA-seq was used for 

transcriptome and gene expression analysis under waterlogged and non-waterlogged conditions 

in wheat cultivars ‘Pioneer Brand 26R61’ and ‘AGS 2000’. Around 300 million pair-end reads 

were developed, covering approximately 16 Gb of the wheat transcriptome. In total, 64,911 

(AGS200) and 60,414 (26R61) were obtained and 58,753 expressed genes were observed across 



 

 

both cultivars and treatments. Overall, the results of this study have and will enable genomics 

assisted breeding for waterlogging tolerance within the University of Arkansas Wheat Breeding 

Program by allowing for selection of materials with reduced micro and macronutrient 

concentrations in new breeding lines in the absence of phenotypic data.  
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INTRODUCTION AND LITERATURE REVIEW 
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Impact of waterlogging stress on wheat yield and yield components 

Approximately 10 to 15 million hectares of the globally cultivated wheat (Triticum aestivum L.) 

area experience soil waterlogging (Boru et al. 2001; MacKintosh et al. 1994; Sayre. et al. 1994), 

including 16% of the available crop land in United States (Boyer 1982). Soil waterlogging 

occurs through saturation of the soil pore spaces resulting in an energy crisis due to decreased 

oxygen levels at the root-soil interface. At the molecular level this hypoxic condition disrupts the 

oxidative phosphorylation pathway (Juntawong et al. 2014). Wheat losses from 10% to 15% are 

common with losses of 50% or greater reported in Western Australia (Dennis et al. 2000). 

Studies have shown that waterlogging stress can reduce total wheat grain yield (GY) by 

21% to 45% dependent on the timing and duration of the stress (Belford 1981; Cannell et al. 

1984; Collaku and Harrison 2002; Musgrave and Ding 1998). Cannell et al. (1984) reported 

reductions in GY and grain number per ear of 16 and 17%, respectively, when waterlogging 

occurred before emergence. Malik et al. (2001) reported total shoot dry weight reductions 

between 67% and 72% in three week old winter wheat plants that were subjected to waterlogging 

for fourteen days, which also decreased seminal root growth by three fold. 

 Araki et al. (2012a) reported a reduction in thousand kernel weight (TKW) between 22% 

and 29% for plants subject to waterlogging stress during jointing and anthesis, respectively. This 

reduction was due in part to both a shortened grain filling duration and decline in carbohydrate 

translocation.  

 In soft red winter wheat (SRWW) the impact of waterlogging on yield and yield 

components was evaluated by Collaku and Harrison (2002). In this study, the performance of 

nine wheat genotypes under waterlogging conditions showed mean GY reductions of 41% due in 

part to reductions in both spike density and kernel number of  41 and 20%, respectively. A 
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follow up study showed kernel weight, chlorophyll content and tiller number to have moderately 

high heritabilities of H2 = 47, 37 and 31 %, respectively, which was greater than GY alone at 

25% (Collaku and Harrison 2005). 

Effect of waterlogging on the soil environment 

Soil physical properties and waterlogging 

Soil texture is an important factor determining soil water content, water movement and water 

distribution through the zone root (Evett 2007) and therefore plant ability to cope with 

waterlogging stress. For example, in duplex soils water accumulation will start from the bottom 

and move to the top of the soil profile. This results in seminal roots being exposed to hypoxia 

stress as soon as the water level in the soil rises and increasing susceptibility. In contrast, in sodic 

and heavy clay soils the waterlogging effect will move from the top to bottom of the soil profile, 

thus first affecting adventitious roots located in the upper part of the profile (Setter and Waters 

2003). Cannell et al. (1984) reported similar results evaluating winter wheat and barley 

(Hordeum vulgare L.) plants under waterlogging conditions. In this study, oxygen decreased 

consistently at different depths in clay soils and as such, more time was needed for soil 

recuperation post-waterlogging. As a result, root tissues growing in clay soils under waterlogging 

stress experience more time under anaerobic conditions than those grown in sandy loam soils 

under the same conditions.  

Mississippi Delta Alluvium Soils 

In the Mississippi River Alluvium, texture and soil composition vary greatly due to differences 

in site deposition (Scott et al. 1998). As a result, the Mississippi Delta soils are very diverse and 

fertile (Snipes et al. 2005). Dominant taxonomic orders in this area include Inceptisols, Entisols, 

Vertisols or Alfisols (Scott et al. 1998). Alfisols and Inceptisols span close to 90% of the 
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Arkansas Delta region with 61 and 28% of coverage, respectively (Escobar 2002). The dominant 

soil textures include silt loam, clay, silty clay, silty clay loam and fine sandy loam. In general 

they include deep soils, with low permeability that are poorly drained (Escobar 2002). 

Low oxygen (REDOX potential) 

Microbial activity is the driving factor during redox reactions (Munch et al. 1978) and plays an 

important role in processes such as dissolution-precipitation and adsorption-desorption during 

the solid phase in soils (Kögel-Knabner et al. 2010). Therefore, oxygen content in waterlogged 

soils is affected by internal factors such as temperature and biological activity (Belford et al. 

1985). During a soil waterlogging event, internal micro-spaces are filled with water, decreasing 

soil oxygen content (Ponnamperuma 1972). As a result, aerobic microorganisms which utilize 

oxygen as a principal electron acceptor during the respiration process are required to shift first to 

facultative and then to completely anaerobic respiration (Kögel-Knabner et al. 2010). Alternative 

electron acceptors are used (Fiedler et al. 2007), with the principal redox reactions including 

oxygen (O2) to oxygen hydroxide (H2O), nitrate (NO3) to nitrogen (N2), manganese Mn +4, 2 to 

manganese Mn+2, iron Fe+3 to iron Fe+2, sulfate (SO4) to hydrogen sulfide (H2S) and carbon 

dioxide (CO2) to methane (CH4) (Ponnamperuma 1984). These mineral changes decrease soil 

redox potential (Eh), altering processes such as denitrification, pH and soil chemistry (Pezeshki 

and DeLaune 2012). Blackwell (1983) reported a rapid decrease in oxygen levels during periods 

of high temperature in waterlogged soils. Kralova et al. (1992) reported a reduction in microbial 

activity due to the increase of Eh values (500 -650 mV) which inhibited the denitrification 

process carried out by microorganisms (Aulakh et al. 1992). Under waterlogging conditions a 

reduction in the Eh values are accompanied by an increase in pH values decreasing elemental 

solubility (Kashem and Singh 2001). 
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Soil environment under waterlogged conditions 

Availability and plant uptake of some microelements increases under soil waterlogging 

conditions (Setter et al. 2009). Under hypoxia, microorganisms increase ion concentrations of 

NO-2 and Fe2+ which results in elemental toxicities that affect plant development 

(Ponnamperuma 1972). Khabaz-Saberi and Rengel (2010) reported an increase in Fe 

concentration ranging from 3 to 114% under waterlogging, dependent on soil-type.  

The effect of waterlogging on wheat grain yield and micro elemental variation of Fe and 

Mn was evaluated measuring soil redox potential in sodic Indian soil and the acidic Western 

Australian soil (Yaduvanshi et al. 2012). A clear relationship was also shown between 

waterlogging effects on soil redox potential and subsequent increase of Fe and Mn concentration. 

Ding and Musgrave (1995) evaluated the elemental concentration of eleven elements (Boron (B), 

Calcium (Ca), Copper (Cu), Potassium (K), Magnesium (Mg), Sodium (Na), Sulfur (S), Zinc 

(Zn), Iron (Fe), Manganese (Mn) and Phosphorus (P) in 14 wheat root genotypes during a three 

year experiment. Root samples were evaluated using inductively coupled plasma spectroscopy 

(ICP) were a significate increase in Fe, Mn and P was observed. Moreover, grain yield 

reductions between 28 to 49% were observed. Khabaz-Saberi et al. (2005) reported an increase 

in Fe and Na soil concentrations up to 10 fold while evaluating six different wheat genotypes 

under waterlogging conditions on acidic soil.  

Effect of waterlogging on plant environment 

Barrett-Lennard (2003) reported three main effects of waterlogging stress on wheat plants, 

including: 1) A reduction in shoot and root growth caused by low oxygen availability; 2) 

Disruption of cell membrane permeability limiting nutrient uptake (Trought and Drew 1980), 

and; 3) A decrease in stomatal conductance leading to a decrease in net photosynthetic rate in 



6 
 

young wheat leaves (Huang et al. 1994). In addition, sugar concentration has been reported to 

increase in wheat plants after 10 days of waterlogging stress (Barrett-Lennard et al. 1988). It has 

also been shown that wheat genotypes with tolerance to mineral toxicities outperform sensitive 

materials under waterlogging conditions (Khabaz-Saberi et al. 2005). 

Hypoxia 

Waterlogging conditions alter the diffusion rate of oxygen, reducing its availability by 320,000 

times (Armstrong 1979; Lee et al. 2006). A decrease in root oxygen leads to hypoxia and anoxia 

under partial or complete plant submergence, respectively. Under waterlogging roots are 

completely submerged (hypoxia) while the shoot remains above water level (Ahmed et al. 2013).  

Hypoxia results in an energy crisis where the production of ATP (adenosine triphosphate) can be 

reduced by 65 to 97% in affected tissues (Greenway and Gibbs 2003). As oxygen is the main 

electron acceptor in the oxidative phosphorylation pathway (Dennis et al. 2000), a lack of 

oxygen will inhibit photosynthesis, respiration and carbohydrate metabolism which are 

fundamental processes for plant energy production (Drew 1997). Araki et al. (2012b) reported an 

increase in root respiration in different wheat genotypes under waterlogging stress, which was 

related to a decrease in root growth development and lower sugar metabolism in root cells. 

Lee et al. (2007) showed several ATP production processes including NADH dehydrogenase and 

NADH ubiquinone oxidoreductase to be down regulated under hypoxic conditions to maintain 

ATP production and subserve aerenchyma formation. Alteration of ATP and NAD+ cofactor 

(nicotinamide adenine dinucleotide) limits coenzyme synthesis for the glycolysis cycle and redox 

reactions (Dennis et al. 2000). Under normal conditions, plants will produce two molecules of 

CO2, two mol of water and 38 mol of ATP through the glucose pathway. In contrast, only two 
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mol of CO2, two of ethanol (C2H6O) and two of ATP are produced under waterlogging 

conditions, reducing energy production by as much as 95% (Barrett-Lennard 2003).  

Plant adaptations to waterlogging 

Classical responses to flooding and soil waterlogging 

Plants employ two classical physiological responses to flooding conditions; the low oxygen 

escape strategy (LOES) and the low oxygen quiescence strategy (LOQS). During LOES oxygen 

supply is increased by the development or modification of morphological and anatomical traits, 

including faster elongation of stems and development of aerenchyma in tissues directly affected 

by the stress (Bailey-Serres and Voesenek 2008). Aerenchyma is formed by longitudinal gas 

spaces that allows movement of oxygen and other gasses such as ethylene and methane by 

reducing diffusion resistance in cell tissues (Armstrong 1979). Depending on the mechanism by 

which it is developed, aerenchyma can be schizogenous or lysigenous. Formation of lysigenous 

aerenchyma has been shown in wheat, barley, rice (Oryza sativa L.) and maize (Zea Mays L.) 

plants (Evans 2003) and can be triggered by abiotic stresses such as mineral deficiencies, 

waterlogging and low oxygen (Drew and Lynch 1980). In wheat, the development of 

aerenchyma tissue (Armstrong 1979), and metabolic modification for energy production under 

low oxygen concentration (Braendle and Crawford, 1987) are two of the principal adaptations 

involved in waterlogging stress tolerance (Setter and Waters 2003).  

In contrast to the LOES, LOQS involves a restriction in developmental growth and 

cellular metabolism in an effort to diminish energy consumption (Bailey-Serres et al. 2012). In 

situations where LOES fails due to the impossibility of plant tissues to reach air for oxygen 

exchange, LOQS can provide longer plant survival (Perata and Voesenek 2007). 
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Tolerance to micronutrient accumulation 

Micro-elemental toxicities have been associated with waterlogging tolerance and variability in 

tolerance across environments has been attributed to differences in genotypes and soil structure 

and composition leading to increased concentration or availability of a particular nutrient 

(Khabaz-Saberi et al. 2005). Metal-protein interactions can cause structural and metabolic 

damage to cells resulting from an increase in reactive oxygen species (ROS) and oxidative stress 

(Sharma and Dietz 2009).  

Tolerance to aluminum 

Aluminum is a micronutrient generally present in all soils in concentrations of 10,000 to 300,000 

mg Al kg-1(Lindsay 1979). In acidic soils however, the abundance of Al3+ increases and can 

result in mineral toxicity (Rout et al. 2001). Tolerance of wheat to Al3+ toxicity has been 

associated with the locus Alt1, which results in exclusion of Al from the roots and improved root 

growth (Delhaize et al. 1993). Other mechanisms of Al tolerance include selective permeability 

in cell walls, immobilization at the cellular level or release of organic compounds for metal 

inactivation (Delhaize and Ryan 1995; Taylor 1991).  

Tolerance to sodium  

Salinity stress has been associated with soil waterlogging conditions and acidic soils. Barrett-

Lennard. et al. (1999) reported an increase in Na+ and Cl- concentrations in wheat shoots of 360 

to 650% and 110 to 170%, respectively, under waterlogging. The authors proposed aerenchyma 

formation, a reduction in stomatal conductance and salt removal strategies such as salt secreting 

glands, xylem salt absorption and bladder cells as possible mechanisms for salt stress adaptation. 
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Tolerance to manganese  

Manganese toxicity is a major constraint to crop production in waterlogged soils (Foy 1984). 

Although roots are the main organ involved in Mn absorption, the capacity of the plant to 

tolerate high shoot Mn concentrations determines tolerance level (Horst 1988). During Mn 

toxicity, concentrations of both Mn3+ and Mn4+ increase, leading to the accumulation of phenolic 

compounds and the disruption of photosystem II (Socha and Guerinot 2014). Genes involved in 

metal transport have been studied to identify Mn tolerance mechanism in Arabidopsis thaliana 

(Kochian et al. 2004). The expression of the antiporter CAX2 (calcium exchange 2) was 

identified as a key factor involved in modifying vacuolar exchange activity to increase plant 

ability to uptake Ca+ and Mn+ (Hirschi et al. 2000). Delhaize et al. (2003) reported an increase in 

Mn tolerance in transgenic A. thaliana plants due to expression of the gene ShMTP1which 

increased Mn sequestration to other organelles allowing the plant to store high concentrations of 

Mn without affecting plant development. 

Wheat genome 

Common bread wheat is an allohexaploid with its genome evolving from three different species 

(Chenuil et al. 1999; Mukai et al. 1993).  Each of the three wheat genomes is composed of seven 

chromosomes (1-7), resulting in three homeologous chromosomes across the three genomes (Gill 

et al. 2004).  The A, B and D genomes of Triticum aestivum originated from related species 

Triticum Urartu/Triticum monococcum (A), Aegilops speltoides (B), and Aegilops tauschii (D) 

(Mukai et al. 1993). Sympatry between the genomes of emmer (AABB) and A. tauschii 

(genomes DD) ultimately resulted in hexaploid wheat (Dubcovsky and Dvorak 2007).  The 

estimated genome size for hexaploid wheat is 16,979 Mbp (Bennett and Smith 1976). The 

genome is approximately five times the size of the human genome and 45 times larger than the 
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sequenced genome of rice, making it one of the largest and most complex crop genomes among 

cultivated species (Arumuganathan and Earle 1991).   

 Recently, the pre-publication of the reference genome variety Chinese Spring was 

released by the International Wheat genome Sequencing Consortium (IWGSC RefSeq v1.0) 

https://wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations. Compilation of previous 

sequencing efforts in which coding DNA (cDNA), expressed sequence tags (ESTs), bacterial 

artificial chromosomes sequences (BCAs) and information for physical maps for all 21 

chromosomes are included. Mayer et al. (2014) used aneuploidy wheat lines and flow-cytometric 

sorting to produce a chromosome based draft sequence of hexaploid wheat, an important step 

towards a full genome sequence. Although only physical map for chromosome 3B is completed 

(Paux et al. 2008) both physical maps and survey sequences have been completed for nearly all 

of the 21 wheat chromosomes (http://www.wheatgenome.org/). Additionally, reference genome 

of the wheat progenitors A and D sub genomes Aegilops tauschii (D genome) (Luo et al. 2017) 

and Triticum urartu (A genome) (Ling et al. 2018) have been released. 

Molecular markers 

Molecular markers are “tags” statistically associated with key agronomic and physiological traits 

in chromosomal regions of an organism (Collard et al. 2005).  Many different types of molecular 

markers are used in breeding and genetic studies including single nucleotide polymorphism 

markers (SNPs). SNPs are changes in a unique, single nucleotide in a sequence and are widely 

present within the wheat genome. Recent development of high-throughput genotyping platforms, 

including the 9K iSelect Beadchip Assay (Cavanagh et al. (2013) and  Illumina 90K platform 

Wang et al. (2014), in addition to genotype by sequencing tools  (He et al. 2014) have expedited 

the use of molecular markers for dissecting important agronomic traits in wheat. Genotype by 
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sequencing (GBS) generates high amount of SNP markers at low cost and is considered one of 

the most cost efficient methods for plant genotyping (Milczarski et al. 2016). 

Association Mapping 

Complex traits including GY and tolerance to abiotic stresses are influenced by both genetics and 

the environment and genetic by environmental interactions (GxE). Being quantitatively inherited, 

they are often controlled by multiple genes with small effects (Ross-Ibarra et al. 2007).  

Association mapping (AM) evaluates the association between genotypic and phenotype variation 

within a population of individuals (Yu and Buckler 2006). For AM, development of a bi-parental 

population is not required as AM is based on historical genetic recombination and linkage 

disequilibrium (LD) (Lewontin and Kojima 1960; Van Inghelandt et al. 2011).  The use of a 

diverse population of individuals makes it possible to evaluate multiple traits and potentially 

identify multiple loci at a higher resolution compared to the narrow genetic variation present in 

LM populations (Edae et al. 2014). In addition, genome coverage is often higher for AM 

compared to LM as there are more polymorphic markers present in the population (Breseghello 

and Sorrells 2006). 

Two possible approaches are considered in AM studies, including genome wide 

association (GWAS) and candidate gene analysis (CG) (Álvarez et al. 2014). GWAS is generally 

used to identify marker-trait associations (MTA) across the whole genome using a large number 

of molecular markers (Rafalski 2010). In contrast, CG analysis is used to identify MTA for a 

particular genome region where the biochemical pathway and/or biological function of a 

candidate gene is known (Ehrenreich et al. 2009).  

In association mapping, the concepts of linkage disequilibrium (LD) decay and population 

structure must be considered and accounted for (Myles et al. 2009). Linkage disequilibrium is 
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defined as the non-random association between two loci (Ersoz et al. 2007). The LD decay, or 

breaking of linkage across the genome, is directly related to the number of historical 

recombination present within the population, which is influenced by both population size and 

mode of sexual reproduction (self vs. cross-pollinating). Slow LD decay in self-pollinating 

species such as wheat results in lower resolution of detected MTA regions but fewer markers 

needed for GWAS. Population structure, or the genetic relatedness among lines within the 

population must also be considered to reduce the likelihood of detecting false positives due to 

relatedness of individuals (Flint-Garcia et al. 2003; Myles et al. 2009). 

Recent studies using association mapping have been carried out to understand the 

genetics of quantitative traits in plants. Edae et al. (2014) used a population of 287 elite spring 

wheat lines to identify genome regions associated with yield components, morphological traits, 

normalized difference vegetation index (NDVI) as well as traits related to abiotic stress. Four 

genome regions on chromosomes 5B, 1AL, 5AL, and 3B were associated with these traits. 

Likewise, Zanke et al. (2015) used GWAS to identify 12 candidate genes associated with grain 

weight.  

Genomic Selection 

Genomic selection (GS) is a statistical method that uses high dense marker data to calculate 

genomic estimated breeding values (GEBV) through the use of a training population (TP) in 

which genotypic and phenotypic information has been collected (Jannink et al. 2010). GEBVs 

are calculated analyzing all markers available in the genome to capture the total genetic variance 

present in a population (Meuwissen et al. 2001). The backbone of the GS approach is the 

development of a training population in which a genotyped and phenotyped population is used to 

develop a training model that is used to calculate all model parameters. Then using this training 
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model, GEBVs can be calculated for new individuals introduced into the model using solely 

genotypic data (Meuwissen et al. 2001). A reduction in the marker bias is one of the main 

advantage of genomic selection, because all marker data is used in the calculation of the GEBV 

rather than only significant markers, eliminating overestimate affects and facilitates the detection 

of low heritable traits (Heffner et al. 2010).   

To test the accuracy of the model, prediction accuracies can be determined using a cross-

validation approach in which Pearson correlations are used to determine the fit of the model. 

Prediction accuracies are defined as the correlation between the observed phenotypic values and 

GEBV divided by the square root of the heritability of the trait evaluated (Lorenzana and 

Bernardo 2009). GS can be achieved through the use of different statistical methods, with the 

common goal being to estimate GEBV using simultaneous estimation of marker effects in a 

single run (Heslot et al. 2012). 

A number of studies have used GS for wheat improvement. Crossa et al. (2010) 

compared the efficiency of GS vs pedigree base methods in wheat and maize. He observed an 

increase in prediction ability values by 7.7 to 35.7 with the introduction of genetic markers 

showing the efficacy of GS. Similarly, Heffner et al. (2011) showed the over performance of GS 

when compared with phenotypic selection. In their study, a cross-validation approach was used 

to evaluate 13 agronomic traits on 347 winter wheat lines with 1158 markers. As a result, 

average prediction accuracies were 28% higher than traditional marker assisted selection and 

showed an accuracy of 95% higher when compared with phenotypic selection. Grain yield 

prediction accuracies between 0.28 to 0.45 were observed by Poland et al. (2012) using a GBS 

data set composed of 41,371 SNP markers and evaluating 254 wheat lines.  
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Genes associated with waterlogging tolerance and waterlogging conditions   

Studies of gene expression are an important tool to identify and understand molecular pathways 

involved in response to abiotic stresses (Coram 2008). Molecular pathways and genes related to 

waterlogging and hypoxia stress in plants have been studied previously in different crop species. 

Alcohol dehydrogenase (ADH), a principle enzyme for fermentative metabolism, is expressed at 

low levels in normal growth conditions in root plants (Chung and Ferl 1999) and overexpression 

has been shown to be one of the first plant responses to low oxygen supply (Fukao and Bailey-

Serres 2004; Sachs et al. 1980). In rice, accumulation of ethylene has been shown to induce the 

expression of SNORKEL1 (SK1) and SNORKEL2 (SK2) which are responsible for internode 

elongation leading to flooding resistance (Hattori et al. 2011). Likewise, Xu et al. (2006) 

identified allelic variation in the gene Submergence 1 (Sub1) with susceptible sativa species 

carrying the allele Sub1A-2 and the Sub1A-1 allele providing tolerance. Overexpression of the 

allele Sub1A-1 in O. sativa spp. japonica conferred higher submergence tolerance and triggered 

the expression of the ADH gene. In A., thaliana the ethylene response factor (ERF) 

AtERF73/HRE1 was shown to be a negative modulator of the ethylene response under both 

hypoxic and normal conditions. Under hypoxia, both AtERF73/HRE1 and the ethylene precursor 

1-aminocyclopropane-1-carboxylic acid (ACC) are highly expressed (Yang et al. 2011). The 

ACC ethylene precursor has also been implicated in signaling response in tomato plants under 

waterlogging/anoxic conditions (Bradford and Yang 1980). Furthermore, the AtERF73/HRE1 

gene exhibits a similar gene function as the previously mentioned Sub1, SK1 and SK2 in rice 

(Yang et al. 2011). In maize, genes involved in aerenchyma formation, reactive oxygen species 

and Ca+ signaling under hypoxia have been shown to be regulated by ethylene (Rajhi et al. 

2011). 
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Transcriptome analysis 

Massively parallel sequencing of RNA, known as RNA-seq, is a powerful tool for exploring 

gene expression (Morozova et al. 2009; Wang et al. 2009; Yang et al. 2015). Previous to RNA-

seq, microarray, qPCR and later the serial analysis of gene expression (SAGE) were the main 

methods used for mRNA studies. Shortcomings of previous technologies have been overcome 

with RNA-seq (Nagalakshmi 2008) with the key advantage being the ability conduct a 

transcriptome study without previous knowledge of the genome sequence, making it particularly 

useful for non-model organisms (Wang et al. 2009). In addition to expression analysis, RNA-seq 

can provide information on short exon sequences, alternative transcription start sites, alternative 

splicing variants, untranslated transcription regions (UTRs) and novel genes,  making it a 

powerful tool for wheat gene RNA profiling (Duan et al. 2012; Haas et al. 2002).  

Previous transcriptome studies in wheat include the development of 73,521 abiotic stress related 

ESTs identifying common molecular pathways between stresses (Houde et al. 2006). Laudencia-

Chingcuanco (2011) identified 12,901 cold induced genes expressed at different temperature 

ranges and developmental stages with the Vrn-A1 locus found to play an important role for 

longevity of gene expression but not initial response. Cantu et al. (2011) utilized transgenic 

wheat lines to show that the upregulation of grain protein content (GPC) were of particular 

importance in early monocarpic senescence and nutrient remobilization.   

Few studies have utilized either genomic selection or association mapping approaches to 

better understand waterlogging tolerance in wheat, nor has RNA-seq been used to characterize 

gene expression. Therefore, the overall objective of this research is to use three genomics 

approaches (association mapping, genomic selection and RNA-seq analysis) in order to dissect 

and understand the waterlogging tolerance mechanisms and stress response pathways of wheat.  
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Approach of the current Study 

Although waterlogging stress is an important constraint for wheat production, few studies have 

been performed to identify tolerant germplasm and genomic regions. Identification of genes and 

genome regions associated with tolerance to soil waterlogging will allow a better understanding 

of this constraint and the improvement of this quantitative trait. Therefore, the overall objective 

of this research was to evaluate three different approaches to dissect the waterlogging tolerance 

mechanisms and stress response pathways of wheat. The specific objectives were as follows: 

Objective 1.  Determine the genomic prediction accuracy for wheat micro and 

macronutrient concentrations under waterlogging stress using a cross-validation approach. A 

training population panel (TP) consisting of 240 soft-red winter wheat lines were evaluated to 

determine prediction accuracies for twelve micro and macronutrient concentrations under 

waterlogging conditions.  The working hypothesis was that genomic prediction accuracies could 

outperform phenotypic selection.  

Objective 2.  Identify marker-trait associations for wheat micro and macronutrient 

concentrations under waterlogging stress using an association mapping approach. A panel of 

240 soft-red winter wheat lines were evaluated to identify single nucleotide polymorphism 

markers associated with micro and macronutrient concentrations, including potential toxicities 

and deficiencies, in both waterlogging and non-waterlogging treatments in the field. The working 

hypothesis was that there is significant genetic variation within the soft red winter wheat 

germplasm to identify SNP markers associated with waterlogging tolerance. 

Objective 3. Identify genes that are differentially expressed under conditions of soil 

waterlogging using RNA-sequencing. Wheat cultivars ‘Pioneer 26R61’ and ‘AGS2000’ were 

used to analyze the hexaploid wheat transcriptome under waterlogging and non-waterlogging 
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conditions using RNA-seq. The working hypothesis was that there is genetic variation between 

the cultivars ‘Pioneer 26R61’ and ‘AGS2000’ to identify differentially expressed genes under 

waterlogging and non- waterlogging conditions. 

This all-encompassing approach will lead to the identification of important genome 

regions and molecular markers associated with waterlogging tolerance and the dissection of 

biological pathways conditioning the abiotic stress tolerance response and structure of important 

genes.  
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Abstract 

Tolerance to elemental toxicities is a mechanism to improve crop productivity in waterlogged 

soils. A training population of 240 winter wheat cultivars was evaluated under field waterlogging 

conditions to determine shoot concentrations of twelve micro and macronutrients and yield 

components kernel number per spike (KNPS), kernel weight per spike (KWS) and thousand 

kernel weight (TKW). Field experiments were conducted at the Rice Research and Extension 

Center in Stuttgart, Arkansas and the Northeast Louisiana Research Station in St. Joseph, 

Louisiana over three growing seasons. A ridge regression BLUP model was used to develop 

genomic selection (GS) prediction models. Shoot micronutrient concentrations varied across 

locations with heritability ranging from h2 = 0.14 for aluminum to h2 = 0.73 for calcium. 

Negative correlations between TKW and KWS with aluminum and iron concentrations indicated 

the impact of elemental toxicity on grain production. Prediction accuracies calculated as the 

correlation between the phenotypic and the genomic values under a ten-fold cross-validation 

ranged from rgs = 0.06 to 0.52 and improved as more site-years were included in the analysis. 

The ratio of genomic to phenotypic prediction accuracy, rgs /H
1/2, was greater than 0.50 for eight 

of the twelve elements, indicating the potential for using GS to select for shoot micro and 

macronutrient concentrations. Overall, variation across site-years, genotypes and environmental 

factors point to the necessity of targeted evaluation of soil waterlogging and elemental toxicity 

tolerance.  
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Introduction 

Soil waterlogging impacts 12% of agriculture land in the United States, 38% of the Indus Basin in 

Pakistan as well as large areas in southern Australia and India (Boru et al. 2001; Boyer 1982; Jiang 

et al. 2008; Kahlown and Azam 2002). In wheat (Triticum aestivum L.), grain yield losses up to 

50% have been reported in modern cultivars subjected to waterlogging at the vegetative stage, due 

to a reduction in tiller and kernel number (Arguello et al. 2016). Waterlogging causes hypoxia and 

anoxia which influences mineral nutrition and micro and macronutrient uptake resulting from 

biochemical reactions that occur when soil oxygen is depleted (Sairam et al. 2008).  

As oxygen depletion occurs there is a progression in the electron acceptors utilized by soil 

microbes and will generally result in a net increase in iron (II), manganese (II) and aluminum (III), 

which are all highly available for plant uptake (Stevenson and Cole 1999; Westerman 1987). This 

results in micronutrient toxicities for manganese, iron (Shabala 2011), sulfur (Colmer and 

Voesenek 2009) and aluminum (Khabaz-Saberi et al. 2012), in addition to possible deficiencies in 

nitrogen, phosphorus, potassium, magnesium, copper, zinc and others (Setter et al. 2009; Steffens 

et al. 2005) which in turn impact grain yield. Manganese toxicity is a global constraint to crop 

production in waterlogged soils as it interferes with the formation and function of Mg enzymes 

essential to plant chloroplasts and photosynthesis (Foy 1984; Socha and Guerinot 2014). As a 

result, it is characterized by a marked decrease in photosynthesis which may be attributed to the 

disruption of rubisco activity (Houtz et al. 1988). Yaduvanshi et al. (2012) reported a significant 

reduction of wheat grain yield associated with Mn2+ and Fe2+ uptake under waterlogged conditions 

in India.  

Tolerance to elemental toxicities is a mechanism to improve productivity in waterlogged 

soils (Setter et al. 2009). Khabaz-Saberi et al. (2012) showed that wheat genotypes tolerant to high 
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concentrations of Mn2+, Fe2+ and Al3+ had improved early root and shoot growth compared to 

susceptible genotypes. While major genes have been successfully deployed for dry-land scenarios, 

including for exclusion of Al (Alt1) and B (Bo1), little progress has been made to date in breeding 

for improved elemental toxicity tolerance under soil waterlogging (Cai et al. 2008; Schnurbusch 

et al. 2007). Given the environmental variability and difficulty in phenotyping for micronutrient 

accumulation and lack of known major loci, Ma et al. (2014) suggested genomic selection (GS) as 

a potential tool to aid in genetic improvement of micronutrient tolerance.  

GS uses genome-wide marker data to predict performance through training and validation 

of a prediction model (Meuwissen et al. 2001). Genome estimated breeding values (GEBVs) are 

determined and used to select high-performing individuals when phenotypic data are not available. 

For accurate determination of GEBVs, the training population must include a representative 

sample of individuals and alleles of the breeding program in which GS will be applied (Hayes et 

al. 2009; Heffner et al. 2009; Meuwissen et al. 2001). The benefit of GS is in gain per unit of time 

if deployed early in the breeding cycle or for traits that are laborious to measure, and lower cost 

for traits that are costly to measure (Rutkoski et al. 2011). As the aim of GS is to capture all additive 

effects present in a population, a minimum of one marker in linkage disequilibrium (LD) with each 

quantitative trait loci (QTL) controlling the trait is necessary for accurate determination of GEBVs 

(Heffner et al. 2009). This also represents one of the major advantages of GS over marker assisted 

selection (MAS) methods in which only a limited number of statistically significant markers are 

used for selection (Heffner et al. 2009; Rutkoski et al. 2011). When phenotypic and genotypic data 

are available for a training population, a k-fold cross-validation (CV) approach can be used to 

evaluate model accuracy. 
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 Studies have shown the applicability of GS for wheat improvement, including for quality 

(Heffner et al. 2011; Kristensen et al. 2018), grain micronutrient content (Manickavelu et al. 

2017), yield and agronomic traits (Saint et al. 2016; Thavamanikumar et al. 2015) and disease 

resistance  (Arruda et al. 2015; Hoffstetter et al. 2016; Rutkoski et al. 2011). GS is particularly 

promising for improving traits with low heritability (Ziyomo and Bernardo 2013).  

Here we present the results evaluating a training population of 240 soft winter wheat 

cultivars and an initial analysis using GS for the prediction of shoot micro and macronutrient 

concentrations resulting from field soil waterlogging stress. This study will enable deployment of 

GS to improve wheat productivity in waterlogged soils.  

Materials and methods 

Germplasm and experimental design 

The training population (TP) used for this study consisted of 240 inbred lines of soft red winter 

wheat, including cultivars and breeding lines from the SUNGRAINS (Southeastern University 

Grains) small grain breeding and genetics group (http://www.sungrains.lsu.edu/), other US 

universities and private wheat breeding programs. Data on the panel was previously described by 

Lozada et al. (2017). Based on molecular markers for height loci Rht-B1 and Rht-D1, the panel is 

comprised of 207 semi-dwarf lines (homozygous for either Rht-B1b or Rht-D1b), 26 wild-type 

(homozygous for both Rht-B1a and Rht-D1a) and two ‘double-dwarf’ (homozygous for both 

having the Rht-B1b and Rht-D1b) lines.   

 Field experiments were conducted at the Rice Research and Extension Center (RREC) in 

Stuttgart (ST) Arkansas, AR and the Northeast Louisiana Research Station St. Joseph (SJ), LA 

during the 2012-2013 (13) and 2013-2014 (14) growing seasons. Yield components were also 

evaluated during 2014-2015 (15) growing season at RREC, Stuttgart, AR. Stuttgart soils are 
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characterized by a silt loam surface layer and a clay subsoil with low permeability (NRCS 2013) 

and are prone to periodic waterlogging. St. Joseph soils are characterized by a clayey surface 

layer and are prone to waterlogging (NRCS 2001). The TP was sown in 2012-2013 in a 

randomized complete block design (RCBD) with two replications (with the exception of SJ14, 

which had only a single replication) and in an augmented incomplete block design with two 

repeated check lines (‘Jamestown’ and ‘Pioneer Brand 26R20’) and two replications in 2013-

2014 and 2014-2015. Experimental plots at both locations were drill seeded at a rate of 115 seed 

m-2 in two 1.5 m rows. In Stuttgart (ST13, ST14 and ST15), plots were fertilized with 170 kg N 

ha-1 as urea in a split application, with 60% applied prior to the waterlogging treatment and 40% 

applied post waterlogging treatment. In St. Joseph (SJ13 and SJ14), plots were fertilized with 

225 kg N ha-1 as urea in a split application, with 50% applied prior to the waterlogging treatment 

and 50% applied post waterlogging treatment.  

Waterlogging treatment 

At all locations, the waterlogging treatment was imposed by establishing 0.30 m high levees 

surrounding the experimental field sites. All treatments at all locations were imposed when 

plants reached Feekes growth stage 4 or 5 and were terminated at Feekes growth stage 5 or 6. In 

ST13 and ST14 ground water was applied from a nearby irrigation well to saturate the soil twice 

weekly for the duration of the treatment as previously described (Arguello et al. 2016). In ST13, 

the waterlogging treatment was initiated on March 20, 2013 and was terminated on April 17, 

2013. In ST14 and ST15, the waterlogging treatment began on April 1 and was terminated on 

April 14. For SJ13, no artificial waterlogging treatment was imposed due to excessive rainfall 

during the period but levees were still established to contain naturally occurring rainfall. In SJ14, 

the waterlogging treatment was initiated on Feb 24 and terminated on March 19. 
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Phenotypic trait measurements 

Total concentrations of macronutrients calcium (Ca), potassium (K), magnesium (Mg), 

phosphorus (P) and sulfur (S) and micronutrients aluminum (Al), boron (B), copper (Cu), iron 

(Fe), manganese (Mn), sodium (Na) and zinc (Zn) were determined using inductively coupled 

plasma atomic emission spectroscopy (ICP-AES) according to Donohue and Aho (1992). For 

ICP, a 0.10 m2 section of shoot tissue (stems and leaves) per plot was harvested 24 hours after 

waterlogging treatment was terminated when the plants ranged from Feekes growth stage 5 to 6. 

After harvest, soil and dust particles were removed using deionized water. Dry weight was 

obtained after drying for 72 hours at 65˚C and a 0.25g sample of ground and homogenized tissue 

(0.5-1.0 mm particle size) was digested with concentrated HNO3 for one hour at 125˚C. After 

digestion, samples were dried at 80˚C and treated with 30% H2O2 according to the Organic 

Matter Destruction-Wet Ashing protocol (Cambell and Plank 1992). Yield components including 

kernel number per spike (KNPS) and kernel weight per spike (KWP) were estimated by 

harvesting 50 spike-bearing culms per plot at maturity. Thousand kernel weight (TKW) was 

taken as the weight of a thousand kernels counted using a Seedburo® 801 seed counter (Chicago, 

IL, USA). 

Phenotypic data analysis 

Phenotypic data were analyzed using PROC MIXED in SAS 9.4 (SAS Institute Inc. 2011, Cary, 

NC). Data were analyzed in three ways: 1) Each site-year separately due to significant genotype 

by site-year interaction; 2) By location across years, and; 3) In a combined analysis across all 

site-years. Site-years ST13, SJ13 and SJ14 were analyzed as a RCBD with genotype considered 

a fixed effect and replication was regarded random. ST14 was analyzed as an augmented 

incomplete block design. For the augmented design, genotypes, incomplete blocks, replications 
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and the interaction of genotype and replication were regarded as random effects.  Adjusted 

means for each genotype per year were estimated using a restricted maximum likelihood 

(REML) approach for each replication. Best linear unbiased estimators (BLUEs) for each trait 

and line were estimated for each individual site-year with genotype considered a fixed effect. 

Best linear unbiased predictors (BLUPs) for each trait across site-years were estimated using the 

REML method with all effects (genotypes, site-year, replication and genotype x site-year 

interaction) considered random. Trait narrow sense (assuming no dominant effects) heritability 

(h2) was estimated from the variance components using TYPE3 sum of squares and the formula:  

𝒉𝟐  =  
𝝈𝑮 

𝟐

𝝈𝑮
𝟐 +  𝝈𝑮𝑬𝑰

𝒆

𝟐 +  𝝈 𝑬
𝒓𝒆

𝟐
  

where 𝝈𝑮 
𝟐 , 𝝈𝑮𝑬𝑰

𝒆

𝟐  , and 𝝈 𝑬

𝒓𝒆

𝟐
  are the genotypic, genotype-by-site-year and error variances, 

respectively, and e and re are the numbers of site-years and number of total replications, 

respectively. For h2 calculations within a single site-year, the 𝜎𝐺𝐸𝐼

𝑒

2  component was removed from 

the equation, which determines h2 across replications. Pearson correlations (Pr) among elements 

were calculated using the BLUEs or BLUPs in PROC CORR. 

Genotypic data 

Genome wide marker data for the TP panel was generated using genotype by sequencing (GBS).  

DNA was extracted using Mag-Bind® Plant DNA Plus kit from Omega Bio-tek (Norcross, GA, 

USA), following the manufacturer’s instructions. Genomic DNA was quantified using Quant-

iT™ PicoGreen® dsDNA Assay Kit and normalized to 20 ngµl-1. GBS libraries were created 

using Pst1-Msp1 restriction enzyme combination consistent with Poland et al. (2012). The 

samples were pooled together at 96-plex to create libraries and each library was sequenced on a 

single lane of Illumina Hi-Seq 2500. SNP calling was performed using the TASSEL 5 GBSv2 



36 
 

pipeline (https://bitbucket.org/tasseladmin/tassel-5 source/wiki/Tassel5GBSv2Pipeline) 

(Glaubitz et al. 2014) using 64 base kmer length and minimum kmer count of five.  Reads were 

aligned to wheat reference “IWGSC_WGAv1.1” (https://wheat-urgi.versailles.inra.fr/Seq-

Repository/Assemblies) using aln method of Burrows-Wheeler aligner (BWA) version 0.7.10 (Li 

and Durbin 2009). Raw SNP data generated from the TASSEL pipeline was filtered to remove 

taxa with more than 90% missing data. Genotypic data was then filtered to select for bi-allelic 

SNPs with minor allele frequency (MAF) ≥ 5%, missing data ≤ 50% and heterozygosity ≤ 10%. 

After filtering, imputation for missing data was performed using the LD-kNNi method in 

TASSEL (Money et al. 2015) resulting in a total of 62,372 markers. 

Statistical model and cross-validation 

Ridge regression BLUP (RR-BLUP) was used for GS predictions using the ‘rrBLUP’ package 

v4.4 in R (Endelman 2011). The RR-BLUP model assumes random effects have a normal 

distribution and a common variance which allows for simultaneous estimation of all marker 

effects even when marker number is greater than the number of genotypes (Heffner et al. 2009). 

The ‘kin.blup’ function was used to solve the mixed model: 

𝒚 =  𝑿𝜷 + 𝒁𝒖 + Ɛ     , 

where Y is the vector for the observed phenotypes, X is the design matrix for fixed effects β; Z is 

the design matrix for the vector of random marker effects u with u ~ N (0, Kσ²u), K is a positive 

semidefinite matrix with normal residuals and a constant variance. In this model variance 

components were estimated by the default REML approach (Endelman 2011). 
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Prediction accuracies for GS were determined using tenfold cross-validation (CV) following the 

equation described by Daetwyler et al. (2008): 

 𝒓𝑮𝑺 = √ 𝒉𝟐

𝒉𝟐+𝟏
     ,  

where 𝒓𝑮𝑺 is the accuracy calculated as a function of the heritability (h2) and the ratio of the number 

of phenotypes used. For CV, 217 lines were assigned to the TP while 23 lines were assigned to 

validation set. Cross-validation was repeated for 1000 cycles for each trait and model. 

Results  

Phenotypic within individual site-years 

Shoot micro and macronutrient concentrations varied across locations and years, with the 2012-

2013 site-years generally having higher concentrations compared to 2013-2014 (Table 1). For 

example, mean Mn concentrations were 215 ppm in ST13, compared to 140.25 ppm in ST14, 

28.02 ppm in SJ13 and 13.37 ppm in SJ14. Significant genotype effects (P ≤ 0.05) were observed 

for all traits in ST13 with the exception of B and Fe. In ST14, significant genotype effects (P ≤ 

0.05) were observed for Ca, Mn, P, Na, S and Zn. In SJ13 significant genotype effects (P ≤ 0.05) 

were observed for all elements with the exception of Al, B and Fe (Table 1). Heritability within a 

site-year ranged from 0.01 to 0.76. In Stuttgart, Na was generally the most heritable trait (h2 = 

0.76 and 0.45) followed by Mn (h2 = 0.44 and 0.44), Zn (h2= 0.63 and 0.26), S (h2= 0.67 and 

0.38), and Ca (h2= 0.50 and 0.39) for ST13 and ST14, respectively. In SJ13 Ca (h2= 0.71) was 

the most heritable, followed by Mg (h2= 0.53), P (h2= 0.58), K (h2= 0.67) and S (h2= 0.66)  

(Table 1). 

Nutrient mean concentrations above the high optimum level determined by Plank and 

Donohue (2000) were observed for Fe (> 301 ppm) in ST13 and SJ13, Mn (> 201 ppm) in ST13 

and K (> 3.01 %) in SJ13. Maximum concentrations above the high optimum level were 
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observed for K (4.88 %) and B (8.42 ppm) in ST13; Fe (1038 ppm) and Mn (295 ppm) in ST14; 

P (0.69%) and B (9.11 ppm) in SJ13, and K (3.79%), B (7.9 ppm) and Fe (306.1 ppm) in SJ14. 

In addition, minimum (4.42 ppm) and maximum (2223 ppm) Al concentrations were observed in 

ST14 and ST13 respectively.   

Phenotypic analysis across site years 

Significant genotype effects (P≤ 0.05) were observed for all micro and macronutrients when 

analyzed across all four-site years, with the exception of Al (Table 2). Heritabilities were low to 

moderate but tended to increase with the addition of more site-years to the analysis. Across all 

environments, h2 ranged from 0.14 for Al to 0.73 for Ca. When Stuttgart was analyzed 

separately, h2 ranged from 0.00 for Cu to 0.59 for Na. For St. Joseph, h2 ranged from 0.02 for Cu 

to h2 = 0.66 for Ca (Table 2). In Stuttgart, yield components showed significant (P < 0.005) 

genotype and genotype by year effects with heritability ranging from h2 = 0.20 for KNS to h2 = 

0.80 for TWK. (Table 3).      

Correlations among traits 

Pearson correlations (Pr) between micro and macronutrient concentrations were generally 

consistent across the ST and SJ locations (Fig. 1). High and consistent correlations (r > 0.50) 

were observed between Al and Fe (r = 0.88 and 0.96), S and K (r= 0.62 and 0.56) and S and Mg 

(r= 0.69 and 0.52) in ST and SJ, respectively. In addition, high correlations were observed for P 

and Mn (r= 0.61) and Mg and K (r = 0.56) in ST. Similarly, high correlations among P and Zn (r 

= 0.61) were observed in SJ. Inconsistent correlations between the two sites included significant 

positive correlations in ST for Al and K (r = 0.19), Fe and K (r = 0.24), Cu and K (r = 0.18) and 

P and Na (r = 0.41) which were not observed in SJ (Fig. 1). At both sites, Ca was significantly 

correlated with all micro and macronutrients with the exception of Al and Cu in ST and Cu in SJ. 
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In ST, Zn was significantly correlated with all micro and macronutrients (r = 0.15 to 0.44), 

however no correlation of Zn with Cu and Na was observed at the SJ site.   

 Yield components were weakly but negatively correlated with some micro and 

macronutrients (Fig 2). TKW was negatively correlated with Al (r = -0.12), B (r = -0.11), Fe (r = 

-0.13), Mg (r = -0.13) and Mn (r = -0.11). KWS was negatively correlated with Al (r = -0.15), Fe 

(r = -0.13) and Na (r = - 0.18), while a positive correlation was observed for Ca (r = 0.14). KNPS 

was positively correlated with Ca (r = 0.11), K (r = 0.12), and P (r = 0.16) (Fig. 2). 

GS prediction accuracies for individual site years 

Prediction accuracies (rgs) for shoot micro and macronutrient concentrations were low to 

moderate within individual site years (Table 4). For Stuttgart, mean rgs across all nutrients was 

0.23 and 0.16 for ST13 and ST14, respectively. Accuracy for individual elements ranged from rgs 

= 0.11 to 0.31 in ST13 and from rgs = -0.10 to 0.36 in ST14, with Na having the highest rgs in 

both years. For St. Joseph, mean rgs across all nutrients was 0.29 and 0.23 in SJ13 and SJ14, 

respectively. Accuracy for individual elements ranged from rgs = 0.13 to 0.45 in SJ13 and from 

rgs = -0.06 to 0.42 in SJ14. Calcium and sulfur had the highest prediction accuracy for SJ13 and 

SJ14, respectively.  

Prediction accuracy of combined site-years 

Mean rgs of nutrient concentrations increased as more site-years were included for determining 

the BLUPs used for GS (Table 4). Mean rgs for Stuttgart (STCOMB) was 0.25, compared to 0.23 

and 0.16 for ST13 and ST14, respectively. Similar results were observed for St. Joseph 

(SJCOMB), with a mean of rgs = 0.30 compared to 0.29 and 0.23 for SJ13 and SJ14, 

respectively. When all site-years were included (STSJALL), mean rgs increased to 0.32. The 

STSJALL analysis resulted in the highest rgs for all macronutrients, ranging from rgs = 0.30 to 
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0.52. In contrast, micronutrient predictions reached a maximum in individual site-years or for the 

case of B and Mn, in the SJCOMB (Table 4). 

Comparison of genomic versus phenotypic selection 

For individual site-years, phenotypic selection accuracy, determined as the square root of the 

narrow-sense heritability (H1/2), was superior to GS across all traits with the exception of B, 

where the rgs /H
1/2 ratio was 1.28 for SJ13. The rgs/H1/2 ratio increased when data were combined 

across years within a site and across all site-years. For both STCOMB and SJCOMB, rgs /H
1/2 

was > 0.50 for six of the 12 nutrient concentrations. For STSJALL, rgs /H
1/2 was > 0.50 for 8 of 

the 12 traits (Table 4).  

Discussion 

Trait variability and Pearson correlations 

We evaluated shoot micro and macronutrient concentrations in a training population of 240 

SRWW genotypes grown under field waterlogging conditions in Stuttgart, AR and St. Joseph, 

LA. As expected, there were significant differences for accumulation of shoot micro and 

macronutrients across years and locations (Table 1). Previous studies have reported the 

complexity of nutrient interactions under waterlogging conditions (Khabaz-Saberi et al. 2005), as 

plant nutrient concentrations are driven by soil parent material and soil site history (Ågren and 

Weih 2012). Although soils at both sites used in this study were prone to waterlogging, screening 

of breeding material under these conditions is challenging due to a lack of uniformity in soil 

conditions and stress severity (Chaubey and Senadhira 1994). In our study, there was variability 

in the treatment duration and intensity due to environmental factors. For example, artificial 

flooding was not necessary in SJ13 due to heavy precipitation during the treatment period. In 

ST14 waterlogging stress was imposed for fourteen days (as oppose to 28 days in ST13) due to 
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unusually warm temperatures during the treatment period and to avoid the premature death of the 

wheat plants.  

Variation across-site years, crop genotypes and environmental factors indicate the 

necessity of target location evaluations for soil waterlogging and mineral toxicities tolerance.  In 

SJ13, macronutrients had the highest minimum shoot concentrations and showed strong 

significant genotype effects, which could indicate the requirement of a minimum threshold to 

identify differential responses among genotypes. Although toxic levels were not achieved for all 

twelve elements evaluated, they were observed for Fe and Al in at least two of the four site-

years. Inhibition of wheat root development at nutrient solution concentrations of 3.2 ppm was 

reported by Kerridge (1968). In this study, [Al] was above toxic levels in all genotypes evaluated 

and in all site-years, reaching a high maximum of 2223 ppm in the genotype ‘Holley’. The Fe 

concentrations observed were also above the sufficient level ranges recommended during 

seedling to tillering in wheat (30 to 200 ppm) (Plank and Donohue 2000) with a maximum high 

of 2328 ppm for genotype ‘NC08-23925’. These results were consistent with Pearson correlation 

analysis in which a strong (p < 0.0001) positive correlation between Al and Fe was observed in 

all locations. Although previous studies reported increases in Al, Fe and Mn concentrations in 

acidic soils as main factors for plant decay under waterlogging conditions  (Khabaz-Saberi and 

Rengel 2010; Khabaz-Saberi et al. 2005; Setter et al. 2009), no positive correlations between Al 

and Fe under waterlogging conditions have been reported.  

Manganese concentrations above the recommended sufficient levels during seedling and 

tillering (20 to 150ppm) were observed in ST13 (Plank C.O. and Donohue. 2000). An increase in 

[Mn] is associated with an increase in [Al] in acidic soils (Khabaz-Saberi and Rengel 2010) and 

[Fe] in sodic soils (Yaduvanshi et al. 2012). In this study, the highest shoot concentrations of Al 
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and Fe were observed in ST13 which could in turn impact [Mn]. Additionally, correlation 

analysis showed a positive correlation between [Mn] and [Fe] for all years except for ST13, 

while a negative significant correlation between Mn and [Al] was observed. Under waterlogging 

conditions, ferric and manganic forms are reduced to ferrous and manganous states increasing Fe 

and Mn solubility (Gotoh and Patrick 1974; Ponnamperuma 1972) which can increase [Mn] in 

shoot tissue as reported by Trought and Drew (1980). However, previous studies in rice (Oryza 

sativa L.) have shown that [Al] can also modify the root symplastic pathway, decreasing Mn 

shoot concentrations but increasing accumulation of Mn in the roots through modification of 

binding properties of root cell walls (Wang et al. 2015). Our results show the complex 

interaction among elements under waterlogging conditions where soil chemistry is impacted by 

several factors such as microbial activity, soil temperature, anoxia conditions, mineral content 

and soil characteristics (Armstrong 1979; Munch et al. 1978; Ponnamperuma 1972; Setter and 

Waters 2003). 

Although no total grain yield was measured in this study, negative significant correlations 

among yield components (TKW and KWS) and [Al] and [Fe] suggest a direct impact on grain 

production under WL conditions, in agreement with (Arguello et al. 2016) in which a reduction 

of TKW (14%) and KWS (28%) was observed under waterlogging conditions in winter wheat.  

Heritability  

Evaluation of genotypes across site-years (STSJALL) resulted in higher heritability for most 

traits by reducing GxE and error variances. Exceptions included K and S, where a decrease in 

heritability from individual analysis of K (h2 > 0.18) and S (h2 > 0.38) was observed compared to 

the combined analysis K (h2= 0.2) and S (h2= 0.18) due to a strong genotype by environment 

interaction. Moderate to high heritabilities values obtained in this study, indicate  that a portion 
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of the observed phenotype for the traits evaluated is due to genetic variation and thus molecular 

markers could be used to select for genetic variation through GS (Kristensen et al. 2018).  

Genomic selection for micro and macronutrient concentrations 

We used 10 fold cross-validation to determine the prediction accuracy of genomic selection for 

twelve micro and macronutrient shoot concentrations evaluated in 240 SRWW lines. Low to 

moderate prediction accuracies were obtained for most of the traits evaluated in this study, 

ranging from (rgs = -0.10 to 0.50). Cross validation using combined data from all four site-years 

out performed single site analysis. Increases in prediction accuracies have been observed in 

multivariate analysis studies where additional information from individual traits was added to the 

GS model (Lopez-Cruz et al. 2015; Okeke et al. 2017). However, Resende et al. (2012) reported 

a decrease in prediction accuracies across populations and emphasize the importance of using 

target environments to increase prediction accuracies. In this study, weakly heritable nutrient 

concentrations (h2 < 0.20) had low prediction accuracies (rgs = < 0.15). These results were 

expected, based on previous studies (Combs and Bernardo 2013; Wong and Bernardo 2008). 

Therefore, to optimize prediction accuracies for lowly heritable traits, particularly for Al, Fe and 

Mg in this study, a target environment approach with an increased number of replications must 

be used.  

To the best of our knowledge, only one similar study under non-waterlogging conditions 

evaluated grain Fe and Zn concentrations in spring wheat using GS. Prediction accuracies for Fe 

and Zn ranging from (rgs = 0.32 and 0.73) and (rgs = 0.33 and 0.69) were reported (Velu et al. 

2016). In our study, lower prediction accuracies were obtained ranging from (rgs = -0.02 to 0.23) 

and (rgs = 0.18 to 0.39) for Fe and Zn respectively. However, a comparison among studies 

evaluating accuracy predictions of complex traits such as mineral toxicities are difficult to make, 
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as reported by Crossa et al. (2010), in which evaluation of the same population in different 

environments resulted in different prediction accuracies.   

Conclusions 

This is the first study evaluating micro and macronutrient concentrations in wheat under 

waterlogging conditions using a GS approach. Although validation of these preliminary results is 

needed, this study marks an important resource for improving the waterlogging tolerance of 

wheat. Moderate to high prediction accuracies for Ca, K, Mg, S, Mn, Na and Zn indicate that the 

prediction models developed in this study could be used for the selection of tolerant lines in the 

absence of phenotypic data.  
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Table 1. Descriptive statistics and analysis of variance of macro and micronutrient concentrations in individual site-years for 240 

wheat genotypes grown under field waterlogging conditions in Stuttgart AR and St. Joseph LA, 2012-2014. 

 Macronutrients  Micronutrients 

Source Ca K Mg P S  Al B Cu Fe Mn Na Zn 

  % % % % %   ppm ppm ppm ppm ppm ppm ppm 

Stuttgart (2012-2013)              

Mean 0.33 2.92 0.11 0.29 0.25  391.5 3.75 13.84 534.34 215.53 1496.19 27.69 

Min 0.17 1.65 0.06 0.15 0.14  23 1.38 3.85 86.92 96.85 480 18.64 

Max 0.51 4.88 0.19 0.48 0.45  2223 8.42 49.11 2328 398 3346 50.55 

h2 0.5 0.31 0.42 0.27 0.67  0.33 0.08 0.3 0.58 0.44 0.76 0.63 

Genotype (P-Value) *** * *** ** **  * ns * ns *** *** *** 

Stuttgart (2013-2014)              

Mean 0.12 1.42 0.06 0.21 0.1  64.93 0.89 5.34 161.63 140.25 1172.97 11.55 

Min 0.05 0.75 0.03 0.1 0.051  4.47 0.33 0.61 51.45 56.69 351 4.62 

Max 0.28 2.34 0.099 0.33 0.19  382.37 1.7 18.16 1038 295 2996 24.97 

h2 0.39 0.18 0.18 0.34 0.38  0.04 0.23 0.01 0.12 0.44 0.45 0.26 

Genotype (P-Value) *** ns ns ** **  ns ns ns ns *** *** * 

St. Joseph (2012-2013)              

Mean 0.39 3.48 0.17 0.48 0.32  195.96 1.81 6.62 375.7 28.02 195.97 22.98 

Min 0.24 2.71 0.11 0.3 0.18  74.5 0.46 3.55 157.13 15.82 78.3 13.46 

Max 0.61 4.87 0.26 0.69 0.48  552.86 9.11 16.77 1010.41 123.41 605.32 227 

h2 0.71 0.67 0.53 0.58 0.66  0.06 0.05 0.27 0.1 0.44 0.37 0.32 

Genotype (P-Value) *** *** *** *** ***  ns ns * ns *** ** * 

St. Joseph (2013-2014)              

Mean 0.33 2.94 0.11 0.29 0.18  33.21 2.3 6.71 93.68 13.37 104.1 10.57 

Min 0.19 2.25 0.09 0.21 0.12  5.61 1.13 2.16 38.22 5.96 45.22 6.84 

Max 0.5 3.79 0.15 0.45 0.31   144.78 7.9 16.03 306.1 28.21 308.42 22.1 
+Narrow sense heritability estimates for adjusted means; calculated as  

 

  
 

***Significant at p < 0.0001 level 

**Significant at p < 0.001 level 

*Significant at p < 0.05 level 
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Table  2 Descriptive statistics and analysis of variance of macro and micronutrient concentrations and yield components for 240 

wheat genotypes grown under field waterlogging conditions in Stuttgart AR and Saint Joseph LA, 2012-2014 

 Macronutrients  Micronutrients  
Source Ca K Mg P S  Al B Cu Fe Mn Na Zn  

  % % % % %   ppm ppm ppm ppm ppm ppm ppm   

Stuttgart (2012-14)                
Mean 0.22 2.17 0.08 0.25 0.17  228.26 2.32 9.59 347.99 177.89 1334.33 19.62  
Min 0.17 1.7 0.05 0.17 0.14  70.76 1.62 4.41 177.69 109.41 696.47 14.53  
Max 0.32 2.76 0.11 0.34 0.23  759.94 3.74 15.43 1198.89 279.99 2836.85 30.81  
h2 0.52 0.14 0.5 0.49 0.26  0.09 0.02 0 0.13 0.46 0.59 0.53  
Geno (P-value) 0.0001 0.0001 0.0001 0.0001 0.0001  0.0001 0.2211 0.0349 0.0001 0.0001 0.0001 0.0001  
Geno*year (P-value) 0.0026 0.0023 0.0057 0.3703 0.0008  0.0012 0.2574 0.0142 0.0001 0.039 0.0001 0.0001  
St. Joseph (2012-14)               
Mean 0.37 3.3 0.15 0.42 0.27  143.93 1.98 6.66 281.69 23.13 165.35 18.82  
Min 0.23 2.82 0.11 0.31 0.21  75.94 1.11 3.76 162.16 14.36 91.38 13.25  
Max 0.49 4.01 0.2 0.53 0.36  291.95 4.11 12.29 540.34 56.5 380.56 26.38  
h2 0.66 0.35 0.46 0.27 0.35  0.16 0.19 0.02 0.22 0.54 0.53 0.29  
Geno (P-value) 0.0001 0.0001 0.1126 0.0006 0.0001  1 0.0001 0.0001 1 0.3774 0.517 0.9023  
Geno*year (P-value) 0.0503 0.0001 0.993 0.0947 0.0334  1 0.0029 0.0001 1 1 1 0.9994  
All site-years (2012-
2014)               
Mean 0.29 2.65 0.11 0.32 0.22  192.11 2.17 8.33 319.57 111.57 833.34 19.28  
Min 0.2 2.27 0.09 0.25 0.18  94.31 1.59 4.84 191.02 72.19 450.32 15.66  
Max 0.37 3.07 0.14 0.41 0.27  498.35 3.32 12.02 800.67 170.03 1748.37 26.22  
h2 0.73 0.20 0.45 0.24 0.18  0.14 0.43 0.28 0.20 0.48 0.57 0.54  
Geno (P-value) 0.0001 0.0001 0.0001 0.0001 0.0001  0.758 0.0001 0.0005 0.0001 0.0088 0.0001 0.0001  
Geno*loc (P-value) 0.0001 0.0001 0.0001 0.0001 0.0001   0.515 0.2156 0.0501 0.0001 0.4912 0.0001 0.0008  

+Narrow sense heritability estimates for adjusted means; calculated as  
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+Narrow sense heritability estimates for adjusted means; calculated as  

 

 

 

 

***Significant at p < 0.0001 level 

**Significant at p < 0.001 level 

*Significant at p < 0.05 level

 

 

Table 3. Descriptive statistics and analysis of variance of yield components for 240 

wheat genotypes grown under field waterlogging conditions in Stuttgart AR, growing 

seasons 2012-2013 and 2014-2015.  
  Yield Components   
Source TKW KWS KNPS   
  (g) (g) (No.)   
Stuttgart (2012-2013)      
Mean 33.97 1.04 31.99   
Min 20.17 0.29 12.86   
Max 48.68 1.84 63.28   
H2 0.72 0.06 0.07   
Genotype (P-Value) 0.002*** 0.07 0.003   
Stuttgart (2014-2015)         
Mean 28.76 0.66 23.06   
Min 16.4 0.23 9.99   
Max 61.6 1.21 43.52   
H2 0.02 0.8 0.62   
Genotype (P-Value) 0.18 0.05*** 0.13***   
Stuttgart (2012-2015)         
Mean 32.06 0.87 27.63   
Min 23.65 0.5 14.91   
Max 42.6 1.3 41.73   
H2 0.83 0.32 0.2   
Geno (P-value) 0.0001 0.0001 0.0001   
Geno*year (P-value) 0.0001 0.0015 0.0082   
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Table 4. Comparison of genomic selection prediction accuracies and (gs) phenotypic prediction  (H1/2) for individual and 

combined site-year datasets for twelve micro and macronutrients for 240 wheat genotypes grown under field waterlogging 

conditions in Stuttgart AR and St. Joseph LA, 2012-2014. 

 Prediction accuracies   

  Macronutrients  Micronutrients 

Site-year Accuracy Ca       K Mg P S   Al     B   Cu Fe       Mn Na Zn 

Stuttgart               
2012-2013 (ST13) rgs 0.29 0.25 0.26 0.20 0.17  0.21 0.14 0.11 0.23 0.30 0.31 0.24 

 H1/2 0.71 0.56 0.65 0.52 0.82  0.57 0.28 0.55 0.76 0.67 0.87 0.79 

 rgs/H1/2 0.41 0.45 0.40 0.38 0.21  0.37 0.50 0.20 0.30 0.45 0.36 0.30 

2013-2014  (ST14) rgs 0.22 0.16 0.28 0.26 0.24  -0.10 0.04 -0.02 -0.02 0.26 0.36 0.18 

 H1/2 0.62 0.43 0.42 0.58 0.62  0.19 0.47 0.01 0.34 0.66 0.67 0.51 

 rgs/H1/2 0.36 0.36 0.67 0.45 0.39  - 0.08 - - 0.39 0.54 0.35 

Both years 

(STCOMB) rgs 0.38 0.30 0.25 0.30 0.22  0.15 0.07 0 0.07 0.36 0.50 0.37 

 H1/2 0.72 0.37 0.71 0.70 0.51  0.30 0.14 0 0.36 0.68 0.77 0.73 

 rgs/H1/2 0.53 0.82 0.35 0.42 0.43  0.49 0.53 0 0.20 0.52 0.65 0.51 

St. Joseph               
2012-2013 (SJ13) rgs 0.45 0.39 0.33 0.25 0.41  0.13 0.27 0.18 0.13 0.38 0.27 0.24 

 H1/2 0.84 0.82 0.73 0.76 0.81  0.24 0.21 0.52 0.32 0.67 0.61 0.56 

 rgs/H1/2 0.53 0.48 0.46 0.34 0.5  0.53 1.28 0.34 0.41 0.56 0.45 0.42 

2013-2014 (SJ14) rgs 0.21 0.37 0.16 0.30 0.42  -0.06 0.37 -0.02 0.07 0.22 0.37 0.40 

Both years 

(SJCOMB) rgs 0.43 0.41 0.30 0.22 0.48  0.09 0.42 0.05 0.15 0.39 0.32 0.30 

 H1/2 0.81 0.59 0.68 0.52 0.59  0.4 0.43 0.14 0.47 0.74 0.73 0.54 

 rgs/H1/2 0.53 0.70 0.44 0.43 0.81  0.23 0.98 0.36 0.31 0.53 0.44 0.56 

Combined analysis               
All site-years 

combined 

(STSJALL) 

rgs 0.46 0.44 0.35 0.30 0.52  0.15 0.23 0.09 0.06 0.38 0.50 0.39 

H1/2 0.85 0.45 0.67 0.49 0.42  0.37 0.65 0.53 0.45 0.69 0.75 0.73 

rgs/H1/2 0.54 0.97 0.53 0.61 1.25   0.40 0.36 0.17 0.13 0.55 0.67 0.54 
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Figure 1. Phenotypic correlations of shoot micro and macronutrient concentrations in 240 winter wheat genotypes grown under 

waterlogging. Combined analysis for Stuttgart and St. Joseph environments, growing seasons 2012-2013 and 2013-2014. The degree 

of phenotypic correlations are indicated by green and blue color scale intensities. 

 

  St. Joseph Combined   

    

  
Al B Ca Cu Fe K Mg Mn Na P S Zn 

 

 

S
tu

tt
g
a
rt

 C
o
m

b
in

ed
 

Al   0.19 0.33 0.05 0.96 -0.07 0.47 0.31 0.32 0.10 0.06 0.16 
 p < 0.0001 

B 0.28 
 

0.35 0.01 0.22 0.14 0.36 0.07 0.22 0.16 0.17 0.22 
 p < 0.001 

Ca 0.09 0.18 
 

0.02 0.32 0.28 0.74 0.26 0.33 0.25 0.50 0.27 

 p < 0.05 

Cu -0.05 0.14 0.01 
 

0.06 -0.02 0.09 0.03 0.02 0.07 0.04 0.11 
  

Fe 0.88 0.32 0.16 -0.04 
 

-0.05 0.48 0.33 0.35 0.10 0.07 0.18 
 p < 0.0001 

K 0.19 0.32 0.26 0.18 0.24 
 

0.23 0.10 0.05 0.46 0.56 0.43 
 p < 0.001 

Mg 0.32 0.34 0.48 0.10 0.38 0.56 
 

0.28 0.40 0.33 0.52 0.41 
 p < 0.05 

Mn 0.04 0.00 0.49 -0.11 0.12 0.02 0.30 
 

0.06 0.28 0.19 0.20 
  

Na 0.24 0.00 0.30 -0.03 0.29 0.00 0.29 0.32 
 

-0.04 0.22 0.11 
  

P 0.18 0.20 0.36 -0.08 0.27 0.34 0.49 0.61 0.41 
 

0.41 0.61 
  

S 0.39 0.36 0.46 0.08 0.49 0.62 0.69 0.07 0.30 0.44 
 

0.46 
  

Zn 0.15 0.20 0.33 0.18 0.19 0.40 0.33 0.34 0.15 0.44 0.44   
  



 

5
0

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Phenotypic correlations of shoot micro and macronutrient concentrations with yield component traits in 240 winter wheat 

genotypes grown under waterlogging conditions at the RREC in Stuttgart Arkansas from 2012 to 2014. 
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Abstract 

Waterlogging impacts up to 15 million hectares of wheat globally and tolerance to micro and 

macronutrient toxicities and deficiencies play a key role in overcoming this constraint. The 

objective of this study was to identify marker-trait associations (MTA) for accumulation of 

nutrient concentrations under field waterlogging stress using a genome wide association study 

(GWAS). A panel of 240 soft red winter wheat lines was subjected to soil waterlogging over two 

seasons at the Rice Research and Extension Center in Stuttgart, AR and the Northeast Louisiana 

Research Station in St. Joseph, LA, US. Accumulation of macronutrients calcium (Ca), 

potassium (K), magnesium (Mg), phosphorus (P) and sulfur (S) and micronutrients aluminum 

(Al), boron (B), copper (Cu), iron (Fe), manganese (Mn), sodium (Na) and zinc (Zn) were 

determined in wheat shoots post-waterlogging stress using inductively coupled plasma atomic 

emission spectroscopy. Principal component analysis showed consistent grouping of micro and 

macronutrient concentrations and an [Al] and [Fe] clustering present across all four site-years. In 

total, 78 MTA were identified using a mixed model GWAS approach that included both kinship 

and the Q matrix to account for population structure and genetic relatedness. Forty-seven highly 

significant (p < 0.00001), twenty-three very significant and consistent (p < 0.0005) and eight 

significant and consistent (p < 0.001) MTA were identified. These markers spanned all wheat 

chromosomes with the exception of 2D, 3D, 4A, 4B, 5D, 6A and 7A. Blastx analysis identified 

18 MTA to be associated either with nucleic acid binding, RNA - DNA hybrid ribonuclease 

activity and zinc ion binding.  
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Introduction 

Soil waterlogging (WL) and flooding resulting from high rainfall and poor soil drainage are 

major limitations to crop production both globally (Setter and Waters 2003) and in the US 

(Bailey-Serres et al. 2012). Waterlogging results in low soil 02 concentration and anoxia, with 

subsequent hypoxia in plant roots (Ahmed et al. 2013; Setter et al. 2009). Under anoxic soil 

conditions, a reduced redox potential results in increased concentrations of soil NO-2, Mn2+, Fe2+ 

and increased plant uptake, potentially leading to elemental toxicities (Ponnamperuma 1972). 

Plants cope with increased availability of micro and macronutrients through either exclusion or 

tissue tolerance mechanisms. Exclusion mechanisms are characterized for some elements, 

including aluminum, in which organic compounds are released at the root tip to chelate 

aluminum ions, forming nontoxic compounds (Kochian et al. 2015; Yang et al. 2008). Other 

avoidance mechanisms include cell wall modification to impede toxic elements from entering the 

root tissue or immobilization in the roots (Wang et al. 2004). Tissue tolerance mechanisms 

include sequestration and storage in vacuoles through binding with peptides, proteins or organic 

compounds (Garbisu and Alkorta 2001; Harborne 1989).  

Association mapping (AM) is used to identify significant associations between molecular 

markers and phenotypic traits in a panel of lines (Gupta et al. 2005) that can be exploited for 

marker assisted selection (Bentley et al. 2014; Hamblin et al. 2011; Zhu et al. 2008). The basis of 

AM is linkage disequilibrium (LD) in which alleles in a chromosome located at different loci are 

non-randomly associated (Flint-Garcia et al. 2003; Mackay and Powell 2007). AM captures the 

historical recombination events present within a germplasm panel and identifies the genetic 

control of quantitative traits at potentially higher resolution compared to a bi-parental approach 

(Huang and Han 2014; Myles et al. 2009).  
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Much of the research related to the genetic control of exclusion mechanisms in wheat has 

focused on aluminum uptake, particularly in low pH soils, and to a lesser extent on boron and 

sodium. Tolerance of wheat to Al3+ has been associated with the malate transporter Alt1 locus 

located on chromosome 4DL, which results in improved root growth (Delhaize et al. 1993; Ma et 

al. 2005). Similar genetic studies on Al uptake have been performed using both bi-parental (Dai 

et al. 2013) and association mapping (Froese and Carter 2016; Navakode et al. 2014; Raman et 

al. 2010) approaches, with QTL identified on at least 16 of the 21 wheat chromosomes. 

Tolerance to high levels of boron, particularly in irrigated systems, is conditioned by the Bo1 

locus, which was mapped to a 1.8 cM region on chromosome 7BL (Schnurbusch et al. 2007). 

Oyiga et al. (2017) used GWAS to detect MTA for exclusion of potassium and sodium in a panel 

of 150 winter wheat lines and identified 187 significant (P = 8.22 E-05 to 5.10 E-06). This included 

two candidate genes, a zinc II ion transmembrane transporter on chromosome 1BS and a sodium 

ion transport protein on chromosome 1DL. 

 For US wheat germplasm, previous studies have focused on micronutrient exclusion 

mechanisms under dryland or low pH soil conditions (discussed above) with limited knowledge 

of these mechanisms under soil waterlogging. The southeastern US soft red winter wheat 

germplasm pool is the most well characterized in terms of tolerance to soil waterlogging 

(Arguello et al. 2016; Ballesteros et al. 2015; Collaku and Harrison 2002, 2005).  

(Arguello et al. 2016; Ballesteros et al. 2015; Collaku and Harrison 2002, 2005). However, with 

the exception of the study by Ballesteros et al. (2015) little is known about the mechanism of the 

observed tolerance and there are no reports of the genetic control of micro and macronutrient 

exclusion under waterlogging. It was hypothesized that the variable response to waterlogging in 

terms of yield production as reported by Arguello et al. (2016) is due in part to micro and 
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macronutrient exclusion mechanisms. Hence, the purpose of this study was to evaluate a set of 

240 SRWW lines under field waterlogging conditions and use GWAS to identify marker-trait 

associations and potential candidate genes. 

Materials and methods 

Experimental design and trait measurement 

The association panel (AP) used for this study consisted of 240 inbred lines of soft red winter 

wheat. Information on the population and collection and analysis of the phenotypic data was 

previously described in Chapter 2 of this dissertation. Briefly, experiments were conducted at the 

Rice Research and Extension Center in Stuttgart (ST) Arkansas, AR and the Northeast Louisiana 

Research Station in St. Joseph (SJ), Louisiana during the growing season of 2012-2013 (13) and 

2013-2014 (14).  The population was sown in a randomized complete block design (RCBD) with 

two replications in ST13, SJ13 and SJ14 and in an augmented incomplete block design with two 

repeated check lines (‘Jamestown’ and ‘Pioneer Brand 26R20’) in ST14. A WL treatment was 

imposed by establishing 0.30 m high levees surrounding the experimental field beginning at 

Feekes 4 and continuing for a duration of 14 to 28 days depending on the site-year. A 0.10 m2 

section per plot was harvested 24 hours after WL treatment and processed according to Donohue 

and Aho. (1992) for determination of total concentrations of macronutrients calcium (Ca), 

potassium (K), magnesium (Mg), phosphorus (P) and sulfur (S) and micronutrients aluminum 

(Al), boron (B), copper (Cu), iron (Fe), manganese (Mn), sodium (Na) and zinc (Zn) using 

inductively coupled plasma atomic emission spectroscopy (ICP-AES). Soil samples from ST and 

SJ sites were evaluated using the Spectro Arcos IPC-OES analyzer were pH, electric 

conductivity (EC) and micro and macronutrient concentrations of  B, Ca, Cu, Fe, K, P, Mn, Mg, 

S and Zn were determined (Supplementary 1). 
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Genotyping and SNP calling 

Genome wide marker data for the AP panel was generated using genotype by sequencing (GBS) 

with SNP calling using the TASSEL 5 GBSv2 pipeline (Glaubitz et al. 2014) as previously 

described in Chapter 2 of this dissertation. Briefly, raw SNP data was filtered to remove taxa 

with more than 90% missing data and then for bi-allelic SNPs with minor allele frequency 

(MAF) ≥ 5%, missing data ≤ 50% and heterozygosity ≤ 10%. After filtering, LD-kNNi in 

TASSEL was used for imputation of missing data (Money et al. 2015) resulting in a total of 

62,375 SNP markers for analysis. 

Linkage disequilibrium and principal component analysis 

Linkage disequilibrium among markers was calculated using the sliding window option in 

TASSEL 5.2.31 (Bradbury et al. 2007). Only SNPs with MAF > 5% and with defined genetic 

positions were used in the analysis with 43,072 markers meeting these criteria. LD was 

calculated for each chromosome (Table 1) and for the three (A, B and D) wheat genomes. Pair 

wise LD was calculated using the square allele frequency correlations r2 and the number of 

significant pairs (p < 0.01) was determined using 1,000 permutations.  

 To determine association between the traits, a principal component analysis (PCA) was 

performed using the PRINCOMP function in R Studio. Contribution of each variable to the first 

two principal components (PC) were illustrated using bi-plots.  

Population structure  

Population structure of the AP was evaluated using fastSTRUCTURE (Raj et al. 2014) and the 

algorithm was run on 92,916 markers. Model complexity was determined running multiple 

options of K =1 to 10 with 20 runs per K evaluated. Cluster identification was performed with 

the deviance residuals and variation parameters using the simple prior tool integrated in the 
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program (Raj et al. 2014). Based on the highest value for coefficient of membership (Q) lines 

were grouped in three subpopulations: 1)  Two hundred and thirty three lines assigned to 

subpopulation Q1, 2) four lines assigned to subpopulation Q2, and 3) three lines assigned to 

subpopulation Q3.  Bar plot for Q coefficients were visualized using web application 

POPHELPER (Francis 2017).  

Genome wide association analysis 

Best linear unbiased estimators (BLUEs) for each trait and line were estimated within individual 

site-years and per location for GWAS analysis as described previously in Chapter 2 of this 

dissertation. Association mapping analyses were performed using the compressed mixed linear 

model (CMLM) implemented in the genome association and prediction integrated tool (GAPIT) 

package in R (Lipka et al. 2012). Three analyses were conducted evaluating different mixed 

model approaches: 1) a K only approach with a kinship matrix (K) for line relatedness generated 

from Tassel 5 was used in the model, 2) a K + PC model, in which the kinship matrix and the 

first three principal components were used, and 3) a K + Q model in which the kinship matrix 

and the Q matrix generated from fastSTRUCTURE were used in order to control for line 

relatedness and population structure respectively (Yu et al. 2006). The following is the model K 

+ Q used to account for genetic relatedness among the association panel  

 y = µ + xβ + Qv + Zu+ e 

where y is the vector of observed phenotype; µ is the mean; x is the effect of the SNP; v is a vector 

of population effects, u is the random effects due to genetic relatedness. Variances of random 

effects are assume to be Var (u) = 2KVg and Var (e) = RVe; where Z is the kinship matrix across 

all genotypes, e is the vector of residual effects; Q is a matrix from fastSTRUCTURE relating y to 

v. Vg is the genetic variance; and Ve is the residual variance (Yu et al. 2006). Complementary to 
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the GWAS analysis marker positions (bp) were used to determine the genomic regions of the MTA 

identified. The IWGSC RefSeq v1.0 browser and the Blatx tool aligned Triticum aestivum dataset 

(TGACv1) available in EnsemblPlants (https://plants.ensembl.org/index.html) were used to 

investigate the molecular and biological function of the MTA identified. 

Results 

Association between traits using principal components analyses  

Principal component analysis was generally consistent for all traits across site years with a similar 

grouping among micro and macronutrients observed and a clustering of Fe and Al in all 

environments. A negative correlation among PC1 and all twelve element concentrations was 

observed in all four environments. In addition, PC1 explained a similar percent of the phenotypic 

variance across site-years with 32.2, 32.21, 33.7 and 35.50% for ST13, ST14, SJ13 and SJ14 

respectively (Fig 1). Likewise, PC2 had similar values in ST13 (15.3%), ST14 (18.0%), SJ13 

(15.35%) and SJ14 (18.74%). Micronutrients Al and Fe were positively correlated with PC2 in all 

environments with the exception of SJ14 in which a negative correlation was observed. Clustering 

of K, Zn, P and S was consistent across both years in SJ (Fig. 1c and 1d). Clustering of 

macronutrients was observed in Stuttgart, with Mg, S and K in ST13 (Fig. 1a) and Ca, Mg, P, and 

S in ST14 (Fig. 1b).  

Linkage disequilibrium and population structure  

Linkage disequilibrium at the whole genome level identified 2,081,476 loci pairs, including 

1,631,419 (11.07%) intrachromosomal pairs in significant LD (p > 0.005) and 130,222 (6.42%) 

pairs in complete LD (R2 =1) (Tassel 5.3) (Table 1). A negative correlation between linkage 

disequilibrium and physical distance was observed (r = -0.37) as well as a negative correlation 

among linkage disequilibrium and P-values. Analysis of genetic structure of the 240 lines 
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determined the likely number of clusters at K=3 (Fig. 2), but with only seven lines grouped in 

clusters Q2 and Q3. Given the small number, these outlier lines were removed from further 

analysis. Principal component analysis identified two subpopulations, which aligned with the 

presence of the Sr36 gene translocation in 63 of the 240 lines. Similar results were previously 

reported by Benson et al. (2012) in which this introgression was observed in 57 of 251 wheat lines 

and commonly present in lines originating from southern US latitudes.  

Marker trait Associations 

Three models were used to identify marker trait associations (MTA) between 62,376 GBS SNP 

markers and the concentration of micro and macronutrients under WL stress. Although non-

significant variation occurred across models, the observed P values and cumulative distribution 

of P for the most highly heritable trait determined the K-Q approach as the best method to 

account for population structure and genetic relatedness among individuals (Bordes et al. 2014). 

Moreover, results from the Q-Q plots showed sharp deviations in the tail area of the P value 

distributions, indicating this model controlled for false-positives and false negative associations 

(Kaler et al. 2017).  

Summary of MTA for microelement concentrations 

Three different P values were used as a threshold to declare MTA: 1) highly significant (p < 

0.00001), 2) very significant and consistent (p < 0.0005 and present in at least two site-years) 

and 3) significant and consistent (p < 0.001 and present in at least two site years) (Manickavelu 

et al. 2017). In total, 78 MTA were identified across the A (19), B (46) and D (9) genomes, with 

four significant markers unassigned to a chromosome (Supplementary 2). MTA were identified 

across all wheat chromosomes with the exception of 2D, 3D, 4A, 4B, 5D, 6A and 7A.  
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Highly significant MTA 

Forty seven highly significant (p < 0.00001) MTA were identified, including for Al, B, Cu, Fe, 

Na, P, S and Zn across chromosomes 1A, 1B, 1D, 2A, 2B, 3A, 3B, 4D, 6B, 7B, 7D. Positive 

effects (higher concentrations) were observed for all MTA with respect to the minor allele.  

Several MTA were localized in the same genomic region or within a distance less than 10 

million base pairs (bp) and having identical or highly similar MAF and allelic effect values 

(Supplementary 2). Therefore, only markers with the most significant P values within a cluster of 

MTA are reported in Table 2. For example, [Na] had the highest number of MTA with 28 

markers identified on chromosomes 1A, 1B and 2A which explained from 15 to 23% of the 

phenotypic variation. Twenty four of these markers were localized within a genomic distance of 

3 million bp. Allelic effects for [Na] ranged from 16.86 to 315.79 ppm with markers 

S2A_612152711 and S2A_612152741 having the largest positive allelic effect and markers 

S1B_599416338 and S1B_599759697 the most highly significant MTA identified in this study (p 

< 1.5E-06).  

 Six MTA for [Fe] were identified in chromosomes 1A, 1B, 1D, 6B and 7D, accounting 

for 11 to 17% of the phenotypic variance (Fig 3). Marker S1A_192014751 showed the highest 

allelic effect (153.44 ppm) for [Fe]. In SJ13, multi trait marker S7D_610181301 was associated 

with [Al] and [Fe] with a positive allelic effect of 34.79 and 59.7 ppm, respectively. In total, 

twenty-eight MTA were identified on chromosome 1B and were associated with Na, Fe and 

[Zn]. 

 Screening of the MTA genomic regions found a reported molecular function for eighteen 

of the 47 highly significant MTA. Functions included nucleic acid binding and zinc ion binding 

as molecular functions for markers S1B_599652390, S1B_599652390, S1B_599652508, 



66 

 

S1B_599652549, S7B_117334234, and S7B_117334235 with S1B_599652508 and 

S1B_599652549 which was also an MTA for [Zn] (Table 3). 

Very significant and consistent MTA 

Twenty three very significant (p < 0.0005) and consistent (in at least two of the four site-years) 

MTA were identified, including for Al, Ca, Fe, Na and Zn and located on chromosomes 1A, 1B, 

5B, 6B, 7B and 7D. Sixteen MTA were identified in common between the ST13 and SJ14 site-

years. This included nine MTA for [Fe] in chromosome 1A, which explained from 8 to 10% of 

the phenotypic variance, three markers associated with [Na] and located in chromosomes 1B and 

5B, and four MTA for [Zn] located in chromosomes 1B, 7B and 7D.  

 Three MTA associated with [Ca] were consistent across SJ13 and SJ14 including 

S6B_309688673 and S6B_309688674. Negative allelic effects (-0.03%) were observed for these 

markers, which accounted for 23% of the phenotypic variance. Similarly, marker 

S7D_579146731 associated with [Na] was consistent across SJ13 and SJ14 with a positive allelic 

effect of 38.3 ppm. For Stuttgart, a single MTA for [Fe] was identified with allelic effects of 

(21.15ppm) ST14 and (1.64 ppm) ST13. Three additional MTA for [Al] were identified in both 

SJ14 and ST14 but could not be assigned to a chromosome position (Table 4). 

Significant and consistent MTA 

In total, eight MTA were both significant (p < 0.001) and consistent across two or more site-

years, including for K, Mg, Na, P and Zn. Markers S6D_466814084 and S6D_466814117 were 

associated with [K] in both ST13 and SJ14 and showed a negative allelic effect of -0.11% (Table 

4). In addition, 76 MTA (p < 0.0005) identified in a single environment but associated with more 

than one element were identified (Supplementary 3). For example, in SJ13 marker 
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S2A_694912728 was associated with Al, Fe and Mn with allelic effects of 18.05, 28.87 and 2.34 

ppm respectively. 

Candidate Genes 

Screening of the MTA genomic regions found a reported molecular function for 18 MTA 

identified in this study. Molecular functions included nucleic acid binding, zinc ion binding, 

structural constituent of ribosome and RNA-DNA hybrid ribonuclease activity were found to be 

reported for markers located on chromosomes 1A, 1B, 6B, 7B and associated with Al, B, Fe, Na, 

P and  [Zn]. Reported biological functions of DNA integration and translation processes were 

reported for ten and one MTA, respectively (Table 3). 

Discussion 

Determining the genetic basis of waterlogging tolerance is an important step for wheat 

improvement. GWAS studies are used to determine marker trait associations to identify the 

underlying genetic effect of quantitative traits (Korte and Farlow 2013). To the best of our 

knowledge, this is the first study evaluating wheat micro and macronutrient concentrations and 

their potential role in elemental toxicities under soil WL stress using a GWAS approach. A total 

of 78 MTA were identified, including 47 highly significant (p < 0.00001), 23 very significant 

and consistent (p < 0.0005) and eight significant and consistent (p < 0.001) MTA. 

 In total, 63 MTA identified in this study have positive allelic effects indicating these 

alleles to have been previously introduced and overtime become present at a higher frequency in 

this set of breeding lines and cultivars through either natural selection or breeding efforts. On the 

other hand, 15 MTA showing negative allele effects were also observed, where the minor allele 

was associated with reduced concentrations. Markers S6B_309688673 and S6B_309688674 

associated with [Ca] showed consistent negative allelic effects values (-0.03) in two site-years. 
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These markers are likely to be located in the same genomic region and with a MAF of 0.07 could 

potentially be used as a new source of alleles for modifying [Ca]. On the other hand, nine MTA 

for [Fe] identified in the same genomic region on chromosome 1A, showed positive allelic effect 

in SJ14 and negative effect in ST13. Further research is necessary to determine the value of this 

MTA for reducing Fe uptake during soil waterlogging stress due to its site-specific effect.  

Comparison of MTA to previous reported QTL 

A comparison to the current literature citing the genetic control of waterlogging tolerance in 

wheat found strong agreement with the results obtained in this study. MTA were in the same 

chromosomes reported by Ballesteros et al. (2015) who identified ten genomic regions associated 

with adaptive traits under waterlogging conditions. In addition, both studies identified no MTA 

localized to chromosomes 2D, 3D, 4A, 4B, 5D, 6A and 7A. SNP markers S6B_309688673 and 

S6B_309688674 associated with [Ca] and showing a negative allelic effect were located on 

chromosome 6B in a similar position to a QTL reported by Yu and Chen (2013) with  flanking 

markers XksuH14 and Xfbb364 associated with root and shoot dry weight under WL stress. St. 

Burgos et al. (2001) reported four QTLs associated with flooding tolerance located on wheat 

chromosomes 2B, 3B and 5A, and similarly in our study, four MTA were identified in the same 

chromosomes and associated with [Fe], [Mg], [S] and [P]. In addition, markers S7B_117334234 

and S7B_117334235 were associated with [B] and were potentially in the same region as the Bo1 

QTL, which is reported to control shoot B accumulation. (Jefferies et al. 2000) 

 Comparison among QTL detected in single studies can be challenging due to 

environmental variation that results in QTL not being present across environments (Acuña-

Galindo et al. 2015). Additionally, physical properties, soil chemistry, duration and severity of 

the treatment and environmental factors such a microorganism content and soil temperature have 
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been reported as major factors influencing variability of genotype performance under 

waterlogging (Drew and Lynch 1980; Kirk et al. 2003; Setter et al. 2008). Clustering among [Fe] 

and [Al]  across all locations was in agreement with previous studies in which an increase of [Fe] 

and [Al] were observed in wheat lines evaluated in acidic soils (Khabaz-Saberi and Rengel 2010; 

Khabaz-Saberi et al. 2005; Kochian et al. 2004). However, Foy and Fleming (1982) reported an 

antagonistic effect in which a reduction in shoot [Fe] was observed due to high [Al]. This could 

be due to the reasons explained above, in which repeatability and results of tolerant genotypes 

under waterlogging conditions could be highly variable across environments.  

Conclusions 

In this study, 78 MTA associated with micro and macronutrient concentrations under 

waterlogging conditions were identified. These SNP markers were located on the same 

chromosomes and in some cases chromosome regions of previously identified QTL for 

waterlogging tolerance. As such, they provide a potential mechanism for future dissection of 

these QTL regions. 
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Table 1. Summary of linkage disequilibrium (LD) analyses for intrachromosomal marker 

pairs using Tassel 5.3 for 240 soft red winter wheat lines.  

Genome 

Total no of 

pairs 

Mean r2 

for all 

pairs 

No. 

significant 

pairs a 

Significant 

pairs (%) 

Mean r2 for 

significant 

markers 

No pairs in 

complete 

LD b 

Pairs in 

completel

y LD (%) 

Genome A 766,725 0.29 600,915 78.37 0.37 34,822 4.54 

Genome B 1,112,225 0.36 894,420 80.42 0.44 78,273 7.04 

Genome D 202,526 0.32 136,084 67.19 0.47 17,127 8.46 

Genome 2,081,476 0.32 1,631,419 78.38 0.43 130,222 6.26 
a Significant marker pairs, p value < 0.005 
b Marker pairs with r2 value equal to 1.0 were regarded to be in complete LD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



71 

 

 

Table 2. Highly significant (p < 0.00001) MTA identified on the 240 lines of the association 

mapping panel. Data from Stuttgart, AR 2013 (ST13), AR 2014 (ST14) and St. Joseph, LA 

2013 (SJ13) and LA 2014 (SJ14). 

Highly significant < 0.00001          

SNP Trait Environment P. value MAF R2a Allelic Effect b 

S7D_610181301 (2) Al / Fe SJ13 2.5E-06 0.06 0.15 34.79 

S7B_117334234 (2) B SJ14 1.3E-06 0.06 0.19 0.61 

SUN_244556964 B SJ15 8.0E-06 0.08 0.18 0.45 

S3A_702519039 B SJ13 6.2E-06 0.11 0.14 0.22 

S4D_238865033 (2) Cu ST13 9.9E-06 0.06 0.16 2.36 

S1D_41196155 Fe ST13 9.9E-07 0.06 0.12 152.54 

S1B_46140047 (2) Fe ST13 2.0E-06 0.10 0.11 121.74 

S6B_111561002 Fe ST13 2.9E-06 0.08 0.11 131.96 

S1A_192014751 Fe ST13 1.4E-06 0.07 0.11 153.44 

S1A_176108383 (2) Na SJ13 8.1E-06 0.06 0.15 42.53 

S1B_599416338 (24) Na ST13/ST14/SJ14 1.5E-08 0.22 0.23 16.86 -183.89 

S2A_612152711 (2) Na ST13 2.2E-06 0.05 0.19 315.79 

S3B_546349156 P SJ14 7.9E-06 0.14 0.19 0.02 

S2B_77204516 S SJ14 3.7E-06 0.34 0.22 0.01 

S7B_568062247 Zn ST13 9.1E-06 0.11 0.14 2.05 

S1A_584433749 (3) Zn SJ14 4.3E-06 0.11 0.22 1.27 - 3.66 
a Reflect the phenotypic variation explained by the marker, R2 of the model with SNP calculated 

in GAPIT package in R 
b Allelic effects with respect to the minor allele 

Numbers in parenthesis represent the number of marker in linkage (Less than 10 Million bp) 
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Table 3. Molecular and biological functions of the significant MTA identified on the 240 lines of the association mapping panel. 

SNP Trait Molecular function  Biological function Gene Hit 

S1B_597722660 Na 

Nuclei acid binding - RNA-DNA hybrid 

ribonuclease activity No reported  TRIAE_CS42_1BL_TGACv1_030807_AA0101190 

S1B_598061897 Na 

Nucleic acid binding - RNA- DNA 

hybrid ribonuclease activity No reported  TRIAE_CS42_1BL_TGACv1_030807_AA0101190 

S1B_599416338 Na Structural constituent of ribosome Translation TRIAE_CS42_1BS_TGACv1_051115_AA0177850.1 

S1B_599652390 Na Nucleic acid binding / zinc ion binding DNA integration TRIAE_CS42_1BL_TGACv1_030539_AA0093500 

S1B_599652508 Zn Nucleic acid binding / zinc ion binding DNA integration TRIAE_CS42_1BL_TGACv1_030539_AA0093500 

S1B_599652549 Zn Nucleic acid binding / zinc ion binding DNA integration TRIAE_CS42_1BL_TGACv1_030539_AA0093500 

S1B_599660677 Na Nucleic acid binding / zinc ion binding No reported  TRIAE_CS42_1BL_TGACv1_030539_AA0093500 

S1B_599660679 Na Nucleic acid binding / zinc ion binding No reported  TRIAE_CS42_1BL_TGACv1_030539_AA0093500 

S1B_599759697 Na Nucleic acid binding / zinc ion binding No reported  TRIAE_CS42_1BL_TGACv1_030539_AA0093500 

S6B_111561002 Fe Nucleic acid binding DNA integration TRIAE_CS42_6BL_TGACv1_500432_AA1604470 

S7B_117334234 B Nucleic acid binding / zinc ion binding  No reported  TRIAE_CS42_7BL_TGACv1_582804_AA1918670 

S1A_373360656 Fe Nucleic acid binding DNA integration TRIAE_CS42_1AL_TGACv1_000455_AA0012460 

S1A_376790586 Fe Nucleic acid binding DNA integration TRIAE_CS42_1AL_TGACv1_000070_AA0002290 

S1A_379438389 Fe 

Nucleic acid binding / RNA - DNA 

Hybrid ribonuclease activity DNA integration TRIAE_CS42_1AL_TGACv1_000024_AA0000740 

S7D_528997111 Zn 

Nucleic acid binding / RNA - DNA 

Hybrid ribonuclease activity DNA integration TRIAE_CS42_7DL_TGACv1_603035_AA1974270 

SUN_334466963 Al Nucleic acid binding / zinc ion binding  No reported  TRIAE_CS42_U_TGACv1_669171_AA2155140.1 

SUN_334466979 Al Nucleic acid binding / zinc ion binding  No reported  TRIAE_CS42_U_TGACv1_669171_AA2155140.2 

S7B_5745497 P 

Nucleic acid binding / RNA - DNA 

Hybrid ribonuclease activity DNA integration TRIAE_CS42_7BL_TGACv1_576794_AA1855180 
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Table 4. Very significant (p < 0.0005) and significant (p < 0.001) MTA identified on the 240 

lines of the association mapping panel. Data from Stuttgart, AR 2013 (ST13), AR 2014 (ST14) 

and St. Joseph, LA 2013 (SJ13) and LA 2014 (SJ14). 

Very significant and consistent p < 0.0005      

SNP Trait Environment 

P. 

value MAF R2 a Allelic Effect b 

S6B_309688673 Ca SJ13 3.2E-05 0.07 0.23 -0.03 

  SJ14 1.7E-04 0.06 0.11 -0.03 

S6B_309688674 Ca SJ13 3.2E-05 0.07 0.23 -0.03 

  SJ14 1.7E-04 0.06 0.11 -0.03 

S7D_579146731 Na SJ13 5.8E-05 0.06 0.13 38.33 

  SJ14 2.3E-04 0.06 0.15 22.84 

S1A_379438389 Fe SJ14 4.5E-04 0.40 0.08 11.34 

  ST13 2.6E-04 0.40 0.10 -0.01 

S1A_372238511 Fe SJ14 3.3E-04 0.41 0.08 11.65 

  ST13 2.2E-04 0.41 0.10 -0.01 

S1A_376790586 Fe SJ14 2.5E-04 0.40 0.08 11.86 

  ST13 4.7E-04 0.40 0.10 -0.01 

S1A_373360656 Fe SJ14 2.1E-04 0.40 0.08 12.01 

  ST13 3.3E-04 0.40 0.10 -0.01 

S1A_373812006 Fe SJ14 2.0E-04 0.41 0.08 12.17 

  ST13 2.9E-04 0.40 0.10 -0.01 

S1A_375844331 Fe SJ14 1.5E-04 0.41 0.09 12.27 

  ST13 4.7E-04 0.40 0.10 -0.01 

S1A_382337060 Fe SJ14 1.1E-04 0.41 0.09 12.57 

  ST13 3.6E-04 0.41 0.10 -0.01 

S1A_373846553 Fe SJ14 1.1E-04 0.40 0.09 12.55 

  ST13 5.0E-04 0.40 0.10 -0.01 

S1A_380869075 Fe SJ14 7.3E-05 0.41 0.09 12.95 

  ST13 4.0E-04 0.41 0.10 -0.01 

S1B_599660615 Na ST13 1.7E-05 0.18 0.17 165.84 

  SJ14 1.0E-04 0.18 0.16 14.76 

S5B_588714935 Na ST13 1.5E-04 0.09 0.15 197.80 

  SJ14 3.9E-04 0.09 0.14 18.06 

S5B_588714936 Na ST13 1.5E-04 0.09 0.15 197.80 

  SJ14 3.9E-04 0.09 0.14 18.06 

S7D_528997111 Zn ST13 2.2E-05 0.11 0.13 1.97 

  SJ14 1.2E-05 0.11 0.21 1.08 

S1B_683422400 Zn ST13 1.9E-05 0.11 0.13 1.94 

  SJ14 4.6E-05 0.11 0.20 0.97 

S7B_567704027 Zn ST13 1.8E-05 0.11 0.13 1.99 

  SJ14 4.7E-04 0.11 0.18 0.86 

S7B_568012679 Zn ST13 1.8E-05 0.11 0.13 1.99 

  SJ14 4.7E-04 0.11 0.18 0.86 

SUN_334466963 Al SJ14 3.3E-05 0.05 0.10 13.60 

  ST14 3.4E-05 0.05 0.10 35.90 

SUN_334466979 Al SJ14 3.3E-05 0.05 0.10 13.60 

  ST14 3.4E-05 0.05 0.10 35.90 

SUN_221478096 Al SJ14 2.3E-04 0.05 0.08 14.90 

  ST14 1.9E-04 0.05 0.17 214.72 

S5A_3619242 Fe ST14 3.0E-04 0.10 0.08 21.16 

  ST13 3.6E-04 0.10 0.11 1.64 
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Table 4 (Cont.). Very significant (p < 0.0005) and significant (p < 0.001) MTA identified on 

the 240 lines of the association mapping panel. Data from Stuttgart, AR 2013 (ST13), AR 

2014 (ST14) and St. Joseph, LA 2013 (SJ13) and LA 2014 (SJ14). 
 

SNP Trait Environment P. value MAF R2a Allelic Effect b 

 Significant and consistent p < 0.001  

S1A_302553240 Na SJ14 9.2E-04 0.08 0.14 18.43 

  ST13 8.1E-04 0.08 0.14 187.63 

S3A_720852820 Na SJ14 5.3E-04 0.06 0.14 18.87 

  ST13 6.2E-04 0.06 0.14 189.26 

S3B_50499819 Mg SJ13 9.5E-04 0.06 0.13 0.01 

  SJ14 5.6E-04 0.06 0.09 0.01 

S6D_466814084 K SJ14 7.7E-04 0.23 0.16 0.10 

  ST13 5.6E-04 0.23 0.11 -0.11 

S6D_466814117 K SJ14 7.7E-04 0.23 0.16 0.10 

  ST13 5.6E-04 0.23 0.11 -0.11 

S7B_564915089 Zn SJ14 8.1E-04 0.19 0.18 0.72 

  ST13 5.6E-04 0.19 0.10 1.35 

S7B_564915141 Zn SJ14 8.1E-04 0.19 0.18 0.72 

  ST13 5.6E-04 0.19 0.10 1.35 

S7B_5745497 P ST13 8.8E-04 0.46 0.09 0.01 

    ST14 6.9E-04 0.46 0.11 0.01 
a Reflect the phenotypic variation explained by the marker, R2 of the model with SNP calculated 

in GAPIT package in R 
b Allelic effects with respect to the minor allele 
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A. ST13           B. ST14     

 

                  
   

C. SJ13           D. SJ14 

                  
 

Figure 1. PCA bi-plots of the genetic correlation of micro and macronutrient concentrations 

across different site-years for the soft winter wheat association panel (AP). A. ST13: Stuttgart, 

AR 2013; B. ST14: Stuttgart, AR 2014; C. SJ13: St. Joseph, LA 2013; D. SJ14: St. Joseph, LA 

2014. 

      

   



76 
 

 

 

 

 
 

 

Figure 2. Population structure based on 240 genotypes and 92,916 SNP markers. Each colored 

region represents a subpopulation.  
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Figure 3. Manhattan plot showing genome-wide SNP loci associated with [Fe] in ST13 under a  

K-Q model. Horizontal line represents the significant threshold by which markers were  

considered associated with a trait (p < 0.00001; ~5.0). 
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Abstract 

Waterlogging is a major constraint to global wheat (Triticum aestivum L.) production as it 

disrupts physiological processes such as photosynthesis, respiration and carbohydrate 

metabolism, resulting in an energy crisis that impacts yield production. The identification of 

genes, gene networks and biological crosstalk of different stress pathways is required for a 

holistic approach to crop improvement. RNA-seq analysis was used to evaluate the gene 

expression of two wheat genotypes under waterlogged and non-waterlogged conditions. Two 

“iconic” US soft red winter wheat cultivars, ‘Pioneer Brand 26R61’ and ‘AGS 2000’ were 

subjected to waterlogging stress 24 days after sowing at the tillering stage, in a growth chamber 

and plant leaf tissue samples were collected after 24 hours of stress imposition. RNA-seq 

analysis was carried out using 2x100 bp paired-ends sequencing on the HiSeq2500 platform. 

Around 300 million pair-end sequence reads were generated, covering approximately 16 Gb of 

the wheat transcriptome. In total around 60,414 CDS were obtained for AGS200 and 26R61, 

respectively and 58,753 expressed genes were observed across both cultivars and treatments. 

Gene annotation was successful for 117 significantly expressed genes. These genes were 

associated with oxidation-reduction reactions, photosynthesis/light reaction, metabolism, 

thiamine biosynthetic process and carbohydrate metabolic. Transcript levels of the genes 

Traes_5BL_56C52F2D9.1, Traes_2AL_6F3A92BF2.1 and Traes_5DS_7FD4F7284.1 were 

confirmed using qRT-PCR.  
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Introduction 

Waterlogging (WL) is a significant constraint to wheat production (Ding et al. 2018) and 

changes in precipitation patterns due to global climate change have resulted in a higher 

frequency of this stress during crop growing seasons (Bailey-Serres et al. 2012; Tamang and 

Fukao 2015). The development of new tolerant wheat varieties is vital to meet future production 

demands (Herzog et al. 2016). Soil waterlogging results in anoxia and hypoxia due to decreased 

availability of soil oxygen (Ponnamperuma 1972). This reduction in oxygen impairs gas 

diffusion and increases production of toxic micro and macro elements available for plant uptake 

(Setter et al. 2009). This results in changes at the molecular and metabolic levels in the plant to 

suppress damage resulting from an energy crises due to a reduction in the production of 

adenosine triphosphate (ATP) (Gupta et al. 2009). 

Abiotic stresses trigger plant adaptive strategies through modification of cellular and 

molecular processes that lead to changes in growth and development and (Ahuja. et al. 2010). 

These modifications are accompanied by modifications in gene expression and protein and 

metabolite production (Bokhari et al. 2007; Chae et al. 2009; Urano et al. 2009). Klok et al. 

(2002) observed complex responses in gene expression due to low oxygen levels in Arabidopsis 

(Arabidopsis thaliana), with genes involved in nitrogen metabolism, including nitrate reductase, 

glutamate dehydrogenase and glutamate decarboxylase being overexpressed. Similarly, in the 

analysis of Arabidopsis and rice (Oryza sativa L.) transcriptomes a change in the expression of 5 

to 10% of the total genes evaluated was observed as a result of low oxygen conditions (Klok et 

al. 2002; Lasanthi-Kudahettige et al. 2007). Ethylene accumulation in plant tissues under WL 

conditions has been associated with WL tolerance in rice by inducing gene expression, including 

the Submergence 1 locus (SUB1) (Xu et al. 2006) which reduces plant growth rate and the 



86 
 

snorkel (SK) (Hattori et al. 2009) locus which increases stem elongation rate, thus avoiding total 

plant submergence. Overall, genes expression is dependent on the type, duration and severity of 

the stress (Mahajan and Tuteja 2005). 

 RNA sequencing (RNA-seq) allows for both discovery and gene quantification in a single 

experiment (Conesa et al. 2016) (Adams et al. 1991). RNA-Seq analysis can be applied in both 

organisms with well-annotated genomes through direct mapping of sequences, or using a de novo 

approach in which contigs are assembled and then mapped to the transcriptome (Conesa et al. 

2016). Chen et al. (2016) evaluated differentially expressed genes (DEG) of soybean plants 

under drought and waterlogging conditions and found down regulation of genes involved in 

photosynthetic and chlorophyll synthesis under both stresses. Du et al. (2017) used bulked 

segregant RNA and found 431 DEGs under waterlogging stress in maize (Zea mays L). In 

addition, GRMZM2G055704 was identified as a candidate gene on chromosome 1 where a 

previous QTL associated with waterlogging tolerance was reported. Bhardwaj et al. (2015) 

evaluated gene regulation under heat and drought conditions in Brassica juncea seedlings, 

identifying more than 97,000 transcripts of which 19,000 were differentially regulated and 

associated with different metabolic pathways such as purine metabolism, amino sugar and 

nucleotide sugar metabolism and lipopolysaccharide biosynthesis.  

Despite of the impact of waterlogging stress on wheat production, there are few studies 

evaluating the molecular basis and gene networks of the waterlogging stress response in wheat. 

The objective of this study was to evaluate the wheat transcriptome response under waterlogged 

and non-waterlogged conditions in two “iconic” varieties of soft red winter wheat adapted to the 

southeastern US, an area prone to annual soil waterlogging. Our results provide new insights into 
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wheat’s response to waterlogging stress and will aid in future wheat improvement through a 

better understanding of the gene networks involved.  

Materials and methods 

Plant material and experimental design 

Wheat cultivars ‘Pioneer Brand 26R61’ and ‘AGS 2000’ were evaluated under growth chamber 

soil waterlogging and non-waterlogging conditions. Evaluation of these cultivars under field 

waterlogging stress, as reported in Chapter 2 of this dissertation, showed AGS200 to have lower 

elemental accumulation and higher yield components compared to Pioneer 26R61. For the WL 

stress, cultivars were sown in a sandy loam soil (56.9% sand, 37% silt, and 6.1% clay ) at five 

seeds per 1.65 liter tree pot (10 cm wide x 24 cm tall) and the pots were placed in 50 liter plastic 

tubs. The growth chamber was maintained at an average temperature of 20°C/18°C day/night 

cycle with 16 hour days and a light intensity of 600 mmol m-2 s-1 PAR. A waterlogging (WL) 

treatment was applied 22 days after sowing to waterlogging Pioneer 26R61 (WP) and 

waterlogging AGS200 (WA) cultivars. Control plants from Pioneer 26R61 (CP) and AGS200 

(CA) were maintained in plastic tubs with no waterlogging (non-WL) treatment to maintain 

normal growth conditions. Plant leaf tissue was collected 24 hours after stress imposition as it 

has been shown that a reduction of root oxygen level and thus gene expression by WL conditions 

begins after four hours of stress imposition (Christianson et al. 2009). Moreover, ATP levels at 

cellular level can be reduced by 50% after two hours of low oxygen (Branco‐Price et al. 2008). 

Immediately after collection, plant tissues were placed in liquid nitrogen and stored in -80 ºC.  
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RNA isolation and cDNA synthesis 

Total leaf RNA was extracted using the RNeasy Plant Mini Kit (Qiagen, CA). After sample 

quantification, 1 ug of total RNA of the four samples with one replication for each treatment was 

used to synthesize cDNA using the Reverse transcription System (Promega, WI).  

Sequences of housekeeping primers were obtained from Christianson et al. (2009) for ADH2BF 

(gac ctc tac ctt cag cga gta) and ADH2BR (gag ata cca cag ctg aga acac) and Tenea et al. 

(2011) for primers Hous1 (cac cgg ccc agt gat ctt) and Hous1R (aag ggc gtc tgc tcc aact).  

Quantitative real-time PCR was performed using the GoTaq qPCR Master Mix (Promega, WI).  

using program conditions  95 °C for 2min; 39 cycles of  95 °C  for 15 sec, 59 °C  for 1min; 65 

°C for 1min and 95 °C for 5 sec. RNA integrity and quantification was performed using the Bio-

rad Experion System (Bio-rad Laboratories, Inc. Hercules, CA). 

Sample sequencing and assembly 

After RNA quantification, a validation was conduction on the Agilent Bioanalyzer 2100 (Agilent 

Technologies, Waldbronn, Germany). Eight total samples consisting of two replications of non-

waterlogging conditions (control) and two waterlogging condition (stress) from each cultivar 

were sent to the Research Technology Support Facility at Michigan State University where 

libraries were prepared using the Illumina TruSeq Stranded mRNA Library Kit (LT). After 

validation and quantitation the libraries were pooled and loaded on one lane of an Illumina 

HiSeq 2500 Rapid Run flow cell (v1) (Illumina® San Diego, CA). Sequencing was carried out in 

a 2x100bp (PE100) format using Illumina Rapid SBS reagents. Base calling was done by 

Illumina Real Time Analysis (RTA) v1.17.21.3 and output of RTA de-multiplexed and 

converted to FastQ format with Illumina Bcl2fastq v1.8.4. Around 298,360,064 million pair-ends 

read were obtained from RNA sequencing under waterlogging and non- waterlogging conditions 
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combining both long reads (200 bp) and high coverage (3.8 million reads, reaching a total of 

1,369 megabases). Data was read using Bowtie2 (Langmead and Salzberg 2012). Coding 

sequences (CDS) from the Tritium aestivum genome consortium IWGSP version 1.23.cdna were 

used to create an index file to map the RNA-seq reads. The reads were parsed and counted based 

on CDS tags divided by length of the CDS to reads per kilobase of transcript per million mapped 

reads (RPKM). Alignment data was then filtered and CDS with only 10 or more reads were used 

for analysis. In addition, annotated genomes (A, B and D) of T. aestivum coding sequences 

(CDS) from the database EnsemblPlants were used as a reference genome for data alignment 

using SAMtools (Li et al. 2009).  

Gene Validation 

Validation of the selected reads was performed using quantitative real-time PCR (qRT-PCR). 

Six significant annotated CDS were chosen for gene validation and primer design was performed 

using the PrimerQuest Tool (www.idtdna.com/PrimerQuest/Home/Index). Samples for qRT-

PCR were prepare following the protocol from GoTaq qPCR Master Mix (Promega) where 1 μL 

cDNA (100ng/ul), 0.5 μL (10 μM) reverse primer, 0.5 μL (10 μM) forward , 5ul of GoTaq 

Maxter Mix and 3uL of ddH2O for a 10uL reaction were used.  Amplification was done using the 

Bio-Rad CFX96 Real Time PCR System (Bio-Rad Laboratories, Inc., Hercules, CA, USA). 

Reaction conditions for thermal cycling were: 95 °C for 2min; 39 cycles of  95 °C  for 15 sec, 59 

°C  for 1min; 65 °C for 1min and 95 °C for 5 sec, followed by a melt-curve analysis to confirm 

single PCR product amplification. Analysis of the data was performed using the CFX Manager 

V.1.5 software. Gene expression calculation was done as described by Livak and Schmittgen 

(2001) where cycle threshold (CT) values are calculated to detect and quantify fluorescent signal. 

CT values were calculated as follows,  
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ΔCT control (non-WL) = [CT value control– (CT internal control (housekeeping genes)), and  

ΔCT stress (WL) = [CT value stress– (CT internal control (housekeeping genes)) 

ΔΔCT = [ΔCT stress (WL) − ΔCT control (non-WL].  

Relative gene expression (Y) = Y (Individual sample) = 2 (-ΔΔCT) 

Results 

Total number of transcripts and CDS identified 

Using the 2x100 bp paired end sequencing, approximately 300 million pair end reads were 

generated, which covered approximately 16 Gb of the wheat transcriptome. After alignment with 

the Chinese spring wheat (Triticum aestivum L.) genome available in the EnsemblPlants, a total 

100,717 CDS were identified. After data filtering for CDS with ten or more reads 64,911 and 

60,414 CDS were obtained for AGS200 and 26R61, respectively. A similar number of expressed 

genes were observed across treatments and cultivars, CA (63,616), CP (62,745), WA (64,745) and 

WP (65280). (Fig. 1). The number and distribution of CDS were consistent with those reported in 

the Triticum aestivum L. database EnsemblPlants, with the largest number of CDS reported for the 

Group 2 chromosomes and the lowest on the Group 1 and Group 6.  

Gene expression  

A total of 58,753 expressed genes were observed across both cultivars and treatments (Fig. 2). 

Waterlogging stress when compared with non WL resulted in an increase of 1129 and 2535 

differentially expressed genes (DEG) in AGS200 and 26R61, respectively. Under WL 

conditions, the greatest number of expressed genes was observed for 26R61 with 1824 expressed 

genes compared with 1085 for AGS2000. Based on a level of expression of  ≤ -2.0 or ≥ 2.0, 1020 

genes were determined to be significantly expressed under waterlogging stress in 26R61 with 
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447 and 576 genes repressed and induced, respectively. Likewise, 554 genes were significantly 

expressed in AGS200, with 301 and 254 genes being repressed and induced, respectively.  

Gene Annotation 

Gene ontology identified 3142 and 3086 gene annotations for AGS200 and 26R61, respectively, 

or approximately 5% of the total CDS assembled in this study have a reported molecular or 

biological function. Cytosine-specific methyl transferase was regarded as the molecular function 

with most number of CDS at 247 (Fig. 3). On the other hand, the top five biological upregulated 

processes with most number of CDS were oxidation-reduction reaction, photosynthesis/light 

reaction, metabolism, thiamine biosynthetic process and carbohydrate metabolic (Fig. 4). Only 

117 of the significantly expressed genes had functional annotation, including twenty-six for 

AGS200 (Table 1) and 91 for 26R61 (Table 2). Annotation hits included ribosomal proteins, 

cytochrome b6, HistoneH2A, serine/threonine protein kinases and eukaryotic factor translation 

initiation factor (Table 2). 

Gene validation 

To validate the results of RNA-seq, six annotated and significantly expressed genes were chosen 

for quantitative real-time PCR (qRT-PCR). These included Traes_2AL_6F3A92BF2.1, 

Traes_5DS_7FD4F7284.1, Traes_4AL_CC989B4A5.1 for AGS200 and 

Traes_5BL_D526A626E.2, Traes_5BL_56C52F2D9.1 and Traes_2AL_520618712.1 for 26R61. 

(Table 3). Relative expression was in agreement for three of the six genes, with the other three 

showing non-amplification. Traes_5BL_56C52F2D9.1, which has an annotated function as 

ribulose bisphosphate carboxylase small chain reactions showed higher expression under non-

WL condition. Similarly, an increase of one fold was observed for Traes_2AL_6F3A92BF2.1 

annotated as a non-specific lipid-transfer protein in cultivar 26R61. Under WL conditions an 
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increase of almost five fold was observed for Traes_5DS_7FD4F7284.1, which is a potential 

phosphoglycerate kinase (PGK). 

Discussion 

CDS identified and RNA-seq validation 

We evaluated two winter wheat cultivars under WL and non-WL conditions using RNA-seq to 

identify differentially expressed genes. A total of 100,117 CDS were assembled and were in 

agreement in terms of distribution with those reported in the database EnsemblPlants. Results 

from RNA-transcriptome assembly were in agreement with RNA-seq results confirming the 

correct assembly of the transcriptome. 

Gene Expression and annotation 

Gene annotation has been improved for model crops, however annotation accuracy continues to 

be a difficult task, even for genes sequences present across species for which a function has not 

yet been characterized (Bolger et al. 2018). For example, although it is one of the most well 

annotated genomes, around 20% of Arabidopsis genes have not been experimentally 

characterized (TAIR, http://arabidopsis.org). Hexaploid wheat, consisting of three genomes and 

around 80% of the genome being repetitive sequences (Moore et al. 1995) poses many 

challenges for successful gene annotation.  Despite the recent release of a complete draft wheat 

genome, a high quality gene annotation has not yet been produced (Clavijo et al. 2017).   

In this study, gene annotations were available for 6,228 of the 58,000 expressed genes in 

this study. This included 3142 and 3086 for AGS200 and 26R61 respectively. Under WL 

conditions cultivar 26R61 presented a higher number of expressed genes compared to AGS2000. 

Several sequences were found to be present on several chromosomes but not in the specific 

chromosome were the CDS was sequenced, pointing out the repetitive gene sequences in the 
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wheat genome. Nevertheless, we were able to identify important CDS associated with key 

molecular and biological processes involved in the response to abiotic stress. For example, 

cytosine-specific methyl transferase was the molecular function commonly identified across 247 

CDS. DNA methyltransferases regulate epigenetic expression in plants, catalyzing the 

methylation of the cytosine DNA residues. In addition, they regulates the chromatin structure in 

plants which determines plant adaptation under environmental factors (Wada 2005) and gene 

expression during plant development (Finnegan and Kovac 2000). In rice, suppression of genes 

associated with cytosine DNA methyltransferases was observed in response to cold and salt 

stress (Rita et al. 2009). Similar results were obtained by Steward et al. (2002) in which an 

interaction was observed between chromatin elements and DNA methylation. Additionally, 

modification of DNA methylation levels were observed in cotton (Gossypium hirsutum) under 

cold stress conditions (Fan et al. 2013).  

Serine/Threonine proteins are phosphorylation proteins involved in the regulation of 

adaptive stress, for which studies showing their functionality in plant adaptation under cold 

(Vazquez-Tello et al. 1998), drought (Yu et al. 2003) and biotic (MacKintosh et al. 1994) 

stresses have been reported, although not yet shown for waterlogging stress. 

PGK which is part of the glycolytic and fermentation pathway was shown to be 

upregulated under WL (Alam et al. 2010; Kosová et al. 2011). Similarly Qi et al. (2012) 

observed an increase in transcript number of this enzyme under waterlogging conditions in 

cucumber (Cucumis sativus L.). However, contrasting results were observed by Gu et al. (2011) 

in which evaluation of Chrysanthemum L. found stable expression of this gene under control and 

stress (heat and waterlogging) conditions. On the other hand, down regulation of ribulose 

bisphosphate carboxylase (RUBISCO) which fixes carbon dioxide during photosynthesis and 
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uses oxygen during photorespiration was observed and is in agreement with Sage et al. (1988) 

who observed a decrease of RUBISCO activity in response to accumulation of carbon dioxide 

which has been shown to increase under flooding conditions (Yasuo et al.1956). Finally, non-

specific lipid-proteins are present in a high amount in plants have been associated with resistance 

to abiotic stress (Liu et al. 2015) and play an important role in membrane stabilization (Hincha et 

al. 1997).  

 Around 306 CDS were associated with ribosomal proteins, however, gene expression was 

not consistent, showing significant fold-change in both upregulated (7.37) and downregulated  

(-5.76) genes. Ribosomal proteins are involved in protein synthesis, playing a key role in plant 

metabolic processes, cell division, plant growth and stress response/tolerance (Whittle and 

Krochko 2009, Saha et al. 2017). In addition, as being part of the cytoplasmic ribosomal 

structure, around 80 ribosomal proteins and 249 genes have been associated with their expression 

in Arabidopsis (Barakat et al. 2001). Evaluating maize under abiotic stress (UV-B) Falcone 

Ferreyra et al. (2010) observed a suppression of these proteins, affecting several processes such 

as growth and development and a reduction in productivity. In soybean (Glycine max) down 

regulation of these proteins was observed under flooding (Oh et al. 2014b) but an increase when 

soybean roots were exposed to exogenous calcium under flooded conditions, affecting protein 

synthesis and degradation, cell wall integrity, DNA synthesis and hormone metabolism (Oh et al. 

2014a).  

Conclusion  

This study is a global evaluation of gene expression under waterlogging stress and is resource for 

identification of tolerant genes under waterlogging stress. One hundred and seventeen CDS were 
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associated with key biological processes associated with responses to abiotic stresses and serve 

as targets for the development of waterlogging tolerant wheat lines. 
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Table 1. Significant differentially expressed genes evaluated in cultivar AGS2000 under 

waterlogging vs. non-waterlogging conditions. 

Upregulated     

CDS Annotation Fold change 

Traes_2DL_3B2B9300C.1 GrpE protein homolog 2.39 

Traes_5DS_4F07516F7.1 30S ribosomal protein S15, chloroplastic 2.37 

Traes_2AL_DB64E18A1.1 Ribulose bisphosphate carboxylase small chain 2.35 

Traes_1AL_93E51B797.1 Ribosomal protein S7 2.30 

Traes_2DL_6E8EAFA1D.1 

4-hydroxy-tetrahydrodipicolinate synthase 2, 

chloroplastic 2.16 

Traes_1DS_F3F7B8AFE1.6 30S ribosomal protein S3, chloroplastic 2.11 

Traes_2BL_C433BB333.3 Cytochrome b6-f complex subunit 6 2.08 

Traes_2DL_1F24E4FF8.1 Reticulon-like protein 2.05 

Traes_7DS_CCFC4F086.1 Ribonucleoside-diphosphate reductase 2.03 

Downregulated    

CDS Annotation Fold change 

Traes_2AL_6F3A92BF2.1 Non-specific lipid-transfer protein -3.53 

Traes_5DS_3186C8F7D.1 50S ribosomal protein L20, chloroplastic -3.40 

Traes_5DS_7FD4F7284.1 Phosphoglycerate kinase -3.21 

Traes_6DL_878B1A04B.1 Phosphoglycerate kinase -2.51 

Traes_3AL_655060842.1 50S ribosomal protein L20 -2.45 

Traes_5AS_7D519210E.2 Eukaryotic translation initiation factor 3 subunit C -2.39 

Traes_6DL_2EC6B5AB9.1 30S ribosomal protein S18, chloroplastic -2.34 

Traes_4DS_DBAA2CC451.2 

30S ribosomal protein S11, chloroplastic\x3b 

DNA-directed RNA polymerase subunit alpha -2.28 

Traes_2AL_63B2E5BC2.1 30S ribosomal protein S15 -2.14 

Traes_2BL_B877F41B8.1 Actin-related protein 2/3 complex subunit 5 -2.11 

Traes_1DS_1360CF476.1 40S ribosomal protein S8 -2.10 

Traes_4AL_0D6C3F8F2.2 30S ribosomal protein S18, chloroplastic -2.06 

Traes_3B_21DEF07D2.2 Pyruvate kinase -2.05 

Traes_4AL_A0BA8C598.1 DNA-directed RNA polymerase -2.03 

Traes_7AS_BF53A95BA.1 Auxin response factor -2.01 

Traes_1AS_C9FF7774B.2 TATA-box-binding protein 1 -1.99 

EPlTAET00000009103 Metazoan signal recognition particle RNA -1.96 
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Table 2. Significant differentially expressed genes evaluated in cultivar pioneer 26R61 

under waterlogging vs. non-waterlogging conditions. 
Upregulated     

CDS Annotation Fold change 

Traes_3B_DDA4A7673.1 30S ribosomal protein S15 7.37 

Traes_1DL_DBAFFE190.1 Cytochrome c biogenesis protein CcsA 6.24 

Traes_3B_C7A224494.1 Serine/threonine.protein kinase 4.75 

Traes_2AS_86E424632.1 Eukaryotic translation initiation factor 3 subunit H 4.38 

Traes_7DS_CCFC4F086.1 Ribonucleoside.diphosphate reductase 3.54 

Traes_7AS_B4593FBFF.1 Profilin 3.45 

Traes_1BS_7C71DA159.1 DNA topoisomerase 3.35 

Traes_5DL_9BF4A2140.2 Photosystem II reaction center protein K 3.30 

Traes_3B_2D34DA636.2 Peptidyl.prolyl cis.trans isomerase 3.20 

Traes_4DL_496B8485B.2 Proteasome subunit beta type 3.16 

Traes_3DL_E2C3A375E.1 

30S ribosomal protein S4, chloroplastic\x3b 

Rps4\x3b Rps4 protein 3.16 

Traes_7BL_8C6B85F0D1.1 Histone H2A 3.08 

Traes_4DL_ABAB935A7.1 50S ribosomal protein L22, chloroplastic 3.04 

Traes_4BL_47A020E26.1 

BEL1.type homeodomain protein\x3b 

Uncharacterized protein 3.02 

Traes_5BL_8112F0DD3.1 Ubiquitin.conjugating enzyme E2.23 kDa 2.99 

Traes_2BL_C433BB333.3 Cytochrome b6.f complex subunit 6 2.89 

Traes_1AL_8955C1103.2 60S ribosomal protein L36 2.81 

Traes_5AL_15765F705.1 Cytochrome b6 2.80 

EPlTAET00000006356 Plant signal recognition particle RNA 2.75 

Traes_6BS_9CDECE1A3.1 Histone H2A 2.73 

Traes_6BL_D4D9732C8.1 40S ribosomal protein S24 2.71 

Traes_7AS_10F2E60A8.1 Cytochrome b6 2.66 

Traes_1AL_55440EF31.1 Annexin 2.64 

Traes_5DL_BB2DEEC83.1 Histone H3 2.59 

Traes_7AL_BE3253C8F.1 ATP.dependent Clp protease proteolytic subunit 2.59 

Traes_5BL_56C52F2D9.1 Ribulose bisphosphate carboxylase small chain 2.58 

Traes_2AL_4572BEF15.1 Serine/threonine.protein kinase 2.58 

Traes_1AL_494A2BAD5.1 Non.lysosomal glucosylceramidase 2.56 

Traes_1AL_F4FE96E3B.1 Phenylalanine ammonia.lyase 2.54 

Traes_5DL_F8704A24F.2 Serine/threonine.protein kinase 2.48 

Traes_2BS_94F8EF65A.1 Histidinol dehydrogenase, chloroplastic 2.46 

Traes_1BL_5C78DBF62.1 Malic enzyme 2.44 

EPlTAET00000003949 Metazoan signal recognition particle RNA 2.42 

EPlTAET00000007936 Plant signal recognition particle RNA 2.42 

Traes_4BL_EEB40147B.2 DNA.directed RNA polymerase 2.37 

Traes_5AL_0506ABDA3.1 

NAD(P)H.quinone oxidoreductase subunit I, 

chloroplastic 2.36 

Traes_1DS_41690F527.1 Plasma membrane ATPase 2.36 

Traes_2AS_9AEA9BDEA.1 Serine/threonine.protein kinase 2.34 

Traes_6DS_273430303.2 rRNA N.glycosidase 2.33 

Traes_2AS_92497D630.1 Glutamate receptor 2.32 

Traes_3AL_D8A132EFA.9 Non.specific lipid.transfer protein 2.31 
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Table 2 (Cont.). Significant differentially expressed genes evaluated in cultivar pioneer 

26R61 under waterlogging vs. non-waterlogging conditions. 
Upregulated     

CDS Annotation Fold change 

Traes_6DL_8C0979724.2 Ribosomal protein L2\x3b Uncharacterized protein 2.27 

Traes_6AS_C4E616554.1 GrpE protein homolog 2.27 

Traes_4DS_F2FFC249F.1 Histone H2B 2.26 

Traes_5AL_96E30FD9B.1 Histone H2B 2.26 

Traes_4AL_E6438F411.2 Histone H2A 2.25 

Traes_3DL_8C6D663C5.1 Cytochrome c oxidase subunit 3 2.25 

Traes_1AL_096D3C715.1 Farnesyl pyrophosphate synthase A2 2.24 

Traes_2BL_F4B5C2D79.1 Cytochrome c oxidase subunit 3 2.23 

Traes_3AL_5FAA2CCB0.1 DNA.directed RNA polymerase 2.23 

Traes_2BS_209788B1B.1 Aldose 1.epimerase 2.22 

EPlTAET00000003839 Metazoan signal recognition particle RNA 2.21 

Traes_4DL_986C37E09.2 Cytochrome c oxidase subunit 1 2.21 

Traes_3AS_2CD6A2085.1 ATP synthase subunit a, chloroplastic 2.19 

Traes_3AL_09FA618C6.1 ATP synthase subunit 9, mitochondrial 2.18 

EPlTAET00000003933 Plant signal recognition particle RNA 2.16 

Traes_4AS_50F2C4B5D.1 30S ribosomal protein S19, chloroplastic 2.13 

Traes_7AL_8A07184BC.1 Catalase 2.12 

Traes_4DS_DBAA2CC451.2 

30S ribosomal protein S11, chloroplastic\x3b 

DNA.directed RNA polymerase subunit alpha 2.11 

Traes_2DL_47ACB537A.1 Auxin response factor 2.11 

Traes_3DL_C08B460B8.1 Malic enzyme 2.10 

Traes_2DL_1206EF3F9.1 Potassium transporter 2.09 

Traes_4BS_1DCF82CB7.1 

NAD(P)H.quinone oxidoreductase subunit 5, 

chloroplastic 2.08 

Traes_5AS_2BDDAC590.2 

BZip type transcription factor bZIP1\x3b 

Uncharacterized protein 2.08 

Traes_6BL_6977B343C.1 MYB33 2.08 

Traes_5AL_A041A47C4.1 Uridine kinase 2.05 

Traes_5DL_3675AE907.2 Cytochrome c oxidase subunit 1 2.04 

Traes_4AL_DECF2895B.1 Acyl carrier protein 2.03 

Traes_7BS_1F4C5C328.1 Profilin 2.03 

Traes_4DS_F5C4EA98C.2 

NAD(P)H.quinone oxidoreductase subunit K, 

chloroplastic 2.03 

Traes_2AS_B2D2323BC.1 

NAD(P)H.quinone oxidoreductase chain 4, 

chloroplastic 2.02 

Traes_4DL_319790D4E.1 3.ketoacyl.CoA synthase 2.01 

Downregulated      

CDS Annotation Fold change 

Traes_2AS_2FBCA527B.2 Serine/threonine.protein kinase -7.24 

Traes_5DS_3186C8F7D.1 50S ribosomal protein L20, chloroplastic -5.76 

Traes_5DS_7FD4F7284.1 Phosphoglycerate kinase -5.32 

Traes_1BS_71EBCA90B.1 Beta.galactosidase -4.63 

Traes_3AS_373FCB7E9.1 Tubby.like F.box protein -2.72 
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Table 2 (Cont.). Significant differentially expressed genes evaluated in cultivar pioneer 

26R61 under waterlogging vs. non-waterlogging conditions. 
Downregulated     

CDS Annotation Fold change 

Traes_6BS_6F8B79003.2 Galactosyltransferase\x3b Uncharacterized protein -2.46 

Traes_6DS_2F77E1434.1 Eukaryotic translation initiation factor 3 subunit A -2.44 

Traes_7DL_BD41F4558.1 Xyloglucan endotransglucosylase/hydrolase -2.41 

Traes_3B_ADCF93AE0.4 Eukaryotic translation initiation factor 3 subunit L -2.32 

Traes_1AL_F1BBE97D5.1 

Actin.depolymerizing factor 7\x3b 

Uncharacterized protein -2.31 

Traes_2AS_352D59E22.1 Protein H2A.7 -2.27 

Traes_6BL_5C168B1DD.1 MATE efflux family protein -2.27 

Traes_2DS_2E5286F5D.1 Cytosine.specific methyltransferase -2.23 

Traes_4AL_F86AA1EB8.1 DNA topoisomerase -2.18 

Traes_2AL_5E24D615B.1 Pyruvate kinase -2.14 

Traes_5AL_DCEF8DEFD.1 Mitochondrial Rho GTPase -2.04 
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Table 3. CDS used for gene validation and marker sequences used for qRT-PCR. 

Candidate Genes            Primer Forward            Primer Reverse 

Traes_2AL_6F3A92BF2.1 CCAAGGGTCTCGTTGTGTT GGCCTTAGTCTCTTCCTTCTTG 

Traes_5DS_7FD4F7284.1 CAGGGAGGGCTTTGTAGATATTC GGTTTCCTTGGTCTCCATCAT 

Traes_4AL_CC989B4A5.1 TAGTGCAATTCAGAGCAGAGG CACCGCAACAACAACAAGAG 

Traes_5BL_D526A626E.2 GAACAATCGGACCTGGGAAA GCTGGTGACTCCTCAACATAC 

Traes_5BL_56C52F2D9.1 GCCGTTCATCCTATCACTTCA CACGATTCCAATTCCAAGTTCTC 

Traes_2AL_520618712.1 GACTAGCCGTTCGGTGTATAAAT  AGCTTCTTGCAGACCTTAGC  
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Figure 1. Four way Venn diagram with the distribution of differentially expressed genes across 

all pairwise comparisons. The number within each shaded area is the number of differentially 

expressed genes common in each compared treatments; CP: control pioneer 26R61; WP: 

waterlogging pioneer 26R61: CA: Control AGS2000; WA: Waterlogging AGS2000.  
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Figure 2. CDS distribution of the seven wheat chromosomes compared with the data base 
Triticum aestivum L. in the data base EsemblPlants. AA: A genome; BB: B genome; DD: D 

genome; A: AGS2000 and P: Pioneer 26R61. 

 

 

 

 

 

 

 

0

2

4

6

8

10

12

14

16

18

AA  long AA  short BB  long BB short DD  long DD  short

N
u
m

b
er

 o
f 

C
D

S
 (

th
o

u
sa

n
d

s)



103 
 

 

Figure 3. GO result showing the top ten biological processes with the most number of CDS 

observed under waterlogging conditions and with data from both cultivars AGS2000 and 

P26R61. 
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Figure 4. Distribution of gene ontology (GO) biological processes of upregulated CDS in 

cultivars AGS2000 and pioneer 26R61 under waterlogging conditions. 
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Over-all conclusions 

A cross-validation approach was performed to evaluate micro and macronutrient concentrations 

in 240 winter wheat lines to determine model accuracy. Moderate to high prediction accuracies 

were obtained for Ca, K, Mg, S, Mn, Na and Zn indicating that the model developed could be 

implemented in the Wheat Breeding Program at the University of Arkansas to identify tolerant 

lines without costly and laborious phenotypic evaluation. Additionally, a genome wide 

association analysis was performed identifying genomic regions associated with elemental 

concentrations. Aluminum and iron concentrations were shown to be positive correlated in all 

environments and negative correlated with kernel weight per spike. Therefore,  

multi-trait markers identified in this study are an important resource for line selection for 

different elemental toxicities for wheat improvement under waterlogging conditions. Finally, 

evaluation of gene expression was performed in two winter wheat cultivars using RNA-seq 

analysis. Identification of CDS associated with previously reported molecular and biological 

processes associated with abiotic stresses are reported. Gene annotation was shown to be an 

important limiting aspect for gene identification in this study. However, being one of the first 

studies evaluating the global wheat transcriptome under waterlogging conditions the CDS here 

identified could be used as candidate genes for wheat waterlogging stress. The three methods 

used here provide new information to understand different aspects of soil waterlogging stress and 

waterlogging stress tolerance and their application to wheat improvement.  

 

 

 

 

 

 

 



112 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

1
1
3

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary 1. Soil analyses results from Stuttgart, AR site using the Spectro Arcos ICP_OES analyzer. 

Site-

Year Treatment pH EC P K Ca Mg S Na Fe Mn Zn Cu B 

 Pre-WLST 5.51 77.00 24.75 160.00 1193.00 125.50 12.35 55.75 464.50 123.00 2.75 1.00 0.30 

ST13 Non-WL 5.49 109.50 20.60 130.87 1252.96 121.74 10.75 64.82 463.94 124.86 2.49 0.98 0.29 

 WL 5.30 131.50 24.77 161.90 1200.88 130.83 12.16 60.72 462.46 124.28 2.75 1.03 0.29 

ST14 Non-WL 5.22 91.00 21.15 97.84 1106.35 106.72 5.35 42.30 533.98 60.23 0.59 1.33 0.30 

 WL 5.30 142.00 21.81 142.24 1151.00 123.81 7.89 54.32 495.03 160.49 2.74 1.16 0.28 
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Supplementary 2. Highly significant (p < 0.00001), very significant and consistent (p < 

0.0005) and significant and consistent (p < 0.001) MTA identified on the 240 lines of the 

association mapping panel. Data from Stuttgart, AR 2013 (ST13), AR 2014 (ST14), Saint 

Joseph, LA 2013 (SJ13) and LA 2014 (SJ14). 

Highly significant < 0.00001             

SNP Trait Env Chr Position (bp) P. value MAF R2 a Allelic 

Effect b 

S1B_599416338 Na SJ14 1B 599416338 1.5E-08 0.22 0.23 20.45 

S1B_599652508 Zn ST13 1B 599652508 4.9E-07 0.05 0.16 3.66 

S1B_599652549 Zn ST13 1B 599652549 4.9E-07 0.05 0.16 3.66 

S1B_600641545 Na SJ14 1B 600641545 7.7E-07 0.24 0.20 16.86 

S1B_599772225 Na SJ14 1B 599772225 6.8E-08 0.23 0.22 19.02 

S1B_598061897 Na SJ14 1B 598061897 7.9E-08 0.23 0.22 19.08 

S1B_598092427 Na SJ14 1B 598092427 6.8E-08 0.22 0.22 19.38 

S1B_599772202 Na SJ14 1B 599772202 5.4E-08 0.23 0.22 19.47 

S1B_597999814 Na SJ14 1B 597999814 6.0E-08 0.22 0.22 19.61 

S1B_599660679 Na SJ14 1B 599660679 3.3E-08 0.22 0.22 19.68 

S1B_597722660 Na SJ14 1B 597722660 2.6E-08 0.22 0.23 20.15 

S1B_599660677 Na SJ14 1B 599660677 2.6E-08 0.22 0.23 20.15 

S1B_599652390 Na SJ14 1B 599652390 2.1E-08 0.23 0.23 20.15 

S1B_599759697 Na SJ14 1B 599759697 1.5E-08 0.22 0.23 20.42 

S1B_599772225 Na ST13 1B 599772225 6.9E-07 0.23 0.20 175.49 

S1B_599652390 Na ST13 1B 599652390 8.3E-07 0.23 0.20 177.09 

S1B_599772202 Na ST13 1B 599772202 7.7E-07 0.23 0.20 177.13 

S1B_599759697 Na ST13 1B 599759697 8.6E-07 0.22 0.20 177.29 

S1B_597999814 Na ST13 1B 597999814 9.7E-07 0.22 0.20 177.65 

S1B_599416338 Na ST13 1B 599416338 3.6E-07 0.22 0.20 183.89 

S1D_41196155 Fe ST13 1D 41196155 9.9E-07 0.06 0.12 152.54 

S7D_610181301 Fe SJ13 7D 610181301 1.1E-06 0.06 0.17 59.78 

S1B_599660679 Na ST13 1B 599660679 1.2E-06 0.22 0.19 172.93 

S7B_117334234 B SJ14 7B 117334234 1.3E-06 0.06 0.19 0.61 

S7B_117334235 B SJ14 7B 117334235 1.3E-06 0.06 0.19 0.61 

S1B_597722660 Na ST13 1B 597722660 1.4E-06 0.22 0.19 174.43 

S1B_599660677 Na ST13 1B 599660677 1.4E-06 0.22 0.19 174.43 

S1A_192014751 Fe ST13 1A 192014751 1.4E-06 0.07 0.11 153.44 

S1B_598061897 Na ST13 1B 598061897 1.6E-06 0.23 0.19 171.02 

S1B_600641545 Na ST13 1B 600641545 1.6E-06 0.24 0.19 165.04 

S1B_46140066  Fe SJ13 1B 46140066 1.9E-06 0.11 0.11 119.49 

S1B_46140047  Fe ST13 1B 46140047 2.0E-06 0.10 0.11 121.74 

S2A_612152711 Na ST13 2A 612152711 2.2E-06 0.05 0.19 315.79 

S2A_612152741 Na ST13 2A 612152741 2.2E-06 0.05 0.19 315.79 

S7D_610181301 Al SJ13 7D 610181301 2.5E-06 0.06 0.15 34.79 

S6B_111561002 Fe ST13 6B 111561002 2.9E-06 0.08 0.11 131.96 
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Supplementary 2 (Cont.). Highly significant (p < 0.00001), very significant and consistent 

(p < 0.0005) and significant and consistent (p < 0.001) MTA identified on the 240 lines of the 

association mapping panel. Data from Stuttgart, AR 2013 (ST13), AR 2014 (ST14), Saint 

Joseph, LA 2013 (SJ13) and LA 2014 (SJ14). 

Highly significant < 0.00001  

SNP Trait Env Chr Position (bp) P. value MAF R2 a Allelic 

Effect b 

S2B_77204516 S SJ14 2B 77204516 3.7E-06 0.34 0.22 0.01 

S1A_584433749 Zn SJ14 1A 584433749 4.3E-06 0.11 0.22 1.28 

S1B_598092427 Na ST13 1B 598092427 4.6E-06 0.22 0.18 164.66 

S3A_702519039 B SJ13 3A 702519039 6.2E-06 0.11 0.14 0.22 

S3B_546349156 P SJ14 3B 546349156 7.9E-06 0.14 0.19 0.02 

SUN_244556964 B SJ14 NA 244556964 8.0E-06 0.08 0.18 0.45 

S1A_176108383 Na SJ13 1A 176108383 8.1E-06 0.06 0.15 42.53 

S1A_176108439 Na SJ13 1A 176108439 8.1E-06 0.06 0.15 42.53 

S7B_568062247 Zn ST13 7B 568062247 9.1E-06 0.11 0.14 2.05 

S4D_238865033  Cu ST13 4D 238865033 9.9E-06 0.06 0.16 2.36 

S4D_238865041  Cu ST13 4D 238865041 9.9E-06 0.06 0.16 2.36 

Very significant and consistent p < 0.0005          

SNP Trait Env Chr Position  P. value MAF R2 a 
Allelic 

Effect b  

S6B_309688673 Ca SJ13 6B 309688673 3.2E-05 0.07 0.23 -0.03 

  SJ14 6B 309688673 1.7E-04 0.06 0.11 -0.03 

S6B_309688674 Ca SJ13 6B 309688674 3.2E-05 0.07 0.23 -0.03 

  SJ14 6B 309688674 1.7E-04 0.06 0.11 -0.03 

S7D_579146731 Na SJ13 7D 579146731 5.8E-05 0.06 0.13 38.33 

  SJ14 7D 579146731 2.3E-04 0.06 0.15 22.84 

S1A_379438389 Fe SJ14 1A 379438389 4.5E-04 0.40 0.08 11.34 

  ST13 1A 379438389 2.6E-04 0.40 0.10 -0.01 

S1A_372238511 Fe SJ14 1A 372238511 3.3E-04 0.41 0.08 11.65 

  ST13 1A 372238511 2.2E-04 0.41 0.10 -0.01 

S1A_376790586 Fe SJ14 1A 376790586 2.5E-04 0.40 0.08 11.86 

  ST13 1A 376790586 4.7E-04 0.40 0.10 -0.01 

S1A_373360656 Fe SJ14 1A 373360656 2.1E-04 0.40 0.08 12.01 

  ST13 1A 373360656 3.3E-04 0.40 0.10 -0.01 

S1A_373812006 Fe SJ14 1A 373812006 2.0E-04 0.41 0.08 12.17 

  ST13 1A 373812006 2.9E-04 0.40 0.10 -0.01 

S1A_375844331 Fe SJ14 1A 375844331 1.5E-04 0.41 0.09 12.27 

  ST13 1A 375844331 4.7E-04 0.40 0.10 -0.01 

S1A_382337060 Fe SJ14 1A 382337060 1.1E-04 0.41 0.09 12.57 

  ST13 1A 382337060 3.6E-04 0.41 0.10 -0.01 

S1A_373846553 Fe SJ14 1A 373846553 1.1E-04 0.40 0.09 12.55 

  ST13 1A 373846553 5.0E-04 0.40 0.10 -0.01 
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Supplementary 2 (Cont.). Highly significant (p < 0.00001), very significant and consistent 

(p < 0.0005) and significant and consistent (p < 0.001) MTA identified on the 240 lines of the 

association mapping panel. Data from Stuttgart, AR 2013 (ST13), AR 2014 (ST14), Saint. 

Joseph, LA 2013 (SJ13) and LA 2014 (SJ14). 

Very significant and consistent p < 0.0005   

SNP Trait Env Chr Position (bp) P. value MAF R2 a Allelic 

Effect b 

S1A_380869075 Fe SJ14 1A 380869075 7.3E-05 0.41 0.09 12.95 

  ST13 1A 380869075 4.0E-04 0.41 0.10 -0.01 

S1B_599660615 Na ST13 1B 599660615 1.7E-05 0.18 0.17 165.84 

  SJ14 1B 599660615 1.0E-04 0.18 0.16 14.76 

S5B_588714935 Na ST13 5B 588714935 1.5E-04 0.09 0.15 197.80 
  SJ14 5B 588714935 3.9E-04 0.09 0.14 18.06 

S5B_588714936 Na ST13 5B 588714936 1.5E-04 0.09 0.15 197.80 
  SJ14 5B 588714936 3.9E-04 0.09 0.14 18.06 

S7D_528997111 Zn ST13 7D 528997111 2.2E-05 0.11 0.13 1.97 
  SJ14 7D 528997111 1.2E-05 0.11 0.21 1.08 

S1B_683422400 Zn ST13 1B 683422400 1.9E-05 0.11 0.13 1.94 
  SJ14 1B 683422400 4.6E-05 0.11 0.20 0.97 

S7B_567704027 Zn ST13 7B 567704027 1.8E-05 0.11 0.13 1.99 
  SJ14 7B 567704027 4.7E-04 0.11 0.18 0.86 

S7B_568012679 Zn ST13 7B 568012679 1.8E-05 0.11 0.13 1.99 
  SJ14 7B 568012679 4.7E-04 0.11 0.18 0.86 

SUN_334466963 Al SJ14 NA 334466963 3.3E-05 0.05 0.10 13.60 
  ST14 NA 334466963 3.4E-05 0.05 0.10 35.90 

SUN_334466979 Al SJ14 NA 334466979 3.3E-05 0.05 0.10 13.60 
  ST14 NA 334466979 3.4E-05 0.05 0.10 35.90 

SUN_221478096 Al SJ14 NA 221478096 2.3E-04 0.05 0.08 14.90 
  ST14 NA 221478096 1.9E-04 0.05 0.17 214.72 

S5A_3619242 Fe ST14 5A 3619242 3.0E-04 0.10 0.08 21.16 
  ST13 5A 3619242 3.6E-04 0.10 0.11 1.64 

 Significant and consistent p < 0.001           

SNP Trait Env Chr Position P .value MAF R2 a 
Allelic 

Effect b 

S1A_302553240 Na SJ14 1A 302553240 9.2E-04 0.08 0.14 18.43 

  ST13 1A 302553240 8.1E-04 0.08 0.14 187.63 

S3A_720852820 Na SJ14 3A 720852820 5.3E-04 0.06 0.14 18.87 

  ST13 3A 720852820 6.2E-04 0.06 0.14 189.26 

S3B_50499819 Mg SJ13 3B 50499819 9.5E-04 0.06 0.13 0.01 

  SJ14 3B 50499819 5.6E-04 0.06 0.09 0.01 

S6D_466814084 K SJ14 6D 466814084 7.7E-04 0.23 0.16 0.10 

  ST13 6D 466814084 5.6E-04 0.23 0.11 -0.11 

S6D_466814117 K SJ14 6D 466814117 7.7E-04 0.23 0.16 0.10 

  ST13 6D 466814117 5.6E-04 0.23 0.11 -0.11 

S7B_564915089 Zn SJ14 7B 564915089 8.1E-04 0.19 0.18 0.72 
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Supplementary 2 (Cont.). Highly significant (p < 0.00001), very significant and consistent 

(p < 0.0005) and significant and consistent (p < 0.001) MTA identified on the 240 lines of the 

association mapping panel. Data from Stuttgart, AR 2013 (ST13), AR 2014 (ST14), Saint 

Joseph, LA 2013 (SJ13) and LA 2014 (SJ14). 

SNP Trait Env Chr Position P .value MAF R2 a 
Allelic 

Effect b 

Significant and consistent p < 0.001 

S7B_564915141 Zn SJ14 7B 564915141 8.1E-04 0.19 0.18 0.72 

  ST13 7B 564915141 5.6E-04 0.19 0.10 1.35 

S7B_5745497 P ST13 7B 5745497 8.8E-04 0.46 0.09 0.01 

    ST14 7B 5745497 6.9E-04 0.46 0.11 0.01 
a Reflect the phenotypic variation explained by the marker, R2 of the model with SNP 

calculated in GAPIT package in R 
b Allelic effects with respect to the minor allele 
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Supplementary 3. Multi-trait loci marker associations identified at p < 0.0005 on the 240 

lines of the association mapping panel. Data from Stuttgart, AR 2013 (ST13), AR 2014 

(ST14), Saint Joseph, LA 2013 (SJ13) and LA 2014 (SJ14). 

SNP Trait Env P. value MAF R2 a Allelic Effect b 

S1B_565301411 Al SJ13 1.3E-04 0.2 0.12 -17.19 

 Fe SJ13 3.9E-04 0.2 0.12 -26.72 

S1D_273497781 P SJ13 2.4E-04 0.39 0.11 -0.01 

 Zn SJ13 2.9E-04 0.39 0.11 -0.75 

S2A_694839900 Al SJ13 4.7E-04 0.08 0.11 21.79 

 Fe SJ13 2.6E-04 0.08 0.12 37.88 

S2A_694839905 Al SJ13 4.7E-04 0.08 0.11 21.79 

 Fe SJ13 2.6E-04 0.08 0.12 37.88 

S2A_694840369 Al SJ13 1.7E-04 0.08 0.12 23.53 

 Fe SJ13 9.6E-05 0.08 0.13 40.61 

S2A_694862042 Al SJ13 1.7E-04 0.08 0.12 23.53 

 Fe SJ13 9.6E-05 0.08 0.13 40.61 

S2A_694912728 Al SJ13 2.5E-04 0.16 0.12 18.06 

 Fe SJ13 4.2E-04 0.16 0.12 28.87 

 Mn SJ13 1.6E-04 0.16 0.17 2.34 

S2A_694955335 Al SJ13 3.2E-04 0.08 0.11 22.98 

 Fe SJ13 2.1E-04 0.08 0.12 39.29 

S2A_694955962 Al SJ13 3.2E-04 0.08 0.11 22.98 

 Fe SJ13 2.1E-04 0.08 0.12 39.29 

S2A_695153479 Al SJ13 2.5E-04 0.08 0.12 23.04 

 Fe SJ13 1.8E-04 0.08 0.12 39.1 

S2A_695161516 Al SJ13 3.2E-04 0.08 0.11 22.98 

 Fe SJ13 2.1E-04 0.08 0.12 39.29 

S2A_757563999 Al SJ13 3.8E-04 0.16 0.11 16.57 

 Fe SJ13 2.0E-04 0.16 0.12 28.87 

S2A_757635358 Al SJ13 3.0E-04 0.06 0.11 24.62 

 Fe SJ13 1.1E-04 0.06 0.13 43.82 

S2A_758357118 Al SJ13 1.9E-04 0.08 0.12 22.83 

 Fe SJ13 6.2E-05 0.08 0.13 40.51 

S2B_748525879 Al SJ13 2.4E-04 0.06 0.12 31.43 

 Fe SJ13 3.7E-04 0.06 0.12 49.82 

S3A_705817053 Fe SJ13 5.0E-04 0.05 0.11 50.64 

 Na SJ13 4.5E-04 0.05 0.11 38.05 

S4A_628813806 Al SJ13 4.9E-04 0.11 0.11 19.96 

 Fe SJ13 2.0E-04 0.11 0.12 35.53 

S4A_669386687 B SJ13 4.5E-04 0.33 0.11 0.12 

 Na SJ13 1.1E-04 0.33 0.12 19.55 
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Supplementary 3 (Cont.). Multi-trait loci marker associations identified at p < 0.0005 on 

the 240 lines of the association mapping panel. Data from Stuttgart, AR 2013 (ST13), AR 

2014 (ST14), Saint Joseph, LA 2013 (SJ13) and LA 2014 (SJ14). 

SNP Trait Env P. value MAF R2 a Allelic Effect b 

S4B_645498754 Al SJ13 6.8E-05 0.13 0.13 19.95 

 Fe SJ13 2.0E-04 0.13 0.12 30.51 

S4B_645498804 Al SJ13 6.8E-05 0.13 0.13 19.95 

 Fe SJ13 2.0E-04 0.13 0.12 30.51 

S4D_367552586 Al SJ13 3.5E-04 0.11 0.11 20.56 

 Fe SJ13 1.5E-04 0.11 0.12 35.85 

S5D_496065369 Al SJ13 2.4E-04 0.05 0.12 30.11 

 Fe SJ13 4.6E-05 0.05 0.13 54.78 

S6D_7288616 Al SJ13 3.4E-04 0.05 0.11 30.73 

 Fe SJ13 1.1E-04 0.05 0.13 54.7 

S6D_7288623 Al SJ13 3.4E-04 0.05 0.11 30.73 

 Fe SJ13 1.1E-04 0.05 0.13 54.7 

S7A_502664126 B SJ13 3.6E-04 0.16 0.11 0.15 

 Na SJ13 2.6E-04 0.16 0.12 22.4 

S7A_55552029 B SJ13 4.8E-05 0.17 0.13 0.17 

 Na SJ13 3.6E-05 0.17 0.13 24.73 

S7D_534248332 B SJ13 2.1E-04 0.05 0.11 0.3 

 Ca SJ13 4.0E-04 0.05 0.21 0.03 

S7D_534248350 B SJ13 2.1E-04 0.05 0.11 0.3 

 Ca SJ13 4.0E-04 0.05 0.21 0.03 

SUN_296404812 Al SJ13 8.4E-05 0.07 0.12 28.68 

 Fe SJ13 2.5E-04 0.07 0.12 43.6 

S1A_459729941 Ca SJ14 8.1E-05 0.21 0.12 0.02 

 Mg SJ14 1.6E-04 0.21 0.1 0 

S1A_587879436 B SJ14 3.0E-05 0.09 0.17 0.4 

 Fe SJ14 3.1E-04 0.09 0.08 20.48 

S1D_64688495 S SJ14 1.8E-04 0.05 0.19 0.02 

 Mg SJ14 1.4E-04 0.05 0.1 0.01 

S2A_253056018 S SJ14 1.1E-05 0.19 0.22 0.01 

 Mg SJ14 4.1E-04 0.19 0.09 0 

S2A_461478424 Al SJ14 1.0E-04 0.07 0.09 12.02 

 Fe SJ14 2.1E-06 0.07 0.12 32.56 

S2A_562476935 S SJ14 3.0E-04 0.46 0.19 0.01 

 Mg SJ14 4.7E-04 0.46 0.09 0 

S2A_562476962 S SJ14 3.0E-04 0.46 0.19 0.01 

 Mg SJ14 4.7E-04 0.46 0.09 0 

S2B_287933173 S SJ14 2.2E-04 0.05 0.19 0.02 

 Mg SJ14 1.6E-04 0.05 0.1 0.01 
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Supplementary 3 (Cont.). Multi-trait loci marker associations identified at p < 0.0005 on 

the 240 lines of the association mapping panel. Data from Stuttgart, AR 2013 (ST13), AR 

2014 (ST14), Saint Joseph, LA 2013 (SJ13) and LA 2014 (SJ14). 

SNP Trait Env P. value MAF R2 a Allelic Effect b 

S2B_77204516 Zn SJ14 1.5E-05 0.34 0.21 0.92 

 Mg SJ14 4.2E-05 0.34 0.18 0.14 

S2B_77846905 S SJ14 1.6E-04 0.32 0.19 0.01 

 Zn SJ14 5.2E-05 0.32 0.2 0.9 

S2B_77846934 S SJ14 2.1E-05 0.33 0.21 0.01 

 Zn SJ14 1.0E-05 0.33 0.21 0.97 

 K SJ14 4.1E-05 0.33 0.18 0.14 

S2B_77846935 S SJ14 2.1E-05 0.33 0.21 0.01 

 Zn SJ14 1.0E-05 0.33 0.21 0.97 

 K SJ14 4.1E-05 0.33 0.18 0.14 

S2D_29746125 Zn SJ14 3.0E-04 0.06 0.19 1.08 

 K SJ14 2.8E-04 0.06 0.17 0.17 

S3B_546349131 K SJ14 3.4E-05 0.05 0.18 0.21 

 P SJ14 3.3E-04 0.05 0.16 0.02 

S3B_546349136 K SJ14 3.4E-05 0.05 0.18 0.21 

 P SJ14 3.3E-04 0.05 0.16 0.02 

S4B_649666144 Al SJ14 3.4E-04 0.08 0.08 8.79 

 Fe SJ14 1.1E-04 0.08 0.09 22.02 

S4B_649679016 Al SJ14 3.6E-04 0.08 0.08 8.75 

 Fe SJ14 1.1E-04 0.08 0.09 22.04 

S4B_649679022 Al SJ14 3.6E-04 0.08 0.08 8.75 

 Fe SJ14 1.1E-04 0.08 0.09 22.04 

S4B_653384409 Fe SJ14 1.4E-04 0.05 0.09 27.11 

 K SJ14 2.2E-04 0.05 0.17 0.22 

S4B_654694163 Fe SJ14 1.4E-04 0.05 0.09 27.11 

 K SJ14 2.2E-04 0.05 0.17 0.22 

S4B_655479618 Fe SJ14 1.4E-04 0.05 0.09 27.11 

 K SJ14 2.2E-04 0.05 0.17 0.22 

S4B_656490823 Fe SJ14 1.4E-04 0.05 0.09 27.11 

 K SJ14 2.2E-04 0.05 0.17 0.22 

S5B_693458300 Na SJ14 3.7E-04 0.06 0.15 21.03 

 Fe SJ14 3.4E-04 0.06 0.08 22.53 

S6B_22497451 P SJ14 4.8E-04 0.29 0.15 0.01 

 Zn SJ14 1.5E-04 0.29 0.19 0.7 

S6B_465725766 Zn SJ14 3.9E-04 0.14 0.18 0.8 

 K SJ14 3.2E-05 0.14 0.18 0.15 

S6B_465725783 Zn SJ14 3.9E-04 0.14 0.18 0.8 

 K SJ14 3.2E-05 0.14 0.18 0.15 
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Supplementary 3 (Cont.). Multi-trait loci marker associations identified at p < 0.0005 on 

the 240 lines of the association mapping panel. Data from Stuttgart, AR 2013 (ST13), AR 

2014 (ST14), Saint Joseph, LA 2013 (SJ13) and LA 2014 (SJ14). 

SNP Trait Env P. value MAF R2 a Allelic Effect b 

S7A_164226930 S SJ14 3.4E-04 0.1 0.19 0.15 

 Mg SJ14 4.2E-05 0.1 0.11 0.01 

S7A_29829940 Ca SJ14 4.6E-04 0.16 0.1 0.02 

 Mg SJ14 2.4E-04 0.16 0.09 0 

S7A_677922775 Mg SJ14 4.2E-04 0.17 0.09 0 

 Na SJ14 4.0E-04 0.17 0.14 13.34 

S7B_677620849 P SJ14 4.2E-04 0.06 0.16 0.02 

 Mg SJ14 3.7E-04 0.06 0.09 0.01 

S7D_350307004 S SJ14 1.4E-04 0.05 0.2 0.02 

 Zn SJ14 2.3E-04 0.05 0.19 1.11 

S1A_60402263 Fe ST13 6.9E-05 0.1 0.08 97.1 

 S ST13 1.2E-04 0.1 0.09 0.01 

S1D_41196155 Mg ST13 7.3E-05 0.06 0.14 0.01 

 Al ST13 2.2E-04 0.06 0.07 101.93 

 S ST13 8.7E-05 0.06 0.09 0.02 

S3A_21509392 B ST13 4.8E-04 0.06 0.08 0.52 

 S ST13 2.2E-04 0.06 0.08 0.02 

S3B_781618097 Al ST13 2.4E-04 0.12 0.07 88.43 

 Fe ST13 1.9E-05 0.12 0.09 114.7 

S6A_5206651 K ST13 1.9E-04 0.24 0.12 0.12 

 S ST13 3.2E-04 0.24 0.08 0.01 

S6B_111561002 Na ST13 1.1E-04 0.08 0.16 193.47 

 Al ST13 1.8E-04 0.08 0.07 93.86 

S7A_411470714 Al ST13 1.3E-04 0.22 0.08 64.43 

 Fe ST13 3.0E-04 0.22 0.07 66.22 

S7B_466001283 Al ST13 4.7E-04 0.1 0.07 80.74 

 Fe ST13 2.3E-04 0.1 0.07 94.88 

S7B_702394186 Al ST13 1.7E-05 0.06 0.1 126.53 

 Fe ST13 1.8E-04 0.06 0.07 121.48 

S4D_288289904 Mg ST14 5.0E-04 0.13 0.16 0 

 S ST14 3.5E-04 0.13 0.13 0.01 

S6A_243725002 K ST14 7.3E-05 0.06 0.1 0.11 

 Zn ST14 3.2E-05 0.06 0.11 1.59 

S6A_243725003 K ST14 7.3E-05 0.06 0.1 0.11 

 Zn ST14 3.2E-05 0.06 0.11 1.59 

S6A_458272442 Zn ST14 1.3E-04 0.06 0.1 1.47 

 Mn ST14 2.7E-04 0.06 0.15 16.54 

S6D_463906257 Mn ST14 1.6E-05 0.13 0.17 12.2 

 P ST14 2.5E-04 0.13 0.12 0.01 
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Supplementary 3 (Cont.). Multi-trait loci marker associations identified at p < 0.0005 on 

the 240 lines of the association mapping panel. Data from Stuttgart, AR 2013 (ST13), AR 

2014 (ST14), Saint Joseph, LA 2013 (SJ13) and LA 2014 (SJ14). 

SNP Trait Env P. value MAF R2 a Allelic Effect b 

S7A_346387603 Mg ST14 1.1E-04 0.08 0.17 0 

 S ST14 2.7E-04 0.08 0.14 0.01 

S7B_712475364 P ST14 3.3E-04 0.32 0.12 -0.01 

 K ST14 1.2E-05 0.32 0.11 -0.05 
a Reflect the phenotypic variation explained by the marker, R2 of the model with SNP calculated 

in GAPIT package in R 
b Allelic effects with respect to the minor allele 
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