7,151 research outputs found

    Processing SPARQL queries with regular expressions in RDF databases

    Get PDF
    Background: As the Resource Description Framework (RDF) data model is widely used for modeling and sharing a lot of online bioinformatics resources such as Uniprot (dev.isb-sib.ch/projects/uniprot-rdf) or Bio2RDF (bio2rdf.org), SPARQL - a W3C recommendation query for RDF databases - has become an important query language for querying the bioinformatics knowledge bases. Moreover, due to the diversity of users' requests for extracting information from the RDF data as well as the lack of users' knowledge about the exact value of each fact in the RDF databases, it is desirable to use the SPARQL query with regular expression patterns for querying the RDF data. To the best of our knowledge, there is currently no work that efficiently supports regular expression processing in SPARQL over RDF databases. Most of the existing techniques for processing regular expressions are designed for querying a text corpus, or only for supporting the matching over the paths in an RDF graph. Results: In this paper, we propose a novel framework for supporting regular expression processing in SPARQL query. Our contributions can be summarized as follows. 1) We propose an efficient framework for processing SPARQL queries with regular expression patterns in RDF databases. 2) We propose a cost model in order to adapt the proposed framework in the existing query optimizers. 3) We build a prototype for the proposed framework in C++ and conduct extensive experiments demonstrating the efficiency and effectiveness of our technique. Conclusions: Experiments with a full-blown RDF engine show that our framework outperforms the existing ones by up to two orders of magnitude in processing SPARQL queries with regular expression patterns.X113sciescopu

    Optimizing Federated Queries Based on the Physical Design of a Data Lake

    Get PDF
    The optimization of query execution plans is known to be crucial for reducing the query execution time. In particular, query optimization has been studied thoroughly for relational databases over the past decades. Recently, the Resource Description Framework (RDF) became popular for publishing data on the Web. As a consequence, federations composed of different data models like RDF and relational databases evolved. One type of these federations are Semantic Data Lakes where every data source is kept in its original data model and semantically annotated with ontologies or controlled vocabularies. However, state-of-the-art query engines for federated query processing over Semantic Data Lakes often rely on optimization techniques tailored for RDF. In this paper, we present query optimization techniques guided by heuristics that take the physical design of a Data Lake into account. The heuristics are implemented on top of Ontario, a SPARQL query engine for Semantic Data Lakes. Using sourcespecific heuristics, the query engine is able to generate more efficient query execution plans by exploiting the knowledge about indexes and normalization in relational databases. We show that heuristics which take the physical design of the Data Lake into account are able to speed up query processing

    Partout: A Distributed Engine for Efficient RDF Processing

    Full text link
    The increasing interest in Semantic Web technologies has led not only to a rapid growth of semantic data on the Web but also to an increasing number of backend applications with already more than a trillion triples in some cases. Confronted with such huge amounts of data and the future growth, existing state-of-the-art systems for storing RDF and processing SPARQL queries are no longer sufficient. In this paper, we introduce Partout, a distributed engine for efficient RDF processing in a cluster of machines. We propose an effective approach for fragmenting RDF data sets based on a query log, allocating the fragments to nodes in a cluster, and finding the optimal configuration. Partout can efficiently handle updates and its query optimizer produces efficient query execution plans for ad-hoc SPARQL queries. Our experiments show the superiority of our approach to state-of-the-art approaches for partitioning and distributed SPARQL query processing

    Reasoning & Querying – State of the Art

    Get PDF
    Various query languages for Web and Semantic Web data, both for practical use and as an area of research in the scientific community, have emerged in recent years. At the same time, the broad adoption of the internet where keyword search is used in many applications, e.g. search engines, has familiarized casual users with using keyword queries to retrieve information on the internet. Unlike this easy-to-use querying, traditional query languages require knowledge of the language itself as well as of the data to be queried. Keyword-based query languages for XML and RDF bridge the gap between the two, aiming at enabling simple querying of semi-structured data, which is relevant e.g. in the context of the emerging Semantic Web. This article presents an overview of the field of keyword querying for XML and RDF

    On Defining SPARQL with Boolean Tensor Algebra

    Full text link
    The Resource Description Framework (RDF) represents information as subject-predicate-object triples. These triples are commonly interpreted as a directed labelled graph. We propose an alternative approach, interpreting the data as a 3-way Boolean tensor. We show how SPARQL queries - the standard queries for RDF - can be expressed as elementary operations in Boolean algebra, giving us a complete re-interpretation of RDF and SPARQL. We show how the Boolean tensor interpretation allows for new optimizations and analyses of the complexity of SPARQL queries. For example, estimating the size of the results for different join queries becomes much simpler

    View Selection in Semantic Web Databases

    Get PDF
    We consider the setting of a Semantic Web database, containing both explicit data encoded in RDF triples, and implicit data, implied by the RDF semantics. Based on a query workload, we address the problem of selecting a set of views to be materialized in the database, minimizing a combination of query processing, view storage, and view maintenance costs. Starting from an existing relational view selection method, we devise new algorithms for recommending view sets, and show that they scale significantly beyond the existing relational ones when adapted to the RDF context. To account for implicit triples in query answers, we propose a novel RDF query reformulation algorithm and an innovative way of incorporating it into view selection in order to avoid a combinatorial explosion in the complexity of the selection process. The interest of our techniques is demonstrated through a set of experiments.Comment: VLDB201
    corecore