1,595 research outputs found

    Synthetic Aperture Radar (SAR) data processing

    Get PDF
    The available and optimal methods for generating SAR imagery for NASA applications were identified. The SAR image quality and data processing requirements associated with these applications were studied. Mathematical operations and algorithms required to process sensor data into SAR imagery were defined. The architecture of SAR image formation processors was discussed, and technology necessary to implement the SAR data processors used in both general purpose and dedicated imaging systems was addressed

    Moving Target Azimuth Velocity Estimation for the MASA Mode Based on Sequential SAR Images

    Get PDF
    A novel azimuth velocity estimation method is proposed based on the multiple azimuth squint angles (MASA) imaging mode, acquiring sequential synthetic aperture radar images with different squint angles and time lags. The MASA mode acquisition geometry is given first, and the effect of target motion on azimuth offset and slant range offset is discussed in detail. Then, the azimuth velocity estimation accuracy is analyzed, considering the errors caused by registration, defocusing, and range velocity. Moreover, the interaction between target azimuth velocity and range velocity is studied for a better understanding of the azimuth velocity estimation error caused by the range velocity. With the proposed error compensation step, the new method can achieve a very high accuracy in azimuth velocity estimation, as verified by experimental results based on both simulated data and the TerraSAR-X data

    Interferometric Synthetic Aperture Sonar Signal Processing for Autonomous Underwater Vehicles Operating Shallow Water

    Get PDF
    The goal of the research was to develop best practices for image signal processing method for InSAS systems for bathymetric height determination. Improvements over existing techniques comes from the fusion of Chirp-Scaling a phase preserving beamforming techniques to form a SAS image, an interferometric Vernier method to unwrap the phase; and confirming the direction of arrival with the MUltiple SIgnal Channel (MUSIC) estimation technique. The fusion of Chirp-Scaling, Vernier, and MUSIC lead to the stability in the bathymetric height measurement, and improvements in resolution. This method is computationally faster, and used less memory then existing techniques

     Ocean Remote Sensing with Synthetic Aperture Radar

    Get PDF
    The ocean covers approximately 71% of the Earth’s surface, 90% of the biosphere and contains 97% of Earth’s water. The Synthetic Aperture Radar (SAR) can image the ocean surface in all weather conditions and day or night. SAR remote sensing on ocean and coastal monitoring has become a research hotspot in geoscience and remote sensing. This book—Progress in SAR Oceanography—provides an update of the current state of the science on ocean remote sensing with SAR. Overall, the book presents a variety of marine applications, such as, oceanic surface and internal waves, wind, bathymetry, oil spill, coastline and intertidal zone classification, ship and other man-made objects’ detection, as well as remotely sensed data assimilation. The book is aimed at a wide audience, ranging from graduate students, university teachers and working scientists to policy makers and managers. Efforts have been made to highlight general principles as well as the state-of-the-art technologies in the field of SAR Oceanography

    Factorized Geometrical Autofocus for Synthetic Aperture Radar Processing

    Get PDF
    Synthetic Aperture Radar (SAR) imagery is a very useful resource for the civilian remote sensing community and for the military. This however presumes that images are focused. There are several possible sources for defocusing effects. For airborne SAR, motion measurement errors is the main cause. A defocused image may be compensated by way of autofocus, estimating and correcting erroneous phase components. Standard autofocus strategies are implemented as a separate stage after the image formation (stand-alone autofocus), neglecting the geometrical aspect. In addition, phase errors are usually assumed to be space invariant and confined to one dimension. The call for relaxed requirements on inertial measurement systems contradicts these criteria, as it may introduce space variant phase errors in two dimensions, i.e. residual space variant Range Cell Migration (RCM). This has motivated the development of a new autofocus approach. The technique, termed the Factorized Geometrical Autofocus (FGA) algorithm, is in principle a Fast Factorized Back-Projection (FFBP) realization with a number of adjustable (geometry) parameters for each factorization step. By altering the aperture in the time domain, it is possible to correct an arbitrary, inaccurate geometry. This in turn indicates that the FGA algorithm has the capacity to compensate for residual space variant RCM. In appended papers the performance of the algorithm is demonstrated for geometrically constrained autofocus problems. Results for simulated and real (Coherent All RAdio BAnd System II (CARABAS II)) Ultra WideBand (UWB) data sets are presented. Resolution and Peak to SideLobe Ratio (PSLR) values for (point/point-like) targets in FGA and reference images are similar within a few percents and tenths of a dB. As an example: the resolution of a trihedral reflector in a reference image and in an FGA image respectively, was measured to approximately 3.36 m/3.44 m in azimuth, and to 2.38 m/2.40 m in slant range; the PSLR was in addition measured to about 6.8 dB/6.6 dB. The advantage of a geometrical autofocus approach is clarified further by comparing the FGA algorithm to a standard strategy, in this case the Phase Gradient Algorithm (PGA)

    Spaceborne synthetic-aperture imaging radars: Applications, techniques, and technology

    Get PDF
    In the last four years, the first two Earth-orbiting, space-borne, synthetic-aperture imaging radars (SAR) were successfully developed and operated. This was a major achievement in the development of spaceborne radar sensors and ground processors. The data acquired with these sensors extended the capability of Earth resources and ocean-surface observation into a new region of the electromagnetic spectrum. This paper is a review of the different aspects of spaceborne imaging radars. It includes a review of: 1) the unique characteristics of space-borne SAR systems; 2) the state of the art in spaceborne SAR hardware and SAR optical and digital processors; 3) the different data-handling techniques; and 4) the different applications of spaceborne SAR data

    Advances in Sonar Technology

    Get PDF
    The demand to explore the largest and also one of the richest parts of our planet, the advances in signal processing promoted by an exponential growth in computation power and a thorough study of sound propagation in the underwater realm, have lead to remarkable advances in sonar technology in the last years.The work on hand is a sum of knowledge of several authors who contributed in various aspects of sonar technology. This book intends to give a broad overview of the advances in sonar technology of the last years that resulted from the research effort of the authors in both sonar systems and their applications. It is intended for scientist and engineers from a variety of backgrounds and even those that never had contact with sonar technology before will find an easy introduction with the topics and principles exposed here

    Identification of SAR Detected Targets on Sea in Near Real Time Applications for Maritime Surveillance

    Get PDF
    Remote sensing technologies are widely used in maritime surveillance applications. Nowadays, spaceborne Synthetic Aperture Radar (SAR) systems provide outstanding capabilities for target detection at sea for large areas independently from the weather conditions. The generated value added target detection product is composed by complementary information from the Automatic Identification System (AIS). Resulting information layers provides a more reliable picture on the maritime situation awareness. This paper describes the approach of SAR-AIS data fusion and its visualization means developed for Near Real Time (NRT) Applications for Maritime Situational Awareness by the Maritime Security Lab at the Ground Station in Neustrelitz, part DLR’s German Remote Sensing Data Center (DFD). Presented implementation is based on combination of many open source geospatial libraries and frameworks (e.g., GDAL/OGR, Geoserver, PostgresSQL) and shows their effectiveness in the context of complex automated data processing in the frame of NRT requirements

    Interferometric synthetic aperture sonar system supported by satellite

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200
    • …
    corecore