4,775 research outputs found

    Reducing Timing Interferences in Real-Time Applications Running on Multicore Architectures

    Get PDF
    We introduce a unified wcet analysis and scheduling framework for real-time applications deployed on multicore architectures. Our method does not follow a particular programming model, meaning that any piece of existing code (in particular legacy) can be re-used, and aims at reducing automatically the worst-case number of timing interferences between tasks. Our method is based on the notion of Time Interest Points (tips), which are instructions that can generate and/or suffer from timing interferences. We show how such points can be extracted from the binary code of applications and selected prior to performing the wcet analysis. We then represent real-time tasks as sequences of time intervals separated by tips, and schedule those tasks so that the overall makespan (including the potential timing penalties incurred by interferences) is minimized. This scheduling phase is performed using an Integer Linear Programming (ilp) solver. Preliminary results on state-of-the-art benchmarks show promising results and pave the way for future extensions of the model and optimizations

    Porting Decision Tree Algorithms to Multicore using FastFlow

    Full text link
    The whole computer hardware industry embraced multicores. For these machines, the extreme optimisation of sequential algorithms is no longer sufficient to squeeze the real machine power, which can be only exploited via thread-level parallelism. Decision tree algorithms exhibit natural concurrency that makes them suitable to be parallelised. This paper presents an approach for easy-yet-efficient porting of an implementation of the C4.5 algorithm on multicores. The parallel porting requires minimal changes to the original sequential code, and it is able to exploit up to 7X speedup on an Intel dual-quad core machine.Comment: 18 pages + cove

    StochKit-FF: Efficient Systems Biology on Multicore Architectures

    Full text link
    The stochastic modelling of biological systems is an informative, and in some cases, very adequate technique, which may however result in being more expensive than other modelling approaches, such as differential equations. We present StochKit-FF, a parallel version of StochKit, a reference toolkit for stochastic simulations. StochKit-FF is based on the FastFlow programming toolkit for multicores and exploits the novel concept of selective memory. We experiment StochKit-FF on a model of HIV infection dynamics, with the aim of extracting information from efficiently run experiments, here in terms of average and variance and, on a longer term, of more structured data.Comment: 14 pages + cover pag

    Towards co-designed optimizations in parallel frameworks: A MapReduce case study

    Full text link
    The explosion of Big Data was followed by the proliferation of numerous complex parallel software stacks whose aim is to tackle the challenges of data deluge. A drawback of a such multi-layered hierarchical deployment is the inability to maintain and delegate vital semantic information between layers in the stack. Software abstractions increase the semantic distance between an application and its generated code. However, parallel software frameworks contain inherent semantic information that general purpose compilers are not designed to exploit. This paper presents a case study demonstrating how the specific semantic information of the MapReduce paradigm can be exploited on multicore architectures. MR4J has been implemented in Java and evaluated against hand-optimized C and C++ equivalents. The initial observed results led to the design of a semantically aware optimizer that runs automatically without requiring modification to application code. The optimizer is able to speedup the execution time of MR4J by up to 2.0x. The introduced optimization not only improves the performance of the generated code, during the map phase, but also reduces the pressure on the garbage collector. This demonstrates how semantic information can be harnessed without sacrificing sound software engineering practices when using parallel software frameworks.Comment: 8 page

    Scheduling data flow program in xkaapi: A new affinity based Algorithm for Heterogeneous Architectures

    Get PDF
    Efficient implementations of parallel applications on heterogeneous hybrid architectures require a careful balance between computations and communications with accelerator devices. Even if most of the communication time can be overlapped by computations, it is essential to reduce the total volume of communicated data. The literature therefore abounds with ad-hoc methods to reach that balance, but that are architecture and application dependent. We propose here a generic mechanism to automatically optimize the scheduling between CPUs and GPUs, and compare two strategies within this mechanism: the classical Heterogeneous Earliest Finish Time (HEFT) algorithm and our new, parametrized, Distributed Affinity Dual Approximation algorithm (DADA), which consists in grouping the tasks by affinity before running a fast dual approximation. We ran experiments on a heterogeneous parallel machine with six CPU cores and eight NVIDIA Fermi GPUs. Three standard dense linear algebra kernels from the PLASMA library have been ported on top of the Xkaapi runtime. We report their performances. It results that HEFT and DADA perform well for various experimental conditions, but that DADA performs better for larger systems and number of GPUs, and, in most cases, generates much lower data transfers than HEFT to achieve the same performance

    Dynamic Energy Management for Chip Multi-processors under Performance Constraints

    Get PDF
    We introduce a novel algorithm for dynamic energy management (DEM) under performance constraints in chip multi-processors (CMPs). Using the novel concept of delayed instructions count, performance loss estimations are calculated at the end of each control period for each core. In addition, a Kalman filtering based approach is employed to predict workload in the next control period for which voltage-frequency pairs must be selected. This selection is done with a novel dynamic voltage and frequency scaling (DVFS) algorithm whose objective is to reduce energy consumption but without degrading performance beyond the user set threshold. Using our customized Sniper based CMP system simulation framework, we demonstrate the effectiveness of the proposed algorithm for a variety of benchmarks for 16 core and 64 core network-on-chip based CMP architectures. Simulation results show consistent energy savings across the board. We present our work as an investigation of the tradeoff between the achievable energy reduction via DVFS when predictions are done using the effective Kalman filter for different performance penalty thresholds

    GHOST: Building blocks for high performance sparse linear algebra on heterogeneous systems

    Get PDF
    While many of the architectural details of future exascale-class high performance computer systems are still a matter of intense research, there appears to be a general consensus that they will be strongly heterogeneous, featuring "standard" as well as "accelerated" resources. Today, such resources are available as multicore processors, graphics processing units (GPUs), and other accelerators such as the Intel Xeon Phi. Any software infrastructure that claims usefulness for such environments must be able to meet their inherent challenges: massive multi-level parallelism, topology, asynchronicity, and abstraction. The "General, Hybrid, and Optimized Sparse Toolkit" (GHOST) is a collection of building blocks that targets algorithms dealing with sparse matrix representations on current and future large-scale systems. It implements the "MPI+X" paradigm, has a pure C interface, and provides hybrid-parallel numerical kernels, intelligent resource management, and truly heterogeneous parallelism for multicore CPUs, Nvidia GPUs, and the Intel Xeon Phi. We describe the details of its design with respect to the challenges posed by modern heterogeneous supercomputers and recent algorithmic developments. Implementation details which are indispensable for achieving high efficiency are pointed out and their necessity is justified by performance measurements or predictions based on performance models. The library code and several applications are available as open source. We also provide instructions on how to make use of GHOST in existing software packages, together with a case study which demonstrates the applicability and performance of GHOST as a component within a larger software stack.Comment: 32 pages, 11 figure

    A Library for Pattern-based Sparse Matrix Vector Multiply

    Get PDF
    Pattern-based Representation (PBR) is a novel approach to improving the performance of Sparse Matrix-Vector Multiply (SMVM) numerical kernels. Motivated by our observation that many matrices can be divided into blocks that share a small number of distinct patterns, we generate custom multiplication kernels for frequently recurring block patterns. The resulting reduction in index overhead significantly reduces memory bandwidth requirements and improves performance. Unlike existing methods, PBR requires neither detection of dense blocks nor zero filling, making it particularly advantageous for matrices that lack dense nonzero concentrations. SMVM kernels for PBR can benefit from explicit prefetching and vectorization, and are amenable to parallelization. The analysis and format conversion to PBR is implemented as a library, making it suitable for applications that generate matrices dynamically at runtime. We present sequential and parallel performance results for PBR on two current multicore architectures, which show that PBR outperforms available alternatives for the matrices to which it is applicable, and that the analysis and conversion overhead is amortized in realistic application scenarios

    Distributed-Memory Breadth-First Search on Massive Graphs

    Full text link
    This chapter studies the problem of traversing large graphs using the breadth-first search order on distributed-memory supercomputers. We consider both the traditional level-synchronous top-down algorithm as well as the recently discovered direction optimizing algorithm. We analyze the performance and scalability trade-offs in using different local data structures such as CSR and DCSC, enabling in-node multithreading, and graph decompositions such as 1D and 2D decomposition.Comment: arXiv admin note: text overlap with arXiv:1104.451

    Architecture-Aware Configuration and Scheduling of Matrix Multiplication on Asymmetric Multicore Processors

    Get PDF
    Asymmetric multicore processors (AMPs) have recently emerged as an appealing technology for severely energy-constrained environments, especially in mobile appliances where heterogeneity in applications is mainstream. In addition, given the growing interest for low-power high performance computing, this type of architectures is also being investigated as a means to improve the throughput-per-Watt of complex scientific applications. In this paper, we design and embed several architecture-aware optimizations into a multi-threaded general matrix multiplication (gemm), a key operation of the BLAS, in order to obtain a high performance implementation for ARM big.LITTLE AMPs. Our solution is based on the reference implementation of gemm in the BLIS library, and integrates a cache-aware configuration as well as asymmetric--static and dynamic scheduling strategies that carefully tune and distribute the operation's micro-kernels among the big and LITTLE cores of the target processor. The experimental results on a Samsung Exynos 5422, a system-on-chip with ARM Cortex-A15 and Cortex-A7 clusters that implements the big.LITTLE model, expose that our cache-aware versions of gemm with asymmetric scheduling attain important gains in performance with respect to its architecture-oblivious counterparts while exploiting all the resources of the AMP to deliver considerable energy efficiency
    • …
    corecore