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Abstract

Pattern-based Representation (PBR) is a novel approach to improving the performance of Sparse
Matrix-Vector Multiply (SMVM) numerical kernels. Motivated by our observation that many matrices
can be divided into blocks that share a small number of distinct patterns, we generate custom multipli-
cation kernels for frequently recurring block patterns. The resulting reduction in index overhead signif-
icantly reduces memory bandwidth requirements and improves performance. Unlike existing methods,
PBR requires neither detection of dense blocks nor zero filling, making it particularly advantageous
for matrices that lack dense nonzero concentrations. SMVM kernels for PBR can benefit from explicit
prefetching and vectorization, and are amenable to parallelization. The analysis and format conversion to
PBR is implemented as a library, making it suitable for applications that generate matrices dynamically
at runtime. We present sequential and parallel performance results for PBR on two current multicore
architectures, which show that PBR outperforms available alternatives for the matrices to which it is
applicable, and that the analysis and conversion overhead is amortized in realistic application scenarios.

1 Introduction

Sparse Matrix Vector Multiply (SMVM) is a numerical kernel that dominates the runtime of iterative solvers
for systems of linear equations, which form the core of many scientific codes. Compressed representations
of sparse matrices lead to a low ratio of floating point operations to memory accesses. For instance, if
a matrix is represented in the commonly used compressed sparse row (CSR) format, each floating point
multiply operation is accompanied by at least two memory accesses that trigger compulsory cache misses:
one to retrieve the matrix element and a second one to retrieve its column index. Since accesses to main
memory proceed at only a fraction of CPU speed [39], sparse solvers achieve only a small fraction of the
processor’s peak performance.



Blocking [18, 33, 17, 25, 26, 35] reduces this memory overhead if a matrix contains dense substructures.
Instead of recording one index per matrix element, blocked representations record one index per block.
However, blocking may require zero-filling, which introduces unnecessary memory and floating point oper-
ations, and it cannot be applied if a matrix does not contain dense substructures or if those structures cannot
be identified.

This paper introduces a novel representation called PBR, or Pattern-based Representation, which re-
duces the index overhead for many matrices without zero-filling and without requiring the existence or
identification of dense substructures. Instead, PBR exploits a simple analysis that identifies recurring block
structures that share the same pattern of nonzeros within a matrix. For any pattern that covers more than
a threshold number of nonzeros, PBR represents the submatrix formed by this pattern in block coordinate
(BCOO) format, along with a “block code” bitmask that describes the repeated pattern. A code generator
generates optimized custom kernels for each block code. Thus, PBR expresses matrix structure in terms
of specialized inner loops, thereby creating locality for repeating structure via the processor’s instruction
cache, and reducing the amount of index data that must be fetched from memory.

We have implemented PBR and applied it to a number of matrices from different application areas. For
a majority of matrices, we found that a large proportion of nonzeros is covered by PBR, with coverage equal
or close to 100% in some cases. When applicable, PBR can shorten time to solution by up to 3.4 x, with
1.4x on average, when compared to CSR in a sequential implementation, and it can also improve time to
solution when compared to the widely used OSKI [33] library. SMVM using PBR is amenable to three
optimizations, which we have implemented: explicit prefetching, vectorization, and parallelization. First,
explicit prefetching ensures that data is brought into the L1 cache and tagged with the correct temporal local-
ity. We exhaustively search for the optimal prefetch distance for each architecture. Second, we have adapted
our code generator to generate vectorized code using SSE-intrinsics, which is possible since the substructure
for each block code is known at code generation time. Third, PBR is amenable to parallelization for use
on multi-core architectures. PBR can be applied in situations where the repeated use of a matrix justifies
the tuning effort, or where multiple matrices with identical structure are used, such as in so-called ensemble
computations, e.g., model reduction [15, 4], weather modeling [12], and drug design applications [23].

We presented the idea of PBR and an initial performance evaluation in [5]. This evaluation assumed
off-line matrix analysis, structure conversion, and code generation, which precluded a quantitative overhead
vs. benefit analysis. In this paper, we add several significant contributions: First, we implemented a library
that performs all required steps at run time. This library can be used as a drop-in replacement SMVM kernel,
minimizing the number of changes users have to make to benefit from our method. Second, we validated
the actual implementation costs of the analysis and structure conversion by comparing them to the expected
costs based on the asymptotic complexity of our algorithms. We verified that PBR can be implemented with
a linear time cost of O(N + NNZ) for a matrix of dimension N with NNZ nonzeros. Third, we modeled the
performance of PBR for large matrices to derive a predictor for choosing a block size. This predictor yields
optimal or near-optimal performance for almost all matrices in the training set we considered. Finally, we



// SMVM using CSR
for (1 = 0; 1 < n; i++) {
double y =
for (j = ia
y += aalj

y[i]l = vyi
Figure 1: Inner loop of SMVM kernel for CSR format.

present a comprehensive evaluation of PBR’s runtime costs relative to benefits it provides. For memory
bound matrices, our analysis shows that the cost of PBR are, on average, amortized after 325 steps if codes
are available and 1100 steps if codes are generated.

The remainder of this paper is structured as follows: Section 2 describes our method in detail. Section 3
describes our implementation, including matrix structure analysis, blocksize detection and code generation.
Section 4 provides an extensive performance analysis and discusses limitations. Section 5 compares PBR to
related approaches and Section 6 concludes.

2 Pattern Based Representation

2.1 Background

SMVM computes a dense vector y that is the product of a sparse matrix A and a dense vector x: y = Ax.
Figure 1 shows the basic form of an SMVM kernel’s inner loop if a matrix is represented in CSR format.
The matrix nonzeros are stored in a continuous array aa. Two indices record the structure of the matrix:
an index ja[ j] records the column index of the j th nonzero element, and a row pointer ia [1] records at
which matrix element row ¢ begins. Each pair of multiply-add floating point operations is thus accompanied
by two memory accesses: one to load the matrix element aa [ j], and another one to retrieve the column
index ja [ 7J] for each matrix element. Neither of these values is reused within the same invocation of the
kernel. Therefore, even if there is maximum reuse of x, the performance is limited by the speed with which
aa, ja, and ta can be fetched from memory. Except when SMVM is repeatedly called for small matrices
that fit in the cache, each of these accesses will encounter compulsory or capacity misses.



2.2 Exploiting Recurring Patterns

Because we cannot reduce the number of nonzero values that must be read from main memory, our approach
focuses on reducing the size of the index data structure. We identify blocks of recurring patterns and generate
custom code for those patterns. As a result, fewer indices are needed since a pair of coordinates expresses the
coordinates of each block, rather than needing indices for each nonzero within a block. The microstructure
of each block is expressed in the machine code of the inner loop that iterates over all blocks of identical
structure within a matrix.

We use a simple analysis to identify repeating patterns. Given a block size R x C, we divide am X n
matrix into a grid of [%2] x [ 2] rectangular blocks and count how often each of the possible 27*¢ patterns
occurs. We represent the aggregate submatrix for each block pattern by recording block coordinates in COO
format, along with a “block code,” which is a bit vector of size R x C that encodes the nonzero micro-pattern.

We exclude two types of blocks. First, we exclude blocks with patterns that include less than three
nonzeros, because such patterns would yield little or no reduction in terms of index overhead. Second, we
exclude blocks whose patterns do not occur frequently enough to cover a significant number of nonzero ele-
ments, because the overhead of dispatching to the kernel specific to their block code may not be amortized.
We empirically set this threshold as one thousand. Our analysis aggregates nonzeros that belong to excluded
blocks in a remainder matrix, which is stored using conventional CSR representation.

Figure 2 shows an example 12 x 12 matrix in which three recurring patterns occur when using a block
size of 4 x 4. 7 of the matrix’s 9 blocks exhibit recurring patterns with more than 2 nonzeros. 3 remainder
elements (shown in red) are located within blocks that have 2 or fewer nonzeros. For this example, PBR
reduces index overhead by 35% when compared to CSR, as demonstrated in Figure 3. Figure 4 shows how
the original matrix is split into a sum of submatrices and a remainder.

2.3 Block Size Selection and Nonzero Coverage

To benefit from PBR, we must choose a blocksize that yields sufficient nonzero coverage relative to the
number of nonzeros assigned to the remainder matrix. For a given matrix, the nonzero coverage depends
on the choice of the number of rows R and columns C' within each block and the described cutoff criteria.
Depending on the structure of a matrix, different values of R and C' will yield different degrees of coverage.
For our experiments, we chose square block sizes R = C' = 2,3,4,...,8 and performed the analysis
described in Section 2.2 for each size. We found that the block size that yields the largest coverage does
not always yield the best performance, because different block sizes lead to different decompositions of the
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Figure 2: PBR representation of a square matrix of dimension N = 12 with NN Z = 33 nonzero elements.
This matrix is composed of 3 recurring 4x4 block patterns and two remainder blocks with less than three
nonzeros. N, = 7 is the number of blocks with a shared pattern, NN Z,.,,, = 3 is the number of remainder
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Figure 3: CSR representation of the matrix shown in Figure 2. Compared to CSR, PBR reduces the index
overhead for this matrix by 35%.
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Figure 4: Splitting of the 12x12 matrix illustrated in Figure 2.

matrix, which results in different memory access patterns for the x and y vectors. We describe a model and
a predictor that consider these factors in Section 3.2.

We selected a set of 53 matrices to evaluate the applicablity and potential of PBR. We included all
obtainable matrices from two sets that were previously used for sequential and parallel evaluation of SMVM
optimizations by Im et al. [18] and by Williams et al. [37]. We also added a number of larger matrices from
the University of Florida repository [8] to include matrices of widely varying patterns, stemming from a
variety of application areas. The properties of the matrices we considered can be found in Table 1. The
“Opt. Blocksize” column list the block size that yielded the best performance for the Intel Harpertown
(HPT) and AMD Opteron (OPT) architectures we benchmarked. The columns “PBR Coverage,” “Index
Savings,” and “# of Patterns” list the coverage, index overhead reduction, and the number of patterns for the
optimal block size for the respective architecture. This table excludes the jpwh_991 matrix, which is a small
matrix that includes no shared patterns that satisfy PBR criteria for any of the blocksizes.

Figure 5 provides a histogram that summarizes the achieved nonzero coverage, based on the block size
that yielded the best performance on both architectures. For 56% (HPT) and 58% (OPT) of matrices, PBR
encodes over 80% of nonzeros; coverage is 40% or less for only 19% (HPT) and 26% (OPT) of matrices.
Table 2 displays how often each block size yielded the best performance. We do not consider block sizes
larger than 8 because good coverage can be obtained from block sizes less than or equal to 8, and because
larger block sizes tend to increase the number of patterns, making it less likely that individual patterns meet
the cut-off criteria.

Our analysis appears to capture the underlying regularity in the nonzero structure of many types of ma-



PBR Coverage (%) | Index Savings (%) | Opt. Blocksize | # of Patterns
[ Matrix Name “ N [ NNZ HPT [ OPT HPT [ OPT HPT [ OPT HPT [ OPT
orsreg_1 2205 14133 97.03 97.03 66.6 66.6 7 7 2 2
sherman3 5005 20033 77.34 77.34 429 429 5 5 2 2
sherman5 3312 20793 100 100 54.8 54.8 3 3 4 4
saylrd 3564 22316 81.88 85.87 43.8 34.1 6 3 5 2
mcfe 765 24382 37.8 37.8 32.1 32.1 4 4 1 1
Ins_3937 3937 25407 40.86 38.38 29 14 8 2 5 3
Insp3937 3937 25407 74.81 74.81 43.7 43.7 5 5 5 5
gematl 1 4929 33185 13.38 13.38 5.82 5.82 2 2 1 1
bayer02 13935 63679 5.53 5.53 2.27 2.27 2 2 1 1
orani678 2529 90158 70.68 70.68 56.6 56.6 4 4 12 12
rdist1 4134 94408 71.02 71.02 63.4 63.4 6 6 8 8
bayer10 13436 94926 39.47 39.47 17.3 17.3 2 2 1 1
memplus 17758 126150 55.16 55.16 41.1 41.1 8 8 18 18
wang3 26064 177168 96.08 96.08 63 63 6 6 2 2
wang4 26068 177196 94.72 94.72 62.1 62.1 6 6 2 2
coater2 9540 207308 0.61 0.61 0.29 0.29 5 5 1 1
onetone2 36057 227628 45.72 3.5 20.1 2.15 3 8 18 3
1hr10 10672 232633 76.62 91.02 67.9 63 8 4 50 30
raefsky1 3242 294276 91.5 97.38 82 75.7 6 4 31 18
goodwin 7320 324784 75.42 75.42 52.6 52.6 4 4 44 44
pwt0 36519 326107 53.6 44.93 41.8 19.5 8 2 57 5
shyy161 76480 329762 86.33 88.89 45.1 52.2 4 5 6 6
vibrobox 12328 342828 6.42 6.42 3.1 3.1 2 2 1 1
af23560 23560 484256 100 100 87.4 87.4 8 8 7 7
finan512 74752 596992 79.66 31.39 449 10.8 6 2 74 4
scircuit 170998 958936 46.16 28.44 24 11.7 3 2 24 5
crystk02 13965 968583 99.91 99.64 76.6 88.8 3 6 1 10
rim 22560 1014951 88.95 87.62 61.2 72.9 4 6 111 220
exl1 16614 1096948 93.56 93.56 65 65 3 3 36 36
mac_econ_fwd500 206500 1273389 5.18 5.18 1.59 1.59 2 2 5 5
raefsky4 19779 1328611 95.53 95.53 66.9 66.9 3 3 28 28
besstk35 30237 1450163 98.56 98.56 74.2 74.2 3 3 17 17
raefsky3 21200 1488768 100 100 95.5 49.3 8 2 1 1
av41092 41092 1683902 84.81 82.61 55.6 60.1 4 6 59 236
venkatO1 62424 1717792 100 100 85.8 48.2 8 2 15 1
crystk03 24696 1751178 99.95 99.95 76.7 76.7 3 3 1 1
qcd5-4 49152 1916928 100 100 75.8 75.8 3 3 1 1
mc2depi 525825 2100225 37.28 37.28 9.94 9.94 2 2 2 2
rmalQ 46835 2374001 95.84 95.84 63.7 63.7 3 3 33 33
nasasrb 54870 2677324 99.27 99.27 73.6 73.6 3 3 22 22
ct20stif 52329 2698463 84.1 93.39 72.7 63.8 6 3 227 47
webbase-1M 1000005 3105536 10.31 10.31 3.76 3.76 2 2 5 5
3dtube 45330 3213618 99.78 99.78 76.2 76.2 3 3 14 14
laminar_duct3D 67173 3833077 100 100 72.4 72.4 3 3 12 12
dense2 2000 4000000 100 100 94.4 71.7 6 3 3 3
cant 62451 4007383 99.97 99.97 74.9 74.9 3 3 19 19
pkustk04 55590 4218660 100 100 76.8 76.8 3 3 1 1
pdb1HYS 36417 4344765 99.87 99.98 90.7 77.1 6 3 15 1
Si34H36 97569 5156379 71.11 71.11 43 43 3 3 68 68
consph 83334 6010480 99.85 99.85 75.4 75.4 3 3 13 13
shipsecl 140874 7813404 100 100 92.8 76.4 6 3 1 1
pwtk 217918 11634424 | 97.65 97.65 71.6 71.6 3 3 34 34

Table 1: Matrices used in the evaluation of PBR. The coverage, index overhead savings, and number of
patterns are based on the block size that yielded the best performance on the Intel Harpertown (HPT) and
AMD Opteron (OPT) architectures.
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Figure 5: PBR nonzero coverage for matrix set shown in Table 1. Values are tabulated for the block size that
yielded highest performance on each of the architectures shown.

2x2 | 3x3 | 4x4 | 5Xxd5|6%x6 | 7TxT7|8x%x8
Harpertown 7 18 6 3 10 1 7
Opteron 13 20 5 4 6 1 3

Table 2: Frequency with which each block size yielded maximum performance for matrix set shown in
Table 1.

<10 | <25 | <50 | <100 | > 100
Harpertown 27 12 7 4 2
Opteron 33 9 7 1 2

Table 3: Number of distinct block codes for matrix set used in Table 1, aggregated for block sizes that
yielded highest performance.



trices. Only matrices that are nearly random, such as those that model the relationship between hyperlinked
web pages, tend to yield lower coverage.

Table 3 shows the distribution of the number of distinct patterns that satisfied our inclusion criteria.
This table shows that the high degree of nonzero coverage we observe requires only a small subset of all
theoretically possible 2% patterns, thus making it feasible to generate code for all qualifying patterns.

3 PBR Library

The PBR library provides a conversion routine that implements the matrix analysis, structure conversion,
and any necessary code generation. Users provide the input matrix in CSR format, thus making PBR drop-
in compatible for any codes exploiting this widely used format. The conversion routine returns an opaque
handle that is used in subsequent SMVM operations. The handle refers to an internal data structure that
encapsulates matrix-specific information (such as dimension and sparsity), PBR-specific information (such
as blocksize, number of recurring patters, nonzero coverage and names and paths of generated code and
compiled object files), the data structures to hold the converted matrix itself (including nonzero values,
block indices, list of patterns and their occurrence) and the remainder matrix in CSR format. An analyzed
matrix structure can be saved to and restored from disk, allowing re-use of the analysis results for structurally
identical matrices.

The library is callable from C code, but it is implemented in portable C++ using several high-performance
container and utility classes provided by the STL [2] and Boost [1] libraries. The custom SMVM kernels
that implement the multiplication step are generated as C code and compiled with an optimizing C compiler.

PBR conversion involves the following steps: analyzing the matrix structure to find recurring patterns,
selection of a block size, structural conversion, code generation, compilation (if necessary), and loading.
The following sections describe these steps.

3.1 Matrix Structure Analysis

The structure analysis determines which block patterns occur in the matrix and how often. To avoid reading
the matrix index structure multiple times, we analyze all block sizes from 2 x 2 to 8 X 8 in a single pass, as
illustrated in Figure 6. We divide the matrix into stripes, each stripe comprising lcm/(2, 3, ..., 8) = 840 rows.
For each block size, we use an instance of Boost’s unordered hash map to store the indices of those blocks
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Figure 6: Each nonzero’s contribution to the block patterns for each considered block size choice is recorded
in a single pass.

that contain at least one nonzero element in the stripe. We cumulatively update these blocks as we process the
input matrix index array. To provide for efficient iteration over the blocks we additionally store their column
indices in a linear STL vector. We optimized this step further by using a custom memory allocator based on
GNU’s obstack implementation, which allows for fast allocation and deallocation of these temporary data
structures. After all nonzeros within a stripe are accounted for, all encountered patterns and their frequency
are tabulated in a separate hash map that is keyed by bitsets encoding each pattern. Since all lookups are
performed with hash maps that provide O(1) average lookup time, the asymptotic time complexity of these
analysis steps is linear in the number of nonzeros contained in the matrix. Some operations, such as the
initialization and teardown of the hash maps containing the indices of the nonzeros within each stripe, are
performed once for each stripe. These operations incur an asymptotic complexity that is linear in the number
of matrix rows V.

Our actual implementation collects pattern statistics only for the 8 x 8,7 x 7, 6 x 6, and 5 x 5 block
sizes. The recurring patterns and their frequencies for blocks of size 4 x 4 and 2 x 2 are derived from the
recurring 8 X 8 patterns by examining subsets of the bit patterns of each 8 x 8 pattern, as shown in Figure 7.
Similarly, 3 x 3 patterns and frequency are derived from their encapsulating 6 x 6 blocks. This derivation
reduces the cost of our analysis substantially, because it is done only once for each distinct 8 x 8 and 6 X 6
pattern.

The result of the analysis step provides, for each of the considered block sizes, the number and kind
of distinct recurring patterns. We exclude patterns for which the product of pattern frequency and number
of bits contained in the pattern does not meet our threshold, and we exclude patterns with less than three
nonzeros. The analysis step does not record the block indices of the blocks for each recurring pattern.
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8x8 block pattern:
01001000 00000100 10100011 01010010 ... 00101

2

4x4 block pattern:
0100 0000 1010 0101

2

2x2 block pattern:
1001

Figure 7: Derivation of 4 x 4 and 2 x 2 block patterns using the patterns of their parent 8 x 8 block.

3.2 Block Size Selection

Choosing a block size requires predicting which block size will yield the best performance. We developed
a simple multiple linear regression model to predict the performance of PBR for a decomposition resulting
from each potential choice of block size. For sufficiently large matrices, we expect that PBR’s execution time
is dominated by memory accesses, therefore our model includes three variables that capture the memory
accesses performed during the multiplication. The values of these input variables can be derived from
statistics collected during the analysis step.

e The number of bytes fetched from memory while accessing the covered nonzero values, computed as
the product of coverage x NNZx sizeof (double), plus the number of bytes comprising the
block index array, whichis }_,cp 2 X freq(P;) x sizeof (int) for the set of qualifying patterns
P.

e An approximation of the number of accesses to the x and y vectors while multiplying the submatrix for
each included block pattern. Since each submatrix may cover all rows and columns, we approximate
this number as the product of the matrix dimension and the number of patterns: N x |P|.

e The third model variable is the number of writes to y, which can be derived for each block pattern
from its structure. This variable is needed because unlike CSR, which writes each element of y exactly
once, PBR may read and write each y element multiple times.

Our model must also predict the performance of the remainder matrix, which is kept in CSR format. We
modeled CSR’s performance with a separate multiple regression model that is based on matrix dimension
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and number of nonzeros. Section 4 discusses the computation of parameter estimates and the fit of these
models for our training set and the architectures we considered.

3.3 Structure Conversion

The structure conversion step creates the block indices and arranges the nonzero values in PBR format for
the selected blocksize. We keep the (row, col) block indices and the matrix nonzero values in two one-
dimensional contiguous arrays. As depicted in Figure 4, the nonzeros and indices of all blocks that belong
to the same pattern are stored in contiguous slices of these arrays, which guarantees spatial locality in the
inner loop of each kernel. Because the number of blocks for each recurring pattern has been determined
during the analysis step, the start and end locations of these slices can be precomputed in a single pass
over all patterns. Thus, nonzeros and block indices can be copied directly to their target destinations by
maintaining pointers to the current nonzero and block index offsets within each pattern’s slices.

3.4 Code Generation

The code generation step generates custom C functions for all qualifying patterns, stores them to disk, and
invokes the C compiler to create shared .so object files. Each .so file is dynamically linked into the process’s
address space. A pointer to the C function it contains is added to an array of function pointers. The outer
loop of the SMVM routine iterates over this array and invokes the generated block multiplication functions.

The shared object modules are created on demand and stored in a repository on disk. Since object mod-
ules are specific to only the block pattern and size, they can be reused both across multiple uses of the PBR
library on the same matrix as well as across multiple matrices that contain the same pattern. We expect
caching to be particularly beneficial for application domains that repeatedly generate similarly structured
matrices, e.g., k-stencil FEM methods. Optionally, the code cache can be primed by generating and compil-
ing all possible patterns for blocksizes 2 x 2, 3 x 3 and 4 x 4, which would pay for these code generation
costs upfront and avoid any cost for individual matrices when these block sizes are chosen.

Our code cache is designed to hold modules for different target architectures and with different optimiza-
tion options (e.g., SSE) simultaneously, thus allowing it to be shared by multiple machines on a network.
If needed, the size of the code cache repository could be managed by a periodically scheduled cronjob that
deletes files that have not been accessed for a certain time period, which is similar to the strategy used by
many Unix installations to purge stale files from the /tmp directory.

12



3.5 Explicit Prefetching

We optimized our baseline implementation by applying explicit prefetching for the matrix elements.
Although the streaming pattern of these accesses would ordinarily prevent gains from prefetching, prior
work on SMVM optimizations has shown [37] that explicit prefetching is beneficial on SSE-enabled x86-
based architectures, which are used by 87.6% of the machines in the November 2008 Top-500 list [24].
Prefetching can place data directly into the L1 cache and labels cache entries with the correct temporal
locality, thus allowing eviction in preference to other data such as elements of the x and y vectors, which
may be reused. Explicit prefetching is implemented via the GCC _builtin prefetch () compiler
intrinsic, which results in the emission of prefetch* SSE instructions. Our code allows varying the
prefetch distance at runtime, which enables dynamic tuning of the prefetch distance on a per matrix basis.

3.6 Vectorization

We adapted our code generator to emit vectorized code that exploits SSE2/3 SIMD intrinsics. This
instruction set allows simultaneous operations on a vector of two double values via the __mm1 2 8d data type,
which is mapped to a 128 bit SSE register. For simplicity, we vectorize only blocks with even sizes. Each
R x C block is divided into R/2 x C/2 2 x 2 subblocks. We allocate C'/2 and R/2 vector variables for
each (x;, x;+1) and (y;,y;j4+1) pair. We allocate 1 vector variable for aa elements if a subblock has 1 or 2
nonzeros, and 2 variables if it has 3 or 4 nonzero elements, independent of where those nonzeros are located
within the subblock. To minimize the number of shuffle operations that are required if aa elements are not
located in the order in which they are needed, we store the aa elements in zigzag order in memory. Figure 8

ols
olo”

shows the code our generator produces for the pattern

We introduce padding to maximize the use of 128bit aligned load instructions provided by the SSE2
instruction set. The first nonzero element in each block is aligned at a 16 byte boundary. In addition, we
implemented two different alignment strategies within a block. Our first strategy uses aligned loads only
when it is known that the elements to be loaded have the correct alignment, based on the alignment of the
initial nonzero within the block. If the number of nonzero elements is odd (1 or 3), we use 64-bit double load
instructions and set the unused element within the vector to zero. Our second strategy stores an additional
zero in memory whenever the number of nonzeros within a 2 x 2 subblock is odd, thus allowing the use
of aligned load instructions throughout. Our performance evaluation reports the results for the strategy that
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/ *
* SSE custom kernel for 2x2 block code
[ 1[x]
[x]1[ 1]
*/
__attribute__ ((noinline)) void
pbr_multiply_ 6(
real_t xy, real_t =x, real_t xAbase,
int nblocks, struct _nnzblock *nnzblock)

int 1i;

for (1 = 0; 1 < nblocks; i++) {
int topleftrow = nnzblock[i].topR;
int topleftcol = nnzblock[i].topC;

// _r76 = [_al, _aO0]

_ ml28d _r76 = _mm_load_pd(Abase);

// _xr75 = [_yl, _yO0]

_ ml28d _r75 = _mm_load_pd(y + topleftrow);
// _r73 = [_x1, _x0]

_ ml128d _r73 = _mm_load_pd(x + topleftcol);
// _r77 = [_x0, _x1]

_ ml128d _r77 = _mm_shuffle_pd(_r73, _r73, 1);
// _r78 = [_al = _x0, _a0 % _x1]

_ ml28d _r78 = _mm_mul_pd(_r76, _r77);

// _r79 = [_yl + _al » _x0, _y0 + _a0 * _x1]
_ ml28d _r79 = _mm_add_pd(_r75, _r78);

_mm_store_pd(y + topleftrow + 0, _r79);
Abase += 2;

Figure 8: SSE3 custom kernel for PBR format.
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yielded the best performance.

3.7 Parallelization

SMVM using a PBR representation contains inherent data parallelism since all floating point multiply
operations are independent from each other. Moreover, since the distribution of repeating blocks, as well as
the number of nonzeros within each block, is known post analysis, the workload can be distributed across
threads easily. However, unlike in parallel CSR-based SMVM implementations, we cannot row-partition
accesses to the y vector across threads. To avoid expensive synchronization, each thread maintains a private
y; vector that represents the partial product A;z of the submatrices for which it is responsible. Subsequently,
a reduction step sums up the partial sums to obtain the final result. This reduction step is itself easily
parallelized.

4 Evaluation

Our evaluation contains multiple parts: first, we demonstrate how PBR-based SMVM shortens time to
solution, or overall runtime, in both sequential and parallel environments, relative to readily available alter-
natives. Second, we demonstrate the relative impact of the prefetching and vectorization optimizations we
applied to PBR. Finally, we evaluate the runtime costs associated with the PBR implementation in compar-
ison to benefits by PBR. For all experiments, we used the matrix set in Table 1, which was introduced in
Section 2.3.

4.1 Methodology

We used two x86-based architectures for our evaluation: First architecture is a 2.8Ghz 2-socket quadcore
(8-core total) Intel Xeon Harpertown 5400 with 12 MB L2 cache per socket (each core pair sharing a 6MB
cache,) and 8GB of RAM. Second architecture is a 2.5 GHz 2-socket quadcode (8-core total) AMD Opteron
2380 with 512KB L2 and 128KB L1 caches per core, a 6MB shared L3 cache per socket, and 16GB of RAM.
We use the GCC compiler version 4.1.2 on the Harpertown and version 4.3.2 on the Opteron with opti-
mization flags: -02, -funroll-loops, -mfpmath=sse, -msse, -mtune and -march using
proper values for each architecture.
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Figure 9: Sequential speedup relative to naive CSR by (1) plain, (2) prefetched, (3) vectorized PBR and (4)
OSKI on Intel Harpertown.

4.2 Sequential Performance

Figures 9 and 10 compare the performance of unoptimized (plain) sequential PBR to the performance of
PBR with prefetching and PBR with vectorization on Harpertown and Opteron, respectively. Speedup results
are shown relative to the naive CSR performance.

For matrices with 80% or more nonzero coverage, which account for at least 30 of the 53 matrices on
both architectures, PBR provides a maximum speedup of 3.41 with an average of 1.53 on the Harpertown
and a maximum speedup of 2.32 with an average of 1.64 on the Opteron.

The relative contribution of prefetching and vectorization is shown as zero if prefetching or vectoriza-
tion did not improve performance. For a few matrices, these optimizations yielded slight slowdown. On
Harpertown, small matrices benefit particularly from vectorization, whereas the benefit of prefetching is
more pronounced on the Opteron.

These charts also contain the results we obtained using OSKI 1.0.1h [33], a widely used optimization
library. We used OSKI’s aggressive tuning option without providing structural hints. OSKI is consistently
slower than PBR, and even provides little or no speedup compared to naive CSR on the architectures con-
sidered, which is consistent with earlier results obtained by others [37].
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Figure 10: Sequential speedup relative to naive CSR by (1) plain, (2) prefetched, (3) vectorized PBR and
(4) OSKI on AMD Opteron.

4.3 Parallel Performance

We built a basic thread pool implementation on top of Linux’s PThreads API. To avoid the potentially
random placement of threads onto cores by the OS scheduler, we used the Portable Linux Processor Affinity
(PLPA) interface by the OpenMPI project [14] to explicitly set CPU affinity for each thread, which forces a
fixed mapping of threads to cores. When using 2 threads, we placed threads on neighboring cores that share
the same L2 cache on Harpertown and the same L3 cache on Opteron. When using 4 threads, we placed
them onto the same socket, thus sharing a single front-side memory bus.

We compared our parallel implementation of PBR to a parallel implementation of naive CSR. We par-
allelized CSR in a manner that partitions the matrices’ rows such that each thread operates on roughly the
same number of nonzero elements. We used the same thread pool implementation as for PBR.

Figure 11 shows the results for 2, 4, and 8 threads on Intel Harpertown (top) and AMD Opteron (bottom).
We expressed overall runtime of parallelized PBR relative to parallelized CSR. For this discussion, we
consider only the subset of matrices that provided more than 80% coverage and that yielded at least 1.1x
sequential speedup. A value greater than 1.0 indicates that the use of PBR is beneficial for a given number
of threads. These results indicate that PBR retains its performance advantage over CSR for 2 and 4 threads
for most matrices. PBR loses its performance advantage when using 8 threads for small and medium-sized
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Figure 11: Parallel performance of PBR relative to parallelized CSR using 2, 4, and 8 threads on Harpertown
(top) and Opteron (bottom). Only matrices with more than 80% coverage and sequential PBR speedup

greater than 1.1 are included. Matrices are sorted by their size, starting from the smallest on the left.



| Harpertown [ 2 core | 4 core | 8 core |

PBR 1.05 1.17 2.35
CSR 1.10 1.17 2.70

| Opteron [ 2 core | 4 core | 8core |
PBR 1.58 2.17 2.23
CSR 1.63 2.39 3.02

Table 4: Average of parallel speedups given in Figure 12.

matrices. As has been observed by others [37], such matrices benefit from superlinear speedup under CSR.

Figure 12 depicts parallel speedup by CSR and PBR relative to their respective sequential implemen-
tation, focusing on large matrices whose performance is memory bound. The averages of the speedups in
this figure are summarized in Table 4. The limited speedup on these multicore architectures reflects the con-
tention for memory bandwidth among cores. For instance, on Harpertown, significant speedup is realized
only when switching from 4 cores to 8, which uses two sockets instead of one and doubles the available
memory bandwidth.

4.4 Overhead Analysis

As with any optimization method, PBR’s overhead must be evaluated relative to the benefits it provides. We
relate PBR’s overhead to its performance benefits over the CSR method in the context of iterative solvers.
The break-even column (BEP) in Table 5 shows how many iterations would be needed to compensate for
PBR’s overhead, which includes matrix analysis and structure conversion, but excludes the code gener-
ation/compilation. Table 5 is sorted by matrix size, with smaller matrices in the top half. Since small
matrices benefit less from PBR, their break-even point is generally higher. The break-even point reduces
significantly with increasing matrix size.

Since the break-even point depends on the achieved speedup for a given matrix, we also report as a
second point of comparison how many CSR iterations could be performed in the time it takes to analyze and
convert the matrix to PBR. These numbers are shown in column CSR itr; they provide a cutoff value below
which PBR cannot be amortized.

To ensure that the overhead measured by our evaluation accurately reflects the inherent complexity of
our method, we validated that our implementation in fact exhibits the asymptotic complexity we predicted.
During this validation process, we eliminated several lurking quadratic complexities in our implementation
by applying the techniques described in Section 3.1. We fit a multiple linear regression model using the
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Figure 12: Parallel speedup of CSR and PBR using 2, 4, and 8 threads on Harpertown (top) and Opteron

(bottom). Performance data is shown for large matrices with more than 80% coverage and sequential PBR
speedup greater than 1.1.
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Intel Harpertown AMD Opteron
Matrix BS Analysis Structure BEP CSRitr Matrix BS Analysis Structure BEP CSR itr
orsreg._1 7 2.99E-03 1.69E-03 1046 160 orsreg_1 7 4.60E-03 2.33E-03 558 189
sherman3 5 4.42E-03 3.15E-03 1318 128 sherman3 5 7.04E-03 4.42E-03 1359 170
sherman5 3 3.44E-03 2.73E-03 295 135 sherman5 3 5.58E-03 3.72E-03 311 169
mcfe 4 6.48E-03 4.79E-03 1762 272 saylrd 3 7.18E-03 5.16E-03 968 188
orani678 4 1.39E-02 1.28E-02 697 205 mcfe 4 9.10E-03 6.10E-03 1596 290
rdist1 6 1.09E-02 1.11E-02 438 152 orani678 4 2.09E-02 1.68E-02 1013 217
memplus 8 3.07E-02 2.18E-02 1089 181 rdist1 6 1.81E-02 1.50E-02 799 177
wang3 6 2.86E-02 2.15E-02 541 143 wang3 6 4.85E-02 3.08E-02 1019 168
wang4 6 2.86E-02 2.12E-02 571 143 wang4 6 4.89E-02 3.11E-02 1126 169
Ihr10 8 2.89E-02 2.59E-02 498 143 Ihr10 4 4.81E-02 3.98E-02 1135 180
raefsky1 6 3.07E-02 2.88E-02 321 154 raefsky1 4 5.14E-02 4.26E-02 494 171
goodwin 4 4.12E-02 4.76E-02 604 167 af23560 8 9.93E-02 6.23E-02 320 144
shyy161 4 5.34E-02 5.04E-02 512 125 finan512 2 2.02E-01 2.37E-01 2070 201
vibrobox 2 6.88E-02 1.22E-01 2004 282 scircuit 2 4.96E-01 4.49E-01 1867 171
af23560 8 5.69E-02 4.04E-02 131 92 crystk02 6 1.72E-01 1.21E-01 172 97
finan512 6 1.21E-01 1.06E-01 675 107 rim 6 2.10E-01 1.66E-01 324 114
crystk02 3 9.78E-02 9.57E-02 119 55 ex11 3 2.15E-01 1.92E-01 294 118
rim 4 1.20E-01 1.34E-01 213 68 raefsky4 3 2.44E-01 2.26E-01 271 114
ex11 3 1.27E-01 1.37E-01 184 66 besstk35 3 2.63E-01 2.23E-01 223 105
raefsky4 3 1.39E-01 1.59E-01 179 61 raefsky3 2 2.49E-01 2.80E-01 279 117
besstk35 3 1.47E-01 1.49E-01 151 53 av41092 6 4.55E-01 3.72E-01 456 147
raefsky3 8 1.37E-01 1.12E-01 129 45 venkat(1 2 3.74E-01 3.38E-01 274 125
av41092 4 2.80E-01 2.88E-01 430 92 crystk03 3 3.15E-01 2.59E-01 227 105
venkat01 8 2.12E-01 1.50E-01 127 50 qed5.4 3 3.79E-01 2.90E-01 249 111
crystk03 3 1.79E-01 1.77E-01 166 55 rmal0 3 4.83E-01 4.19E-01 385 117
qed54 3 2.13E-01 1.91E-01 159 55 nasasrb 3 4.98E-01 4.31E-01 255 108
rmal0 3 2.77E-01 2.91E-01 262 63 ct20stif 3 5.60E-01 4.86E-01 359 120
nasasrb 3 2.72E-01 2.82E-01 195 55 3dtube 3 5.99E-01 6.01E-01 277 120
ct20stif 6 3.25E-01 2.95E-01 239 60 laminar_duct3D 3 7.30E-01 6.24E-01 284 111
3dtube 3 3.31E-01 4.12E-01 201 61 dense2 3 5.97E-01 5.91E-01 296 105
laminar_duct3D 3 4.03E-01 4.28E-01 199 57 cant 3 7.48E-01 6.23E-01 304 109
dense2 6 3.40E-01 3.00E-01 148 46 pkustk04 3 8.16E-01 7.16E-01 259 113
cant 3 4.13E-01 4.19E-01 213 57 pdblHYS 3 7.85E-01 6.44E-01 266 105
pkustk04 3 4.55E-01 4.75E-01 190 59 Si34H36 3 1.36E+00 1.41E+00 606 147
pdblHYS 6 4.36E-01 3.65E-01 178 51 consph 3 1.13E+00 9.32E-01 192 89
Si34H36 3 8.22E-01 1.06E+00 650 96 shipsecl 3 1.48E+00 1.20E+00 178 87
consph 3 6.19E-01 6.16E-01 198 55 pwtk 3 2.14E+00 1.93E+00 303 104
shipsecl 6 7.93E-01 6.31E-01 132 47
pwtk 3 1.11E+00 1.24E+00 185 51

Table 5: PBR overhead for matrices that achieved at least 1.1 x speedup, sorted by NNZ. This table includes
cost of block size detection (Analysis) and conversion of the PBR structure (Structure), but excludes the
code generation/compilation step, which is explored separately in Table 7. BEP denotes the break even
point, which is the number of iterations needed to compensate PBR overhead. CSRitr is the total PBR
overhead expressed in number of CSR iterations.

Model Parameters

Intercept N NNZ
Parameters: 0.021 5.6E-07 | 9.79E-08
Std Error: 0.013 6.81E-08 | 4.69E-09

Adjusted R? = 0.929

Table 6: Multi-regression parameters for the matrix analysis costs on the Harpertown architecture, which
models the ‘Analysis’ column of Table 5 for this architecture.
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variables N and NNZ to the benchmarked analysis times. This model yielded an adjusted R? value of
0.929. Parameter estimates and standard errors for the model are shown in Table 6. We performed the same
validation for the structure conversion step. We fit separate models for each block size; the adjusted R?
values for these models ranged from 0.77 to 0.88. These results confirm that PBR can be implemented with
a cost that is linear in matrix size and number of nonzeros.

Intel Harpertown AMD Opteron
Matrix Blocksize # Patterns A BEP A CSRitr Matrix Blocksize # Patterns A BEP A CSRitr
orsreg_1 7 2 25128 3860 orsreg_1 7 2 10167 3444
sherman3 5 2 17845 1745 sherman3 5 2 13534 1702
rdist1 6 8 8964 3125 rdistl 6 8 12606 2806
memplus 8 18 20695 3439 wang3 6 2 1551 256
wang3 6 2 1156 308 wang4 6 2 1704 257
wang4 6 2 1220 305 af23560 8 7 979 441
Thr10 8 50 27774 7998 crystk02 6 10 379 216
raefsky1 6 31 9408 4509 rim 6 220 12434 4398
af23560 8 7 561 397 av41092 6 236 8660 2794
finan512 6 74 11438 1812
raefsky3 8 1 42 14
venkatO1 8 15 362 143
ct20stif 6 227 5398 1371
dense2 6 3 44 13
pdb1HYS 6 15 208 60
shipsecl 6 1 8 3

Table 7: Cost of code generation/compilation for matrices that yielded the best performance with a block
size > 4 x 4, triggering code generation/compilation. ABEP and ACSR itr columns show number of extra
iterations incurred by code generation/compilation, to be added on values given in BEP and CSR itr columns
in Table 5.

Table 5 assumed that no code generation is necessary, which is true if the code cache contains already
compiled modules for all encountered patterns. Table 7 shows the additional cost incurred by the code
generation/compilation step for the subset of matrices that yielded the best performance for a blocksize
greater than 4 x 4 in columns A BEP and A CSR itr. We report numbers only for these matrices because
we assume that the code cache contains precompiled modules for all smaller patterns.

Detection of the optimal prefetch distance on systems that benefit from prefetching adds to these over-
heads. This tuning step can be performed during the first few SMVM operations in which the converted
matrix is used. We vary the distance in 64-byte increments within a range between 256 and 1024 bytes for
the first 12 iterations, then retain the distance that yielded the best performance in all subsequent iterations.

4.5 Predictor Model for Blocksize Detection

In Section 3.2, we described a method for estimating the PBR execution time in order to choose a block size
that yields optimal or near-optimal performance. For each candidate block size, we first estimate the PBR
and remainder CSR execution time using separate models; the overall predicted execution time is the sum of
these two components. The model for the PBR part uses three estimation factors as described in Section 3.2
(the memory reads due to the nonzero and index arrays, the approximation to the number of accesses to the
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2x2 3x3 4 x4 5x5
0.9948 | 0.9887 | 0.9754 0.9612
6x6 7x7 8 x8 Rem. CSR
0.9524 | 0.9562 | 0.9707 0.9806

Table 8: Predictor model R2 values for each block size and the remainder CSR.

z and y vectors, and the number of writes to ). The model for the remainder CSR uses matrix size and
number of remainder nonzeros. Then, we pick the block size that leads to the smallest predicted execution
time.

Since our model is based on the assumption that PBR performance is dominated by memory accesses,
we chose the 29 largest matrices of our set to train the model. The resulting adjusted R? values for these
models on the Intel Harpertown architecture are given in Table 8. We verified that the overall memory
consumption of these matrices exceeds the available L2 cache capacity, making PBR memory bound. For
these experiments, we do not consider the impact of vectorization and we assume a constant prefetching
distance.

Our model correctly selected the best-performing block size for 12 matrices. For the remaining 17
matrices, the performance loss due to mispredicted block size was less than 3%, with a maximum slowdown
of 12% for the finan512 matrix.

Because our prediction includes two components, the PBR and the remainder CSR parts, prediction
errors with opposite signs may cancel each other out. To validate that the high accuracy of our model was
not due to chance, we computed the weighted sum of the absolute values of the relative error 7 for both the
PBR and the CSR remainder parts:

Nsum = (CO'U) X ‘UPBR’ + (1 - COU) X ‘nRem.CSR‘

where cov denotes the nonzero coverage by PBR. We saw that for 25 matrices, the total error was less
than 25% for both the predicted block size as well as the block size that performed best. Therefore, the
cancelation of model errors is not significant for most matrices, and the high model accuracy is due to the
good fit of the model.

Overall, these results show that the block sizes selected by our predictor model lead to optimal or near-
optimal speedup. We note that block size prediction is an optimization; if the optimal block size is desired
and a matrix structure is sufficiently often reused, it is possible to perform a trial structure conversion using
each block size and choose the optimal block size via benchmarking.
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4.6 Limitations

PBR faces a number of limitations that affect its applicability and performance. First, there is the inherent
requirement that a block size exists for which there is significant nonzero coverage. Second, PBR may de-
crease the locality of the right-hand side x vector. Third, whereas SMVM using CSR writes each element
of the left-hand side vector y only once, PBR may require multiple reads and writes. PBR’s parallel imple-
mentation also requires an additional reduction step for y, which is a cost parallel CSR can avoid. If the
x or y vectors do not fit into the cache, such as for very sparse problems, the performance impact of these
limitations may reduce PBR’s effectiveness.

5 Related Work

The optimization and tuning of numerical kernel for sparse matrices has received a substantial amount of
attention in the literature. An overview of techniques for performance tuning of sparse kernels is provided
in [32].

Register blocking [31, 17, 18, 35, 37] identifies dense substructures and fills in zeros to obtain dense
subblocks, which can then be stored using more efficient indices. By contrast, PBR achieves the same
index reduction without storing (or computing with) zeros. As such, it will include blocks that register
blocking heuristics would reject because they would require too much zero-filling. Others have proposed
pre-processing [3] and matrix permutation to find or create dense substructures [19].

Cache blocking [17, 25, 26] improves performance by improving the locality of accesses to the z vector,
which is also the goal of classical bandwidth reduction techniques [29]. Cache blocking could be applied to
the individual submatrices on which PBR operates as well, although likely with smaller benefits.

Most related to our work are a number of techniques that attempt to reduce index overhead. For instance,
if a row contains many contiguous columns of nonzeros, run-length encoding can be used to reduce the
index overhead [27]. The benefit of run-length encoding is amplified if the matrix is first reordered to create
contiguous nonzero columns [28]. The use of delta coding and row pattern compression was proposed
in [36]. These two methods compress the index overhead relative to CSR, but may require hand-tuned
assembly language decompression routines to be effective. An alternative to delta coding that can take
advantage of near dense, but not necessarily contiguous nonzero concentrations was suggested in [20]. By
contrast, PBR does not perform decompression at runtime, but may not be applicable for some matrices that
benefit from compression.
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Capturing sparse matrix structure in generated code was previously proposed for specialized sparse
problems in [10] and [16]. In comparison, PBR does not make any assumptions about the structure of
a matrix when identifying repeating patterns. Compilation techniques that optimize for specific sparse
structures have been considered in [6].

Vectorized versions of CSR were proposed in [7] and [9]. Similarly, length-sorted CSR, which processes
pairs of rows with equal lengths, can use unroll-and-jam to increase instruction-level parallelism [22]. Nei-
ther technique reduces index overhead, however.

Other tuning techniques include diagonal cache blocking [30], the detection of diagonal substruc-
tures [11], the exploitation of symmetries [21], and optimizations for specific higher-level kernels, such
as sparse triangular solve [34]. The impact of prefetching on SMVM performance was previously explored
in [31] and [37].

The results of a comparative evaluation study of techniques for improving SMVM performance [13]
concur with our emphasis on reducing memory bandwidth usage. Another recent study [37, 38] considered
the impact of several known optimization techniques for SMVM on emerging multicore architectures. These
techniques included thread blocking, cache and register blocking, prefetching, SSE-based SIMDization of
dense substructures, and others. We included the matrices used in this study in ours and found that many
significantly benefit from PBR. We did not compare PBR to the optimizations implemented in that study
because the implementation is not readily available.

6 Conclusion

Sparse matrix vector multiply (SMVM) has long been recognized as an extremely challenging numerical
kernel. Its speed is limited by available memory bandwidth, particularly on modern architectures. We
proposed a novel method to reduce its memory bandwidth requirements by exploiting a memory-efficient
index structure that identifies and exploits repeating patterns, which are captured in generated code. Unlike
previous techniques, our method is agnostic with respect to structure. Perhaps counter-intuitively, the lion’s
share of the structure of many matrices that arise in scientific problems can be captured using a relatively
small number of frequently recurring patterns. Our technique can benefit from features that are available on
dominant modern architectures, such as prefetching and vectorization, and it is easily parallelizable.

We presented a library that performs matrix conversions on the fly, allowing our method to be used as a
drop-in replacement for existing methods. We evaluated PBR by demonstrating its performance advantage
for sequential and parallel implementations and by quantifying its overheads relative to its benefits. We
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described a performance predictor for choosing a blocksize that achieves an optimal or near-optimal perfor-
mance. For many practical scenarios in which matrix structures are reused sufficiently often, pattern-based
representation can augment the arsenal of tuning methods for sparse matrix-vector multiplication.
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