863 research outputs found

    On power line positioning systems

    Get PDF
    Power line infrastructure is available almost everywhere. Positioning systems aim to estimate where a device or target is. Consequently, there may be an opportunity to use power lines for positioning purposes. This survey article reports the different efforts, working principles, and possibilities for implementing positioning systems relying on power line infrastructure for power line positioning systems (PLPS). Since Power Line Communication (PLC) systems of different characteristics have been deployed to provide communication services using the existing mains, we also address how PLC systems may be employed to build positioning systems. Although some efforts exist, PLPS are still prospective and thus open to research and development, and we try to indicate the possible directions and potential applications for PLPS.European Commissio

    Seeing the world from its words: All-embracing Transformers for fingerprint-based indoor localization

    Get PDF
    In this paper, we present all-embracing Transformers (AaTs) that are capable of deftly manipulating attention mechanism for Received Signal Strength (RSS) fingerprints in order to invigorate localizing performance. Since most machine learning models applied to the RSS modality do not possess any attention mechanism, they can merely capture superficial representations. Moreover, compared to textual and visual modalities, the RSS modality is inherently notorious for its sensitivity to environmental dynamics. Such adversities inhibit their access to subtle but distinct representations that characterize the corresponding location, ultimately resulting in significant degradation in the testing phase. In contrast, a major appeal of AaTs is the ability to focus exclusively on relevant anchors in RSS sequences, allowing full rein to the exploitation of subtle and distinct representations for specific locations. This also facilitates disregarding redundant clues formed by noisy ambient conditions, thus enhancing accuracy in localization. Apart from that, explicitly resolving the representation collapse (i.e., none-informative or homogeneous features, and gradient vanishing) can further invigorate the self-attention process in transformer blocks, by which subtle but distinct representations to specific locations are radically captured with ease. For that purpose, we first enhance our proposed model with two sub-constraints, namely covariance and variance losses at the Anchor2Vec. The proposed constraints are automatically mediated with the primary task towards a novel multi-task learning manner. In an advanced manner, we present further the ultimate in design with a few simple tweaks carefully crafted for transformer encoder blocks. This effort aims to promote representation augmentation via stabilizing the inflow of gradients to these blocks. Thus, the problems of representation collapse in regular Transformers can be tackled. To evaluate our AaTs, we compare the models with the state-of-the-art (SoTA) methods on three benchmark indoor localization datasets. The experimental results confirm our hypothesis and show that our proposed models could deliver much higher and more stable accuracy

    A Meta-Review of Indoor Positioning Systems

    Get PDF
    An accurate and reliable Indoor Positioning System (IPS) applicable to most indoor scenarios has been sought for many years. The number of technologies, techniques, and approaches in general used in IPS proposals is remarkable. Such diversity, coupled with the lack of strict and verifiable evaluations, leads to difficulties for appreciating the true value of most proposals. This paper provides a meta-review that performed a comprehensive compilation of 62 survey papers in the area of indoor positioning. The paper provides the reader with an introduction to IPS and the different technologies, techniques, and some methods commonly employed. The introduction is supported by consensus found in the selected surveys and referenced using them. Thus, the meta-review allows the reader to inspect the IPS current state at a glance and serve as a guide for the reader to easily find further details on each technology used in IPS. The analyses of the meta-review contributed with insights on the abundance and academic significance of published IPS proposals using the criterion of the number of citations. Moreover, 75 works are identified as relevant works in the research topic from a selection of about 4000 works cited in the analyzed surveys

    Automatic Wi-Fi Fingerprint System based on Unsupervised Learning

    Get PDF
    Recently, smartphones and Wi-Fi appliances have been generalized in daily life, and location-based service(LBS) has gradually been extended to indoor environments. Unlike outdoor positioning, which is typically handled by the global positioning system(GPS), indoor positioning technologies for providing LBSs have been studied with algorithms using various short-range wireless communications such as Wi-Fi, Ultra-wideband, Bluetooth, etc. Fingerprint-based positioning technology, a representative indoor LBS, estimates user locations using the received signal strength indicator(RSSI), indicating the relative transmission power of the access point(AP). Therefore, a fingerprint-based algorithm has the advantage of being robust to distorted wireless environments, such as radio wave reflections and refractions, compared to the time-of-arrival(TOA) method for non-line-of-sight(NLOS), where many obstacles exist. Fingerprint is divided into a training phase in which a radio map is generated by measuring the RSSIs of all indoor APs and positioning phase in which the positions of users are estimated by comparing the RSSIs of the generated radio map in real-time. In the training phase, the user collects the RSSIs of all APs measured at reference points set at regular intervals of 2 to 3m, creating a radio map. In the positioning phase, the reference point, which is most similar to the RSSI, compares the generated radio map from the training phase to the RSSI measured from user movements. This estimates the real-time indoor position. Fingerprint algorithms based on supervised and semi-supervised learning such as support vector machines and principal component analysis are essential for measuring the RSSIs in all indoor areas to produce a radio map. As the building size and the complexity of structures increases, the amount of work and time required also increase. The radio map generation algorithm that uses channel modeling does not require direct measurement, but it requires considerable effort because of building material, three-dimensional reflection coefficient, and numerical modeling of all obstacles. To overcome these problems, this thesis proposes an automatic Wi-Fi fingerprint system that combines an unsupervised dual radio mapping(UDRM) algorithm that reduces the time taken to acquire Wi-Fi signals and leverages an indoor environment with a minimum description length principle(MDLP)-based radio map feedback(RMF) algorithm to simultaneously optimize and update the radio map. The proposed UDRM algorithm in the training phase generates a radio map of the entire building based on the measured radio map of one reference floor by selectively applying the autoencoder and the generative adversarial network(GAN) according to the spatial structures. The proposed learning-based UDRM algorithm does not require labeled data, which is essential for supervised and semi-supervised learning algorithms. It has a relatively low dependency on RSSI datasets. Additionally, it has a high accuracy of radio map prediction than existing models because it learns the indoor environment simultaneously via a indoor two-dimensional map(2-D map). The produced radio map is used to estimate the real-time positioning of users in the positioning phase. Simultaneously, the proposed MDLP-based RMF algorithm analyzes the distribution characteristics of the RSSIs of newly measured APs and feeds the analyzed results back to the radio map. The MDLP, which is applied to the proposed algorithm, improves the performance of the positioning and optimizes the size of the radio map by preventing the indefinite update of the RSSI and by updating the newly added APs to the radio map. The proposed algorithm is compared with a real measurement-based radio map, confirming the high stability and accuracy of the proposed fingerprint system. Additionally, by generating a radio map of indoor areas with different structures, the proposed system is shown to be robust against the change in indoor environment, thus reducing the time cost. Finally, via a euclidean distance-based experiment, it is confirmed that the accuracy of the proposed fingerprint system is almost the same as that of the RSSI-based fingerprint system.|์ตœ๊ทผ ์Šค๋งˆํŠธํฐ๊ณผ Wi-Fi๊ฐ€ ์‹ค์ƒํ™œ์— ๋ณดํŽธํ™”๋˜๋ฉด์„œ ์œ„์น˜๊ธฐ๋ฐ˜ ์„œ๋น„์Šค์— ๋Œ€ํ•œ ๊ฐœ๋ฐœ ๋ถ„์•ผ๊ฐ€ ์‹ค๋‚ด ํ™˜๊ฒฝ์œผ๋กœ ์ ์ฐจ ํ™•๋Œ€๋˜๊ณ  ์žˆ๋‹ค. GPS๋กœ ๋Œ€ํ‘œ๋˜๋Š” ์‹ค์™ธ ์œ„์น˜ ์ธ์‹๊ณผ ๋‹ฌ๋ฆฌ ์œ„์น˜๊ธฐ๋ฐ˜ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ์‹ค๋‚ด ์œ„์น˜ ์ธ์‹ ๊ธฐ์ˆ ์€ Wi-Fi, UWB, ๋ธ”๋ฃจํˆฌ์Šค ๋“ฑ๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ๊ทผ๊ฑฐ๋ฆฌ ๋ฌด์„  ํ†ต์‹  ๊ธฐ๋ฐ˜์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์ด ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ๋Œ€ํ‘œ์ ์ธ ์‹ค๋‚ด ์œ„์น˜์ธ์‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ค‘ ํ•˜๋‚˜์ธ Fingerprint๋Š” ์‚ฌ์šฉ์ž๊ฐ€ ์ˆ˜์‹ ํ•œ AP ์‹ ํ˜ธ์˜ ์ƒ๋Œ€์ ์ธ ํฌ๊ธฐ๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” RSSI๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์œ„์น˜๋ฅผ ์ถ”์ •ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ Fingerprint๊ธฐ๋ฐ˜์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์žฅ์• ๋ฌผ์ด ๋งŽ์ด ์กด์žฌํ•˜๋Š” ๋น„๊ฐ€์‹œ ๊ฑฐ๋ฆฌ์—์„œ TOA ๋ฐฉ์‹์— ๋น„ํ•ด ์ „ํŒŒ์˜ ๋ฐ˜์‚ฌ ๋ฐ ๊ตด์ ˆ๊ณผ ๊ฐ™์ด ์™œ๊ณก๋œ ๋ฌด์„  ํ™˜๊ฒฝ์— ๊ฐ•์ธํ•˜๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. Fingerprint๋Š” ์‹ค๋‚ด์˜ ๋ชจ๋“  AP์˜ RSSI๋“ค์„ ์ธก์ •ํ•˜์—ฌ Radio map์„ ์ œ์ž‘ํ•˜๋Š” ๊ณผ์ •์ธ ํ•™์Šต ๋‹จ๊ณ„์™€ ์ƒ์„ฑ๋œ Radio map์˜ RSSI๋“ค์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ธก์ •๋œ RSSI์™€ ๋น„๊ตํ•˜์—ฌ ์‚ฌ์šฉ์ž์˜ ์œ„์น˜๋ฅผ ์ถ”์ •ํ•˜๋Š” ์œ„์น˜์ธ์‹ ๋‹จ๊ณ„๋กœ ๋‚˜๋ˆ„์–ด์ง„๋‹ค. ํ•™์Šต ๋‹จ๊ณ„์—์„œ๋Š” ์œ„์น˜๋ฅผ ๊ตฌ๋ถ„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์‚ฌ์šฉ์ž๊ฐ€ 2~3m์˜ ์ผ์ •ํ•œ ๊ฐ„๊ฒฉ์œผ๋กœ ์„ค์ •๋œ ์ฐธ์กฐ ์œ„์น˜๋“ค๋งˆ๋‹ค ์ธก์ •๋˜๋Š” ๋ชจ๋“  AP๋“ค์˜ RSSI๋ฅผ ์ˆ˜์ง‘ํ•˜๊ณ  Radio map์œผ๋กœ ์ œ์ž‘ํ•œ๋‹ค. ์œ„์น˜์ธ์‹ ๋‹จ๊ณ„์—์„œ๋Š” ํ•™์Šต ๋‹จ๊ณ„์—์„œ ์ œ์ž‘๋œ Radio map๊ณผ ์‚ฌ์šฉ์ž์˜ ์ด๋™์— ์˜ํ•ด ์ธก์ •๋˜๋Š” RSSI์˜ ๋น„๊ต๋ฅผ ํ†ตํ•ด ๊ฐ€์žฅ ์œ ์‚ฌํ•œ RSSI ํŒจํ„ด์„ ๊ฐ€์ง€๋Š” ์ฐธ์กฐ ์œ„์น˜๊ฐ€ ์‹ค์‹œ๊ฐ„ ์‹ค๋‚ด ์œ„์น˜๋กœ ์ถ”์ •๋œ๋‹ค. ์„œํฌํŠธ ๋ฒกํ„ฐ ๋จธ์‹ (SVM), ์ฃผ์„ฑ๋ถ„ ๋ถ„์„(PCA) ๋“ฑ๊ณผ ๊ฐ™์ด ์ง€๋„ ๋ฐ ์ค€์ง€๋„ ํ•™์Šต๊ธฐ๋ฐ˜์˜ Fingerprint ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ Radio map์„ ์ œ์ž‘ํ•˜๊ธฐ ์œ„ํ•ด ๋ชจ๋“  ์‹ค๋‚ด ๊ณต๊ฐ„์—์„œ RSSI์˜ ์ธก์ •์ด ํ•„์ˆ˜์ ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์€ ๊ฑด๋ฌผ์ด ๋Œ€ํ˜•ํ™”๋˜๊ณ  ๊ตฌ์กฐ๊ฐ€ ๋ณต์žกํ•ด์งˆ์ˆ˜๋ก ์ธก์ • ๊ณต๊ฐ„์ด ๋Š˜์–ด๋‚˜๋ฉด์„œ ์ž‘์—…๊ณผ ์‹œ๊ฐ„ ์†Œ๋ชจ๊ฐ€ ๋˜ํ•œ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•œ๋‹ค. ์ฑ„๋„๋ชจ๋ธ๋ง์„ ํ†ตํ•œ Radio map ์ƒ์„ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ง์ ‘์ ์ธ ์ธก์ • ๊ณผ์ •์ด ๋ถˆํ•„์š”ํ•œ ๋ฐ˜๋ฉด์— ๊ฑด๋ฌผ์˜ ์žฌ์งˆ, 3์ฐจ์›์ ์ธ ๊ตฌ์กฐ์— ๋”ฐ๋ฅธ ๋ฐ˜์‚ฌ ๊ณ„์ˆ˜ ๋ฐ ๋ชจ๋“  ์žฅ์• ๋ฌผ์— ๋Œ€ํ•œ ์ˆ˜์น˜์ ์ธ ๋ชจ๋ธ๋ง์ด ํ•„์ˆ˜์ ์ด๊ธฐ ๋•Œ๋ฌธ์— ์ƒ๋‹นํžˆ ๋งŽ์€ ์ž‘์—…๋Ÿ‰์ด ์š”๊ตฌ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ๋“ค์„ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•™์Šต ๋‹จ๊ณ„์—์„œ Wi-Fi ์‹ ํ˜ธ์˜ ์ˆ˜์ง‘์‹œ๊ฐ„์„ ์ตœ์†Œํ™”ํ•˜๋ฉด์„œ ์‹ค๋‚ด ํ™˜๊ฒฝ์ด ๊ณ ๋ ค๋œ Unsupervised Dual Radio Mapping(UDRM) ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ์œ„์น˜์ธ์‹ ๋‹จ๊ณ„์—์„œ Radio map์˜ ์ตœ์ ํ™”๊ฐ€ ๋™์‹œ์— ๊ฐ€๋Šฅํ•œ Minimum description length principle(MDLP)๊ธฐ๋ฐ˜์˜ Radio map Feedback(RMF) ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๊ฒฐํ•ฉ๋œ ๋น„์ง€๋„ํ•™์Šต๊ธฐ๋ฐ˜์˜ ์ž๋™ Wi-Fi Fingerprint๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ํ•™์Šต ๋‹จ๊ณ„์—์„œ ์ œ์•ˆํ•˜๋Š” UDRM ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ ๊ธฐ๋ฐ˜์˜ ๋น„์ง€๋„ ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์ธ Autoencoder์™€ Generative Adversarial Network (GAN)๋ฅผ ๊ณต๊ฐ„๊ตฌ์กฐ์— ๋”ฐ๋ผ ์„ ํƒ์ ์œผ๋กœ ์ ์šฉํ•˜์—ฌ ํ•˜๋‚˜์˜ ์ฐธ์กฐ ์ธต์—์„œ ์ธก์ •๋œ Radio map์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ฑด๋ฌผ์ „์ฒด์˜ Radio map์„ ์ƒ์„ฑํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ๋น„์ง€๋„ ํ•™์Šต ๊ธฐ๋ฐ˜ UDRM ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ง€๋„ ๋ฐ ์ค€์ง€๋„ ํ•™์Šต์—์„œ ํ•„์ˆ˜์ ์ธ Labeled data๊ฐ€ ํ•„์š”ํ•˜์ง€ ์•Š์œผ๋ฉฐ RSSI ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ์˜์กด์„ฑ์ด ์ƒ๋Œ€์ ์œผ๋กœ ๋‚ฎ๋‹ค. ๋˜ํ•œ 2์ฐจ์› ์‹ค๋‚ด ์ง€๋„๋ฅผ ํ†ตํ•ด ์‹ค๋‚ด ํ™˜๊ฒฝ์„ ๋™์‹œ์— ํ•™์Šตํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ธฐ์กด์˜ ์˜ˆ์ธก ๋ชจ๋ธ์— ๋น„ํ•ด Radio map์˜ ์˜ˆ์ธก ์ •ํ™•๋„๊ฐ€ ๋†’๋‹ค. ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ์˜ํ•ด ์ œ์ž‘๋œ Radio map์€ ์œ„์น˜์ธ์‹ ๋‹จ๊ณ„์—์„œ ์‚ฌ์šฉ์ž์˜ ์‹ค์‹œ๊ฐ„ ์œ„์น˜์ธ์‹์— ์ ์šฉ๋œ๋‹ค. ๋™์‹œ์— ์ œ์•ˆํ•˜๋Š” MDLP ๊ธฐ๋ฐ˜์˜ ์ž๋™ Wi-Fi ์—…๋ฐ์ดํŠธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ƒˆ๋กญ๊ฒŒ ์ธก์ •๋˜๋Š” AP๋“ค์˜ RSSI์˜ ๋ถ„ํฌํŠน์„ฑ์„ ๋ถ„์„ํ•˜๊ณ  ๊ทธ ๊ฒฐ๊ณผ๋ฅผ Radio map์— ํ”ผ๋“œ๋ฐฑํ•œ๋‹ค. ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ์ ์šฉ๋œ MDLP๋Š” ๋ฌด๋ถ„๋ณ„ํ•œ RSSI์˜ ์—…๋ฐ์ดํŒ…์„ ๋ฐฉ์ง€ํ•˜๊ณ  ์ถ”๊ฐ€๋˜๋Š” AP๋ฅผ Radio map์— ์—…๋ฐ์ดํŠธํ•จ์œผ๋กœ์„œ ์œ„์น˜์ธ์‹์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ  Radio map์˜ ํฌ๊ธฐ์˜ ์ตœ์ ํ™”๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค. ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์‹ค์ œ ์ธก์ •๊ธฐ๋ฐ˜์˜ Radio map๊ณผ ์„œ๋กœ ๋น„๊ต๋ฅผ ํ†ตํ•ด ์ œ์•ˆํ•œ Fingerprint ์‹œ์Šคํ…œ์˜ ๋†’์€ ์•ˆ์ •์„ฑ๊ณผ ์ •ํ™•๋„๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ตฌ์กฐ๊ฐ€ ๋‹ค๋ฅธ ์‹ค๋‚ด๊ณต๊ฐ„์˜ Radio map ์ƒ์„ฑ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์‹ค๋‚ด ํ™˜๊ฒฝ ๋ณ€ํ™”์— ๊ฐ•์ธํ•จ๊ณผ ํ•™์Šต ์‹œ๊ฐ„ ์ธก์ •์„ ํ†ตํ•œ ์‹œ๊ฐ„ ๋น„์šฉ์ด ๊ฐ์†Œํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ Euclidean distance ๊ธฐ๋ฐ˜ ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ ์‹ค์ œ ์ธก์ •ํ•œ RSSI๊ธฐ๋ฐ˜์˜ Fingerprint ์‹œ์Šคํ…œ๊ณผ ์ œ์•ˆํ•œ ์‹œ์Šคํ…œ์˜ ์œ„์น˜์ธ์‹ ์ •ํ™•๋„๊ฐ€ ๊ฑฐ์˜ ์ผ์น˜ํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค.Contents Contents โ…ฐ Lists of Figures and Tables โ…ฒ Abstract โ…ต Chapter 1 Introduction 01 1.1 Background and Necessity for Research 01 1.2 Objectives and Contents for Research 04 Chapter 2 Wi-Fi Positioning and Unsupervised Learning 07 2.1 Wi-Fi Positioning 07 2.1.1 Wi-Fi Signal and Fingerprint 07 2.1.2 Fingerprint Techniques 15 2.2 Unsupervised Learning 23 2.2.1 Neural Network 23 2.2.2 Autoencoder 28 2.2.3 Generative Adversarial Network 31 Chapter 3 Proposed Fingerprint System 36 3.1 Unsupervised Dual Radio Mapping Algorithm 36 3.2 MDLP-based Radio Map Feedback Algorithm 47 Chapter 4 Experiment and Result 51 4.1 Experimental Environment and Configuration 51 4.2 Results of Unsupervised Dual Radio Mapping Algorithm 56 4.2 Results of MDLP-based Radio Map Feedback Algorithm 69 Chapter 5 Conclusion 79 Reference 81Docto

    Environment-Aware Regression for Indoor Localization based on WiFi Fingerprinting

    Get PDF
    Mendoza-Silva, G., Costa, A. C., Torres-Sospedra, J., Painho, M., & Huerta, J. (2022). Environment-Aware Regression for Indoor Localization based on WiFi Fingerprinting. IEEE Sensors Journal, 22(6), 4978 - 4988. https://doi.org/10.1109/JSEN.2021.3073878Data enrichment through interpolation or regression is a common approach to deal with sample collection for Indoor Localization with WiFi fingerprinting. This paper provides guidelines on where to collect WiFi samples, and proposes a new model for received signal strength regression. The new model creates vectors that describe the presence of obstacles between an access point and the collected samples. The vectors, the distance between the access point and the positions of the samples, and the collected, are used to train a Support Vector Regression. The experiments included some relevant analyses and showed that the proposed model improves received signal strength regression in terms of regression residuals and positioning accuracy.authorsversionpublishe
    • โ€ฆ
    corecore