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A B S T R A C T

In this paper, we present all-embracing Transformers (AaTs) that are capable of deftly manipu-
lating attention mechanism for Received Signal Strength (RSS) fingerprints in order to invigorate
localizing performance. Since most machine learning models applied to the RSS modality do
not possess any attention mechanism, they can merely capture superficial representations.
Moreover, compared to textual and visual modalities, the RSS modality is inherently notorious
for its sensitivity to environmental dynamics. Such adversities inhibit their access to subtle
but distinct representations that characterize the corresponding location, ultimately resulting in
significant degradation in the testing phase. In contrast, a major appeal of AaTs is the ability
to focus exclusively on relevant anchors in RSS sequences, allowing full rein to the exploitation
of subtle and distinct representations for specific locations. This also facilitates disregarding
redundant clues formed by noisy ambient conditions, thus enhancing accuracy in localization.
Apart from that, explicitly resolving the representation collapse (i.e., none-informative or
homogeneous features, and gradient vanishing) can further invigorate the self-attention process
in transformer blocks, by which subtle but distinct representations to specific locations are
radically captured with ease. For that purpose, we first enhance our proposed model with
two sub-constraints, namely covariance and variance losses at the Anchor2Vec. The proposed
constraints are automatically mediated with the primary task towards a novel multi-task
learning manner. In an advanced manner, we present further the ultimate in design with a
few simple tweaks carefully crafted for transformer encoder blocks. This effort aims to promote
representation augmentation via stabilizing the inflow of gradients to these blocks. Thus, the
problems of representation collapse in regular Transformers can be tackled. To evaluate our
AaTs, we compare the models with the state-of-the-art (SoTA) methods on three benchmark
indoor localization datasets. The experimental results confirm our hypothesis and show that
our proposed models could deliver much higher and more stable accuracy.

. Introduction

The ever-increasing worldwide demand for smart space ecosystems, exemplified by smart buildings, smart warehouses, and smart
ospitals over the last decade has fueled indoor localization systems profusely to become an indispensable enabler for many context-
ware services, including but not limited to wayfinding, asset tracking, and patient monitoring. Leveraging the ubiquity of WiFi,
nd Bluetooth signals, Received-Signal-Strength (RSS) fingerprinting methodologies have emerged as the predominant approach for
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indoor localization where a massive number of off-the-shelf deep learning architectures, commonly employed in vision and natural
language processing (NLP) tasks, come into play. In contrast to traditional methods like multilateration techniques based on Time and
Angle of Arrival, which necessitate strict time synchronization between radio emitters and receivers, RSS fingerprinting approaches
offer greater flexibility. These approaches undergo an initial offline phase to establish a radio map (i.e., fingerprint database), where
sequences of RSS anchors1 (i.e., RSS fingerprints) and their associated locations are manually surveyed. Subsequently, in the online
hase, users’ locations are determined by matching observed fingerprints against the established database.

Despite certain achievements in indoor localization through simple kNN enhancement methodologies [1,2], their performance
s often inclined to degrade, particularly in scenarios involving sparse radio maps and dynamic environments. Additionally, these
ethods typically require a significant look-up time for inference. Factors such as temperature, humidity, the presence of static and
oving objects, and power-constraint policies at emitters contribute to challenges such as reflection, scattering, and absorption in

adio propagation, rendering RSS fingerprints highly volatile and thus impacting localization accuracy. The emergence of CNN [3,4]
nd RNN [5]-based models has partially mitigated these challenges through the incorporation of architectural inductive biases [6],
amely multichanneling, downsampling, weight sharing, and locality, all of which prove beneficial to representation learning. This
nhancement enables the models to navigate complex indoor environments more effectively, partly mitigating issues related to
ynamic conditions and varying radio signal characteristics.

While these methods leverage CNN- and RNN-related inductive biases successfully, the input transformation used for CNNs
nd sequential computation in RNNs introduce artifacts that fabricate spatial correlations among anchors in RSS sequences. This
eads to local explorations of superficial correlations between sequence anchors and the considered locations. All things considered,
heir inferior performance in the testing phase largely lies in the following points: (i) Compared to other common modalities like

texts, images, and sounds, RSS fingerprint is a challenging modality, inconceivable to human reasoning, and highly susceptible
to environmental dynamics, producing a mass of inconsistent clues. As a result, capturing subtle but distinct representations [7–
13] for specific locations becomes nontrivial. (ii) The transformed input of 2D RSS fingerprints, coupled with noisy additives
of false correlations, does not fully benefit from existing CNNs, as convolution kernels assume true spatial correlations among
adjacent elements, a property not always applicable to RSS fingerprints. (iii) Original 1D fingerprint vectors lack expressiveness of
information between anchors, necessitating extensive interventions to discover latent correlations characterizing specific locations.
Due to reliance on sequential computation and local convolution filters with a limited receptive field, vanilla RNN- and CNN-based
models respectively lose sight of the whole picture in the RSS sequence, failing to extract relevant features for specific locations.

We posit that a given RSS fingerprint encapsulates both inconsistent and consistent clues all pertaining to a specific location.
However, these clues were hidden within the fingerprint’s structure, with the inconsistent ones being all-pervasive. This is because
of the modality’s vulnerability to environmental conditions, where measurements of RSS fingerprints to a certain location are likely
to be inundated with a large portion of highly noisy information. Moreover, excessive exposure to inconsistent information during
the representation learning stage can lead to substantial degradation in localization performance. In contrast, directing attention
exclusively to consistent clues associated with relevant locations can yield benefits. For that point, models that were not equipped
with an adequate attention scheme are prone to be influenced by adverse information.

With the advent of the self-attention mechanism for drawing global dependencies in sentences, the Transformer [14], charac-
terized by parallel computing and the avoidance of recurrent computations, has demonstrated faster convergence to the optimum
in numerous NLP tasks. In computer vision (CV), convolutional architectures remain firmly established as state-of-the-art (SoTA)
approaches for various vision tasks, including object detection, image recognition, and 3D reconstruction. However, the landscape
has shifted in the past three years, witnessing the widespread success of various Transformer variants [15–18] in a majority of
fundamental vision challenges.

Motivated by the evident superiority of Transformers in both NLP and CV domains, we extend the Transformer architecture to
tackle challenges in indoor localization by drawing an analogy between RSS fingerprints and textual sentences. Particularly, the
context of an excerpt is represented by the meaning of several sentences inside, analogous to the indoor localization field where the
context of a location is presumably represented by a set of fingerprints. In this analogy, the nuance of each sentence is defined by
its keywords, and similarly, the expressiveness of each fingerprint to the location is implicitly captured by selective inner anchors.

With that in mind, for the sake of conformity that the standard Transformer was not designed for direct application to RSS
fingerprints, we first accommodate an Anchor2Vec layer to the fingerprints by linearly mapping these sequences of anchors to
informative token embeddings as input to the Transformer. These token embeddings thereafter can be treated similarly to word
token embeddings in NLP applications on which a stack of multi-head self-attention layers is fully applied. Going through the
stacked attention layers can help progressively reveal the latent correlations among sequence anchors, which guides the model to
subtle but distinct representations carrying hidden information consistent with considered locations. Illustrated in Fig. 3(b), we
propose a novel Anchor-agnostic Transformer (eAaT+), incorporating simple yet effective architectural tweaks to further enhance
localization performance. The preliminary version of AaTs [19] presented an enhanced version dubbed eAaT that is conducive to the
exploration of latent correlations through the multi-head self-attention layers. To clarify, eAaT can avoid feature-level information
collapse in an attempt to generate informative token embeddings for the stacked attention layers, thus encouraging considerable
restraints on irrelevant features while seeking subtle but distinct representations from the beginning. This ability is enabled by the
synergy between two extra sub-constraints and the primary task, optimized together in a novel multi-task learning fashion where
all contributions from such constraints are equally adjusted.

1 An anchor represents one radio-emitting source such as WiFi access points or Bluetooth beacons.
2
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A preliminary version of this work was published in Proceedings International Conference on Pervasive Computing and
ommunications (PerCom) 2023 [19]. We extend the work in two key aspects. First, we conduct a theoretical analysis to evaluate
he effectiveness of different configurations within Transformers, namely Post- (Post-LN) and Pre-Layer Normalization (Pre-LN) that
as adopted in the preliminary version of AaTs [19]. Second, we introduce an ultimate version (eAaT+) with tweaked connections
nd dispositions of functional layers. This version aims to advance the representation learning process under the regularization of
he gradient flow through the networks.

Overall, our core contributions are summarized as follows:

• To the best of our knowledge, we are the first to propose a base transformer architecture, adapted with a specialized Anchor2Vec
layer (bAaT) capable of meaningfully interpreting RSS fingerprints of discrete anchors for specific locations.

• Furthermore, we deliver two enhanced versions of AaTs (eAaT & eAaT+) that not only incorporate two extra sub-constraints
deemed as unsupervised tasks but also feature an advanced disposition of functional layers. These versions effectively address
the information collapse at the feature level with great attention to detail, for which we again present a novel multi-task
learning scenario referred to as Adaptive Random Loss Weighting (Adaptive RLW) to automatically learn the balance between
contributions from different learning tasks. This facilitates the comprehensive utilization of learned common knowledge among
tasks to enhance performance in the primary task of localization.

• Our approach demonstrates state-of-the-art performances through extensive experiments and visual interpretation on public
indoor localization datasets. Besides, this paper expects to provide fresh impetus to the exploration of transformer-based
approaches for fingerprint-based indoor localization tasks.

. Related work

Within the last few years, numerous deep learning models have been suggested and successfully integrated into indoor
ocalization, particularly fingerprint-based techniques. We briefly review the most related literature in the following:

ingerprint-based localization Approaches. In lieu of jumping on the bandwagon for further advancements in vanilla matching
unctions (e.g., kNN variants [1,20,21]) with different distance metrics (e.g., Euclidean, Manhattan, and Cosine metrics), some

works adopt deep learning models to automatically seek more pertinent features for fingerprint matching. Specifically, CNN-based
fingerprinting methods [4,22] were put forward with extra preprocessing steps to convert 1D-RSS measurements into expected
input shapes to CNNs. Utilizing inductive biases inherent in such architectures to represent RSS fingerprints, such methods yield
decent localizing performance over public indoor localization datasets. WiDeep [23] integrates probabilistic stacked auto-encoders
to handle the noise and to capture complex relationships between the WiFi anchors. To incorporate temporal correlations among
RSS sequences within one trajectory into the representation learning stage, Hoang [24] et al. applies RNN-based architectures into
RSS input vectors without any input shape transformation for the trajectory localizing, which provides sequential output locations at
a certain interval. By extension, other approaches [25,26] cast the fingerprinting problem as a domain adaption problem, in which
fingerprint collection time and device are considered as independent domains. Accordingly, domain adaption-based frameworks
have been adopted to extract domain-independent representations.

Moreover, prior works on transformer-based architectures are worth mentioning. Since their inception 5 years ago [14], many
variants have been suggested and gained ground for impressive successes in both NLP and vision tasks among researchers who look
for alternative powerful architectures other than traditional models.

NLP Transformers. Transformers were for the first time presented by Vaswani et al. [14] for machine translation, and have
since ripened into the SoTA method in many NLP tasks. Continuously, Devlin et al., [27] pretrained a stack of bidirectional
transformer-encoders (BERT) on self-supervised pre-training tasks, e.g, Mask Language Modeling and Next Sentence Prediction to
inject bidirectionally attended representation, and sentence-level understanding biases for non-autoregressive tasks, while the GPT
series [28–30] employ language modeling as its pretraining task on transformer-decoders to ameliorate autoregressive tasks.

Vision Transformers. Inspired by the achievements of Transformers on NLP tasks [14,27,30,31], Dosovitskiy et al. [16] proposed
vision Transformers (ViT) that can represent fixed-size patches of an image with position-encoded embeddings for image recognition
tasks via a Linear Projection of Flattened Patches layer. Whereas ViT cannot outperform state-of-the-art CNNs on the standard
ImageNet benchmark, it reaches excellent results when pretrained on the larger JFT-300M dataset. DeiT [32] is devised with the
knowledge distillation-based learning to augment learned representations from ViT, which bested ResNet [33] by a significant
margin. Some following works such as T2T-ViT [34], LocalViT [35] and CrossViT [36] arrive with improvements in the architecture
design of ViT. Another line of research [37–39] attempts to transfer the inductive bias of CNN into Transformers. In addition, some
endeavors [18,40–43] are made to accommodate ViT to other vision tasks.

Time-series Transformers. Despite recent advances in the CV and NLP domains, the integration of Transformer-based architectures
for supervised learning has seen limited exploration in the Inertial Measurement Unit- (IMU) based Human Activity Recognition
(HAR) domain. The work by Shavit et al. [44] laid the foundation, employing a convolutional architecture to encode inertial signals
into latent embeddings. These embeddings were seamlessly integrated into a Transformer architecture for activity classification,
marking an initial fusion of convolutional and Transformer models in this domain. Drawing inspiration from the efficiency gains
demonstrated by MobileViT [45], Sannara et al. [46] simplified the attention process further to reduce computing resources, enabling
practical applications on embedded devices, and addressing the challenges of resource-intensive tasks in real-world scenarios. By
3
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Table 1
Key notations: Symbols and description.

Symbol Description

𝐗 1D RSS fingerprint
𝐍 The number of raw anchors inside each 𝐗
𝐁 The number of fingerprints in each batch
𝐄′ Unraveled token embeddings before 𝐄
𝐞𝑖 A single token in 𝐄
𝐄 Token embeddings
𝐄𝑝𝑜𝑠 Positional embeddings
𝐳𝑖𝑗 The output at the 𝑖th position in the 𝑗th layer
𝐝 The number of attributes inside each anchor 𝐞𝑖
𝑘 The number of tokens 𝐞𝑖 in 𝐄
𝐀 Attention map computed in Self-Attention blocks
𝐐 Query tokens used in Self-Attention blocks
𝐊 Key tokens used in Self-Attention blocks
𝐕 Value tokens used in Self-Attention blocks
LN Layer normalization
 Functional operations (e.g., Self-Attentions, Feed-Forward operations)
𝜆 Weighting factor
𝐽 Objective Constraint
𝛾 The desired average standard deviation used in Eq. (8)
𝜌 Stabilizing scaler used in Eq. (8)

extension, Earthformer [47] proposed cuboid attention for efficient spacetime modeling, which involves decomposing the data into
cuboids and applying cuboid-level self-attention in parallel, demonstrating superior performance in weather and climate forecasting.
Recently, AirFormer [48] introduced a novel approach featuring a dartboard spatial self-attention module and a causal temporal
self-attention module to efficiently capture spatial correlations and temporal dependencies, respectively. Furthermore, it augmented
Transformers with latent variables to capture data uncertainty and improve performance in air quality forecasting.

3. Proposed model

To push the boundaries of the aforementioned drawbacks in indoor localization, we directly elaborate a standard transformer
ncoder architecture with a few tokenizing tweaks tailored for fingerprinting problems. This architecture enables extensive multi-
ead attention to global dependencies by taking into account the entire context sequence when refining each token. Supported by
arallel computation, this ability is further deepened by a stack of attention layers, encouraging the model to efficiently realize
orrelations and important clues hidden in the sequence anchors. Furthermore, we propose two feature-level sub-constraints as
uxiliary unsupervised tasks, namely Covariance 𝐽𝑐𝑜𝑣 and Variance 𝐽𝑣𝑎𝑟 losses to seize more control of the representation learning
rocess. In this way, the diversity between tokenized sequences in general, and distinct attributes at each token in particular are
ore guaranteed, thereby facilitating multi-head attention layers to better disseminate their consideration to tokenized anchors

ccording to considered locations. To this end, eAaT jointly accomplishes these tasks through the proposed Adaptive RLW learning,
novel multi-task learning manner dynamically balancing the influence between subtasks and the primary task on learned gradients
ver batches. For our final design, specifically eAaT+, we further make some simple but effective tweaks regarding the disposition
f functional layers inside the transformer encoder blocks. This comprehensive transformation can alleviate impediments existing
n its predecessors, for which the backward flow of gradients with sufficient magnitude to all levels of transformer encoder blocks
s ensured. Key symbols used in this paper are listed in Table 1.

.1. Overview

We mainly follow the settings of BERT [27] in NLP where the input is expected to be a sequence of words. Assume a 1D RSS
ingerprint 𝐗 =

[

𝐱1,… , 𝐱𝑁
]

∈ R1×𝐍 is defined by a sequence of 𝐍 raw anchors, each containing an exclusive RSS value from one
f 𝐍 emitters. To be fully modeled by the Transformer as a sequence of words, the RSS fingerprint 𝑋 needs extra refinements. As

illustrated in Fig. 1, by dint of our designed tokenizing process at the Anchor2Vec layer, detailed in Sub Section 3.3, a given 1D
RSS fingerprint 𝐗 is interpreted into more meaningful token embeddings 𝐄 =

[

𝐞0,… , 𝐞𝑘
]T ∈ R(𝑘+1)×𝐝, each manifesting important

information under 𝐝 distinct attributes, akin to word token embeddings in NLP. To provide more details, 𝐗 undergoes an initial
linear mapping to an intermediate embedding of 𝑘 dimensions. This intermediate embedding acts as a fixed-size buffer, offering
flexibility to accommodate varying numbers of anchors and exhibiting an adaptive effect on representation refinement. Specifically,
this effect is anticipated to induce either feature consolidation for sparse RSS fingerprints in high dimensions or feature interpretation
for dense RSS ones with lower dimensions. Subsequently, each element within the intermediate embedding is augmented with
information-expressiveness in dimension through further expansion to a vector of 𝐝 dimensions. Simultaneously, the expansion is
closely supervised by 𝐽𝑐𝑜𝑣&𝑣𝑎𝑟 both in dimension and batch, ensuring effective and faithful enrichment. This supervision significantly
mitigates information collapse in the tokenizing process.
4
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Fig. 1. An overview of Anchor-agnostic Transformers (AaTs). Traditional Transformer architectures are not optimized for handling sequences of discrete anchors,
uch as Received Signal Strength (RSS) fingerprints represented as 𝐗. To address this limitation, we introduce the Anchor2Vec Layer for anchor tokenization.
his layer transforms anchor sequences into meaningful token embeddings, denoted as 𝐄, capturing rich contextual attributes. Each sequence or fingerprint

s appended with [CLS] for summarization, suitable for subsequent classification or regression tasks. Learnable positional embeddings 𝐄𝑝𝑜𝑠 encode positional
nformation among the tokenized anchors. The resulting sequence 𝐄 is input to the Transformer Encoder with 𝐋 blocks.

Drawing an analogy with BERT’s [CLS] token, we do prepend a learnable embedding [CLS] of 𝐝 dimensions to the sequence
f token embeddings. The output from the Transformer encoder, denoted as 𝐳0𝐿 serves as a summarized representation of the entire
equence that can be used both for regression and classification thereafter. Note that spatial information-awareness among the
okens in the sequence, at the same time, is enhanced by incorporating a learnable 1D positional embedding 𝐄𝑝𝑜𝑠 ∈ R1×(𝐤+1)⋅𝐝 into
he ultimate token embeddings 𝐄, making them ready for utilization by the Transformer.

.2. Attention mechanism of transformer

As mentioned earlier, the Transformer has established its powerful performance in many vision and language tasks for its multi-
ead self-attention and parallel computational capabilities. In this regard, the Transformer computes and uses attention 𝐀 from three
ypes of inputs, 𝑄 (query), 𝐾 (key), and 𝑉 (value), which are linearly projected from token embeddings. Its computation for 𝐀 is
iven by

𝐀 (𝑄,𝐾, 𝑉 ) = sof tmax(𝑄𝐾T
√

𝑑
)𝑉 , (1)

where 𝑄, 𝐾, and 𝑉 are all collections of projected features, each of which is represented by a 𝑑-dimensional vector. To be specific,
𝑄 =

[

𝑞0,… , 𝑞𝑘
]T ∈ R(𝑘+1)×𝑑 is a collection of 𝑘+1 features corresponding to the number of tokenized anchors in a sequence. Similarly,

and 𝑉 are each a collection of 𝑘 + 1 features, i.e., 𝐾, 𝑉 ∈ R(𝑘+1)×𝑑 . In Eq. (1), 𝑉 is attended with the weights computed from the
imilarity between 𝑄 and 𝐾.

The above computation is usually multiplexed in the way called multi-head attention. It enables the model to manipulate multiple
ttention distributions in parallel on different representation subspaces, aiming to increase representational power. The outputs of

‘heads’ are concatenated, followed by linear transformation with learnable weights 𝑊 𝑂 ∈ R𝑑×𝑑 as

𝐀𝑘 (𝑄,𝐾, 𝑉 ) = [head1,… , head𝐻 ]𝑊 𝑂 , (2)

here each head is expressed as follows:

headℎ = 𝐀
(

𝑄𝑊 𝑄
ℎ , 𝐾𝑊 𝐾

ℎ , 𝑉 𝑊 𝑉
ℎ

)

, ℎ = 1,… ,𝐻, (3)

here 𝑊 𝑄
ℎ ,𝑊 𝐾

ℎ ,𝑊 𝑉
ℎ ∈ R𝑑×𝑑𝐻 each are learnable weights inducing a linear projection from the feature space of 𝑑-dimensions to a
5

ower space of 𝑑𝐻 (= 𝑑∕𝐻)-dimensions. With the reduced dimension of each head by the number of heads, the total computational
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Fig. 2. Anchor2Vec Layer. The layer is to disentangle 𝐁 sequences of 𝐍 discrete anchors into 𝐁 sequences of 𝑘 + 1 dimensional embeddings 𝐄 ∈ R(𝑘+1)×𝐝, each
possessing 𝐝 different attributes, including positional correlations among sequence tokens through learnable positional embeddings 𝐄𝑝𝑜𝑠. Initially, a vector of 𝐍
anchors is linearly projected to a 𝑘-dimensional vector ∈ R𝑘 for adaptability (e.g., compression for large 𝐍 ≫ 𝑘 or interpretation for minor 𝐍 < 𝑘). Subsequently,
he vector is further interpreted to a higher dimension, where each element is expanded to 𝐝 attributes. To prevent feature-level information collapse, eAaT
mposes two sub-constraints, compelling the model to generate unique sequences with informative tokens carrying distinct attributes.

ost for multi-head attention remains similar to that of single-head attention with full dimensionality. Overall, one attentional block
𝑘 (𝑄,𝐾, 𝑉 ) includes the following learnable weights:

(

𝑊 𝑄
1 ,𝑊 𝐾

1 ,𝑊 𝑉
1

)

,… ,
(

𝑊 𝑄
𝐻 ,𝑊 𝐾

𝐻 ,𝑊 𝑉
𝐻

)

and𝑊 𝑂 . (4)

elf-attention is the main component of transformers, which enables the model to make use of contextual information from neighbor
nchors for predicting the current token.

.3. Anchor2Vec layer

As presented in Fig. 2, the Anchor2Vec layer is intended for transforming sequences of raw anchors to sequences of tokenized
nchors, i.e, sequences of token embeddings. To be more specific, the sequence of raw anchors 𝑋 is transformed into a 1D
ntermediate embedding of 𝑘 dimensions to mainly gain the adaptive effect. With the help of this effect, the overheads of
omputations and the footprint of learning parameters are considerably shrunk for sparse fingerprint datasets with over hundreds
f anchors whereas triggering slight growth in computation for dense ones with a few anchors. Afterward, such a 1D embedding
s further enriched to the one with higher dimensions of 𝑘 ⋅ 𝐝 to better express salient information among tokenized anchors.
urthermore, [CLS] token responsible for synthesizing the representation of all tokenized anchors involved in the sequence is
laced at the first place 𝐱0 of the sequence. Also, the sequence of token embeddings is element-wise fused to the learnable position
mbeddings 𝐄𝑝𝑜𝑠 for retaining positional information, which helps the model not perceive the sequence as ‘‘a bag of words’’. The
esulting sequence of token embeddings 𝐄 thereafter serves as input to the encoders. As regards the eAaT, there is an extra step
eeded, in which the token embeddings 𝐄 are batch- and dimension-wise regulated by the following sub-constraints that play roles
s two unsupervised tasks. The imposition of such subtasks to satisfy the primary task of localization is achieved in a multi-task
earning fashion.

ovariance Constraint.The constraint 𝐽𝐶𝑜𝑣 is proposed to ensure high information diversity for all attributes of each tokenized anchors
𝐞𝑖
}𝑘
𝑖=0 ∀ 𝐞𝑖 ∈ Rd in a sequence 𝐄 by decorrelating the entire attributes of the sequence token embedding over a batch of 𝐁 examples.

Therefore, the informational collapse where the attributes of different tokens in the same sequence would vary together or be highly
correlated is significantly diminished. As shown in Fig. 2, instead of locally allowing such diversity in one single token embedding
of 𝐄, where only every 𝐝 attributes is independently taken into consideration, we simultaneously dispense it comprehensively to all

′ d⋅(𝑘+1)
6

token embeddings via the sequence 𝐄 ∈ R , a sequence of unraveled token embeddings before 𝐄, which strictly encourages
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Fig. 3. Comparison of different variants of Anchor-agnostic Transformers. (a) Basic and enhanced versions of AaTs; (b) A version of the enhanced version plus
a new disposition of functional layers and an extra residual connection indicated with the red curved arrow.

globally distinct attributes in the entire sequence. To this end, relations among element attributes over a batch should be modeled
with a covariance matrix:

𝐶𝑜𝑣
(

E′) = 1
B − 1

B
∑

𝑖=1

(

E′
𝑖 − Ē′

) (

E′
𝑖 − Ē′

)T (5)

where

Ē′ = 1
B

B
∑

𝑖=1
E′

𝑖 (6)

With Eq. (5), the constraint is deduced and then satisfied by minimizing the following expression:

𝐽Cov =
1

(𝑘 + 1) ⋅ d
∑

𝑖≠𝑗

[

𝐶𝑜𝑣
(

E′)]2
𝑖,𝑗 (7)

The Eq. (7) aims to minimize all off-diagonal values, each of which indicates the level of correlation between two different
attributes. At the optimal point, one sequence is expected to hold informative and distinct attributes across its tokens.

Variance Constraint. In a similar way, this constraint remains implemented on 𝐄′ for the comprehensive effect. Given a batch of 𝐁
sequences, a hinge loss is employed to maintain the variation among sequences of the unraveled token embeddings above a given
threshold. This term generally forces sequences of the token embeddings within a batch to be different, which implies that each
sequence would bear its own attributes. Thus, the collapse as a result of the shrinkage of the token embeddings towards zero, i.e.,
different locations in one batch represented by the same sequence of token embeddings is explicitly prevented. In the following,
the variance loss is instead computed on a standard deviation of 𝐄′ over 𝐁 sequences to rule out the cases that the gradient with
respect to 𝐸′

𝑖 becomes close to zero as 𝐸′
𝑖 comes close to 𝐸̄′.

𝑆𝑡𝑑 (E, 𝜌) =

√

∑B
𝑖=0

(

E′
𝑖 − Ē′

)2

B − 1
+ 𝜌 (8)

Based on Eq. (8), we define the variance constraint via a hinge loss function:

𝐽𝑉 𝑎𝑟 =
1

(𝑘 + 1) ⋅ d

(𝑘+1)⋅d
∑

max (0, 𝛾 − 𝑆𝑡𝑑 (E, 𝜌)) (9)
7

𝑗=1
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where 𝛾 is the desired average standard deviation, and 𝜌 is a very small scaler to keep Eq. (8) valid at all times.
With the benefit of Eq. (7), and Eq. (9), the Anchor2Vec layer can meaningfully represent sequences of raw anchors with sequences

of token embeddings that not only acquire independent details in cross-sequence but also have distinct attributes in intra-sequence.
That accordingly facilitates the multi-head self-attention process to efficiently realize subtle but distinct representations.

3.4. Adaptive random loss weighting in multi-task learning

To mediate disputes between learning tasks to effectively learn relevant representation for the primary task, the sub-constraints
should be preserved in harmony with the main goal in a multi-task learning (MTL) fashion. Since all the predefined tasks, including
two unsupervised tasks and the main one, are not closely related, it thus is nontrivial to training an MTL model than training
each of them separately. The discrepancies between the learning tasks might cause the implications of conflicting gradients among
these tasks or dominating gradients at a given task to the others [49], thus leading to unsatisfactory performance for other tasks.
Such phenomena are related to the task-balancing problem [50] in MTL, where balancing the influences between sub-tasks and the
primary task remains very challenging. Rather than directly intervening in learned gradients of considered tasks, the work [51]
presents a Random Loss Weighting (RLW) scheme to indirectly balance influences among these tasks. Inspired by this opinion, we
propose an advanced weighting approach coined Adaptive Random Loss Weighting manner (Adaptive RLW) in which contribution
balance between different tasks through weighting factors 𝜆̄ =

[

𝜆̄1, 𝜆̄2, 𝜆̄3
]

in Eq. (10) is utterly learnable. The previous research
on RLW has been almost entirely restricted to the random draw for weight factors 𝜆̄ from only one of the following distributions,
e.g., Normal, Dirichlet, Bernoulli, Uniform, and Random Normal which is initialized with a random mean and random standard
deviation, yet without any feedback from the model. This works on the assumption that randomly introducing such weighting
factors from one of the predefined distributions is regarded as another stochastic stream that enables the model to automatically
align its consideration of computed gradients with involved tasks. The concept has already been proved for the first stochastic stream
of randomized separate batches of input data from the whole dataset, in which the model has no control of randomization, but is
still capable of directing its learning ability to the whole dataset.

𝐽𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝜆̄0𝐽𝑀𝐴𝐸∕𝐶𝑎𝑡 + 𝜆̄1𝐽𝐶𝑜𝑣 + 𝜆̄2𝐽𝑉 𝑎𝑟 (10)

More flexibility and relaxation in the multi-task balance of RLW could greatly relieve the anxiety of gradient conflict or
domination at one task over others. This suggests that each batch needs weighting factors of disparate magnitudes for different
distributions to properly regulate the gradients of involved tasks. However, the predecessor only gains one constant advantage of
the same distribution for all batches without any interoperation from the model. In light of this, the Adaptive RLW was designed to
responsively capture feedback from the model while being wholly able to simultaneously reap multiple gains from all five different
distributions to better balance influences among predefined tasks on the model’s learning ability. To be more specific, the feedback
is achieved by directly appraising the model’s state via an analysis on the enhanced feature map 𝐸𝑒ℎ𝑐 to learn intermediate weights
𝑊𝑑𝑖𝑠 corresponding to five different random distributions, succinctly interpreted in Algo. 1. As a result, those weighting factors
from relevant distributions are significantly enhanced whereas those from unnecessary distributions are highly suppressed, which
indirectly allows for more effective adjustments to computed gradients from each task jointly, thereby significantly alleviating
dominant gradients at a certain task.

Algorithm 1: Adaptive Random Loss Weighting
Input: number of tasks 𝑇 , number of weight distributions 𝑃 , learning rate 𝛼, dataset 𝐷, model parameters 𝜃, weight distribution {𝜌𝑖(𝜆̃)}𝑃−1𝑖=0
Output: task-specific weights {𝜆̄𝑡}𝑇−1𝑡=0 , task-specific losses {𝐽𝑡}𝑇−1𝑡=0

1 Initialization: 𝜆𝑑𝑖𝑠 ∈ RT×𝑃 , 𝜆̄ = [𝜆̄0,⋯ , 𝜆̄𝑇−1], 𝜆 ∈ R𝑇

2 for 𝑡 = 1 to 𝑇 − 1 do
3 Compute loss 𝐽𝑡(𝐷, 𝜃)
4 end for
5 Extracting the unraveled token embeddings 𝐄′

6 /* Performing enhancements on 𝐄′ by taking all the involved sequences within a batch into account */

7 𝑆𝑠𝑒𝑞𝑠 = softmax(E′E′𝑇 )
8 E𝑒ℎ𝑐 = 𝑆𝑠𝑒𝑞𝑠E′

9 /* Computing distribution weights 𝑊𝑑𝑖𝑠 ∈ R𝑃 among 𝑃 distributions for a batch of 𝐁 sequences */

10 𝑊𝑑𝑖𝑠 = softmax
(

1
B

B−1
∑

𝑗=0
𝑃𝑜𝑜𝑙𝑖𝑛𝑔

(

E𝑒ℎ𝑐
𝑗
)

)

11 // Sampling weights from 𝑃 distributions
12 for 𝑖 = 0 to 𝑃 − 1 do
13 𝜆𝑑𝑖𝑠[∶ 𝑇 , 𝑖] ∼ 𝜌𝑖(𝜆̃)
14 end for
15 for 𝑡 = 0 to 𝑇 − 1 do

16 𝜆[𝑡] =
𝑃−1
∑

𝑝=0
𝜆𝑑𝑖𝑠[𝑡, 𝑝] ⋅𝑊𝑑𝑖𝑠[𝑝]

17 end for
18 𝜆̄ = softmax(𝜆) // Computing task-specific weights
19 return {𝜆̄𝑡}𝑇−1𝑡=0 , {𝐽𝑡}

𝑇−1
𝑡=0
8
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3.5. Transformer encoder

Variants of AaTs progressively undergo significant upgrades over versions. As shown in Fig. 3(a), the first two versions of our
reliminary version [19], namely bAaT, and eAaT, however, were placed on the same transformer encoder architecture, i.e., Pre-LN
tyle. The reason behind this arrangement is that we put a premium on stability over performance during the course of training,
specially for the relatively shallow architecture of AaTs. As pointed out in [52–54], although the Pre-LN-styled transformer
ncoders show more resilience against gradient vanishing when training with deep Transformers, these architectures appear to
e vulnerable to the representation collapse instead. This is because the complexity of these networks is simplified quickly with
esidual connections over their blocks, which makes them less expressive to the complexity of input data. In contrast to Pre-LN-
tyled architecture, the Post-LN-styled ones can offer better performance, albeit with only a few transformer encoder blocks. The
ritical distinction between Pre-LN- and Post-LN-styled architectures in operation is generally manifested in the equation below:

PreLN (𝐄) = 𝐄 +  (LN (𝐄))
PostLN (𝐄) = LN (𝐄 +  (𝐄)) (11)

where 𝐄 ∈ R(𝑘+1)×𝐝, LN, and  denote the token embeddings that were tokenized by Anchor2Vec, Layer Normalization, and functional
operations (e.g., Self-Attentions, Feed-Forward operations), respectively. In the same way, this is also observed in Fig. 3, which
depicts the basic differences between Pre-LN (e.g., bAaT & eAaT) and advanced Post-LN (eAaT+) styles in layer disposition. The
Pre-LN-styled architectures immediately prioritize the normalization of the input token embeddings. The normalization, however,
is executed upon completion of operations for the Post-LN-styled architectures. Such dispositions in both styles could bring
different effects on model performance. To effectively achieve certain improvements in performance, we theoretically investigate
the occurrence of the problems above during the back-propagation of regular Transformers for these two styles.

3.5.1. Pre-LN - The basic foundation of bAaT and eAaT
Given a stack of 𝐿 Pre-LN-styled transformer encoder blocks, output 𝐸𝐿 at the top block 𝐿 is defined as follows:

E𝐿 = E𝐿−1 + 𝑎
(

LN
(

E𝐿−1
))

+ 𝑓
(

LN
(

E𝐿−1 + 𝑎
(

LN
(

E𝐿−1
))))

(12)

here 𝐸𝐿−1 is the attended token embeddings in previous blocks, which are first normalized with the LN layer before being further
rocessed by the Self-Attention layer 𝑎. To which, shortly afterward, a residual connection from 𝐸𝐿−1 is established. By extension,
his process then perpetuates itself for the feed-forward layer 𝑓 .

𝜕E𝐿
𝜕E𝑘

= I +
𝐿−1
∑

𝑘

𝜕𝑎
(

LN
(

E𝐿−1−𝑘
))

𝜕E𝑘
+
𝜕𝑓

(

LN
(

E𝐿−1−𝑘 + 𝑎
(

LN
(

E𝐿−1−𝑘
))))

𝜕E𝑘
(13)

For the sake of simplicity, we only make the derivatives among the transformer encoder blocks the central focus of this scrutiny.
Such local snapshots remain valid for the functional reflection of the whole model as the course of back-propagation is contiguously
computed using the Chain-rule method. According to Eq. (12), we take the derivative of E𝐿 w.r.t E𝑘 at a specific block 𝑘, as shown
n Eq. (13), in which I denotes an identity matrix. The derivative at the block 𝑘 represents the magnitude of gradients for an update
n its parameters. Due to the constant presence of the identity matrix I, the gradient flow to the entirety of transformer encoder
locks is always ensured. As suggested by the iterative summation in Eq. (13), this also implies that blocks closer to the bottom can
eceive a larger magnitude of gradients than ones distant, i.e., the top blocks in which the received amount might be inadequate
or an update. Furthermore, since the identity matrix I sets a direct flow of gradients from the top blocks to any lower blocks,
ven the bottom block by the same amount, the complexity of the model is likely being oversimplified, thereby degenerating its
xpressiveness to the complexity of the data. These findings suggest that the representation collapse as a result of the unregulated
radient flow (e.g., namely an insignificant magnitude of gradients in top blocks, and the direct flow across transformer encoder
locks) is inevitable. This limitation can be solved with the Post-LN styles, in which operations  are given priority over LN layers.

.5.2. Post-LN
Compared with the Pre-LN styles, the Post-LN-styled transformer encoder of 𝐿 blocks is characterized by a different disposition

f functional layers, for which the working mechanism is conceptually condensed in the form of the following equation.

E𝐿 = LN
[

LN
(

E𝐿−1 + 𝑎
(

E𝐿−1
))

+ 𝑓
(

LN
(

E𝐿−1 + 𝑎
(

E𝐿−1
)))]

(14)

otice that every operation in sequence is performed directly on token embeddings. The LN layers are applied right after the
stablishment of residual connection, i.e., a knot joining the flows of E𝐿−1 and attended token embeddings 𝑎

(

E𝐿−1
)

. For a complete
ransformer encoder block as illustrated in the Eq. (14), the computation is expanded in the same way for 𝑓 .

𝜕E𝐿
𝜕E𝑘

= 𝜕LN
(

LN(E𝐿−1+𝑎(E𝐿−1))+𝑓 (LN(E𝐿−1+𝑎(E𝐿−1)))
)

𝜕
(

LN(E𝐿−1+𝑎(E𝐿−1))+𝑓 (LN(E𝐿−1+𝑎(E𝐿−1)))
) ⋅

(

𝜕LN(E𝐿−1+𝑎(E𝐿−1))
𝜕(E𝐿−1+𝑎(E𝐿−1))

I + 𝜕𝑓 (LN(E𝐿−1+𝑎(E𝐿−1)))
𝜕LN(E𝐿−1+𝑎(E𝐿−1))

𝜕LN(E𝐿−1+𝑎(E𝐿−1))
𝜕(E𝐿−1+𝑎(E𝐿−1))

I
)

⋅
(

∏𝐿−1
𝑘

𝜕E𝐿−1−𝑘
𝜕E𝐿−2−𝑘

+ 𝜕𝑎(E𝐿−1−𝑘)
𝜕E𝐿−2−𝑘

∏𝐿−2
𝑘

𝜕E𝐿−2−𝑘
𝜕E𝐿−3−𝑘

)

(15)

ubsequently, we proceed with derivative of E𝐿 w.r.t E𝑘 at a specific layer 𝑘. As observed in Eq. (17), none of the direct shortcuts
9

etween upper blocks and lower blocks indicated by an independent identity matrix I are established for Post-LN styles. Instead,
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all backward flows of information to lower blocks in back-propagation are strictly regulated with combinations of derivatives of
LN layers and other operations, e.g., 𝑓 , and 𝑎, which thus relieves the oversimplification in model complexity. However, such
pdating information in the form of the gradient flow might be subjected to quadratic shrinkage, which is imposed by the serial
roducts of two contiguous derivatives of LN layers for every single step of the conveyance through each block. This implies that

necessary updates cannot be made at the bottom blocks. For this situation, we make some tweaks to Post-LN styles in an attempt to
preserve their conveyance of informative representations, but also to provide an extra shortcut that can regulate the flow of gradient
to all transformer encoder blocks.

3.5.3. Tweaked transformer encoder-eAaT+
With the practical benefits of Post-LN-styled Transformers for representation learning, we transform the Pre-LN disposition of

AaTs constituted by 𝐿 Transformer encoder blocks into the Post-LN disposition. In order to mitigate gradient vanishing issues, a
residual connection between the input token embeddings from the beginning straight to the point after 𝑓 at the end is established
for each transformer encoder block, as visually indicated with a red arrow in Fig. 3(b). In particular, for the forward pass, the
ensuing knot in each block acts as an aggregating point of three different incoming flows. Thereafter, the aggregated information
is normalized by the last LN layer as a way of circumventing the direct flow of gradient in the back-propagation.

E𝐿 = LN
[

E𝐿−1 + LN
(

E𝐿−1 + 𝑎
(

E𝐿−1
))

+ 𝑓
(

LN
(

E𝐿−1 + 𝑎
(

E𝐿−1
)))]

(16)

rom theoretical aspects, the residual connection is performed by an introduction of E𝐿−1 term to Eq. (16). This introduction is an
mportant factor to ensure stability in back-propagation to bottom blocks where the flow of gradients of sufficient magnitude is hard
o reach. Below we theoretically verify the significance of our tweaks.

𝜕E𝐿
𝜕E𝑘

= 𝜕LN(E𝐿−1+LN(E𝐿−1+𝑎(E𝐿−1))+𝑎(LN(E𝐿−1+𝑎(E𝐿−1))))
𝜕(E𝐿−1+LN(E𝐿−1+𝑎(E𝐿−1))+𝑎(LN(E𝐿−1+𝑎(E𝐿−1))))

⋅

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∏𝐿−1
𝑘

𝜕E𝐿−1−𝑘
𝜕E𝐿−2−𝑘

+

⎛

⎜

⎜

⎜

⎝

𝜕LN(E𝐿−1+𝑎(E𝐿−1))
𝜕(E𝐿−1+𝑎(E𝐿−1))

I+

𝜕𝑎(LN(E𝐿−1+𝑎(E𝐿−1)))
𝜕LN(E𝐿−1+𝑎(E𝐿−1))

𝜕LN(E𝐿−1+𝑎(E𝐿−1))
𝜕(E𝐿−1+𝑎(E𝐿−1))

I

⎞

⎟

⎟

⎟

⎠

⋅

(

∏𝐿−1
𝑘

𝜕E𝐿−1−𝑘
𝜕E𝐿−2−𝑘

+ 𝜕𝑎(E𝐿−1−𝑘)
𝜕E𝐿−2−𝑘

∏𝐿−2
𝑘

𝜕E𝐿−2−𝑘
𝜕E𝐿−3−𝑘

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(17)

s observed in Eq. (17), the introduction of a new term E𝐿−1 in Eq. (16) opens a shortcut 𝜕E𝐿−1−𝑘
𝜕E𝐿−2−𝑘

to lower blocks. Since this
shortcut is solely regulated by the outermost LN layers, the flow of gradients to lower blocks could be more guaranteed with
sufficient information for an update on their parameters, while direct flows that could oversimplify the complexity of the model are
completely abstained. For all that, eAaT+ is devised as the ultimate version with end-to-end enhancements on representation issues
from Anchor2Vec to Transformer Encoder blocks.

4. Experiment

4.1. Implementation details

Dataset. Three public indoor databases, namely UJIIndoorLoc [55], UTS [56], and UTS [57] for position estimation and floor
classification, are adopted to strictly assess the proposed framework. Those are sparse databases with hundreds of anchors measured
in multi-storey buildings. For UJIIndoorLoc, only around 232 out of 520 anchors in each fingerprint really work for each floor.
Likewise, 557, and 779 out of 589, and 992 anchors are actually active in UTS, and Tampere respectively. Such missing anchors
were filled with 100 dB for all these databases.

Evaluation metrics. For a comprehensive comparison, we adopt two kinds of metrics to evaluate localization performance. Firstly,
the meter errors are defined by the Euclidean distance between estimated locations and their corresponding ground truth for a
fine-grained localization evaluation. For further examination in the stability brought about by involved methods, two additional
sub-metrics, 75th, and 95th Percentiles are in turn introduced. With less rigorous assessments, floor classification accuracy is also
considered as the coarse-grained localization evaluation.

Evaluation Methodology. To ensure a fair comparison, we strictly adhere to pre-defined data split policies within datasets. Our
evaluation involves examining metrics across state-of-the-art (SoTA) models, including Weighted-KNN [58], RADAR [1], DNN [59],
CNNLoc [4], BayesCNN [60], and our preliminary version [19] (e.g., bAaT, and eAaT). Given the unique structural settings in
each dataset, encompassing variations in building structures, the number and disposition of WiFi anchors, and layouts of objects,
achieving optimal results consistently across different datasets underscores a model’s robustness to environmental heterogeneity.
Notably, this robustness is rigorously tested on Tampere dataset, designed for an unseen testing scenario, where only 697 points are
used for training, while 3951 unseen points are reserved for testing.

Parameter setting. In our experiments, we interpret/consolidate an arbitrary sequence of raw anchors into a sequence of 𝑘 = 64
tokens constituted by 𝐝 = 128 distinct attributes each for stabilities. Through optimizing embedding-level sub-constraints in Eq. (7),
10
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Table 2
Ablation Study on AaTs.

Dataset Model Fixed LW Adaptive RLW 𝐽𝐶𝑜𝑣 + 𝐽𝑉 𝑎𝑟 𝐽𝑀𝐴𝐸∕𝐶𝑎𝑡 Tweaks MAE (m) Accuracy (%)

UJIIndoor

(i) ✓ ✓ ✓ 8.43 (↑ 0.24%) 94.42
(ii) ✓ ✓ ✓ 8.40 (↑ 0.59%) 94.69 (↑ 0.29%)
(iii) ✓ ✓ ✓ ✓ 8.16(↑ 3.43%) 95.14(↑ 0.76%)
(iv) ✓ 8.45 94.42

UTS
(i) ✓ ✓ ✓ 6.93 (↓ 0.29%) 95.88
(ii) ✓ ✓ ✓ 6.86 (↑ 0.72%) 96.39 (↑ 0.53%)
(iii) ✓ ✓ ✓ ✓ 6.78(↑ 1.88%) 97.17(↑ 1.35%)
(iv) ✓ 6.91 95.88

Tampere
(i) ✓ ✓ ✓ 8.55 (↓ 0.23%) 92.29 (↓ 1.05%)
(ii) ✓ ✓ ✓ 8.52 (↑ 0.12%) 93.45 (↑ 0.19%)
(iii) ✓ ✓ ✓ ✓ 8.14(↑ 4.57%) 93.72(↑ 0.48%)
(iv) ✓ 8.53 93.27

and Eq. (9) with 𝜌 in sub-Eq. (8) set 1𝑒 − 4 as a small scalar preventing numerical instabilities, each token sequence in one batch,
therefore, is encouraged to not only remain diverse among other sequences by 𝛾 of 1, but also among its 𝐝 ⋅ (𝑘 + 1) attributes per
e. Moreover, the number of transformer encoder blocks 𝐋 is empirically determined 3, and 4 for fine- and coarse-grained scenarios
espectively. Our architectures implemented in Tensorflow 2.9 were trained in batches of 256 each on a single GPU NVIDIA A100
0 GB for 400 epochs with the learning rate of 1𝑒−4 using Adam optimization. In addition, the process of adjustment to weighting
actors of the involved tasks {𝜆𝑖}

2
𝑖=0 is jointly self-learned for each batch during the training stage.

.2. Model ablation

This subsection exhibits the specific contribution of each proposed part by decomposing the whole model into three separate
onfigurations:

i): An upgraded model with the inclusion of the proposed sub-constraints 𝐽𝐶𝑜𝑣&𝐽𝑉 𝑎𝑟 but the impacts between considered tasks
re manually balanced by a traditional Fixed Loss Weighting (Fixed LW) manner where weighting factors were determined by a
rid-search. The duration of the search process can be considerably mitigated with prior knowledge. Specifically, the searching
ange of weighting factors is restricted to [1, 10] by the stride of 1, given that the 𝜆0&𝜆2 should be similar and always few times
reater than 𝜆1, not only because we more emphasize the primary task and diversities among examples to avoid information collapse
n within-batch examples, but also because the variation in attributes is inherently much more sensitive to model performance than
hat in within-batch examples. Thus, the 𝜆1 of 1 is kept unchanged throughout the adjustment of other factors. We carried out a
horough search on the UJIndoorLoc, which requires roughly 2 days to complete. The discovered weighting factors then are directly
pplied to the remaining datasets.

ii): An end-to-end learning model (eAaT) that still keeps utilizing the same advantages of ongoing constraints as (i), yet radically
xerts these by an Adaptive Random Loss Weighting (Adaptive RLW), which is iteratively optimized in the training process with few
ight operations. This process is completed in one training round of 5 h, in which the model is learned how to resolve, and balance
earning tasks at the same time.

iii): An all-embracing model (eAaT+) that inherits all advantages of the proposed constraints from its predecessor, eAaT.
urthermore, this ultimate version is also undergone a complete overhaul, namely a new disposition of functional layers in all
ransformer encoder blocks. The transformation allows for the sufficient flow of the supervisory signals to the bottom blocks, which
acilitates the exploitation of their attention mechanism for learning subtle but distinct representations.

iv): A base model (bAaT) with all proposed tasks removed from Anchor2Vec layer that is trained singly with the primary task
𝑀𝐴𝐸∕𝐶𝑎𝑡. In this configuration, the model could solely employ the bare adaptive effect of Anchor2Vec without embedding-level
nhancements, where the input sequence of raw anchors is simply interpreted/condensed depending on the input size to 𝑘 + 1.

dvantage of Constraints 𝑱𝑪𝒐𝒗&𝑱𝑽 𝒂𝒓. In Table 2, the models (i), (ii), which all incorporate sub-constraints 𝐽𝐶𝑜𝑣&𝐽𝑉 𝑎𝑟 into
epresentation learning process of tokens, mostly show explicit improvements over the base model (iv) both in coarse- and fine-
rained scenarios on three indoor datasets. For example, compared to the base model (iv) on UJIIndoorLoc, 0.24% and 0.59%
AE improvements are achieved by models (i), and (ii) respectively in the fine-grained scenario while only 0%, and 0.29%

ccuracy differences are shown in the coarse-grained one. This is because such a coarse-grained scenario, i.e., floor classification
equires learning more relaxed representations that can carry more coarse and general information for the specific floors. However,
he straight adoption of such constraints instead comes with counterproductive effects of imposing more restrictions on fine and
eticulous cues in representation learning, thus curbing relaxation of seeking for expected representations. This restriction is no

onger the case or at least mitigated when applied with Adaptive RLW at model (ii). Still, the degradation in performance is still
itnessed in model (i), typically a marginal decline of 0.29% in MAE on UTS and 1.05% accuracy drop in Tampere compared

o bAaT (iv). The sparsity of those datasets can be explained as an important determinant associated with such deterioration. To
11

larify, fingerprints for the corresponding locations/floors in UTS and Tampere each comprise 589 and 992 anchors respectively
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Table 3
Fine-grained localization analyses on three public datasets.

Dataset Method Mean absolute error (m) 75th percentile (m) 95th percentile (m)

UJIIndoorLoc

CNNLoc [4] 11.78/259.65† 299.24† 380.98†

BayesCNN [60] 41.79 49.28 75.25
Weighted-KNN [58] 9.33 11.19 26.86
DNN [59] 133.40 170.85 213.10
RADAR [1] 9.21 11.05 25.88
bAaT [19] 8.45 10.64 20.41
eAaT [19] 8.40 10.66 20.33
eAaT+ 8.16 10.14 24.84

UTS

CNNLoc [4] 7.60/14.53† 21.12† 28.64†

BayesCNN [60] 16.38 23.15 34.75
Weighted-KNN [58] 9.34 11.87 22.26
DNN [59] 17.80 26.18 33.91
RADAR [1] 9.26 11.76 22.26
bAaT [19] 6.91 8.96 15.08
eAaT [19] 6.86 8.73 14.78
eAaT+ 6.78 9.11 15.30

Tampere

CNNLoc [4] 10.88/- - -
BayesCNN [60] 14.70 19.30 39.57
Weighted-KNN [58] 10.45 12.56 32.06
DNN [59] 32.83 44.80 62.57
RADAR [1] 10.98 13.41 33.46
bAaT [19] 8.53 10.17 24.35
eAaT [19] 8.52 10.03 24.04
eAaT+ 8.14 9.64 22.37

†: Tested with publicly available weights on the author’s GitHub [61].

but are almost contaminated with a large portion of missing anchors whose measurements filled out with default values of 100 dB.
ccordingly, the fixed weighting-based constraints without any flexibility in optimization are not always able to effectively work
ut, or even worsen when forcing the model to synthesize such inherently sparse, and noisy fingerprints that retain merely a bit of
seful information into tokens of distinct attributes.

dvantage of Adaptive Random Loss Weighting. Considering models (i), (ii), not only is its effectiveness expressed by perfor-
ance boost both in MAE and Accuracy, but also the exploration costs regarding time- and computing- resources are considered.
he observations from Table 2 suggest that Adaptive RLW in multi-task balancing could bring more convincing benefits to model
erformance with comparable, even better results at no further costs in exploration, optimization, and later inference. As above-
entioned, it is worth noting that Fixed LW needs a calibration interval for seeking hyper-parameters, namely weighting factors 𝜆̄,
hich were diminished to roughly 2 days with our prior knowledge. That is completely changed to one single training round of
h for Adaptive RLW, yet with even more excellent outcomes. Equally important, in most sparse datasets where the applications

f Fixed RLW show slight reductions in accuracy (1.05% on Tampere) or insignificantly deteriorated performance in UJIIndoorLoc
nd UTS though, the use of Adaptive RLW constantly raises performance over the base model (iv) by notable margins of 0.12%,
.72%, and 0.0.59% on Tampere, UTS, and UJIIndoorLoc, respectively.

dvantage of Tweaks. To fairly assess the benefits of the introduced tweaks, we compare and contrast the performance gain from
ndividual models (ii) and (iii) on the base model (iv) as presented in Table 2. For the fine-grained representation scenarios, model
iii) constantly shows lower MAE than eAaT (ii) in leaps and bounds over three datasets. Notably, 3.34%, and 4.57% improvements
ver the base model (iv) in UJIndoor and Tampere respectively can be clearly witnessed in eAaT + (iii), whilst, in this regard,
ere insignificant improvements of 0.592% and 0.12% were made by eAaT (ii). These advantages reflect the fact that the flow

f gradients to every aspect of the whole architecture was fairly regulated with the tweaks made in layer disposition, especially
or the bottom blocks. Furthermore, its validity to coarse-grained representation learning is also confirmed by a rise in accuracy
ompared with the counterpart (ii). Typically, an accuracy increase of 1.35% over the bAaT (iv) on UTS is attained by eAaT +
iii), approximately twice as greater as a mere improvement of 0.53% in eAaT (ii). With plainly manifested benefits in the above
cenarios, its success is supposedly attributed to regularization in the gradient flow that assists blocks close to the bottom with an
dequate amount of information to accommodate both to data complexity and changes in the top blocks. In a sense, the localization
erformance of a given network heavily relies on the learning ability of the bottom blocks, over which the strength and solidity
f underlying representations between RSS fingerprints and the corresponding locations are cumulatively established to supply to
he top blocks. Therefore, maintaining a focus on the quality of representations learned from the bottom blocks is of importance to
ring about a great boost in performance.

.3. Fine-grained localization

From the results in Table 3, it can be seen that the proposed models completely surpass SoTA methods, which proves their
ompetence in looking for detailed clues representing specific locations compared to others. More specifically with quantitative
12
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Fig. 4. Empirical Cumulative Distribution Function of SoTA methods on three public indoor localization datasets.

Table 4
Coarse-grained localization analyses for Floor hitting rate (%) on three public datasets.
Datasets CNNLoc [4] BayesCNN [60] DNN [59] bAaT [19] eAaT [19] eAaT+

UJIIndoorLoc 96.03 90.64 41.58 94.42 94.69 95.14
UTS 94.57 84.28 5.41 95.88 96.39 97.17
Tampere 94.22 91.24 32.01 93.27 93.45 93.72

results, the performance of BayesCNN dramatically plunges in all sparse datasets, particularly to 41.79 m in UJIIndoorLoc, which is
even worse than conventional methods, such as RADAR, and Weighted-KNN with MAE of 9.21 m and 9.33 m respectively. Unlike
these methods, our AaT variants show its generalization at the 1st place, typically, roughly 2.4 m MAE with 3.03 m in 75th Percentile,
and 7.48 m in 95th Percentile lower than that of Radar in UTS. For the qualitative assessment, our consistency in performance is also
clearly illustrated in Fig. 4 which markedly contrasts eAaT+&eAaT with the others via the accumulated errors. For the attestation
of consistency and stability in the fine-grained scenario, eAaT+&eAaT absolutely triumphed over its counterparts by convincing
margins across three datasets. This superiority over its rivals is credited for the advantages of the proposed constraints in the
Anchor2Vec, which facilitate the stringency in representing sequences of raw anchors with sequences of more meaningful tokens.
Apparently, the ability to attend relevant tokens in the form of multiple heads for subtle but distinct representations to specific
locations should be considered. This is in contrast with the other competitors that were not equipped with any attention mechanism
to such representations, thus being easily trapped by irrelevant information that is only useful in the training phase. Furthermore,
with the aid of the introduced tweaks to alter layer dispositions, the ultimate version, i.e., eAaT+ completely overtook its predecessor
(i.e., eAaT) to deliver superior localization performance with confidence. Concretely, eAaT+ outstripped eAaT presented in the
preliminary version [19] with 2.86% and 4.46% reductions in MAE on UJIIndoor and Tampere respectively.

4.4. Coarse-grained localization

In lieu of scrutinizing detailed clues as in the fine-grained task, the coarse-grained task requires more relaxation in seeking
coarse-grained patterns for different floors. As shown in Table 4, CNNLoc inheriting certain compressive impacts from the used
vanilla autoencoder, and architectural inductive biases can obtain good accuracy on sparse datasets. Considering BayesCNN has no
compressing ability, but inductive biases, it still achieves comparable performance in some sparse datasets. This adversity is mainly
due to its input construction scheme inducing more noisy information instead. Compared to CNNs, simple DNN having no powerful
inductive biases to exploit typical patterns severely suffers from the worst performance. For all that, the AaT variants can perform
very well over sparse datasets. Our inferiority could largely lie in one of the model’s inductive biases, namely the locality for which
the model can pay attention to details through a stack of multi-head attention layers. Owing to this ability, its vision to general
and coarse clues that are necessary for the floor classification task is partly limited. Nevertheless, some alleviation efforts have been
made by the proposed sub-constraints using Adaptive FLW, which could be recognized by explicit differences between eAaT and its
variant in Table 2, and Table 4. This limitation on the relaxation of learning coarse representations is ameliorated to some extent
with eAaT+ showing comparable, or even sounder accuracy of 97.17% in UTS over all its rivals. This is because the expressiveness
of the model is somewhat augmented with the regulated flow of gradients to bottom transformer encoder blocks, which far better
provides the upper blocks with more general information to refine.

4.5. Inference time

Table 5 shows our flexibility to the rivals when having three variants of bAaT,eAaT and eAaT+ with small amounts of inference
time of 2.5 ms, 4.2 ms, and 7.1 ms respectively. Through scenarios in Sub Section 4.3, and Sub Section 4.4, although DNN can reach
only 1.2 ms per sample, its uncertainty to the prediction is varied to a great extent. However, our architectures which are much
13
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Fig. 5. 3D Top-view MAE Heat Maps performed by six typical methods, namely eAaT+, eAaT, Weighted-KNN, RADAR, BayesCNN and DNN on the 1st Floor of
Tampere Map. Please zoom in to check the details. Best viewed in color.

Table 5
Overall inference time comparison for SoTA methods on UTS dataset.
Latency (ms)

CNNLoc [4] BayesCNN [60] DNN [59] bAaT [19] eAaT [19] eAaT+

6.9 4.1 1.2 2.5 4.2 7.1

more complicated than CNNLoc can achieve superior results within a mere 2.5 ms for bAaT and an extra 1.7 ms for eAaT. In an
advanced manner, the mass introduction of architectural tweaks to arrange the layer disposition in all transformer encoder blocks
for performance gain has slightly placed a computation burden on the ultimate version eAaT+ with an excess of 2.9 ms compared
with eAaT. Established with its superiority all over its rivals in fine- to coarse-grained scenarios, trading efficiency for efficacy is
worthy of further attention.

5. Visualization

In this section, the general effectiveness of the involved models can be visually observed in 3D Top View MAE heatmaps on the
1st floor of the Tampere Map as presented in Fig. 5. We adopt the 1st floor of the map for the qualitative evaluations since Tampere
is the only dataset that provides the large number of testing points which is 5.6× greater than the total number of training points
(3951 points vs 697 points). This domination not only encourages and expresses the model generalization to unseen locations but
also is more plausible to display the heatmaps while efforts to interpolate an excessive number of missing points are completely
superfluous. More specifically, we compute the MAEs at 1236 testing locations on the 1st floor map and then segment those into
seven areas for four typical methods, namely eAaT, DNN, BayesCNN, and Weighted-KNN. For each area, the resolution is correctly
enhanced by linearly interpolating missing points with computed internal MAEs points. These high-resolution areas thereafter are
put back together into the floor map.

It can be simply noticed that DNN poorly performs in outer areas on the map, as indicated by the extremely warm color. Marked
differences from this method could be observed in the Weighted-KNN and BayesCNN with clearer inner and outer areas in relatively
cold tones both. Compared to the learning methods showing a smooth transition between colored areas, e.g., BayesCNN which
however accumulates with yellow edge areas, the interpolation that requires no learning process is deemed to be partly beneficial
to the Weighted-KNN. This is implied by only several sudden warm-colored areas on a sheer scale. Nevertheless, such sudden
warm-colored areas suggest that the extrapolation or generalization to ones that are out of the training data cannot be guaranteed.
In contrast to those, eAaT can deliver stable and reliable performance, where any errors from DNN, Weighted-KNN, and even
BayesCNN are then significantly mitigated on eAaT side in cold tones. Having said that, a common red area showing a serious
failure in estimation can be clearly observed in most of the potential contenders, including eAaT, Weighted-KNN, and RADAR. This
inconsistency, however, is radically resolved in the presence of eAaT+, as indicated with all cold-colored areas on the 1st floor map
of Tampere. As a result, the contributions of the introduced tweaks analyzed in theoretical and empirical aspects to overall AaTs
are validated.
14
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6. Conclusion

In this paper, we arrive at a novel view that learning one location from its fingerprints is rather analogous to capturing the
ontext of an excerpt from its inner sentences in NLP. To this end, we propose for the first time the variants of the Anchor-agnostic
Transformers, namely bAaT, eAaT, and eAaT+ that have been meticulously elaborated to effectively work on indoor fingerprint
datasets. Ultimately, we successfully demonstrate that interpreting fingerprints into word sentences to represent specific locations
can significantly address insurmountable problems of inconsistency in indoor localization.
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