86 research outputs found

    Efficient LDPC Codes over GF(q) for Lossy Data Compression

    Full text link
    In this paper we consider the lossy compression of a binary symmetric source. We present a scheme that provides a low complexity lossy compressor with near optimal empirical performance. The proposed scheme is based on b-reduced ultra-sparse LDPC codes over GF(q). Encoding is performed by the Reinforced Belief Propagation algorithm, a variant of Belief Propagation. The computational complexity at the encoder is O(.n.q.log q), where is the average degree of the check nodes. For our code ensemble, decoding can be performed iteratively following the inverse steps of the leaf removal algorithm. For a sparse parity-check matrix the number of needed operations is O(n).Comment: 5 pages, 3 figure

    Efficient data compression from statistical physics of codes over finite fields

    Full text link
    In this paper we discuss a novel data compression technique for binary symmetric sources based on the cavity method over a Galois Field of order q (GF(q)). We present a scheme of low complexity and near optimal empirical performance. The compression step is based on a reduction of sparse low density parity check codes over GF(q) and is done through the so called reinforced belief-propagation equations. These reduced codes appear to have a non-trivial geometrical modification of the space of codewords which makes such compression computationally feasible. The computational complexity is O(d.n.q.log(q)) per iteration, where d is the average degree of the check nodes and n is the number of bits. For our code ensemble, decompression can be done in a time linear in the code's length by a simple leaf-removal algorithm.Comment: 10 pages, 4 figure

    Lossy source coding using belief propagation and soft-decimation over LDGM codes

    Get PDF
    This paper focus on the lossy compression of a binary symmetric source. We propose a new algorithm for binary quantization over low density generator matrix (LDGM) codes. The proposed algorithm is a modified version of the belief propagation (BP) algorithm used in the channel coding framework and has linear complexity in the code block length. We also provide a common framework under which the proposed algorithm and some previously proposed algorithms fit. Simulation results show that our scheme achieves close to state-of-the-art performance with reduced complexity

    Compressive linear network coding for efficient data collection in wireless sensor networks

    Get PDF
    International audienceWe address the problem of data collection in a wireless sensor network. Network coding is used for data delivery. The correlation between the measurements is exploited to recover the data at the sink, even in case of rank-deficient network matrix. The network coding operations are seen as lossy source compression, achieved by a finite-field random code generated during transmission. Decoding is performed using belief propagation on a factor graph which accounts for the correlation between the sensor measurements. Experimental results illustrate the performance of this technique for various field sizes and correlation levels

    Source Coding with Side Information at the Decoder and Uncertain Knowledge of the Correlation

    No full text
    International audienceThis paper considers the problem of lossless source coding with side information at the decoder, when the correlation model between the source and the side information is uncertain. Four parametrized models representing the correlation between the source and the side information are introduced. The uncertainty on the correlation appears through the lack of knowledge on the value of the parameters. For each model, we propose a practical coding scheme based on non-binary Low Density Parity Check Codes and able to deal with the parameter uncertainty. At the encoder, the choice of the coding rate results from an information theoretical analysis. Then we propose decoding algorithms that jointly estimate the source vector and the parameters. As the proposed decoder is based on the Expectation-Maximization algorithm, which is very sensitive to initialization, we also propose a method to produce first a coarse estimate of the parameters
    • …
    corecore