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Abstract—This paper focus on the lossy compression of a
binary symmetric source. We propose a new algorithm for binary
quantization over low density generator matrix (LDGM) codes.
The proposed algorithm is a modified version of the belief propa-
gation (BP) algorithm used in the channel coding framework and
has linear complexity in the code block length. We also provide
a common framework under which the proposed algorithm and
some previously proposed algorithms fit. Simulation results show
that our scheme achieves close to state-of-the-art performance
with reduced complexity.

I. INTRODUCTION

Lossy source coding is important in many applications,
namely dirty paper coding [1], information hiding [2], data
embedding [3] and watermarking. However, even if for the
channel coding problem there exist efficient algorithms to
explore the sparse graph structure of sparse graph codes, that
achieve astonishing performance, namely the ones belonging
to the family of message passing algorithms [4], [5], the same
is not true for the lossy source coding problem. In [6] the
authors have shown that LDGM codes, as duals of low density
parity check (LDPC) codes, can saturate the rate-distortion
bound of the binary erasure quantization (BEQ) problem, the
dual of the binary erasure symmetric channel (BEC) problem,
with the help of a modified BP algorithm. Since this pioneering
work, LDGM codes have been extensively used for lossy
source coding. Namely in [7] the authors propose a survey
propagation (SP) based iterative quantization algorithm and
in [8] the authors propose a BP based iterative quantization
algorithm, to compress a binary symmetric source. However
both use a decimation process to help the respective algorithm
to converge. Thus the overall computational complexity is
O(N2), [9], where N is the codeword length. To overcome
the complexity bottleneck, in [9], the authors propose a linear
complexity algorithm to do lossy source coding with the help
of LDPC codes over GF(q). However the use of higher order
fields substantially increase the computational complexity, in
comparison to the binary field. In contrast we propose to do
lossy source coding with a binary LDGM code and with a
modified BP algorithm, with computational complexity O(N),
since no decimation is used.

This paper is organized as follows: section II provides some
background about LDGM codes and about the lossy source

coding problem, to the reader. In section III we describe and
derive the proposed algorithm for lossy compression. Next
in section IV the performance of the proposed scheme is
evaluated, by numerical simulations, and finally we conclude
the article in section V.

II. FRAMEWORK

A. Problem Description

In this paper we focus on the lossy compression of a binary
symmetric source. For a given realization s ∈ {0, 1}N of a
Ber(1/2) source S we want to map it to an index x ∈ {0, 1}K
such that the approximate reconstruction of s is possible within
a given fidelity criterion. R = K/N is the compression rate.
The fidelity measure used here and the most commonly used in
this area, for a binary source, is the Hamming distance between
the source sequence s and the reconstructed sequence ŝ:

d(s, ŝ) =
1

n

n∑
i=1

|si − ŝi| (1)

The objective of lossy compression is to minimize the
average distortion D = E[d(S, Ŝ)]. For such a distortion
measure the asymptotic limit, know as rate-distortion function,
is well known [10] and is given by R(D) = 1 − h(D), for
D ∈ [0, 1/2] and zero otherwise, where h(.) denotes the
binary entropy function.

B. LDGM Code Description and Notation

LDGM codes are the most commonly used type of codes
for the lossy source coding problem. They are duals of LDPC
codes. Their performance in the channel coding problem is
limited. Due to their poor distance properties, they exhibit an
error floor, that is independent of the considered block-length.
Even though, this problem can be easily controlled with
proper concatenation of two codes [11]. On the other hand,
for the lossy source coding problem, their performance is
very good, as can be attested by the empirical results obtained
in [7] and [8].

A LDGM code can be represented both by its generator
matrix G ∈ {0, 1}N×K and by the associated factor graph
G = (V,C,E). Where the sets V = {1, . . . ,K}, C =
{1, . . . , N} and E = {. . . , (a, i), . . .} denote the information
bit nodes, the check nodes and the edges connecting them,



Fig. 1. LDGM code factor graph representation.

respectively. We use the variables a, b, c ∈ C to denote
check nodes and variables i, j, k ∈ V to denote information
bits. We define the sets C(i) = {a ∈ C|(a, i) ∈ E},
V (a) = {i ∈ V |(a, i) ∈ E} and use the symbol \ to denote
the set subtraction operator. A check node a ∈ C connects to
an information bit i ∈ V , (a, i) ∈ E, if Ga,i = 1. In Fig. 1
we depict, as an example, the factor graph of a given LDGM
code with 5 check nodes, 4 information bits and 5 source bits,
randomly connected between them. In this figure, the white
circles denote the information bits, the squares represent the
check nodes and by Π we mean a uniform drawn permutation.

The connection structure between check nodes and
information bits, in a LDGM code, is specified by
the correspondent check and information bit node
degree distributions, from the edge perspective, (ρ, λ),
ρ(x) =

∑
i ρix

i−1 and λ(x) =
∑
i λix

i−1. Where ρi
and λi denote the portion of all edges connected to check
nodes and information bits with degree i, respectively. The
degree of a check node is equal to the number of connected
information bits (associated source bit not taken into account),
which is the same as the corresponding number of entries
equal to 1 in row i of G. For a LDGM code, C, defined by
the generator matrix G, and for an index x the corresponding
reconstructed source sequence is given by ŝ = Gx. Which
due to the sparse structure of the corresponding LDGM code
can be computed in O(N) time, for a given index x.

III. DERIVATION OF THE PROPOSED ALGORITHM

Almost all previously proposed algorithms for doing lossy
source coding rely on a decimation step to help the iterative
message passing algorithm, like BP, to converge. Namely, this
type of algorithms can be divided into two phases, one where
BP runs for a given number of iterations and another where
the most biased information bits are decimated. Even if the
resultant performance of such algorithms is very good, in
practice, their inherent computational complexity is O(N2).
One exception to this rule is the algorithm proposed in
[9], [12], the reinforced BP (RBP). This algorithm does a
kind of soft decimation by reinforcing the beliefs of each
information bit at each iteration. Our proposed algorithm
is based on the same principle, but it is applied to LDGM
codes instead of LDPC codes and we also show a connection
between ”hard” and ”soft” decimation.

In the following paragraphs we explain how to transform
the decimation step, of the previously proposed algorithms, in
a soft decimation step, that is performed within each iteration.
We also show how to use this simple transformation to recover

the RBP algorithm as a soft version of the Bias Propagation
Algorithm (BiP), [8]. This transformation results in just a
slightly modification to the BP updating rules.

In the LDGM code approach to lossy source coding,
the encoding phase amounts to mapping a source sequence
s ∈ {0, 1}N to an index x ∈ {0, 1}K , such that the Hamming
distortion d(Gx, s) is minimized. Let us define the following
equivalent conditional probability distribution:

P (x|s) =
1

Z
e−γd(Gx,s) =

1

Z

∏
a∈C

e−γd(Gax,sa) (2)

where Z is a normalizing constant, Ga denote row a of G
and γ is a parameter that is tuned via simulation to get as
good performance as possible. It is not difficult to see, from
equation (2), that the most probable codeword is also the
one that minimizes the corresponding Hamming distortion.
Indeed, the best assignment for bit xi is obtained from the
corresponding bit marginal value:

xi = arg max
xi∈{0,1}

P (xi|s) = arg max
xi∈{0,1}

∑
∼xi

P (x|s)

= arg max
xi∈{0,1}

∑
∼xi

∏
a∈C

Ψ(xV (a), sa)
(3)

The last line can be obtained by taking into account the
special structure of P (x|s), of the LDGM code. P (x|s)
can be factorized in a product distribution, where each
element is equal to Ψ(xV (a), sa) and represent the local
constraint of check node a. The marginal value of bit i,
given by equation (3), can be efficiently computed, if the
BP/Sum-Product algorithm is used. However, unlike in the
channel coding problem, where the received codeword is
normally at a short distance from a codeword, in the lossy
source coding problem the interference sequence is likely to
be equidistant from more than one codeword, producing belief
values, about the bit marginals, close to 1/2. Consequently,
the locally operating algorithm can get confused about the
direction to proceed. The usual procedure to overcome the
aforementioned problem is to decimated the most biased bits,
after running the BP algorithm, and to repeat the previous
two steps (BP and decimation) until all bits get decimated.

A. Belief Propagation

After some algebraic manipulations, it is not difficult to
express the BP update equations, for the lossy source coding
problem, as follows, [8]:

From variable to check:

Rn+1
i =

∏
b∈C(i)

Rnbi, Rn+1
ia =

∏
b∈C(i)\a

Rnbi (4)

From check to variable:

Rn+1
ai =

1− Snai
1 + Snai

, Snai = (−1)sa
1− e−2γ

1 + e−2γ

∏
j∈V (a)\i

Bnja (5)



Variable Bias:

Bni =
1−Rni
1 +Rni

, Bnia =
1−Rnia
1 +Rnia

(6)

where Rnia, Rnai and Bnia denote the message sent from variable
node i to check node a, the message sent from check node
a to variable node i and the variable i bias, without taking
into account the information coming from check node a, at
iteration n, respectively. By Rni and Bni we represent the
ratio between the probability of variable i being equal to one
and the probability of being equal to zero, and the variable
i bias, respectively. The previous BP update equation can
be easily converted to the log-domain, using the hyperbolic
tangent function definition:

From variable to check:

R̄n+1
i =

∑
b∈C(i)

R̄nbi, R̄n+1
ia =

∑
b∈C(i)\a

R̄nbi (7)

From check to variable:

R̄n+1
ai = 2(−1)sa+1tanh−1

β ∏
j∈V (a)\i

Bnja

 (8)

Variable Bias:

Bni = −tanh
(
R̄ni
2

)
, Bnia = −tanh

(
R̄nia
2

)
(9)

where the top bar denotes the transformation x̄ = log(x) and
β = tanh(γ).

B. Hard-Decimation

The decimation step implies that the corresponding code
factor graph can be reduced [8], or equivalently that the
decimated information bits always send the message +∞ or
−∞, to the neighboring check nodes. This fact can be easily
incorporated into the corresponding decimated variable node
update equation or into their neighboring check nodes update
equations. To do that we just need to add to each check node or
to each variable node or to both update equations an indicator
function, Id(αi, t), taking the value 0 (bit still not decimated),
−∞ (bit decimated to 0) or +∞ (bit decimated to 1):

Id(αi, t) =


−∞, if αi ≤ −t

0, if − t ≤ αi < t

+∞, if t ≤ αi

(10)

where αi can be any parameter, normally a bit bias, and
t denotes a threshold parameter, after which the bit gets
decimated. In the BiP algorithm αi = −Bi. It should be
emphasized here that the decimation step is not as simple as
that. For example, the decimation, in the BiP algorithm, only
decimates a fixed number of information bits, at each round.
More precisely, it decimates the most biased m bits, even
if there are more bits that respect the threshold t. However,
as we will see in the next sections, this approximation is
sufficient to obtain very good results.

Fig. 2. The dashed line show the function Id(αi, 1) and the solid curves
show Îd(αi, 1) = (2/µ)tanh−1(αi), for µ = {1, 2, 4}. The curve for
µ = 4, gives the best approximation.

C. Soft-Decimation

The basic idea of our method is to approximate the indicator
function Id by the soft indicator function:

Îd(αi, t) =
2

µ
tanh−1

(αi
t

)
, αi ∈]− t, t[ (11)

where µ > 0 is a parameter that sets the accuracy of
the approximation. Figure 2 shows the function Id and the
approximation for several values of µ. As µ increases the ap-
proximation becomes more accurate. Assume that αi = −Bni
and that t = 1, since, for t < 1, the argument of the
tanh−1(.) function can get higher than one (−1 ≤ Bni ≤ 1),
and for that range of values the inverse tangent hyperbolic
function is undefined. Consequently Îd(−Bni , 1) = (1/µ)R̄ni .
The same happens if we consider αi = −Bnia and t = 1. More
precisely the indicator function, that represents the decimation
step, is replaced by a simple linear function. Therefore, if
the indicator function is added at the variable node update
equations and αi = −Bni , the BP update equations, with
decimation included, can be expressed by:

From variable to check:

R̄n+1
i =

∑
b∈C(i)

R̄nbi, R̄n+1
ia =

1

µ
R̄ni +

∑
b∈C(i)\a

R̄nbi (12)

From check to variable:

R̄n+1
ai = 2(−1)sa+1tanh−1

β ∏
j∈V (a)\i

Bnja

 (13)

Variable Bias:

Bni = −tanh
(
R̄ni
2

)
, Bnia = −tanh

(
R̄nia
2

)
(14)

In this new formulation, we use a linear or ’soft’ constraint
function in place of a hard constraint, Id(.), like in the



Fig. 3. Lossy source coding performance of the proposed algorithm for
different source sequence lengths (100, 10000) and for different number of
iterations, (100, 400).

interior-point method [13]. A more careful look to this update
equations show that, if tanh(γ) = 1, this are indeed the log-
domain RBP update equations, used in [9], for doing lossy
source coding, with LDPC codes over GF(q). On the other
hand, if αi = −Bnia and the indicator function is added to the
check node update equations, the BP update equations, with
decimation included, can be expressed by:

From variable to check:

R̄n+1
i =

∑
b∈C(i)

R̄nbi, R̄n+1
ia =

∑
b∈C(i)\a

R̄nbi (15)

From check to variable:

R̄n+1
ai =

1

µ
R̄nia + 2(−1)sa+1tanh−1

β ∏
j∈V (a)\i

Bnja

 (16)

Variable Bias:

Bni = −tanh
(
R̄ni
2

)
, Bnia = −tanh

(
R̄nia
2

)
(17)

The main advantage of this new formulation is that the
algorithm constrains the belief of the information bits, at each
iteration, in the direction of the current bit belief, instead of
constraining only the beliefs at the decimation step, allowing
a refinement of the information bit beliefs, at each iteration.
As a consequence all bits are decimated at once instead
of being decimated, a fixed number of information bits, at
each decimation step, as in [7] and [8]. Since, in the new
algorithm, the decimation step is incorporated in the BP
update equations and this amounts to just one more addition
and multiplication, per edge, the overall computational
complexity of the proposed algorithm is O(N), instead of
O(N2), as will be confirmed in section IV.

Fig. 4. Lossy source coding performance, for 100 iterations, as a function
of ξ for a randomly generated graph with rate equal to 0.5 and for three
codeword lengths N = {102, 104, 105}.

IV. RESULTS

To access the performance of our algorithm we have simu-
lated it for various code rates, source sequence lengths and dif-
ferent number of iterations. The modified BP update equations
used in the simulations were equations (15), (16) and (17).
The codes chosen were from degree distributions optimized
for the BEC or binary symmetric channel (BSC), in light of
LDPC channel coding and LDGM source coding duality, in the
erasure case. All codes used in the simulations were generated
randomly according to the correspondent degree distribution.
No 4-cycles or higher order cycles have been removed from
the corresponding factor graph, only double edges. In all
results presented in this section we have considered that
β = (1 − ξ)/(1 + ξ) and that ξ = 1/µ, even if we have
the freedom to tune both β and µ parameters independently.
This parametrization has been chosen due too the inherent
good performance and since it simplifies the algorithm and
the task of accessing its performance.

Concerning the information bits prior value, since no apri-
ori information is available it should be initialized to zero.
However since we are talking about a LDGM code and as is
well known from the channel coding framework: if no degree
1 check nodes are available the BP algorithm never starts, it
gets stuck. In [7] and [8] where a decimation step is available,
this can be easily overcome since there we always have a
minimum number of bits that get decimated at each iteration,
even if all information bits have a lower bias than the thresh-
old. However, for the proposed algorithm that option is not
available. Consequently we should use a small percentage of
check nodes with degree 1 or equivalently we can initialize the
information bits prior with a small value, at the first iteration,
and remove it in the next iteration. In all simulation presented
in this article the information bits prior was initialized with
the value 0.1, and set to zero in the second iteration.



The procedure used to quantize a given source sequence is
to run the BP algorithm with soft decimation, given by equa-
tions (15), (16) and (17), for a fixed ξ value and for a given
number of iterations, and to decimate all information bits after.

The degree distribution pair (λ(x), ρ(x)) of the rate 1/2
LDGM code used in all simulations shown in this article was:

λ(x) = x6

ρ(x) = 0.275698x+ 0.25537x2 + 0.076598x3 + 0.39233x8

A. Distortion versus Compression Rate

Fig. 3 shows the obtained distortion as a function of the
coding rate, for different source sequence lengths. For each
code we choose ξ that achieve the lowest distortion. As can
be seen from that figure the achieved distortion is very close to
the theoretical limits. Even for a codeword length of 100 the
achieved distortion is good, it is a little worse than the one ob-
tained in [9] for a binary LDPC code of length 12000. We can
also see, from that figure, that the distortion loss obtained by
decreasing the number of iterations from 400 to 100 is small.

B. Distortion versus ξ

To attest the behavior of the distortion values has a stronger
constraint is enforced we plot in Fig. 4 the distortion obtained
by running the proposed algorithm, during 100 iterations, for
a LDGM code with rate 1/2 and for three codeword-lengths,
102, 104, 105. Remember that the parameter µ is inversely pro-
portional to ξ. From Fig. 4 it is evident that has a stronger con-
straint is imposed the distortion value decrease but after the op-
timal ξ value it increases abruptly. Showing the existence of a
threshold. As the codeword length increase the distortion value
decreases even more abruptly, close to the optimal ξ value.

C. Distortion versus Codeword Length

Figure 5 presents the distortion values, as a function of the
codeword length, for the rate one half LDGM code. For each
code we choose ξ so that the average distortion is minimal. The
ξ value is found by simulations. The number of iterations is
fixed to 400 and the distortion was averaged over 100 trials, for
codeword lengths higher than 1000, and averaged over 1000
trials otherwise. As can be observed, from figure 5, the average
distortion obtained, has the codeword length increase, decrease
exponentially and the gains obtained by the joint processing of
a higher number of samples, from the interference sequence,
gets smaller has the codeword length increase.

D. Computational Complexity

In this section we analyze the number of iterations needed
for convergence, has the codeword length increase. To limit the
impact of the graph cycles in the results we have considered
high codeword length codes only, from N = 104 to N = 106.
All these codes were generated randomly with only double
edges removed. To analyze the number of iterations needed
for convergence we have iterated our algorithm for 1000
iterations and averaged the corresponding obtained distortion
over 1000 trials, for the rate 1/2 code and for different
codeword lengths. In Fig. 5 we plot the corresponding average

Fig. 5. Distortion values for various codeword lengths, from 102 to 104,
for a LDGM code with R = 1/2 and for 400 iterations

Fig. 6. Distortion evolution over the iteration number for various codeword
lengths, for a code rate of 1/2.

distortion obtained for each iteration and for different ξ values.
As can be seen from that figure the number of iterations needed
for convergence decrease has the codeword length increase or
has ξ increase. However the number of needed iterations seem
to be saturating has the codeword length increase and they
saturate faster for higher ξ values (weaker constraint/lower
average distortion).

Even if one cannot extrapolate general conclusions from this
numerical results, they indicate that the number of iterations
needed for convergence tend to a constant value for very high
codeword lengths and a constant ξ value. Supporting theO(N)
computational complexity of the proposed algorithm.



V. CONCLUSION

In this paper we have proposed a new algorithm for lossy
source coding, using LDGM codes. The main idea behind
the proposed algorithm was to transform the decimation step,
present in almost all previously proposed algorithms, into a
soft-decimator and to include it in the BP algorithm. To do
that we first have obtained an equivalent representation of
the decimation step, with the help of an indicator function,
and have included it into the BP update equations. After that
we have proposed a new formulation for the aforementioned
algorithm using a linear or ’soft’ constraint function instead
of a ’hard’ constraint. The derived algorithm has linear
complexity in the code block length. Simulation results
indicate that close to the state-of-the art performance can be
achieved, with reduced complexity.
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