537 research outputs found

    Efficient IoT-enabled Landslide Monitoring

    Get PDF
    Landslides pose significant socio-economic threats to areas whose geography favors them. Currently existing landslide monitoring methods and techniques are characterized by significant limitations both in technical terms (quality and frequency of data) and in terms of usability (high inferred costs, requirement of very high expertise). In this work we present an innovative landslide monitoring system that leverages state-of-the-art IoT technologies. The system consists of a set of autonomous sensing devices equipped with a sensor suit specifically tailored for monitoring landslides. The devices take sensory measurements at frequent intervals - while operating at a very low duty cycle - and transmit them over the SigFox network to a data server powered by ELK stack for curation and visualization. The system has been successfully deployed in a landslide site at Bournemouth, UK providing the local authorities with a new means of efficient and remote monitoring. The system follows a modular scalable architecture and has been proven to be highly reliable. As a result, there are plans for its use to be extended to other parts of the Bournemouth area as well as of the UK

    Internet of things for disaster management: state-of-the-art and prospects

    Get PDF
    Disastrous events are cordially involved with the momentum of nature. As such mishaps have been showing off own mastery, situations have gone beyond the control of human resistive mechanisms far ago. Fortunately, several technologies are in service to gain affirmative knowledge and analysis of a disaster's occurrence. Recently, Internet of Things (IoT) paradigm has opened a promising door toward catering of multitude problems related to agriculture, industry, security, and medicine due to its attractive features, such as heterogeneity, interoperability, light-weight, and flexibility. This paper surveys existing approaches to encounter the relevant issues with disasters, such as early warning, notification, data analytics, knowledge aggregation, remote monitoring, real-time analytics, and victim localization. Simultaneous interventions with IoT are also given utmost importance while presenting these facts. A comprehensive discussion on the state-of-the-art scenarios to handle disastrous events is presented. Furthermore, IoT-supported protocols and market-ready deployable products are summarized to address these issues. Finally, this survey highlights open challenges and research trends in IoT-enabled disaster management systems. © 2013 IEEE

    Geospatial Analysis and Internet of Things in Environmental Informatics

    Get PDF
    Geospatial analysis offers large potential for better understanding, modelling and visualizing our natural and artificial ecosystems, using Internet of Things as a pervasive sensing infrastructure. This paper performs a review of research work based on the IoT, in which geospatial analysis has been employed in environmental informatics. Six different geospatial analysis methods have been identified, presented together with 26 relevant IoT initiatives adopting some of these techniques. Analysis is performed in relation to the type of IoT devices used, their deployment status and data transmission standards, data types employed, and reliability of measurements. This paper scratches the surface of this combination of technologies and techniques, providing indications of how IoT, together with geospatial analysis, are currently being used in the domain of environmental research.Comment: Applying Internet of Things Technologies in Environmental Research Workshop, Proc. of EnviroInfo 201

    The Emerging Internet of Things Marketplace From an Industrial Perspective: A Survey

    Get PDF
    The Internet of Things (IoT) is a dynamic global information network consisting of internet-connected objects, such as Radio-frequency identification (RFIDs), sensors, actuators, as well as other instruments and smart appliances that are becoming an integral component of the future internet. Over the last decade, we have seen a large number of the IoT solutions developed by start-ups, small and medium enterprises, large corporations, academic research institutes (such as universities), and private and public research organisations making their way into the market. In this paper, we survey over one hundred IoT smart solutions in the marketplace and examine them closely in order to identify the technologies used, functionalities, and applications. More importantly, we identify the trends, opportunities and open challenges in the industry-based the IoT solutions. Based on the application domain, we classify and discuss these solutions under five different categories: smart wearable, smart home, smart, city, smart environment, and smart enterprise. This survey is intended to serve as a guideline and conceptual framework for future research in the IoT and to motivate and inspire further developments. It also provides a systematic exploration of existing research and suggests a number of potentially significant research directions.Comment: IEEE Transactions on Emerging Topics in Computing 201

    IoT Resources and Their Practical Application, A Comprehensive Study

    Get PDF
    The Internet of Things (IoT) has become a paradigm shifter, connecting an enormous number of smart devices and facilitating seamless data exchange for a diverse array of applications. The availability and effective use of the IoT ecosystem's resources are key factors in determining how its practical applications will develop as they mature. The IoT resources and their practical application across several areas are thoroughly explored in this paper. The paper begins by classifying and describing the various sensor types, their applications in various fields, and IoT resources, highlighting their contributions to real-time data collection, processing, and transmission. It then goes on to demonstrate a wide range of real-world uses for these resources, such as smart cities, education, agriculture, business, healthcare, environment monitoring, transportation, and industrial automation. However, utilizing IoT resources effectively is not without difficulties. Critical difficulties such as resource allocation, scalability, security, interoperability, and privacy concerns are identified and discussed in the paper. Furthermore, the paper also highlights future directions and emerging trends in IoT resource management, including edge computing, cloud computing, human machine integration, and compatibility with other systems. These developments aim to increase the dependability of IoT applications in diverse settings and optimize resource allocation. This paper's conclusion highlights the crucial role that IoT resources play in advancing real-world applications across a variety of areas. Researchers, practitioners, policymakers, and other stakeholders may collaborate together to effectively leverage the full potential of IoT resources to build intelligent, effective ecosystems that meet the needs of contemporary society by solving difficulties and utilizing developing trends

    A technological framework for data-driven IoT systems: application on landslide monitoring

    Get PDF
    The emergence of the paradigm of the Internet of Things has underpinned the development of data-driven cyber-physical systems that collect and process data that is dense both in space and time. The application areas of such data-driven IoT systems are numerous and their socio-economic impact of great importance as they enable the monitoring and management of processes in sectors ranging from urban management to management of the natural environment. In this work, we introduce and detail an end-to-end technological framework for data-driven IoT systems for landslide monitoring. The framework is articulated in three tiers – namely data acquisition, data curation and data presentation. For each tier we present and detail its design and development aspects; from the IoT hardware design and the wireless communication technologies of choice, to how Big Data infrastructure and Machine Learning components can be combined to support a sophisticated presentation tier that delivers the true added value of a system to its final users. The framework is validated, extended and fine-tuned by means of two pilots at locations experiencing the impact of different landslide types and activity. This work qualitatively improves upon existing methods of landslide monitoring and showcases how data-driven IoT systems can pave new pathways for interdisciplinary research as well as generate positive impact on modern societies

    Smart Monitoring and Control in the Future Internet of Things

    Get PDF
    The Internet of Things (IoT) and related technologies have the promise of realizing pervasive and smart applications which, in turn, have the potential of improving the quality of life of people living in a connected world. According to the IoT vision, all things can cooperate amongst themselves and be managed from anywhere via the Internet, allowing tight integration between the physical and cyber worlds and thus improving efficiency, promoting usability, and opening up new application opportunities. Nowadays, IoT technologies have successfully been exploited in several domains, providing both social and economic benefits. The realization of the full potential of the next generation of the Internet of Things still needs further research efforts concerning, for instance, the identification of new architectures, methodologies, and infrastructures dealing with distributed and decentralized IoT systems; the integration of IoT with cognitive and social capabilities; the enhancement of the sensing–analysis–control cycle; the integration of consciousness and awareness in IoT environments; and the design of new algorithms and techniques for managing IoT big data. This Special Issue is devoted to advancements in technologies, methodologies, and applications for IoT, together with emerging standards and research topics which would lead to realization of the future Internet of Things

    Design of a Soil Erosion Warning System in Watersheds Based on Arduino Uno

    Get PDF
    Tropical climate conditions with two seasons, namely rainy and hot in Indonesia and coupled with relatively diverse surface and rock topography conditions, have the potential for natural disasters, one of which is erosion in watersheds. Making the system using the Arduino Uno microcontroller, SIM-800L V2 Module, Piezoelectric Sensor, Soil Moisture Sensor, Buzzer and LCD. The designed system will be able to display information on the spot, and can send via SMS. In pre-erosion conditions, there are two variables used, namely soil moisture and soil vibration. As for post-erosion, it only takes the soil vibration variable. The limit value of vibration in pre-erosion conditions is 31%. Pre-erosion data is divided into 3 statuses, namely BEWARE at humidity values of 31-70% and vibration values of 5-15%, DANGER status with humidity values of 71-100% or vibration values of 16-30%, and other than that they are included in the SAFE category. Whereas in post-erosion 3 categories are LIGHT EROSION at vibration values of 31-50%, MODERATE EROSION 51-70% and SEVERE EROSION 71-100%

    Advancements, Challenges, and Future Directions in Rainfall-Induced Landslide Prediction: A Comprehensive Review

    Get PDF
    Rainfall-induced landslides threaten lives and properties globally. To address this, researchers have developed various methods and models that forecast the likelihood and behavior of rainfall-induced landslides. These methodologies and models can be broadly classified into three categories: empirical, physical-based, and machine-learning approaches. However, these methods have limitations in terms of data availability, accuracy, and applicability. This paper reviews the current state-of-the-art of rainfall-induced landslide prediction methods, focusing on the methods, models, and challenges involved. The novelty of this study lies in its comprehensive analysis of existing prediction techniques and the identification of their limitations. By synthesizing a vast body of research, it highlights emerging trends and advancements, providing a holistic perspective on the subject matter. The analysis points out that future research opportunities lie in interdisciplinary collaborations, advanced data integration, remote sensing, climate change impact analysis, numerical modeling, real-time monitoring, and machine learning improvements. In conclusion, the prediction of rainfall-induced landslides is a complex and multifaceted challenge, and no single approach is universally superior. Integrating different methods and leveraging emerging technologies offer the best way forward for improving accuracy and reliability in landslide prediction, ultimately enhancing our ability to manage and mitigate this geohazard
    • …
    corecore