1,523 research outputs found

    From Data Topology to a Modular Classifier

    Full text link
    This article describes an approach to designing a distributed and modular neural classifier. This approach introduces a new hierarchical clustering that enables one to determine reliable regions in the representation space by exploiting supervised information. A multilayer perceptron is then associated with each of these detected clusters and charged with recognizing elements of the associated cluster while rejecting all others. The obtained global classifier is comprised of a set of cooperating neural networks and completed by a K-nearest neighbor classifier charged with treating elements rejected by all the neural networks. Experimental results for the handwritten digit recognition problem and comparison with neural and statistical nonmodular classifiers are given

    Theoretical Interpretations and Applications of Radial Basis Function Networks

    Get PDF
    Medical applications usually used Radial Basis Function Networks just as Artificial Neural Networks. However, RBFNs are Knowledge-Based Networks that can be interpreted in several way: Artificial Neural Networks, Regularization Networks, Support Vector Machines, Wavelet Networks, Fuzzy Controllers, Kernel Estimators, Instanced-Based Learners. A survey of their interpretations and of their corresponding learning algorithms is provided as well as a brief survey on dynamic learning algorithms. RBFNs' interpretations can suggest applications that are particularly interesting in medical domains

    Incremental Cluster Validity Indices for Online Learning of Hard Partitions: Extensions and Comparative Study

    Get PDF
    Validation is one of the most important aspects of clustering, particularly when the user is designing a trustworthy or explainable system. However, most clustering validation approaches require batch calculation. This is an important gap because of the value of clustering in real-time data streaming and other online learning applications. Therefore, interest has grown in providing online alternatives for validation. This paper extends the incremental cluster validity index (iCVI) family by presenting incremental versions of Calinski-Harabasz (iCH), Pakhira-Bandyopadhyay-Maulik (iPBM), WB index (iWB), Silhouette (iSIL), Negentropy Increment (iNI), Representative Cross Information Potential (irCIP), Representative Cross Entropy (irH), and Conn_Index (iConn_Index). This paper also provides a thorough comparative study of correct, under- and over-partitioning on the behavior of these iCVIs, the Partition Separation (PS) index as well as four recently introduced iCVIs: incremental Xie-Beni (iXB), incremental Davies-Bouldin (iDB), and incremental generalized Dunn\u27s indices 43 and 53 (iGD43 and iGD53). Experiments were carried out using a framework that was designed to be as agnostic as possible to the clustering algorithms. The results on synthetic benchmark data sets showed that while evidence of most under-partitioning cases could be inferred from the behaviors of the majority of these iCVIs, over-partitioning was found to be a more challenging problem, detected by fewer of them. Interestingly, over-partitioning, rather then under-partitioning, was more prominently detected on the real-world data experiments within this study. The expansion of iCVIs provides significant novel opportunities for assessing and interpreting the results of unsupervised lifelong learning in real-time, wherein samples cannot be reprocessed due to memory and/or application constraints

    Efficient Sparse Coding in Early Sensory Processing: Lessons from Signal Recovery

    Get PDF
    Sensory representations are not only sparse, but often overcomplete: coding units significantly outnumber the input units. For models of neural coding this overcompleteness poses a computational challenge for shaping the signal processing channels as well as for using the large and sparse representations in an efficient way. We argue that higher level overcompleteness becomes computationally tractable by imposing sparsity on synaptic activity and we also show that such structural sparsity can be facilitated by statistics based decomposition of the stimuli into typical and atypical parts prior to sparse coding. Typical parts represent large-scale correlations, thus they can be significantly compressed. Atypical parts, on the other hand, represent local features and are the subjects of actual sparse coding. When applied on natural images, our decomposition based sparse coding model can efficiently form overcomplete codes and both center-surround and oriented filters are obtained similar to those observed in the retina and the primary visual cortex, respectively. Therefore we hypothesize that the proposed computational architecture can be seen as a coherent functional model of the first stages of sensory coding in early vision

    Applying the Science of Child Development in Child Welfare System

    Get PDF
    In this paper, the authors show how the science of child development can be leveraged to strengthen one of these public systems: child welfare. The intended audience includes leaders in the public agencies responsible for child protection and related functions; in the private, non-profit agencies that provide many of the services in these systems; in the courts, which play a critical role in child welfare; in legislative committees that oversee child welfare and related services; and in the many other public systems, such as early childhood education, mental health, and juvenile justice, whose support is essential to success in child welfare. While this paper is focused on child welfare systems in the United States, the researchers believe it may be relevant to other countries with similar systems. Leaders in these areas have the unique opportunity to both drive changes in child welfare policy and practice and model the kinds of actions, from front-line workers and parents, needed to promote healthy child development. The authors hope the paper will be equally valuable to front-line practitioners and supervisors, who are the essential deliverers of effective child welfare services

    Cluster validity in clustering methods

    Get PDF

    Dialogue Act Modeling for Automatic Tagging and Recognition of Conversational Speech

    Get PDF
    We describe a statistical approach for modeling dialogue acts in conversational speech, i.e., speech-act-like units such as Statement, Question, Backchannel, Agreement, Disagreement, and Apology. Our model detects and predicts dialogue acts based on lexical, collocational, and prosodic cues, as well as on the discourse coherence of the dialogue act sequence. The dialogue model is based on treating the discourse structure of a conversation as a hidden Markov model and the individual dialogue acts as observations emanating from the model states. Constraints on the likely sequence of dialogue acts are modeled via a dialogue act n-gram. The statistical dialogue grammar is combined with word n-grams, decision trees, and neural networks modeling the idiosyncratic lexical and prosodic manifestations of each dialogue act. We develop a probabilistic integration of speech recognition with dialogue modeling, to improve both speech recognition and dialogue act classification accuracy. Models are trained and evaluated using a large hand-labeled database of 1,155 conversations from the Switchboard corpus of spontaneous human-to-human telephone speech. We achieved good dialogue act labeling accuracy (65% based on errorful, automatically recognized words and prosody, and 71% based on word transcripts, compared to a chance baseline accuracy of 35% and human accuracy of 84%) and a small reduction in word recognition error.Comment: 35 pages, 5 figures. Changes in copy editing (note title spelling changed
    corecore