100 research outputs found

    Efficient Identification of Equivalences in Dynamic Graphs and Pedigree Structures

    Full text link
    We propose a new framework for designing test and query functions for complex structures that vary across a given parameter such as genetic marker position. The operations we are interested in include equality testing, set operations, isolating unique states, duplication counting, or finding equivalence classes under identifiability constraints. A motivating application is locating equivalence classes in identity-by-descent (IBD) graphs, graph structures in pedigree analysis that change over genetic marker location. The nodes of these graphs are unlabeled and identified only by their connecting edges, a constraint easily handled by our approach. The general framework introduced is powerful enough to build a range of testing functions for IBD graphs, dynamic populations, and other structures using a minimal set of operations. The theoretical and algorithmic properties of our approach are analyzed and proved. Computational results on several simulations demonstrate the effectiveness of our approach.Comment: Code for paper available at http://www.stat.washington.edu/~hoytak/code/hashreduc

    Identity-by-descent estimation with population- and pedigree-based imputation in admixed family data

    Get PDF
    BACKGROUND: In the past few years, imputation approaches have been mainly used in population-based designs of genome-wide association studies, although both family- and population-based imputation methods have been proposed. With the recent surge of family-based designs, family-based imputation has become more important. Imputation methods for both designs are based on identity-by-descent (IBD) information. Apart from imputation, the use of IBD information is also common for several types of genetic analysis, including pedigree-based linkage analysis. METHODS: We compared the performance of several family- and population-based imputation methods in large pedigrees provided by Genetic Analysis Workshop 19 (GAW19). We also evaluated the performance of a new IBD mapping approach that we propose, which combines IBD information from known pedigrees with information from unrelated individuals. RESULTS: Different combinations of the imputation methods have varied imputation accuracies. Moreover, we showed gains from the use of both known pedigrees and unrelated individuals with our IBD mapping approach over the use of known pedigrees only. CONCLUSIONS: Our results represent accuracies of different combinations of imputation methods that may be useful for data sets similar to the GAW19 pedigree data. Our IBD mapping approach, which uses both known pedigree and unrelated individuals, performed better than classical linkage analysis

    Identity-by-descent estimation with population- and pedigree-based imputation in admixed family data

    Get PDF
    Background: In the past few years, imputation approaches have been mainly used in population-based designs of genome-wide association studies, although both family- and population-based imputation methods have been proposed. With the recent surge of family-based designs, family-based imputation has become more important. Imputation methods for both designs are based on identity-by-descent (IBD) information. Apart from imputation, the use of IBD information is also common for several types of genetic analysis, including pedigree-based linkage analysis. Methods: We compared the performance of several family- and population-based imputation methods in large pedigrees provided by Genetic Analysis Workshop 19 (GAW19). We also evaluated the performance of a new IBD mapping approach that we propose, which combines IBD information from known pedigrees with information from unrelated individuals. Results: Different combinations of the imputation methods have varied imputation accuracies. Moreover, we showed gains from the use of both known pedigrees and unrelated individuals with our IBD mapping approach over the use of known pedigrees only. Conclusions: Our results represent accuracies of different combinations of imputation methods that may be useful for data sets similar to the GAW19 pedigree data. Our IBD mapping approach, which uses both known pedigree and unrelated individuals, performed better than classical linkage analysis

    Algorithms and the mathematical foundations of computer science

    Get PDF
    The goal of this chapter is to bring to the attention of philosophers of mathematics the concept of algorithm as it is studied incontemporary theoretical computer science, and at the same time address several foundational questions about the role this notion plays in our practices. A view known as algorithmic realism will be described which maintains that individual algorithms are identical to mathematical objects. Upon considering several ways in which the details of algorithmic realism might be formulated, it will be argued (pace Moschovakis and Gurevich) that there are principled reasons to think that this view cannot be systematically developed in a manner which is compatible with the practice of computational complexity theory and algorithmic analysis

    The Philosophical Foundations of PLEN: A Protocol-theoretic Logic of Epistemic Norms

    Full text link
    In this dissertation, I defend the protocol-theoretic account of epistemic norms. The protocol-theoretic account amounts to three theses: (i) There are norms of epistemic rationality that are procedural; epistemic rationality is at least partially defined by rules that restrict the possible ways in which epistemic actions and processes can be sequenced, combined, or chosen among under varying conditions. (ii) Epistemic rationality is ineliminably defined by procedural norms; procedural restrictions provide an irreducible unifying structure for even apparently non-procedural prescriptions and normative expressions, and they are practically indispensable in our cognitive lives. (iii) These procedural epistemic norms are best analyzed in terms of the protocol (or program) constructions of dynamic logic. I defend (i) and (ii) at length and in multi-faceted ways, and I argue that they entail a set of criteria of adequacy for models of epistemic dynamics and abstract accounts of epistemic norms. I then define PLEN, the protocol-theoretic logic of epistemic norms. PLEN is a dynamic logic that analyzes epistemic rationality norms with protocol constructions interpreted over multi-graph based models of epistemic dynamics. The kernel of the overall argument of the dissertation is showing that PLEN uniquely satisfies the criteria defended; none of the familiar, rival frameworks for modeling epistemic dynamics or normative concepts are capable of satisfying these criteria to the same degree as PLEN. The overarching argument of the dissertation is thus a theory-preference argument for PLEN

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems
    • …
    corecore