1,738 research outputs found

    Towards compact bandwidth and efficient privacy-preserving computation

    Get PDF
    In traditional cryptographic applications, cryptographic mechanisms are employed to ensure the security and integrity of communication or storage. In these scenarios, the primary threat is usually an external adversary trying to intercept or tamper with the communication between two parties. On the other hand, in the context of privacy-preserving computation or secure computation, the cryptographic techniques are developed with a different goal in mind: to protect the privacy of the participants involved in a computation from each other. Specifically, privacy-preserving computation allows multiple parties to jointly compute a function without revealing their inputs and it has numerous applications in various fields, including finance, healthcare, and data analysis. It allows for collaboration and data sharing without compromising the privacy of sensitive data, which is becoming increasingly important in today's digital age. While privacy-preserving computation has gained significant attention in recent times due to its strong security and numerous potential applications, its efficiency remains its Achilles' heel. Privacy-preserving protocols require significantly higher computational overhead and bandwidth when compared to baseline (i.e., insecure) protocols. Therefore, finding ways to minimize the overhead, whether it be in terms of computation or communication, asymptotically or concretely, while maintaining security in a reasonable manner remains an exciting problem to work on. This thesis is centred around enhancing efficiency and reducing the costs of communication and computation for commonly used privacy-preserving primitives, including private set intersection, oblivious transfer, and stealth signatures. Our primary focus is on optimizing the performance of these primitives.Im Gegensatz zu traditionellen kryptografischen Aufgaben, bei denen Kryptografie verwendet wird, um die Sicherheit und Integrität von Kommunikation oder Speicherung zu gewährleisten und der Gegner typischerweise ein Außenstehender ist, der versucht, die Kommunikation zwischen Sender und Empfänger abzuhören, ist die Kryptografie, die in der datenschutzbewahrenden Berechnung (oder sicheren Berechnung) verwendet wird, darauf ausgelegt, die Privatsphäre der Teilnehmer voreinander zu schützen. Insbesondere ermöglicht die datenschutzbewahrende Berechnung es mehreren Parteien, gemeinsam eine Funktion zu berechnen, ohne ihre Eingaben zu offenbaren. Sie findet zahlreiche Anwendungen in verschiedenen Bereichen, einschließlich Finanzen, Gesundheitswesen und Datenanalyse. Sie ermöglicht eine Zusammenarbeit und Datenaustausch, ohne die Privatsphäre sensibler Daten zu kompromittieren, was in der heutigen digitalen Ära immer wichtiger wird. Obwohl datenschutzbewahrende Berechnung aufgrund ihrer starken Sicherheit und zahlreichen potenziellen Anwendungen in jüngster Zeit erhebliche Aufmerksamkeit erregt hat, bleibt ihre Effizienz ihre Achillesferse. Datenschutzbewahrende Protokolle erfordern deutlich höhere Rechenkosten und Kommunikationsbandbreite im Vergleich zu Baseline-Protokollen (d.h. unsicheren Protokollen). Daher bleibt es eine spannende Aufgabe, Möglichkeiten zu finden, um den Overhead zu minimieren (sei es in Bezug auf Rechen- oder Kommunikationsleistung, asymptotisch oder konkret), während die Sicherheit auf eine angemessene Weise gewährleistet bleibt. Diese Arbeit konzentriert sich auf die Verbesserung der Effizienz und Reduzierung der Kosten für Kommunikation und Berechnung für gängige datenschutzbewahrende Primitiven, einschließlich private Schnittmenge, vergesslicher Transfer und Stealth-Signaturen. Unser Hauptaugenmerk liegt auf der Optimierung der Leistung dieser Primitiven

    That’s not my signature! Fail-stop signatures for a post-quantum world

    Get PDF
    The Snowden\u27s revelations kick-started a community-wide effort to develop cryptographic tools against mass surveillance. In this work, we propose to add another primitive to that toolbox: Fail-Stop Signatures (FSS) [EC\u2789]. FSS are digital signatures enhanced with a forgery-detection mechanism that can protect a PPT signer from more powerful attackers. Despite the fascinating concept, research in this area stalled after the \u2790s. However, the ongoing transition to post-quantum cryptography, with its hiccups due to the novelty of underlying assumptions, has become the perfect use case for FSS. This paper aims to reboot research on FSS with practical use in mind: Our framework for FSS includes ``fine-grained\u27\u27 security definitions (that assume a powerful, but bounded adversary e.g: can break 128128-bit of security, but not 256256-bit). As an application, we show new FSS constructions for the post-quantum setting. We show that FSS are equivalent to standard, provably secure digital signatures that do not require rewinding or programming random oracles, and that this implies lattice-based FSS. Our main construction is an FSS version of SPHINCS, which required building FSS versions of all its building blocks: WOTS, XMSS, and FORS. In the process, we identify and provide generic solutions for two fundamental issues arising when deriving a large number of private keys from a single seed, and when building FSS for Hash-and-Sign-based signatures

    Welfare of broilers on farm

    Get PDF
    This Scientific Opinion considers the welfare of domestic fowl (Gallus gallus) related to the production of meat (broilers) and includes the keeping of day-old chicks, broiler breeders, and broiler chickens. Currently used husbandry systems in the EU are described. Overall, 19 highly relevant welfare consequences (WCs) were identified based on severity, duration and frequency of occurrence: 'bone lesions', 'cold stress', 'gastro-enteric disorders', 'group stress', 'handling stress', 'heat stress', 'isolation stress', 'inability to perform comfort behaviour', 'inability to perform exploratory or foraging behaviour', 'inability to avoid unwanted sexual behaviour', 'locomotory disorders', 'prolonged hunger', 'prolonged thirst', 'predation stress', 'restriction of movement', 'resting problems', 'sensory under- and overstimulation', 'soft tissue and integument damage' and 'umbilical disorders'. These WCs and their animal-based measures (ABMs) that can identify them are described in detail. A variety of hazards related to the different husbandry systems were identified as well as ABMs for assessing the different WCs. Measures to prevent or correct the hazards and/or mitigate each of the WCs are listed. Recommendations are provided on quantitative or qualitative criteria to answer specific questions on the welfare of broilers and related to genetic selection, temperature, feed and water restriction, use of cages, light, air quality and mutilations in breeders such as beak trimming, de-toeing and comb dubbing. In addition, minimal requirements (e.g. stocking density, group size, nests, provision of litter, perches and platforms, drinkers and feeders, of covered veranda and outdoor range) for an enclosure for keeping broiler chickens (fast-growing, slower-growing and broiler breeders) are recommended. Finally, 'total mortality', 'wounds', 'carcass condemnation' and 'footpad dermatitis' are proposed as indicators for monitoring at slaughter the welfare of broilers on-farm

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF
    High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF
    High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential

    Take a walk in my shoes : A narrative account of the experiences of community mobility among older adults living with age-related vision loss (ARVL)

    Get PDF
    This study aimed to co-construct the accounts of older adults with age-related vision loss (ARVL) regarding their community mobility experiences. The study was based on a constructivist paradigm, and the collection and analysis of data adopted the narrative methodology. Participants included four older adults with one of the following conditions: macular degeneration, glaucoma, and/or diabetic retinopathy; all were at least 60 years old. Participants were recruited from Optometry clinics in London, Ontario, with one participant recruited using snowball sampling. The collection of data comprised three narrative interviews, all of which were audio recorded. These interviews took place over the phone as per the older adults’ request. This study conducted thematic and structural narrative analyses (Riesman, 2008) on participants\u27 stories and identified six dominant themes, including: (1) Moving from private vehicles to public transport, (2) Elements of the physical environment act more as barriers than facilitators to community mobility, (3) The use of assistive devices and compensatory strategies to support community mobility, (4) Social networks and their influence on community mobility, (5) Ableist perceptions of older adults with ARVL & its impact on community mobility, and (6) Community mobility barriers stemming from political factors. The research findings expand our understanding of the community mobility experiences of older adults with ARVL and highlight the benefits of more inclusive age-friendly environment in facilitating their community mobility. The study\u27s future directions and implications are also discussed. Keywords: Age-related vision loss, older adults, environment, community mobilit

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF
    • …
    corecore