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Abstract

Cryptographic building blocks play a central role in cryptography. For in-

stance, there exist well-established definitions of the cryptographic building

blocks encryption and (digital) signatures as well as standard security no-

tions thereof. Further, cryptographic building blocks might be constructed

modularly, i.e., emerge out of other cryptographic building (sub-)blocks. To

argue about security in an appropriate model, one usually transforms any

efficient adversary on the emerged building block to an efficient adversary on

the underlying building block(s). Thus, assuming that the underlying build-

ing blocks are secure, the emerged building block must be secure. Essentially,

one reduces the security of the emerged building block to the security of the

underlying building blocks. This form of reduction is an example of a cryp-

tographic transformation and can be analyzed, e.g., in terms of efficiency

and tightness. (Cryptographic transformations are omnipresent in (modern)

cryptography.) In this thesis, we consider cryptographic building blocks and

transformations in the following three aspects:

Confined Guessing. We give a cryptographic transformation to construct

secure digital signatures. First, we define a new signature building block,

dubbed tag-based signatures (where a signature additionally holds a tag from

a specific tag space), together with a milder security definition. The intention

is that this milder form of security might be easier to achieve when instan-

tiating (concrete) tag-based signatures. Secondly, from several mildly secure

tag-based signature instances, we derive digital signatures with compact pa-

rameters in the (even stronger) standard security setting via a cryptographic

transformation. Intermediately, we use a technique called confined guessing,

where we partition the tag space in the transformation such that there ex-

ists a large enough (but not too large) “confined” partition which allows us

to guess tags with significant probability. Further, the concept of confined

11



guessing gives rise to instantiate new efficient and compact standard-model1

secure signature. However, the instantiations are not part of this thesis and

we solely focus on the confined guessing technique. The discussed concept

was published in [BHJ+13, BHJ+15].

(Almost) Tight IBE Security. Consider an “extended” cryptographic

building block, named identity-based encryption (IBE), where the encryp-

tion algorithm only needs the recipient’s public ID (e.g., e-mail) and mes-

sage, besides some public system parameters. Common IBE security notions

only deal with one instance and one ciphertext, but real-world scenarios of-

ten involve multiple instances with multiple ciphertexts. However, we can

trivially transform one-instance, one-ciphertext security to multi-instance,

multi-ciphertext security; unfortunately, in this case, the security guarantees

degrade in the number of instances and ciphertexts. (This often leads to more

expensive computations in practice when implementing the systems and to

the required a-priory knowledge of the number of instances and ciphertexts.)

We say, an IBE scheme is (almost) tightly secure if its security guarantees do

not degrade in the number of instances, users per instance, or ciphertexts. At

Crypto 2013, Wee and Chen proposed the first (almost) tightly secure IBE

in the one-instance, one-ciphertext security setting under a simple assump-

tion2. We extend their underlying cryptographic building block such that we

are able to obtain an efficient (almost) tight reduction from the security of

our IBE to the security of the extended underlying cryptographic building

block in the (even stronger) multi-instance, multi-ciphertext security setting.

Concretely, we give an (almost) tight cryptographic transformation from any

efficient adversary on our IBE in the multi-instance, multi-ciphertext secu-

rity setting to an efficient adversary on the underlying building block. This

approach was published in [HKS15].

A Generic View on Trace-and-Revoke Systems. Trace-and-revoke

building blocks are for instance used in content protection (e.g., pay-TV).

The idea is that only privileged (i.e., non-revoked) users can decrypt cipher-

texts while, additionally, malicious users — who share their secret informa-

tion with others — can be traced and afterwards excluded (i.e., revoked) from

the system. We give a generic trace-and-revoke instantiation view by, first,

1The standard model is an established computational model in cryptography.
2We define simple assumptions in the preliminaries. Loosely speaking, a simple as-

sumption is at least independent of adversarially queries.



extending a generic work from Wee (Eurocrypt 2011) concerning the revo-

cation techniques. Concretely, Wee gives an underlying building block that

is used to construct revocation schemes. Essentially, we connect a generic

assumption3 with the work from Wee. (This yields a slightly different generic

view on revocation systems.) In the second part, we show the tracing capa-

bility of those revocation systems by picking up on and extending established

techniques. (We mention that for some of Wee’s revocation instantiations,

it is not known if they are traceable.) Put together, we derive a new generic

view of trace-and-revoke systems that generalizes known and new trace-and-

revoke instantiations under simple assumptions. This work was published

in [HS14].

3Loosely speaking, a generic assumption generalizes more concrete assumptions.





Zusammenfassung

Kryptographische Bausteine und Transformationen sind ein fester Bestand-

teil der modernen Kryptographie. In der einschlägigen Literatur sind kryp-

tographische Bausteine, wie beispielsweise Verschlüsselung oder (digitale)

Signaturen, allgegenwärtig. Zudem existieren passende Sicherheitsdefini-

tionen. Kryptographische Bausteine können wiederum aus anderen kryp-

tographischen Bausteinen zusammengesetzt sein. Diese Modularität erlaubt

das Betrachten von kryptographischen Systemen als Zusammensetzung an-

derer kryptographischer Bausteine. Um Sicherheitsgarantien für den zusam-

mengesetzten Baustein zu geben, kann eine kryptographische Transformation

benutzt werden. Diese garantiert in der Regel, dass jeder Angreifer auf den

zusammengesetzten Baustein einen Angreifer auf die darunterliegende Bau-

steine impliziert. Wenn wir annehmen, dass die darunterliegenden Bausteine

sicher sind, dann muss der daraus zusammengesetzte Baustein ebenfalls si-

cher sein. Damit wurde die Sicherheit des zusammengesetzten Bausteins auf

die Sicherheit der darunterliegenden Bausteine reduziert. Diese Art von Re-

duktion ist ein Beispiel für eine kryptographische Transformation und kann

in Hinblick auf Effizienz und Schärfe (engl. tightness) untersucht werden. In

der vorliegenden Arbeit werden drei Ergebnisse im Rahmen von kryptogra-

phischen Bausteinen und Transformationen vorgestellt:

Confined Guessing. Wir geben eine kryptographische Transformation an,

die es erlaubt, sichere digitale Signaturen zu konstruieren In einem Zwischen-

schritt definieren wir einen neuen kryptographischen Baustein, der als tag-

basierte digitale Signaturen bezeichnet wird. (Eine Signatur in diesem Sinne

besteht zusätzlich aus einem Tag (Etikett).) Zudem wird eine abgeschwächte,

aber dennoch einsichtige Sicherheitsdefinition für tag-basierte Signaturen

gegeben. Die Idee dahinter ist, dass eine abgeschwächte Sicherheitsdefini-

tion es oftmals erlaubt, effiziente Instanziierungen zu konstruieren. Weit-
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erhin wird eine kryptographische Transformation beschrieben, die mehrere

abgeschwächt sichere tag-basierte Signaturen parallel nutzt, um sichere digi-

tale Signaturen mit kompakten Parametern zu konstruieren. Dabei nutzt

die Transformation das Konzept confined guessing. Dieses Konzept teilt

die Menge aller Tags in disjunkte Teilmengen auf und findet eine begrenz-

te Teilmenge, die groß genug (aber nicht zu groß) ist, sodass Tags mit

nicht-vernachlässigbarer Wahrscheinlichkeit geraten werden können. Dies

ist vonnöten, um eine effiziente Transformation zu zeigen. Das Konzept

confined guessing erlaubt zudem, sehr effiziente sicher Instanziierungen von

digilen Signaturen im Standardmodell4 anzugeben. Diese Instanziierungen

sind jedoch nicht Teil der Arbeit, es wird ausschließlich auf die Transforma-

tion in Zusammenhang mit confined guessing eingegangen. Dieses Konzept

wurde in [BHJ+13, BHJ+15] veröffentlicht.

(Fast) scharfe IBE-Sicherheit. Identitäts-basierte Verschlüsselung (IBE)

erlaubt es, eine verschlüsselte Nachricht (Chiffrat) an einen Empfänger zu

senden, von dem nur ein öffentlicher Identifikator (z. B. die E-Mail-Adresse)

bekannt sein muss. Geläufige IBE-Sicherheitsdefinitionen betrachten nur

eine IBE-Instanz und ein Chiffrat, wobei in realistischen Szenarien dur-

chaus mehrere Instanzen mit mehreren Chiffraten vorkommen können. Es ist

bekannt, dass die Sicherheit im Eine-Instanz-ein-Chiffrat-Szenario die Sicher-

heit im Mehrere-Instanzen-mehrere-Chiffrate-Szenario impliziert. Allerdings

garantiert diese Transformation nur eine abgeschwächte Sicherheit im Ver-

gleich zur Sicherheit im Eine-Instanz-ein-Chiffrat-Szenario. Die Folge ist,

dass bei der Implementierung in der Praxis oftmals größere Schlüssellängen

und damit intensivere Berechnungen vonnöten sind, um ein ähnliches Sicher-

heitsniveau zum Eine-Instanz-ein-Chiffrat-Szenario zu garantieren. Zudem

müssen die Anzahl der Instanzen und die Anzahl der Chiffrate vor dem Auf-

setzen des Systems bekannt sein. Ein IBE-System ist (fast) scharf sicher,

wenn dessen Sicherheitsgarantien nicht von der Anzahl der Instanzen, Nutzer

pro Instanz oder Anzahl der Chiffrate abhängen. Auf der Crypto-2013-

Konferenz stellten Chen und Wee das erste (fast) scharf sichere IBE-System

im Eine-Instanz-ein-Chiffrat-Szenario vor (das auf einer einfachen5 Annahme

basiert). Wir erweitern deren zugrundeliegenden Baustein und geben ein

(fast) scharf sicheres IBE-System im Mehrere-Instanzen-mehrere-Chiffrate-

4Das Standardmodell ist ein gängiges Berechnungsmodell in der Kryptographie.
5Wir definieren einfache Annahmen in Kapitel 2. Unter anderem hängen einfache

Annahmen nicht von angreifer-spezifischen Anfragen ab.



Szenario an. Genauer gesagt, wir reduzieren die Sicherheit unseres IBE-

Systems auf die Sicherheit des zugrundeliegenden Bausteins. Dabei zeigen

wir, dass diese Transformation im Mehrere-Instanzen-mehrere-Chiffrate-Sze-

nario (fast) scharf ist. Dieser Ansatz wurde in [HKS15] publiziert.

Eine generische Sicht auf Trace-and-Revoke-Systeme. Trace-and-

Revoke-Syteme finden Anwendung im Bereich der digitalen Rechteverwal-

tung. Diese Systeme erlauben es, nur privilegierten Nutzern das Entschlüs-

seln von geschützen Inhalten zu ermöglichen. Gleichzeitig wird das Finden

von Nutzern erlaubt, die ihr geheimes Schlüsselmaterial unbefugt an Dritte

weitergeben. Wird ein Nutzer dessen überführt, kann dieser vom System aus-

geschlossen werden und ist somit nicht mehr in der Lage, die geschützten In-

halte zu entschlüsseln. (Diese böswilligen Nutzer werden Verräter (Traitors)

genannt, das Verfahren wird als Tracing bezeichnet.) Wir geben eine neue In-

stanziierung eines kryptographischen Bausteins an, der von Wee auf der Eu-

rocrypt 2011 vorgestellt wurde. Weiterhin kann dieser Baustein genutzt wer-

den, um Revoke-Systeme (vorerst ohne Tracinggarantien) zu konstruieren.

Damit erhalten wir eine neue Sicht auf diese Art von Systemen unter einer

generische Annahme6, die von Hemenway und Ostrovsky auf der PKC 2012

vorgestellt wurde. Weiterhin zeigen wir, dass diese Revoke-Systeme das Trac-

ing von Verrätern unterstützen. Zusammengefasst erhalten wir damit eine

neue generische Sicht auf Trace-and-revoke-Systeme, die bestehende und neue

Trace-and-revoke-Instanziierungen generalisieren. Der beschriebene Ansatz

wurde in [HS14] veröffentlicht.

6Eine generische Annahme abstrahiert, vereinfacht gesagt, konkretere Annahmen.





Chapter 1

Introduction

The Digital World and Cryptography. The digital world is rapidly

growing with all its benefits, e.g., faster communication or global intercon-

nectivity. However, besides the benefits, this development also comes with

significant risks, e.g., vulnerabilities of computer systems, data breaches, or

surveillance. Tackling those risks is an important necessity and cryptography

can be used to address many specific risks in the digital world. In today’s

life, cryptography and its applications are omnipresent. For example, online

banking or the procedure of a log-in into an email account often utilizes cer-

tain functionalities from the domain of cryptography for a secure payment

or a secure authentication, respectively. One important subdomain of cryp-

tography is encryption that is used to prevent eavesdropping; for example,

one can encrypt big portions of data (e.g., in databases) such that only priv-

ileged users are able to read the content. Another more evolved example is

encrypted e-mail, where legitimate users are able to communicate securely

and privately. Further subdomains of cryptography consider, e.g., digital sig-

natures, data integrity, or authentication. All in all, cryptography is a broad

field with a lot of applications in the digital world. A central question is:

how to build solid cryptographic functionalities with certain properties (e.g.,

security guarantees)?

Cryptographic Building Blocks and Transformations. Developing

cryptographic functionalities and, in general, cryptographic systems is highly

non-trivial due to their often complex and interwoven structure. A well-

known approach is to build such systems out of smaller components, called
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20 Chapter 1. Introduction

cryptographic building blocks, and combine these building blocks in a mod-

ular way to form a more complex cryptographic block or system. The pro-

cedure of combining cryptographic building blocks is also a non-trivial task.

However, this approach is appealing due to a modular view of the complex

system and the idea that smaller components are often easier to understand.

(Additionally, maintaining or exchanging small components instead of an en-

tire complex system might be easier as well.) There are well-established cryp-

tographic building blocks in the cryptographic literature, e.g., encryption or

digital signatures with appropriate definitions of security. (The security of a

cryptographic building block has to be defined carefully.) As indicated before,

these building blocks are often combined to obtain a more evolved building

block (or, more evolved system). To argue about security, one usually cryp-

tographically transforms any malicious attacker (called “adversary”) on the

evolved building block or system into an attacker on the underlying building

block(s). Put differently, assuming that the underlying cryptographic build-

ing block(s) are secure, the more evolved building block or system must be

secure as well. This is an example for a cryptographic transformation and

we can analyze such transformations regarding its efficiency and tightness.

Content and Results of this Thesis. This thesis will focus on cryp-

tographic building blocks and transformations in the cryptographic subdo-

mains digital signatures and encryption — where in the encryption case we

will particularly study identity-based encryption (IBE) and broadcast en-

cryption (BE). Digital signatures, IBE, and BE are important cryptographic

areas with a large body of research in the cryptographic community. Digital

signatures are for example used in the well-known Transport Layer Security

(TLS) protocol [DR06] over the Internet or in operating system updates. The

idea of IBE is to simplify certificate management. Certificate management

is widely used in practice and its deployment is usually very costly. Interest-

ingly, digital signatures and IBE are closely related; that is, an IBE system

can easily be converted into a digital signature system [BF03]. The essence

of BE is the secure and efficient distribution of sensitive data to a wider au-

dience which, for example, has application in pay-TV. This thesis presents

three new results in the mentioned cryptographic areas. Particularly, we will

focus on building blocks and examine cryptographic transformations within

digital signatures, IBE, and BE. Concretely:

1. We will describe a new transformation that uses a technique called
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confined guessing in the realm of digital signatures.

2. We present a new transformation in the IBE setting and extend an

underlying cryptographic building block.

3. We develop a new (generic) instantiation view of a cryptographic build-

ing block in the BE setting.

Further, we will start with an introduction and a general overview of all three

results in Section 1.1, Section 1.2, and Section 1.3.

1.1 Abstract of Result 1: Confined Guessing

Digital Signatures. Digital signatures are cryptographic building blocks

that can be seen as a digital counterpart to handwritten signatures and are

used widely in today’s digitally connected world, e.g., in the TLS protocol

in combination with HTTPS over the Internet. In such digital signature sys-

tems, given a security parameter1, a user is able to generate a verification

and secret key pair. The verification key is usually published and publicly

available while the secret key is kept, as the name already suggests, secret.

This secret key, which for example can be embedded in a smart card, is

used to sign a message (e.g., an e-mail). Both, the signature and the mes-

sage can then be transmitted, e.g., over the Internet. To verify a signature

on a message, one uses the user’s verification key to validate the signature

on the message. The correctness and the security properties of digital sig-

nature schemes usually guarantee integrity, authenticity, and unforgeability.

Integrity basically ensures that the message was not altered during transfer.

Authenticity stipulates that the signature was created by the user who claims

to be the creator of the signature on some message. Unforgeability says that

it is difficult to create a new valid message-signature pair without knowing

the corresponding secret key.

Efficiency, Security, Cryptographic Transformations (e.g., Reduc-

tions) in the Digital Signature Context. There are various flavors

1Basically, the security parameter is given to any party using (and also abusing) the
system. Further, all computational power within the (standard) model and the success
probabilities depend on the security parameter.
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of digital signature schemes in the cryptographic literature, e.g., mainly in

terms of efficiency and security. Concerning efficiency, the goal is to con-

struct digital signature schemes with “short” parameters, i.e., short key and

signature sizes. Concerning security, one particular notion of digital signa-

ture security, dubbed EUF-CMA-security, is considered to be the standard

security notion that should be achieved by digital signature schemes. Loosely

speaking, a signature scheme is EUF-CMA-secure, if no efficient adversary is

able to forge a signature on a new message except with negligible probabil-

ity2. Hence, the goal is to find EUF-CMA-secure digital signature schemes

with short parameters.

To argue about concrete3 security guarantees, one usually efficiently reduces

(or transforms) the EUF-CMA-security of a digital signature scheme to the

hardness of a computational problem. Put differently, one usually shows that

any efficient adversary on the signature scheme yields an efficient problem

solver. This contradicts the assumption that the underlying problem is hard

to solve and, hence, the digital signature scheme must be EUF-CMA-secure.

(To make it clear, the described concept is also a form of cryptographic

transformation or reduction.)

The Problem. Within the reduction in the EUF-CMA-context, the adver-

sary at some point outputs a signature and a message (for which it does

not know the secret key). This can be seen as an attempt to forge a

valid signature-message pair. Concerning the reduction, this message should

be somehow connected to the computational problem. (Otherwise, loosely

speaking, the adversary would not be of “any help.”) Naively, the reduction

would try to embed the computational problem instance into the system’s

parameters and “connect” it to some message the adversary hopefully will

output. Unfortunately, there are usually too many possibilities for the ad-

versary to choose a forgery message. Hence, in this naive approach, the

reduction would not be able to guess efficiently which message is going to

be output by the adversary. (We mention that we are only interested in ef-

ficient transformations.) Reduction strategies to overcome this problem are

known in the cryptographic literature, e.g., partitioning. (See chapter 3 for

2To be concrete, a negligible probability is smaller than any inverse of a polynomial in
the security parameter.

3Here, concrete means that we base the security of a signature scheme on a well-defined
computational hard problem (i.e., which is assumed to be hard to solve efficiently).
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more details.) However, some digital signature instantiations shown EUF-

CMA-secure under the well-established computational Diffie-Hellman (CDH)

assumption using the partitioning strategy suffer from relatively large verifi-

cation keys.

Our Contribution. We present a different reduction or cryptographic

transformation strategy, dubbed confined guessing, and we develop it two-

staged. First, we introduce a new building block, named tag-based digital

signatures (where a signature additionally carries a tag from tag space), to-

gether with a milder notion of security in comparison to EUF-CMA-security.

This milder security notion can easier be achieved by tag-based signature

instantiations. Secondly, we give a cryptographic transformation from the

mildly secure tag-based signatures to an EUF-CMA-secure digital signatures.

Within the transformation, we use the concept confined guessing, where we

partition the tag space such that there exists a large enough (but not too

large) “confined” partition. This approach allows us to guess tags with sig-

nificant probability which, in turn, yields an efficient transformation. (We

stress that we are only interested in efficient transformations.) All in all, this

strategy gives rise to efficient EUF-CMA-secure digital signature instantia-

tions (under concrete simple assumptions), e.g., an EUF-CMA-secure digital

signature scheme under the computational Diffie-Hellman (CDH) assump-

tion with compact verification keys. However, this thesis only covers the

main strategy of confined guessing while the mentioned digital signature in-

stantiations are not part of this work. Confined guessing was published in

[BHJ+13, BHJ+15].

1.2 Abstract of Result 2: (Almost) Tight IBE

Security

Identity-based Encryption. In an identity-based encryption (IBE) sys-

tem, one can send an encrypted message by only using a recipient’s public

identifier string (e.g., the MAC or e-mail address). This is different to or-

dinary encryption schemes, where one usually needs some public key of the

recipient to send encrypted messages. Initially, after receiving an encrypted

message in the IBE system, the recipient obtains a user secret key from
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some trustworthy authority and is henceforth able to decrypt the encrypted

message (by using this user secret key). The idea is to simplify certificate

management which is usually very costly in public-key infrastructures. How-

ever, despite the appealing idea of using only a recipient’s public identifier

for encryption note that an IBE system makes use of a trustworthy authority

which knows a master secret key that is used to generate all user secret keys

in the system.

Finally and interestingly, we want to mention that IBE systems and digital

signatures are cryptographically related, i.e., an IBE scheme can easily be

translated into a digital signature scheme [BF03].

Tight Security Reductions in the IBE Context. Common crypto-

graphic transformations in the IBE context are as follows: one efficiently

reduces the security of the IBE scheme to the security of the underlying

building block(s). Equivalently, one efficiently transforms any efficient ad-

versary on the IBE scheme to an efficient adversary on the underlying build-

ing block(s). Technically, one has to make sure that the success probability

of the IBE adversary is not degraded too much within the reduction, i.e.,

loosely speaking, the success probability of the adversary on the underly-

ing blocks should be large enough. Further, one can quantify the amount

of the degradation which is referred to as the loss of the reduction. Often,

this reduction loss is connected to the efficiency of the instantiation (e.g., a

smaller loss often translates to smaller key sizes of the implementations in

practice.) Hence, the goal is to provide security reduction with a small or

(even better) no loss. If the loss is linear in the security parameter, then we

say that the transformation is almost tight; if the loss is a constant in the

security parameter, then we say that the transformation is tight.

(Almost) Tight IBE Schemes. Common IBE security notions only deal

with one instance and one ciphertext while real-world scenarios often con-

sider multiple instances with multiple ciphertexts. It is known that one can

trivially lift one-instance, one-ciphertext security to multi-instance, multi-

ciphertext security; unfortunately, in this case, the security guarantees de-

grade in the number of instances and ciphertexts. Essentially, the loss of

such a transformation depends on the number of instances and ciphertexts.

(As mentioned before, this often leads to more expensive computations in

practice. Addionally, it also leads to the required a-priory knowledge of the



1.3. Abstract of Result 3: A Generic View on Trace-and-Revoke
Systems 25

number of instances and ciphertexts.) In [CW13], Chen and Wee construct

the first IBE scheme with an (almost) tight reduction in the one-instance,

one-ciphertext setting. A natural question is: is it possible to extend their

result to a setting with multiple instances and multiple ciphertexts while the

property of an (almost) tight reduction can be preserved?

Our Contribution. We answer the question from the last paragraph in the

affirmative. Concretely, we construct an (almost) tightly secure IBE scheme

in the multi-instance, multi-ciphertext setting. We first define an extended

security notion for IBE system that deals with multiple instances and mul-

tiple ciphertexts. This notion is a natural extension of the standard IBE

security notion. Secondly, we extend the underlying cryptographic building

block proposed by Chen and Wee such that we are able to prove an IBE

scheme (almost) tightly secure in the multi-instance, multi-ciphertext set-

ting. Concretely, we give an (almost) tight reduction from the security of the

IBE to the security of the underlying building block in the multi-instance,

multi-ciphertext setting. This work was published in [HKS15].

1.3 Abstract of Result 3: A Generic View on

Trace-and-Revoke Systems

Revocable Key Encapsulation Mechanism. Revocable key encapsula-

tion mechanisms (RKEMs) can be used in the context of content protection

(e.g., pay-TV). Basically, an RKEM allows to exclude non-privileged (e.g.,

non-paying) users from decrypting the encrypted content while all other sys-

tem users are able to decrypt. To this end, the system generates a master

public key and a master secret key. Users can join the system and each new

user obtains a user secret key from the system (using the master secret key).

The encapsulation works as follows: given an excluded (or, revoked) set of

users, a “shared” key is encapsulated such that only the users who are not

in the revoked set are able to decapsulate the shared key. In general, the

shared key is used to encrypt some payload data (e.g., a video file) and after

successful decapsulation, the shared key is used to decrypt the encrypted

payload. (Note that the encrypted payload is only broadcasted once and

can be received and decrypted by all users except those in the revoked set.)
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In some cases, these revocable systems incorporate a threshold parameter

that limits the number of users who might group together and share their

user-secret-key material. Up to this threshold bound, an RKEM guarantees

correctness and an appropriate form of security.

Trace-and-Revoke Systems. Speaking of colluding users, consider privi-

leged (i.e., non-revoked) users who share their user secret keys with each other

(or, with others) and build a decapsulation box out of this secret material.

As an example, one can think of users who sell their user secret keys in a

decapsulation box over the Internet. (Those users are often referred to as

“pirates” or “traitors.”) A natural question is: how to catch those traitors?

Assume that one (e.g., the police) is somehow able to obtain such a pirated

box. The approach would be that if a pirated box is found, then there should

be an efficient algorithm that uncovers at least one traitor only by examining

the input-output behavior of the box. This technique is known as traitor

tracing. Further, one can think of combining tracing with RKEMs. This

would yield a powerful cryptographic tool. Namely, after at least one traitor

is found through tracing, this user can be revoked (i.e., loosely speaking,

the corresponding user secret key is not useful any more). There is some

evidence that the combination of tracing and RKEMs is nontrivial to realize.

Nevertheless, schemes are proposed in the cryptographic literature which

achieve both; those schemes are called trace-and-revoke systems.

In [Wee11], Wee gives a generic view of RKEMs. His generic systems can

be instantiated under three different well-established computational assump-

tions. We extend his work in two directions.

Our Contribution. Our first result yields an extension of Wee’s work

[Wee11]. Concretely, we connect a generic assumption due to Hemenway

and Ostrovsky [HO12] with a cryptographic building block proposed by Wee.

This cryptographic building block is used by Wee to construct RKEMs.

Hence, we derive new RKEMs under a generic assumption. (This yields

a new slightly different generic view on revocation system.) In our second

result, we show that those RKEMs under the generic assumption are trace-

able. We extend and pick up on established techniques. (We mention that

for some of Wee’s RKEM instantiations, it is not known if they are trace-

able.) In detail, we provide a tracing algorithm that takes the pirate box and

outputs a traitor who contributed in building this box. All in all, we derive
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a new generic view of trace-and-revoke systems that generalizes known and

new trace-and-revoke instantiations. This work was published in [HS14].

1.4 Outline

Concerning the outline, in Chapter 2, we give the required preliminaries

used within this thesis. Further, Chapter 3 describes the first result, i.e.,

describes the confined guessing concept and shows how to obtain EUF-CMA-

secure digital signatures using this concept. In Chapter 4, we give (almost)

tightly secure IBE systems in the multi-instance, multi-ciphertext setting.

Chapter 5 shows a generic instantiation view on trace-and-revoke systems.

Finally, Chapter 6 concludes this thesis and hints at open problems.
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Chapter 2

Preliminaries

Notation. For n ∈ N, let [n] := {1, . . . , n}, and let k ∈ N be the security

parameter. For a finite set S, we denote by s ← S the process of sampling

s uniformly from S. For an algorithm A, let y ← A(k, x) be the process of

running A on input k, x with access to uniformly random coins and assigning

the result to y. (We may omit to mention the k-input explicitly and assume

that all algorithms take k as input.) To make the random coins r explicit,

we write A(k, x; r). We say an algorithm A is probabilistic polynomial time

(PPT) if the running time of A is polynomial in k. A function f is negligible

if its absolute value is smaller than the inverse of any polynomial (i.e., if

∀c∃k0∀k ≥ k0 : |f(k)| < 1/kc). Further, a function f is significant if its

absolute value is larger or equal than the inverse of some polynomial (i.e.,

if ∃c, k0∀k ≥ k0 : |f(k)| ≥ 1/kc). We may write q = q(k) if we mean

that the value q depends polynomially on k. We write vectors in bold font,

e.g., v = (v1, . . . , vn) for a vectors of length n ∈ N and with components

v1, . . . , vn. (We may also write v = (vi)i∈[n] or even v = (vi)i in this case.)

In the following, we use a component-wise multiplication of vectors, i.e.,

v · v′ = (v1, . . . , vn) · (v′1, . . . , v′n) = (v1 · v′1, . . . , vn · v′n). Further, we write

vj := (vj1, . . . , v
j
n), for j ∈ N, and v−i := (v1, . . . , vi−1, vi+1, . . . , vn), for

i ∈ [n], and sv := (sv1 , . . . , svn). For two random variables X, Y , we denote

with SD (X ; Y ) is the statistical distance of X and Y . We might also say

that X and Y are ε-close if SD (X ; Y ) ≤ ε.

Digital Signatures. A digital signature (DS) scheme SIG with message

space M consists of three PPT algorithms (Gen, Sig,Ver) as follows:

29



30 Chapter 2. Preliminaries

Key generation. Gen(k), on input security parameter k, outputs public

paramater pp, and verification and secret keys (pp, vk, sk). (We assume

that Sig and Ver have implicitly access to pp.)

Sign. Sig(sk ,M), on input sk and message M ∈M, outputs a signature σ.

Verification. Ver(vk, σ,M), on input vk, σ, and message M , outputs b ∈
{0, 1}.

We define correctness and security of a DS scheme:

Correctness. For all k ∈ N, for all (vk, sk) ← Gen(k), for all M ∈ M, for

all σ ← Ext(sk ,M), we have Ver(vk, σ,M) = 1.

EUF-CMA security [GMR88]. We say a DS scheme SIG is existentially

unforgeable under chosen-message attacks (EUF-CMA-secure) if and

only if any PPT adversary A has only negligible advantage in the fol-

lowing security experiment. First, A receives an honestly generated

verification key vk. During the experiment, A has access to a signa-

ture oracle Sig(sk , ·). (Where sk is the corresponding secret key to

vk.) Eventually, A outputs a signature σ∗ on a forgery message M∗. If

Ver(vk, σ∗,M∗) = 1 and A has never queried a signature for M∗, then

the experiment outputs 1. More formally, we define the advantage

function for an adversary A as

Adveuf-cma
SIG,A (k) := Pr

[
Expeuf-cma

SIG,A (k) = 1
]
,

where the experiment Expeuf-cma
SIG,A (k) is given in Figure 2.1 and SIG is a

DS scheme. Then we say SIG is EUF-CMA-secure if and only if for any

PPT adversary A the function Adveuf-cma
SIG,A (k) is negligible in k.

Identity-Based Encryption. An identity-based encryption (IBE) scheme

IBE with identity space ID and message space M consists of the following

five PPT algorithms (Par,Gen,Ext,Enc,Dec):

Parameter sampling. Par(k, n), on input security parameter k and iden-

tity length parameter n = n(k) ∈ N, outputs public and secret pa-

rameters (pp, sp). (We assume that Ext, Enc, and Dec have implicitly

access to pp.)
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Experiment Expeuf-cma
SIG,A (k)

(vk, sk)← Gen(k)

(M∗, σ∗)← ASig(sk ,·)(vk)

if Ver(vk,M∗, σ∗) = 1 and A has not queried Sig(sk ,M∗)

then return 1 else return 0

Figure 2.1: EUF-CMA-experiment for DS schemes.

Key generation. Gen(pp, sp), on input pp and sp, outputs master public

and secret keys (mpk ,msk).

Secret-key extraction. Ext(msk , id), on input msk and identity id ∈ ID,

outputs a user secret key usk id .

Encryption. Enc(mpk , id ,M), on input mpk , id ∈ ID, and message M ∈
M, outputs a ciphertext C.

Decryption. Dec(usk id , C), on input usk id and C, outputs M ∈M∪ {⊥}.

We define correctness in the following sense:

Correctness. For all k, n = n(k) ∈ N, for all (pp, sp) ← Par(k, n), for all

(mpk ,msk)← Gen(pp, sp), for all id ∈ ID, for all usk id ← Ext(msk , id), for

all M ∈M, for all C ← Enc(mpk , id ,M), we have Dec(usk id , C) = M .

Security an IBE scheme is defined in chapter 4.

Revocable Key Encapsulation Mechanism. A revocable key encapsu-

lation mechanism (RKEM) scheme with identity space ID and key space K
consists of the following four PPT algorithms (Gen,Ext,Enc,Dec):

Key generation. Gen(k) outputs master public and secret keys (mpk ,msk).

Secret-key extraction. Ext(msk , id), on input msk and identity id ∈ ID,

outputs a user secret key usk id .

Encapsulation. Enc(mpk ,R), on input mpk and revoked-identities setR ⊆
ID, outputs a ciphertext key pair (C,K).

Decapsulation. Dec(usk id , C), on input usk id and C, outputs K ∈ K∪{⊥}.
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We define correctness and security of an RKEM in the following sense:

Correctness. For all k ∈ N, for all (mpk ,msk)← Gen(k), for all id ∈ ID,

for all usk id ← Ext(msk , id), for all R ⊆ ID, for all (C,K)← Enc(mpk ,R),

we have Dec(usk id , C) = K.

Non-adaptive t-RKEM-IND-CPA security. We say an RKEM scheme

is non-adaptively t-RKEM-IND-CPA-secure if and only if any PPT adversary

A has only negligible advantage in the following security experiment. First, A

outputs a revoked-identities set R ⊆ ID and receives an honestly generated

master public key mpk , user secret keys usk id ← Ext(msk , id), for master

secret key msk and identities all id ∈ R, and a ciphertext-key pair (C,Kb),

for (C,K0) ← Enc(mpk ,R,Mb) and K1 ← K, for b ← {0, 1}. Eventually,

A outputs a guess b′. Finally, if b = b′ and |R| ≤ t, then the experiment

outputs 1.

More formally, we define the advantage function for an adversary A as

Advt-RKEM-IND-CPA
RKEM,A (k) := |Pr

[
Expt-RKEM-IND-CPA

RKEM,A (k) = 1
]
− 1/2 |,

where the experiment Expt-RKEM-IND-CPA
RKEM,A (k, n) is given in Figure 2.2 and RKEM

is an RKEM. Then we say RKEM is non-adaptively t-RKEM-IND-CPA-

secure if and only if the function Advt-RKEM-IND-CPA
RKEM,A (k) is negligible in k, for

any PPT adversary A.

Experiment Expt-RKEM-IND-CPA
RKEM,A (k)

R ← A(k)

(mpk ,msk)← Gen(k)

usk id ← Ext(msk , id), for all id ∈ R
b← {0, 1}
(C,K0)← Enc(mpk ,R), K1 ← K
b′ ← A(mpk , (usk id)id , C,Kb)

if b = b′ and |R| ≤ t then return 1 else return 0

Figure 2.2: Non-adaptive t-RKEM-IND-CPA experiment for RKEMs.

Pseudorandom Function Family. A pseudorandom function (PRF) fam-

ily PRF with key spaceK, domainD, and rangeR is defined as PRF : K×D →
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R, (K,X) 7→ PRF(K,X). (We also write PRFRK : D → R, X 7→ PRFRK(X),

for K ← K.) We say, for any PPT adversary D, the function

Advprf
PRFRK ,D

(k) := |Pr
[
DPRFRK(·)(k) = 1

]
− Pr

[
DUR(·)(k) = 1

]
|

is negligible in k, for PRF PRFRK , for K ← K, and truly random function

UR to R. (We refer to this as the indistinguishability property of a PRF.)

Further, let SampPRFK,D,R be a PPT algorithm that samples PRF families

for specific (efficiently sampleable) sets K,D, and R as defined above. Now,

we can use the output of only one PRF PRFR
′

K , for (only one) K ← K and

large enough domainR′ (e.g., forR′ = {0, 1}k, for large enough k), as random

coins for SampPRFK,D,Ri to derive several PRFs for arbitrary domains (Ri)i.

Pairing. Let G, H, and GT be cyclic groups of known order written mul-

tiplicatively. A pairing e : G×H → GT has the following properties:

Bilinearity. ∀a, b ∈ Z,∀g ∈ G, h ∈ H, it holds that e(ga, hb) = e(g, h)ab.

Non-degeneracy. For all generators g ∈ G and all generators h ∈ H, it

holds that e(g, h) 6= 1.

Efficiency. The map e is efficiently computable.

Lagrange Interpolation and Vandermonde Matrices. Fix a field

F and d + 1 values x0, . . . , xd ∈ F. The Vandermonde matrix Vx0,...,xd ∈
F(d+1)×(d+1) is defined as

Vx0,...,xd :=

1 x0 . . . xd0
...

...
. . .

...

1 xd . . . xdd

 .

It is easy to see that det(Vx0,...,xd) =
∏

i<j(xj − xi); in particular, Vx0,...,xd
is invertible iff all xi are distinct. We can evaluate a polynomial f(x) =

a0 + a1x+ · · ·+ adx
d at x0, . . . , xd via

(f(x0), f(x1), . . . , f(xd))
> = Vx0,...,xd · (a0, a1, . . . , ad)

>.

Conversely, given values y0, . . . , yd ∈ F, we can via

(a0, a1, . . . , ad)
> = V −1

x0,...,xd
· (y0, y1, . . . , yd)

>
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compute coefficients a0, . . . , an ∈ F of a polynomial f(x) = a0 + a1x +

· · · + adx
d such that f(xi) = yi. It will be useful to perform such matrix-

vector multiplications “in the exponent,” where generally a matrix M =

(Mi,j) ∈ Fn×n is known, and a vector x = (xi) ∈ Fn is given in the form

X = (Xi) = (gxi) for some g. We will write

M ◦X := (Y1, . . . , Yn) with Yi :=
n∏
j=1

X
Mi,j

j .

If we write y = (yi) for the “exponent vector” with Yi = gyi , this achieves

M · x = y.

Simple Assumptions. We restate the definition used in [HKS15]. A

simple assumption is defined via a security game with an adversary. First, the

adversary gets the computational problem instance (which only depends on

the security parameter). Eventually, the adversary outputs a guess (without

any previous interaction) and wins if the guess is a unique solution to the

problem instance. A simple assumption stipulates that any PPT adversary

only wins with negligible probability. (All assumptions considered in this

work are simple in the above mentioned sense.)

Extended Decisional Diffie-Hellman (EDDH) Assumption. We re-

state the EDDH assumption defined by Hemenway and Ostrovsky [HO12].

Let G be a group and K ⊂ Z. For any PPT adversary A, the function

AdveddhA,G,G,H,K(k) := |Pr
[
A(pars , gab) = 1

]
− Pr

[
A(pars , gab · h) = 1

]
|

is negligible in k, for pars = (N, g, ga, gb), for subset G ⊂ G, for subgroup

H ⊆ G, for H-group order N , for g ← G, for h ← H, and for exponents

a, b ← K. We assume that we can sample uniformly at random from G,H,

and K. Additionally, we define a PPT randomness extractor G such that

G(h) with uniform h ∈ H is pseudorandom.

Hemenway and Ostrovsky show that their EDDH assumption is implied by

the decisional Diffie-Hellman (DDH) and the decisional composite residuosity

(DCR) assumptions [HO12, Lemma 3 and Theorem 2].

Bilinear Decisional Diffie-Hellman (BDDH) Assumption. Let G,GT

be groups of prime order q and let e : G×G −→ GT be a pairing. Further,
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let g ∈ G be a generator of G. For any PPT adversary D, we have that the

function

Advbddh
D (k) := |Pr

[
D(g, ga, gb, gc, e(g, g)abc) = 1

]
− Pr

[
D(g, ga, gb, gc, e(g, g)z) = 1

]
|

is negligible in k, for (uniform) exponents a, b, c, z ← Zq.
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Chapter 3

Confined Guessing

Digital Signatures. Loosely speaking, digital signature (DS) schemes are

cryptographic building blocks that allow to use a secret key to sign a mes-

sage, i.e., create a signature on a message such that the resulting signature

together with the message can be verified under a verification key. The sys-

tem guarantees integrity (i.e., the message was not altered during transfer)

and authenticity (i.e., the message was signed with a secret key that corre-

sponds to a specific verification key). The idea of digital signatures dates back

at least to the work of Diffie and Hellman [DH76] and the first construction

candidates were given in, e.g., [MH78, RSA78, Rab79].

(Efficient) Constructions of DS Schemes. DS constructions can be

found in various research papers with a diversity of security and efficiency

guarantees. Besides the already above mentioned schemes, there are (tree-

based) signatures which can be constructed from (variants of) trapdoor per-

mutations (e.g., [GMR88, BM88, BR93, CD95]) and from any one-way func-

tion (e.g., [Lam79, Rom90]), but all with rather large signatures. Other (tree-

based) schemes are based on conventional encryption functions (e.g., [Mer88,

Mer90]), on interactive protocols (e.g., [CD95]), or on pseudo-random func-

tions and non-interactive zero-knowledge proofs (e.g., [BG90]). More (in

many cases more efficient) constructions rely on specific hardness assump-

tions, e.g., some rely on the computational hardness of integer factorization

and its variants (e.g., [GMY83, DN94, BR96]) or are based on the problem

of computing discrete logarithms (e.g., [ElG84, Sch91, Oka93, PS96]) while

some others are RSA-based (e.g., [CD96, CS99, HK08, HW09a, HW09b,
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HJK11, BHJ+15]), Diffie-Hellman-based (e.g., [BLS01, BB04c, Wat05, HK08,

HW09a, BHJ+13]), lattice-based (e.g., [GPV08, MP12, DM14, BHJ+15]), or

d-LIN-based (e.g., [Wat09, Lew12, HJ12]).

(Standard) Security Notion for DS Schemes. Existentially unforge-

ability under chosen-message attacks (EUF-CMA) [GMR88] is considered to

be the standard security notion for DS schemes. Usually, this notion is de-

fined via an experiment with a PPT adversary on the DS scheme. Within this

notion, the adversary receives an honestly generated verification key and is

allowed to adaptively query signatures on messages. Eventually, it outputs a

forgery, i.e., a forgery message together with a signature, and succeeds if the

signature for this forgery message is correctly verified under the verification

key. (Here, a forgery message is a message for which the adversary has not

queried a signature before.) We say that an DS scheme is EUF-CMA-secure

if any PPT adversary has only negligible advantage in winning the above

experiment. It is almost redundant to say that there exist more security no-

tions. However, many schemes (also many of the mentioned schemes above)

yield this strong notion of security. (Further, we sometimes might write full

security instead of EUF-CMA-security.)

Goal(s) in Constructing DS Schemes. One goal in constructing DS

schemes is to provide EUF-CMA-secure stateless schemes with “short” pa-

rameters (i.e., the length of the signature, the verification and secret keys

should be “short”) under some reasonable assumption(s) in the standard

model1 with “efficient” key generation, signing, and verification. On a more

generic level, one can also try to define (weaker-than-EUF-CMA) security no-

tions which might be easier to achieve than EUF-CMA-security. To construct

EUF-CMA-secure schemes, one then might try to “efficiently transform” the

weaker variants into EUF-CMA-secure ones. (See [KR00] as an example for

such a transformation.)

Reduction Strategies for Proving DS Schemes EUF-CMA-secure.

Consider an adversary on a DS scheme in the EUF-CMA-experiment above.

In such security experiment, the adversary is capable of choosing the forgery

message by itself. Hence, in case that the size of the message space M is

superpolynomial (e.g., for M = {0, 1}k), there are superpolynomially many

possible forgery messages. To argue about security, one usually efficiently

1The standard model is an established computational model in cryptography.



39

reduces a solution to an instance of a computational problem (e.g., factor-

ing) to a successful and efficient adversary on the DS scheme. Hence, the

reduction has to “embed” the problem instance into the system’s parame-

ters (or into some other “resource” used by the system) and has to hope

that the adversary will solve exactly that instance. Since there are super-

polynomially many possible forgery messages, “simple guessing” might not

be a profitable strategy (since this would lead to a non-efficient reduction,

at least in case of a superpolynomially large message space). Further, the

reduction should be able to answer signature queries for adversarially chosen

messages adaptively. Hence, one carefully has to choose where to embed the

problem instance into the system. We note that there are more sophisticated

reduction strategies, e.g., partitioning (where, essentially, the reduction is

able to partition the message set such that there are messages that can be

signed and messages that cannot be signed by the reduction). The parti-

tioning approach yields very efficient schemes in the random oracle model

(e.g., [BR96, Cor00, BLS01]) and efficient schemes in the standard model

(e.g., [Wat05, HJK11]); unfortunately, some standard-model schemes under

the comparably mild Computational Diffie-Hellman (CDH) assumption have

relatively large verification keys (e.g., [Wat05]).

Our Contribution. We present a reduction strategy, dubbed confined

guessing, to construct efficient DS schemes. This approach was published

in [BHJ+13, BHJ+15]. We develop the concept of confined guessing two-

staged. First, we define a new cryptographic uilding block named tag-based

signatures where the signing and the verification algorithms take a tag as

additional input. Further, we define a slightly different and milder form of se-

curity for tag-based signatures in comparison to EUF-CMA-security, dubbed

m-EUF-naCMA. In an m-EUF-naCMA-security experiment, the adversary

has to output message-tag pairs before receiving the verification key. After

giving the corresponding signatures and the verification key to the adversary,

it eventually outputs a forgery (i.e., a forgery message, a signature, and a

forgery tag). The adversary succeeds

– if such a signature (together with the forgery message and the forgery

tag) is verified correctly under the verification key,

– the adversary has not queried a signature for the forgery message be-

fore, and
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– at least one but at most m previously output tag(s) are equal to the

forgery tag.

Since the adversary in the m-EUF-naCMA-experiment has to reuse at least

one tag (of the polynomially many tags the adversary has output before), we

can use this requirement to embed a computational problem associated with

the forgery tag into the verification key. Hence, we can guess with significant

probability which problem instance the adversary is going to solve. (This is

essentially the reason why the concept is called “confined guessing.”) The

idea is that this milder form of security might be easier achieved and that it

would lead to efficient tag-based signature schemes. Secondly, we use a m-

EUF-naCMA-secure tag-based DS scheme, a pseudorandom function (PRF),

and a chameleon hash (CH) system as building blocks to derive fully secure

DS schemes. Essentially, we will use several tag-based signatures in parallel.

To this end, we partition the tag space into blog(k)c (disjoint) sets and de-

fine for each set a “tag-subset-specific PRF” which can be derived from the

“global” PRF. (More details below.) The key generation of the emerged DS

scheme samples a PRF key, runs the key generation of the CH system and the

key generation of the underlying tag-based scheme to derive a CH function

and a trapdoor as well as verification and secret keys, respectively. It then

outputs the verification key together with the PRF key, the (descriptions of

the) CH function, and the secret key. Signature generation samples a tag

for each tag set using the the chameleon hash of the message as input to

the corresponding tag-subset-specific PRF. Further, the tag-based signature

algorithm is run for each tag together with the secret key and the message.

Hence, the signature consists of blog(k)c tag-based signatures. Verification

uses the tag-subset-specific PRFs as above and verifies the chameleon hash

of the message and the signature using the tag-based verification. If the

tag-based verification successfully verifies for all tags under the verification

key and the chameleon hash of the message, verification of the DS scheme is

successful. For correctness, consider that if the underlying tag-based scheme

is correct, the emerged scheme is correct. To prove security, we present an

efficient cryptographic transformation from (mild) m-EUF-naCMA- to (full)

EUF-CMA-security which will be at the heart of this chapter. Hence, we are

able to transform a mildly secure tag-based DS scheme (plus a PRF and a

CH system) into a fully secure DS scheme. The verification and secret key

sizes are the same as the verification and secret key sizes of the underlying
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scheme plus a PRF key and the descriptions of the CH system. The sig-

nature size is blog(k)c-times as large as the signature size of the tag-based

scheme. However, the reduction loss is rather large, but still polynomial in

the security parameter. We do the whole transformation modularly in two

steps: first, we introduce a slightly weaker security notion in comparison

to EUF-CMA, dubbed EUF-dnaCMA-security, and transform any successful

and efficient EUF-dnaCMA-adversary on the DS scheme to a successful and

efficient m-EUF-naCMA-adversary on the underlying scheme or to a PRF

distinguisher. (The EUF-dnaCMA-security experiment can be seen as a non-

adaptive version with distinct adversary messages of the EUF-CMA-security

experiment.) Secondly, we transform any EUF-dnaCMA-secure DS scheme

and a CH system into an EUF-CMA-secure DS scheme. (More technical de-

tails follow below.) Further, we mention that a similar strategy in a different

context was used by Berman and Haitner [BH12, BH15].

More Technical Details. We start with the first reduction from the DS

scheme’s EUF-dnaCMA-security to m-EUF-naCMA-security of the underly-

ing tag-based scheme and the PRF indistinguishability property. As already

mentioned above, we partition the tag space T = {0, 1}k of the underlying

tag-based signature scheme. Concretely, we set T =
⋃blog kc
i=1 Ti, for disjoint

subsets Ti = {0, 1}dcie, for “granularity paramater” c ∈ N, c > 1, which is

specified globally. The reduction starts by singling out a subset Ti∗ , for some

i∗ ∈ [blog kc], such that

(a) the probability of an (m + 1)-fold tag collision (for sampling tags uni-

formly and independently from Ti∗) is at most ε(k)/2, where ε(k) is the

advantage of the EUF-dnaCMA-adversary, and

(b) the size of Ti∗ is polynomial in the security paramater k, i.e., |Ti∗| ≤
p(k), for some suitable polynomial p.

We require (a) to ensure that whenever no (m+ 1)-fold tag collision occurs,

the EUF-dnaCMA-adversary has to forge a signature on a message some-

times. Further, we need (b) in a sense that we can later guess with significant

probability for which tag in Ti∗ the EUF-dnaCMA-adversary forges a signa-

ture on a message. (The simulator can then use this forgery as its own for the

m-EUF-naCMA-challenger.) To be little bit more concrete, we have a sim-

ulator that receives q distinct messages from the EUF-dnaCMA-adversary,

samples a PRF key, and uses the “tag-subset-specific” PRFs (which can be

derived from the global PRF, details below) with the messages as input to
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sample a tag for each subset under each message. Further, the simulator has

to make sure that it queries a signature for each tag in Ti∗ ; therefore, it uni-

formly samples a message from the message space for each (so far unused)

tag in Ti∗ . Then, it outputs all message-tag pair to the m-EUF-naCMA-

challenger. (Hence, there are at most |Ti∗| + blog(k)c · q signature queries

by the simulator.) This is necessary since the simulator does not know for

which forgery message and, thus, for which tag from Ti∗ , the EUF-dnaCMA-

adversary outputs a signature. After receiving all signatures and a verifica-

tion key from its challenger, the simulator sets up all signatures, the verifi-

cation, and the PRF key for the EUF-dnaCMA-adversary. Eventually, the

EUF-dnaCMA-adversary outputs a forgery message and a signature, and the

simulator forwards the message, the tag (derived from the tag-subset-specific

PRF), and the i∗-th signature to its own challenger. Hence, whenever the

EUF-dnaCMA-adversary forges a signature, then the simulator forges a sig-

nature. Further, if no (m + 1)-fold tag collision for tags in Ti∗ (using the

PRFs) occurs and the forgery message from the EUF-dnaCMA-adversary is

a “fresh” forgery message for the m-EUF-naCMA-challenger, then the sim-

ulator is an efficient and successful m-EUF-naCMA-adversary. Additionally,

we can construct a PRF distinguisher that uses the simulator described above

to quantify the (m+1)-fold tag collision. (Note that the simulator above uses

the PRF only as a black box.) If (m+1)-fold tag collision occurs significantly

more often than with uniformly independently sampled tags (see (a)), this

yields a contradiction to the PRF’s indistinguishability property. (Note that

all messages output by the EUF-dnaCMA-adversary are pairwise distinct

and, thus, yield to different PRF queries.) Hence, this shows a reduction from

the EUF-dnaCMA-security of a DS scheme to the m-EUF-naCMA-security

of the underlying tag-based scheme and the indistinguishability property of

a PRF.

The second transformation from EUF-dnaCMA-security of a DS scheme

and a chameleon hash system to EUF-CMA-security of the emerged DS

scheme is very similar to existing transformations, e.g., [KR00]. The dif-

ference is that we have to construct a “distinct-message” adversary in the

EUF-dnaCMA-security experiment. However, with overwhelming probabil-

ity (due to the properties of the CH system), we derive distinct “messages”

(i.e., chameleon hashes of the EUF-CMA-adversary’s messages), for which

the simulator wants to see signatures from its EUF-dnaCMA-challenger.
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3.1 Preliminaries

EUF-dnaCMA-Security. We say a DS scheme SIG is existentially un-

forgeable under distinct-message non-adaptive chosen-message attacks (EUF-

dnaCMA-secure) if and only if any PPT adversary A has only negligible

advantage in the following security experiment. First, A provides mes-

sages (Mi)
q
i=1, for q = q(k), it wants to see signed. In the following, A

receives signatures (σi)i := (Sig(sk ,Mi))i and a verification key vk, for

(vk, sk) ← Gen(k). Eventually, A outputs a signature σ∗ on a forgery mes-

sage M∗. If Ver(vk, σ∗,M∗) = 1 and A has only output pairwise distinct

messages ((Mi)
q
i=1,M

∗), then the experiment outputs 1. More formally, we

define the advantage function for an adversary A as

Adveuf-dnacma
SIG,A (k) := Pr

[
Expeuf-dnacma

SIG,A (k) = 1
]
,

where the experiment Expeuf-dnacma
SIG,A (k) is given in Figure 3.1 and SIG is a DS

scheme. Then we say SIG is EUF-dnaCMA-secure if and only if for any PPT

adversary A the function Adveuf-dnacma
SIG,A (k) is negligible in k.

Experiment Expeuf-dnacma
SIG,A (k)

(Mi)
q
i=1 ← A(k), for q = q(k)

(vk, sk)← Gen(k)

(σi)
q
i=1 ← (Sig(sk ,Mi))

q
i=1

(M∗, σ∗)← A(vk, (σi)
q
i=1)

if Ver(vk,M∗, σ∗) = 1 and

for all i 6= j : Mi 6= Mj 6= M∗

then return 1 else return 0

Figure 3.1: EUF-dnaCMA-experiment for DS schemes.

Chameleon Hashing. A chameleon hash (CH) scheme CH with message

spaceM, random space R, and hash space H consists of two algorithms Gen

and Col as follows:

Generation. Gen(k) outputs a hash function and a trapdoor (H, t), for H :

M×R→ H.
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Collision. Col(t, r,M,M ′), on input trapdoor t, random value r ∈ R, mes-

sages M,M ′ ∈M, outputs a random value r′.

We define correctness and collision resistance of a CH system in the following

sense:

Correctness. For all k ∈ N, for all (H, t)← Gen(k), for all r ← R, for all

M,M ′ ∈M, for all r′ ← Col(t, r,M,M ′), we have H(M, r) = H(M ′, r′).

Collision Resistance. For any PPT algorithm D, the function

AdvcrCH,D(k) := Pr [D(H) = (M, r,M ′, r′)] ,

such that H(M, r) = H(M ′, r′) with (M, r) 6= (M ′, r′), is negligible in k,

for (H, t) ← Gen(k). Further, given only H and M , the distribution of r is

uniform. (Note that t is not given to D.)

3.2 (Mildly-Secure) Tag-Based Signatures

Tag-Based (Digital) Signatures. A tag-based signature scheme TSIG

with message space M and tag space T consists of three PPT algorithms

(TGen,TSig,TVer) as follows:

Key generation. TGen(k), on input security parameter k, outputs public

parameter pp, and verification and secret keys (pp, vk, sk). (Analo-

gously to DS schemes, we assume that Sig and Ver have implicitly

access to pp.)

Sign. TSig(sk ,M, t), on input sk , message M ∈M, and tag t ∈ T , outputs

a signature σ.

Verification. TVer(vk, σ,M, t), on input vk, σ, message M , and tag t, out-

puts b ∈ {0, 1}.

We define correctness and (a mild form of) security for tag-based signatures:

Correctness. For all k ∈ N, for all (vk, sk)← TGen(k), for all M ∈M, for

all t ∈ T , for all σ ← Ext(sk ,M, t), we have Ver(vk, σ,M, t) = 1.
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m-EUF-naCMA-security. For m ∈ N, we say that a tag-based signa-

ture scheme TSIG is existentially unforgeable under distinct-message(s)

non-adaptive chosen-message attacks with at least one but at most m

forgery-tag collisions (m-EUF-naCMA-secure) if and only if any PPT

adversary A has only negligible advantage in the following security ex-

periment. First, A (non-adaptively) provides at most q = q(k) message-

tag pairs (Mi, ti)
q
i=1. Further, the experiment computes signatures

(σi)
q
i=1 := (Sig(sk ,Mi, ti))

q
i=1 and sends (vk, (σi)

q
i=1) to A, for honestly

generated (vk, sk)← TGen(k). Eventually, A outputs (M∗, σ∗, t∗). We

say that A is valid if

– A has output a message M∗ /∈ {Mi}qi=1 and

– at least one tag but at most m tags in (ti)
q
i=1 are equal to t∗.

If Ver(vk, σ∗,M∗, t∗) = 1 and A is valid, then the experiment outputs

1. More formally, we define the advantage function for an adversary A

as

Advm-euf-nacma
TSIG,A (k) := Pr

[
Expm-euf-nacma

TSIG,A (k) = 1
]
,

where the experiment Expm-euf-nacma
TSIG,A (k) is given in Figure 3.2 and TSIG

is a tag-based signature scheme. Then we say TSIG is m-EUF-naCMA-

secure if and only if the function Advm-euf-nacma
TSIG,A (k) is negligible in k, for

any PPT adversary A.

Experiment Expm-euf-nacma
TSIG,A (k)

(Mi, ti)
q
i=1 ← A(k), for q = q(k)

(vk, sk)← TGen(k)

(σi)
q
i=1 ← (TSig(sk ,Mi, ti))

q
i=1

(M∗, σ∗, t∗)← A(vk, (σi)
q
i=1)

if TVer(vk,M∗, σ∗, t∗) = 1 and A is valid

then return 1 else return 0

Figure 3.2: The m-EUF-naCMA experiment for tag-based signature schemes.
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3.3 From Mild to Distinct-Message Non-A-

daptive Security

We construct non-adaptively secure digital signature schemes from mildly

secure tag-based signature schemes and a PRF. (We will construct fully

secure, i.e., EUF-CMA-secure, digital signature schemes in the next sec-

tion.) Let TSIG = (TGen,TSig,TVer) with message space M and tag space

T = {0, 1}k be a tag-based signature scheme and let PRF be a PRF with key

space K, domain space M, and range T . We partition the tag space such

that T =
⋃µ
i=1 Ti, for µ := blogc(k)c, (pairwise disjoint) subsets (Ti)i, and

|Ti| = 2dc
ie, for granularity parameter c ∈ N, with c > 1. We construct a

signature scheme SIG = (Gen, Sig,Ver) with message space M as follows:

Key generation. Gen(k) outputs (pp, vk, sk) := (K, vk′, sk ′), for K ← K,

and for (vk′, sk ′) ← TGen(k). (Note that pp is implicitly given to Sig

and Ver.)

Sign. Sig(sk ,M), on input sk and message M ∈ M, computes a tag ti :=

PRFTiK(M) and a tag-based signature σi := TSig(sk ,M, ti), for all i ∈
[µ], and outputs the signature σ := (σi)

µ
i=1.

Verification. Ver(vk, σ,M), on input vk, signature σ =: (σi)
µ
i=1 and mes-

sage M , outputs
∧µ
i=1 TVer(vk, σi,M, ti), for (ti)

µ
i=1 := (PRFTiK(M))µi=1.

(See also Figure 3.3.) For correctness note that if TSIG is correct, then SIG

is correct.

Theorem 3.3.1. If PRF is a PRF as above and TSIG = (TGen,TSig,TVer)

with tag space T =
⋃µ
i=1 Ti (as above, i.e., for µ = blogc(k)c) and mes-

sage space M, where |M| > m · |Ti∗|, for i∗ as in Lemma 3.3.3, is an m-

EUF-naCMA-secure tag-based signature scheme, then SIG = (Gen, Sig,Ver)

with message space M is an EUF-dnaCMA-secure signature scheme. Con-

cretely, for any successful PPT adversary A with advantage function ε(k) :=

Adveuf-dnacma
SIG,A (k) > 1/p′(k), for some polynomial p′ and infinitely many k, and

number of signature queries q on SIG, there are PPT adversaries A1 with

number of signature queries at most 2 · (2qm+1/ε(k))
c/m

+ µq on TSIG and

A2 on PRF, and a polynomial p(k) such that

Adveuf-dnacma
SIG,A (k)/2 ≤ Advm-euf-nacma

TSIG,A1
(k) + AdvprfPRF,A2

(k) + p(k)/|M|. (3.1)
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Algorithm Gen(k)

(vk, sk)← TGen(k)

K ← K
return (K,H, vk, sk)

Algorithm Sig(sk ,M)

(ti)
µ
i=1 := (PRFTiK(M))i

(σi)i := (TSig(sk ,M, ti))i

return (σi)i

Algorithm Ver(vk, (σi)i,M)

(ti)i := (PRFTiK(M))i

return
∧
i TVer(vk, σi,M, ti)

Figure 3.3: An EUF-dnaCMA-secure signature scheme.

Proof. We first state two lemmas which are helpful in the reduction below.

Lemma 3.3.2 (Restated from [HJK11, Lemma 2.3]). For a finite set T , we

have that for (ti)
q
i=1 ← (T )q the probability that there exist pairwise distinct

(ij)
m+1
j=1 ∈ ([q])m+1 such that ti1 = · · · = tim+1 is at most qm+1/|T |m.

Lemma 3.3.3. For i∗ := dlogc
(

1
m
· log2 (2 · qm+1/ε(k))

)
e , we have that

Pr
[
∃ pairwise distinct (ij)

m+1
j=1 ∈ [q] such that ti∗,i1 = · · · = ti∗,im+1

]
≤ ε(k)

2
,

(3.2)

with probability over (ti∗,j)
q
j=1 ← (Ti∗)q, and |Ti∗| ≤ 2 ·(2qm+1 ·p′(k))c/m. (For

all (other) variables defined as above.)

Proof. Applying Lemma 3.3.2 yields

Pr
[
∃ pairwise distinct (ij)

m+1
j=1 ∈ [q] such that ti∗,i1 = · · · = ti∗,im+1

]
≤ qm+1

|Ti∗|m
,

and qm+1/|Ti∗|m = qm+1/2dc
i∗e·m ≤ qm+1/2c

i∗ ·m ≤ qm+1 · ε(k)/2qm+1 =

ε(k)/2 which shows Equation 3.2. Further, |Ti∗| = 2dc
i∗e ≤ 2 · 2c

i∗+1
=
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2 · (2qm+1/ε(k))c/m ≤ 2 · (2qm+1 · p′(k))c/m.

We proceed with the reduction; i.e., we describe and analyze A1 and A2 as

follows.

Description. A1 receives (distinct) messages (Mi)
q
i=1 from A, samples a

PRF-seed K ← K (given black-box access to PRF), and lists message-tag

pairs L := (Mi, ti∗,i)
q
i=1, for (ti∗,i)i := (PRFTi∗K (Mi))i, for

i∗ := dlogc

(
1

m
· log2

(
2 · qm+1/ε(k)

))
e.

(See Lemma 3.3.3 for details. Further, we assume that A1 knows ε(k).)

If an (m + 1)-fold tag collision for tags (ti∗,i)i occurs, A1 aborts. For all

(j, i) ∈ [µ] × [q], with j 6= i∗, A1 computes tj,i := PRF
Tj
K (Mi) and sets L :=

(L, (Mi, tj,i)j,i). Further, for each (so far unused) tag t′i∗,i′ ∈ Ti∗ \ {ti∗,i}i,
A1 picks a (dummy) message M ′

i∗,i′ ← M and sets L := (L, (M ′
i∗,i′ , t

′
i∗,i′)i′).

(Hence, A1 lists at least one message-tag pair for each tag in Ti∗ .) Finally,

A1 outputs L and, in turn, receives a verification key vk, signatures (σi,j)i,j,

for (i, j) ∈ [µ] × [q], and (dummy) signatures (σ′i∗,i′)i′ for message-tag pairs

((M ′
i∗,i′), t

′
i∗,i′)i′ from its challenger. A1 is now ready to provide (K, vk) and

signatures (σi,j)i,j for A. Eventually, A outputs a message M∗ and a signature

σ∗ = (σ∗i )
µ
i=1. If M∗ ∈ {M ′

i∗,i′}i′ , then A1 aborts. Otherwise, A1 outputs

(M∗, σ∗i∗ , t
∗), for t∗ := PRFTi∗K (M∗), to its challenger. (In Figure 3.4, we give

a schematic representation of A1.)

A2 has oracle access either to a pseudorandom function or to a truly random

function. (Note that A1 uses PRF as a black-box.) Now, A2 simulates A1. If

the probability for (m + 1)-fold tag collisions for tags (ti∗,i)
q
i=1 as computed

above is significantly larger than ε(k)/2, then A2 outputs 0, otherwise 1.

(Note that A only outputs distinct messages (Mi)
q
i=1. Hence, the input to

PRFTi∗K is different for each query. Further, we assume that A2 knows ε(k).)

Analysis. Let abort be the event that A1 aborts. Note that (K, vk)

and all signatures (σi,j)i,j for A are constructed correctly in the sense of

SIG. Now, whenever A forges a signature σ∗ on a forgery message M∗

under vk (i.e., Ver(vk,M∗, σ∗) = 1 and M∗ /∈ {Mi}i), it must hold that

TVer(vk,M∗, σ∗i∗ , t
∗) = 1, for t∗ := PRFTi∗K (M∗) and i∗ as chosen above.

Hence, A1 forges a signature, whenever A does. Further, A1 has to be a valid
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A1

Set K ← K and
⋃µ
i=1 Ti := T (as above)

A

PRF

(Mi)
q
i=1

Set i∗

Set L (message-tag pairs)L

(vk, σ := (σi,j)i,j , (σ
′
i∗,i′)i′)

K, vk, σ

M∗, (σ∗i )
µ
i=1

t∗ :=

PRF
Ti∗
K (M∗)

M∗, σ∗i∗ , t
∗

Figure 3.4: Schematic representation of (non-aborting) A1.

adversary in the sense of m-EUF-naCMA (i.e., (a) A1 has output a message

M∗ /∈ {M ′
i}
|L|
i=1, for all messages M ′

i contained in list L; and (b) at least one

tag but at most m tags are equal to t∗). Hence, A1 is valid, whenever abort

does not occur. Concerning (a), the probability thatM∗ ∈ {M ′
i}
|L|
i=1 is at most

m|Ti∗|/|M|. (Note that |Ti∗ | is polynomial in k due to Lemma 3.3.3 and the

dummy messages {M ′
i∗,i′}i′ are independent of A’s view.) For (b), since A1

has output a message-tag pair for each tag in Ti∗ , the forgery tag ti∗ must

be a reused tag. Further, by Lemma 3.3.3, the probability that (m+ 1)-fold

tag collisions for uniformly and independently sampled tags from Ti∗ occur

is bounded by at most ε(k)/2. Note that the tags in the system are chosen

using PRFTi∗K . Now, if the probability of an (m + 1)-fold tag collision with

PRFTi∗K is larger than ε(k)/2, then this yields a PRF distinguisher A2 (as

described above). Thus,

Pr [abort] ≤ ε(k)/2 + AdvprfPRF,A2
(k) +m|Ti∗|/|M|,

for ε(k) = Adveuf-dnacma
SIG,A (k) and

|Adveuf-dnacma
SIG,A (k)− Advm-euf-nacma

TSIG,A1
(k) | ≤ Pr [abort] ,

shows Equation 3.1.
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3.4 From Distinct-Message Non-Adaptive to

Full Security

In this section, we construct fully secure DS schemes from distinct-message

non-adaptively secure DS schemes. (We use chameleon hashing in a similar

way as it is used in standard constructions to get fully secure signatures from

non-adaptively secure signatures; e.g., see [KR00] or [HW09b, Lemma 2.3].)

Let SIG′ = (SIG′.Gen, SIG′.Sig, SIG′.Ver) with message spaceM be a signature

scheme and let CH = (CH.Gen,CH.Col) be a chameleon hash system with

message space M, random space R, and hash space H. We construct a DS

scheme SIG = (Gen, Sig,Ver) with message space M as follows:

Key generation. Gen(k) outputs (pp, vk, sk) := ((pp ′,H), vk′, sk ′), for H as

first output of CH.Gen(k), and for (pp, vk′, sk ′) ← SIG′.Gen(k). (Note

that pp is implicitly given to Sig and Ver.)

Sign. Sig(sk ,M), on input sk and message M ∈ M, samples r ← R, com-

putes σ := SIG′.Sig(sk ,H(M, r)), and outputs (σ, r).

Verification. Ver(vk, (σ, r),M), on input vk, “signature” (σ, r), and mes-

sage M , outputs SIG′.Ver(vk, σ,H(M, r)).

(See also Figure 3.5.) For correctness note that if SIG′ is correct, then SIG is

correct.

Theorem 3.4.1. If CH is a chameleon hash system as above and SIG′ =

(SIG′.Gen, SIG′.Sig, SIG′.Ver) with message space M is an EUF-dnaCMA-

secure digital signature scheme, then SIG = (Gen, Sig,Ver) with message space

M is an EUF-CMA-secure signature scheme. Concretely, for a successful

PPT EUF-CMA-adversary A with number of signature queries q = q(k) on

SIG, there is an successful PPT EUF-dnaCMA-adversaries A1 with number

of signature queries q′ with q ≤ q′ ≤ q′(k), for some suitable polynomial q′(k),

on SIG′ or a chameleon hash distinguisher A2 on CH such that

Adveuf-cma
SIG,A (k) ≤ Adveuf-dnacma

SIG′,A1
(k) + AdvcrCH,A2

(k) (3.3)

+ AdvcrCH,D(k) + (q′)2/(|R| · |M|),

for any PPT chameleon hash distinguisher D.
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Algorithm Gen(k)

(pp, vk, sk)← SIG′.Gen(k)

(H, t)← CH.Gen(k)

return ((pp,H), vk, sk)

Algorithm Sig(sk ,M)

r ← R
σ := SIG′.Sig(sk ,H(M, r))

return (σ, r)

Algorithm Ver(vk, (σ, r),M)

return SIG′.Ver(vk, σ,H(M, r))

Figure 3.5: An EUF-CMA-secure signature scheme.

Proof. Description. A1 computes (H, t) ← CH.Gen(k). Further, A1 sam-

ples pairs (Mi, ri)
q′

i=1 ← (M × R)q
′

and outputs (H(Mi, ri))i to its EUF-

dnaCMA-challenger. If |{H(Mi, ri)}i| < q′, then A1 aborts. Otherwise, A1

receives public parameters, the verification key, and signatures (pp, vk, (σi)i)

from its challenger and starts A with ((pp,H), vk). During the reduction,

A might query signatures and A1 answers them as follows. On query Mi′ ,

A1 computes r′i′ ← CH.Col(t, ri′ ,Mi′ ,M
′
i′), where i′ ∈ [q′] is the index of that

query, and returns signature-randomness pair (σi′ , r
′
i′). Eventually, A outputs

(M∗, (σ∗, r∗)). If H(M∗, r∗) = H(Mi, ri), for some i ∈ [q], then A1 aborts.

Otherwise, A1 forwards (H(M∗, r∗), σ∗) to its own challenger. (In Figure 3.6,

we give a schematic representation of A1.)

A2 receives some chameleon hash function H from its challenger and runs

(pp, vk, sk) ← SIG′.Gen(k). Further, A2 gives ((pp,H), vk) to A and an-

swers signature queries as (σi, ri) := Sig(sk ,Mi) (using H as chameleon hash

function within Sig), for some query Mi ∈ M, for all i ∈ [q]. Eventually,

A outputs (M∗, (σ∗, r∗)). If H(M∗, r∗) 6= H(Mi, ri), for all i ∈ [q], then

A2 aborts. Otherwise, A2 outputs (Mi′ , ri′ ,M
∗, r∗), for some i′ ∈ [q] with

H(M∗, r∗) = H(Mi′ , ri′), to its own challenger. (In Figure 3.7, we give a

schematic representation of A2.)

Analysis. Note that all ((pp,H), vk) and all signatures (σi)i for A are cor-
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A1

Set (H, t)← K and (Mi, ri)← (M×R)q
′

(H(Mi, ri))i

(pp, vk, (σi)i)
A

(pp,H), vk

Sig

M ′i′

σi′ , r
′
i′

∀i′ : r′i′ ←
Col(t, ri′ ,Mi′ ,M

′
i′)

M∗, (σ∗, r∗)H(M∗, r∗), σ∗

Figure 3.6: Schematic representation of (non-aborting) A1.

rectly distributed in the sense of SIG. Let col be the event that H(M∗, r∗) =

H(Mi′ , ri′), for some i′ ∈ [q] and (M∗, r∗) from the A-forgery. We have

that Pr [col] ≤ AdvcrCH,A2
(k), for a PPT-forger A and A2 as above. Fur-

ther, let abortA1 be the event that A1 aborts. We have that Pr [abortA1 ] ≤
Pr [col] +AdvcrCH,D(k) + (q′)2/(|M| · |R|), for any efficient CH distinguisher D.

(We use Lemma 3.3.2 to give an upper bound for 1-fold collisions while sam-

pling q′ times fromM×R. Further, if no 1-fold collisions occurs, there might

still be CH collisions which are bounded by collision resistance property of

the CH system. Note that the message-randomness pairs are independent

of A’s view.) Further, it is clear that whenever an efficient and successful A

forges a signature and A1 does not abort, then A1 is an efficient and successful

EUF-dnaCMA-adversary. Thus,

Adveuf-cma
SIG,A (k) ≤ Adveuf-dnacma

SIG′,A1
(k) + Pr [abortA1 ]

shows Equation 3.3.
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A2

Set (pp, vk, sk)← SIG′.Gen(k)H

A
(pp,H), vk

Sig

Mi

σi, ri

∀i : (σi, ri)←
Sig(sk ,Mi)

M∗, (σ∗, r∗)Mi′ , ri′ ,M
∗, r∗

for i′ ∈ [q]

Figure 3.7: Schematic representation of (non-aborting) A2.

3.5 With a View to Fully Secure Signature

Instantiations

The confined guessing concept gives rise to very efficient fully secure digital

signature instantiations. This is shown in [BHJ+13, BHJ+15] and we ex-

plicitly mention that these instantiations are not part of this thesis and we

only describe their efficiency here (in terms of the size of the parameters and

computation time).

In [BHJ+13, BHJ+15], we give m-EUF-naCMA-secure tag-based digital sig-

nature instantiations under the computational Diffie-Hellman (CDH), the

RSA, and the Short Integer Solutions (SIS) assumptions. Applying the con-

fined guessing technique from Section 3.3 and the transformation from Sec-

tion 3.4, we are able to directly and modularly obtain EUF-CMA-secure

digital signatures from the CDH, RSA, and SIS assumptions.

For CDH and RSA, we further optimized the system’s parameters (verifi-

cation key vk, secret key sk , and signature σ) in [BHJ+13, BHJ+15]. This

resulted in the first fully secure CDH-based signature scheme with such com-

pact verification keys and in more efficient (in terms of computation) fully

secure RSA-based schemes. (Both in comparison to existing CDH- or RSA-

based schemes, respectively, at that time.) For SIS, we presented an al-
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ternative to existing solutions. See Table 3.1 for a brief overview with the

respective parameters. However, we stress that our security reduction has a

rather large polynomially overhead.

Assumption |vk| |sk | |σ|

CDH O(log(k)) O(1) O(1)

RSA O(1) O(1) O(1)

SIS O(n · n′) O(n′) O(log(k) · n′)

Table 3.1: For CDH and RSA, vk- and σ-quantities are given in number
of group elements. sk -quantities are given in number of Zp-elements, for
p = p(k). For SIS, quantities are given in number of Zp-elements, where n, n′

are the SIS matrix dimensions.



Chapter 4

(Almost) Tight IBE Security

Identity-Based Encryption. Loosly speaking, an identity-based encryp-

tion (IBE) scheme is a cryptographic building block that is capable of en-

crypting a message under a public identity (e.g., a bitstring or e-mail address)

and some master public key and public parameters. Further, a master secret

key allows to generate user secret keys for identities. These user secret keys

can then be used for decryption. (See below for a more detailed definition.)

The idea of IBE originates from [Sha84] and (first) instantiation candidates

were given in [DQ87, Tan88, TI89, MY91, MY93, LL93, MY96, HJW00].

(Unfortunately, some of the these candidates suffer from certain restrictions,

e.g., rely on tamper-resistant hardware, do not allow (many) users to collude,

or need heavy computations.)

More Constructions of IBE Schemes. The Boneh-Franklin IBE [BF01]

is considered to be the first efficient IBE construction and is based on a

Diffie-Hellman-related problem in pairing-friendly groups in the random or-

acle model1. (The work of [BF01, BF03] also presented a formal model of

“full” IBE security.) A non-pairing-based IBE scheme based on the dif-

ficulty of computing quadratic residues modulo a composite was proposed

in [Coc01] (also in the random oracle model). More constructions in the

random oracle model are, e.g., [HL02, GS02, GPV08]. The first standard-

model secure IBE systems were given in [CHK03, CHK04, BB04a], which

1The random oracle model is an idealized security model in cryptography. See [BR93]
for an introduction and details.

55
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build on the work of [GS02], but offer only a weaker form of security com-

pared to full IBE security, dubbed “selective-ID” security [CHK03]. Another

standard-model secure system was given in [HK04]; however, the proposed

IBE is only k-resilient, i.e., the system does not allow that more than k users

to collude. Full IBE security in the standard model was given by [BB04b]

(for an impractical scheme) and [Wat05] (for a practical scheme). ([BB04a]

notes that one can generically transform any selective-ID secure IBE to a

fully secure IBE. Unfortunately, the transformation is superpolynomial in

the security parameter, at least in case of a superpolynomial identity space.)

All standard-model-secure schemes mentioned above are based on pairings

and more pairings-related constructions of (selective-ID or fully secure) IBEs

in standard model with various efficiency and tightness guarantees can be

found in, e.g., [Gen06, BR09, Wat09, LW10, Lew12, CLL+13, CW13, JR13,

CLL+14, BKP14, Wee14, HKS15]. Other recent standard-model secure IBE

schemes are based on lattices, e.g., [AB09, ABB10a, ABB10b, CHKP10].

Security Notion(s) for IBE Schemes. IBE indistinguishability under

chosen-plaintext attacks (IBE-IND-CPA) [BF03] is considered to be a stan-

dard security notion for IBE schemes. In IBE-IND-CPA, the adversary gets

the honestly generated public parameters and master public key. During the

experiment, the adversary may query secret keys for identities of its choice.

At some point, the adversary outputs a challenge identity together with two

equal-length challenge messages. The experiment samples a bit uniformly at

random and sends one of the two messages encrypted (depending on the bit)

under the challenge identity to the adversary. Eventually, the adversary out-

puts a guess which challenge message was encrypted and succeeds if the guess

is correct and it has never queried a user secret key for the challenge identity.

We say that an IBE scheme is IBE-IND-CPA-secure if any PPT adversary

succeeds in the previous experiment only with probability negligibly larger

that 1/2. (We also refer to this notion as full IBE security. Note that this

security notion deals only with one instance and one challenge ciphertext.)

Goals in Constructing IBE Schemes. It is appealing to construct (at

least) IBE-IND-CPA-secure schemes with “short” public and secret parame-

ters, master public and master secret keys, user secret keys, and ciphertexts

under simple assumptions in the standard model with efficient parameter

generation, master keys generation, user secret key generation, encryption,

and decryption. In this sense, a very efficient IBE with constant-size pub-
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lic and secret parameters, master public and master secret keys, user secret

keys, and ciphertexts under the decisional linear (DLIN) assumption is given

in [Wat09]. Further, it is preferable to give a tight or at least an almost

tight security reduction since this usually leads to more efficient instantia-

tions. (See paragraph below for an explanation.) Loosely speaking, a tightly

secure reduction in the IBE-IND-CPA-sense does not depend on the number

of user secret key queries. The first (almost) tightly IBE-IND-CPA-secure

IBE scheme in the standard model under the d-LIN assumption was given

in [CW13]. Unfortunately, the master public key and the master secret key

sizes in the instantiations are linear in the security parameter, all other pa-

rameters, e.g., user secret keys and ciphertexts, are constant-size.

More on (Almost) Tight IBE-IND-CPA-Security Reductions from

Concrete IBE Schemes. To argue about concrete IBE-IND-CPA-security

of a concrete IBE scheme, one efficiently reduces a PPT problem-instance

solver of the underlying computational problem to any PPT and successful

adversary on the IBE scheme. Hence, the reduction tries to “use” the (sig-

nificant) success probability ε of a potentially successful IBE-adversary to

solve a given instance of the underlying problem with (significant) probabil-

ity ε′ ≥ ε/L, for some “loss” L. If L ∈ O(1), we say a reduction is tight and

if L ∈ O(k), then we call a reduction almost tight. Following [BDJR97] and

related work (see below), we treat all adversary (resource) queries separately.

A consequence in the IBE-IND-CPA-setting is that an (almost) tight reduc-

tion can not depend on the number of user secret key queries. Such (almost)

tight security reduction ensures that any efficient IBE adversary, which is

successful with probability ε, yields an efficient algorithm that has roughly

the same running time and success probability ε′ ≥ ε/L, for L ∈ O(k), on

solving a given problem instance. In a practical setting, this often translates

to the usage of shorter keys and, hence, would usually yield more efficient

IBE instantiations.

Tight Security in General and the Multi-Instance, Multi-Cipher-

text Setting. In a more general context, tight security guarantees were con-

sidered at least in, e.g., [BKR94, BGR95, BCK96, BDJR97] in the private-key

encryption setting. The works of, e.g., [BBM00, HJ12, LJYP14] deal with

tightness guarantees in the public-key encryption (PKE) setting. In the IBE

setting, the schemes of [Gen06, GH09] and of [CW13, BKP14, HKS15] are

provided with tight security reductions in the standard model under non-
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simple and simple assumptions, respectively. Even more generally, tight-

ness in the “multi-instance, multi-ciphertext” PKE setting is considered in,

e.g., [BBM00, HJ12, LJYP14]. The multi-instance, multi-ciphertext setting

captures a more realistic scenario, in which there are many PKE instances

(and, hence, many users) with many ciphertexts per instance. [BBM00] shows

that an IND-CPA-secure2 PKE scheme is generically secure in the multi-

instance, multi-ciphertext setting. Unfortunately, the security guarantees

degrade in the number instances and challenge ciphertexts per instance, i.e.,

we have that L ∈ O(µqk), for “loss” L, for the number of instances µ,

and for the number of challenge ciphertexts per instance q. Such (generic)

reduction is considered non-tight, since L is not constant in k. However,

more specific standard-model PKE schemes are tightly IND-CPA-secure in

the multi-instance, multi-ciphertext setting, i.e., the El Gamal scheme un-

der the decisional Diffie-Hellman (DDH) assumption [BBM00]. Further, the

first tightly standard-model IND-CCA-secure3 PKE scheme under a stan-

dard assumption in the multi-instance, multi-ciphertext setting was proposed

in [HJ12]. Concerning IBE, the schemes of [CW13, BKP14] do not consider

the multi-instance, multi-ciphertext setting.

Our Contribution. In the following, we will construct a standard-model

(almost) tightly secure IBE scheme in the multi-instance, multi-ciphertext

setting via a cryptographic transformation. The approach was published

in [HKS15] and constitutes the heart of this chapter. We first give a natural

extension of the IBE-IND-CPA-security notion which consists of multiple in-

stances and ciphertexts, dubbed (µ, q)-IBE-IND-CPA. In an (µ, q)-IBE-IND-

CPA-experiment, the adversary receives honestly generated master public

keys of all µ instances. During the experiment, it may adaptively query user

secret keys and up to q challenge ciphertexts per instance. The challenge

ciphertexts are created under a challenge identity, the corresponding mas-

ter public key, and one of the two adversarially given equal-length messages

(where the challenge message is determined by a uniform bit b). It is im-

portant to notice that the experiment uses the same uniform bit b across

all instances. Eventually, the adversary outputs a guess on b and succeeds

if its guess is correct and it is valid in the sense of (µ, q)-IBE-IND-CPA.

2IND-CPA [GM84] is a standard security notion for PKE schemes considering one
instance and one challenge ciphertext.

3IND-CCA [NY90, RS92] is considered to be a strong standard security notion for PKE
schemes with one instance and one challenge ciphertext.
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(In Figure 4.1, we give a schematic description of the (µ, q)-IBE-IND-CPA-

security experiment. See below for a formal definition.) Secondly, we give

a variant of nested dual system groups (NDSG) [CW13], dubbed extended

NDSG (ENDSG). NDSGs themselves are a variant of dual system groups

(DSG) [CW14] which are based on the dual system framework due to Wa-

ters [Wat09]. NDSGs by Chen and Wee gave rise to prove the first IBE (al-

most) tightly IBE-IND-CPA-secure (i.e., in the one-instance, one-ciphertext

setting) under a simple assumption. We extend their their work to end up

with an IBE that is (almost) tightly (µ, q)-IBE-IND-CPA-secure (i.e., in the

multi-instance, multi-ciphertext setting)4. Concretely, we give an efficient

cryptographic reduction from the (µ, q)-IBE-IND-CPA-security of our IBE

system to the hardness of a simple assumption and the security of the under-

lying ENDSG system. Note that in [HKS15], we additionally give ENDSG

instantiations under simple (dual system) assumptions. However, this chap-

ter focuses solely on the ENDSG abstraction and its tightness guarantees,

not on the ENDSG instantiations.

Adversarymaster public keys

identity

user secret key

challenge identities

and messages

Choose b← {0, 1} challenge ciphertexts

dep. on b

guess

Figure 4.1: Schematic description of the (µ, q)-IBE-IND-CPA-security exper-
iment.

4Technically, we need an additional simple assumption to prove “full” (µ, q)-IBE-IND-
CPA-security. See below for details.
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The Approach of Chen and Wee and Why an Extension to the

(µ, q)-IBE-IND-CPA-setting is not Obvious. We explain the (high-

level) proof strategy of [CW13] in the IBE-IND-CPA-security scenario and

then turn to the reduction strategy we use to proof our IBE (almost) tightly

(µ, q)-IBE-IND-CPA-secure. (Our high-level proof strategy is very similar

to Chen and Wee’s strategy while the lower-level strategy significantly devi-

ates.) Reduction strategies are often organized in stages or “games,” where

one starts with an appropriate game and then “properly” introducing non-

significantly notable changes between games until the adversary is no longer

able to succeed in a game with probability significantly larger than the ad-

versary’s probability of guessing the challenge bit. The strategy of Chen and

Wee is as follows:

– Chen and Wee start with the IBE-IND-CPA-security experiment.

– First change: the challenge ciphertext uses the master secret key msk

explicitly and is “pseudo-random” such that the challenge message is

“blinded” by a (pairing) term that contains a value R(ε), for a truly

random function R and for ε that depends on msk . (Note that the

adversary gains no information about R(ε) in the public parameters or

in the master public key.) Further, the pairing term that contains R(ε)

is uniformly distributed in an appropriate group due to the properties

of the underlying NDSG.

– n “hybrid” changes: let n = n(k) ∈ N be the identity length. For i ∈
[n], the challenge ciphertext is pseudo-random of type i such that the

challenge message is blinded with term that contains R(id∗|i), where

id∗|i is the i-th bit prefix of the challenge identity id∗. User secret keys

in the i-th hybrid for an id contain R(id |i). (Note that for i = n, the

challenge ciphertext solely depends on id∗.)

– Last change: the challenge message is replaced by a uniform element

from the message space.

The crucial point here is within the hybrid changes. Chen and Wee guess the

i-th bit of the challenge identity id∗i and can simulate the challenge ciphertext

if the guess was correct. Further, for key extraction queries for an identity

id such that id i = id∗i (i.e., the i-th bit of id equals the i-th bit of id∗),
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the user secret keys carry the value R(id |i−1) (as in the (i − 1)-th hybrid)

while for id i 6= id∗i , the user secret keys carry the value R(id |i−1) ·R′(id |i−1).

Depending on the input of the reduction (where the computational challenge

is embedded in R′), it holds that R′(id i−1) = 1 (as in the (i− 1)-th hybrid),

for all id , or R′ is truly random function (as in the i-th hybrid). After

n hybrid changes, each user secret key for id depends on R(id) while the

challenge ciphertext depends on R(id∗). Concerning (µ, q)-IBE-IND-CPA-

security, since Chen and Wee have to guess the challenge identity bit between

the hybrids, it is not clear how to extend their result to a setting with multiple

challenge identities (and, thus, challenge ciphertexts) or instances.

Our Approach. We stress that at a higher level our proof approach is very

similar to the proof approach of [CW13], but deviates on the lower level. We

proceed as follows:

– We start with the (µ, q)-IBE-IND-CPA-security experiment.

– First change: all challenge ciphertexts are pseudo-random, i.e., they

use explicitly the appropriate master secret keys and contain a pair-

ing term with an Rj(εj)-element that blinds the instance-j challenge

messages, for truly random functions (Rj)j. This is analogously to

Chen and Wee’s first change, but extended to the multi-instance, multi-

ciphertext case with µ independently generated master secret keys and

independently sampled truly random functions. However, due to the

properties of the underlying ENDSG, the random function output can

be mapped into two different subgroups depending on the input to the

encryption function. (This is different to Chen and Wee.) Here, the

output of the random functions is mapped into the first subgroup.

– For all i ∈ [n], we continue with 3n hybrid changes:

(i.1) Depending on the i-th challenge identity bit id∗i , the output of

the random function Rj(id∗|i−1) is mapped into two different sub-

groups that “influence” the challenge ciphertext differently. If

id∗i = 0, then R(id∗|i−1) is mapped into the first subgroup; if

id∗i = 1, then R(id∗|i−1) is mapped into the second one. Further,

the user secret keys contain Rj(id |i−1), for some identity id . (Note

that εj = Rj(id |0) holds.)
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(i.2) The challenge ciphertexts now depend on Rj(id∗|i) while the user

secret keys depend on Rj(id |i), for all queried id .

(i.3) We map the Rj(id∗|i)-elements back to the first subgroup.

– Last change: each challenge message is replaced by a uniform element

from the message space.

4.1 Extended Nested Dual System Groups

We define extended nested dual system groups (ENDSG) as a variant of

nested dual system groups (NDSG) by [CW13]. This section is reproduced

and partly adopted verbatim from [HKS15].

(Nested) Dual System Groups. Chen and Wee’s nested dual system

groups (NDSG) [CW13] can be seen as a variant of their dual system groups

(DSG) [CW14] which itself is based on the dual system framework introduced

by Waters in [Wat09]. Recently, NDSGs gave rise to prove the first IBE

(almost) tightly IBE-IND-CPA-secure under simple assumptions.

A Variant of Nested Dual System Groups. We introduce a variant of

NDSGs, dubbed extended NDSGs (ENDSG). (Mainly, we re-use and extend

the notions from [CW13].) Let G(k, n′) be a group generator that, given

integers k and n′ (where n′ is a constant and, in particular, independent of

k), generates the tuple

(G,H,GT , N, (gp1 , . . . , gpn′ ), (hp1 , . . . , hpn′ ), g, h, e),

for composite-order groups G,H,GT , all of known group order N = p1 · · · pn′ ,
for k-bit primes (pi)i, and for a pairing e : G × H → GT . Further, g and

h are generators of G and H, and (gpi)i and (hpi)i are generators of the

(proper) subgroups Gpi ⊂ G and Hpi ⊂ H of order |Gpi | = |Hpi | = pi, re-

spectively. In this setting, an ENDSG ENDSG consists of the PPT algorithms

SampP, SampG, SampH, ŜampG, S̃ampG:

Parameter Sampling. SampP(k, n), given security parameter k and pa-

rameter n ∈ N, samples

(G,H,GT , N, (gp1 , . . . , gpn′ ), (hp1 , . . . , hpn′ ), g, h, e)← G(k, n′),
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for a constant integer n′ determined by SampP, and outputs public and

secret parameters

pp = (G,H,GT , N, g, h, e,m, n, pars) and sp = (ĥ, h̃, p̂ars , p̃ars),

respectively, where m : H → GT is a linear map, ĥ, h̃ are nontri-

vial H-elements, and pars , p̂ars , p̃ars may contain arbitrary additional

information used by SampG, SampH, and ŜampG and S̃ampG.

G-group Sampling. SampG(pp), given pp, outputs

g = (g0, . . . , gn) ∈ Gn+1.

H-group Sampling. SampH(pp), given pp, outputs

h = (h0, . . . , hn) ∈ Hn+1.

Semi-functional G-group Sampling 1. ŜampG(pp, sp), given pp and sp,

outputs

ĝ = (ĝ0, . . . , ĝn) ∈ Gn+1

Semi-functional G-group Sampling 2. S̃ampG(pp, sp), given pp and sp,

outputs

g̃ = (g̃0, . . . , g̃n) ∈ Gn+1.

We define correctness and security of an ENDSG system ENDSG in the fol-

lowing sense:

Correctness of ENDSG. For all k ∈ N, for all integers n = n(k) > 1, for

all pp, where pp is the first output of SampP(k, n), we require:

Associativity. For all (g0, . . . , gn)← SampG(pp) and for all (h0, . . . , hn)←
SampH(pp), we have that

e(g0, hi) = e(gi, h0)

holds, for all i ∈ [n].
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Projective. For all s ← Z∗N , for all g0 as the first output of SampG(pp; s),

for all h ∈ H, we have that

m(h)s = e(g0, h).

Security of ENDSG. For all k ∈ N, for all integers n = n(k) > 1, for all

(pp, sp)← SampP(k, n), we require:

Orthogonality. For m specified in pp, for ĥ, h̃ specified in sp, we have

m(ĥ) = m(h̃) = 1.

For the group elements g0, ĝ0, and g̃0 that are the first outputs of

SampG(pp), ŜampG(pp, sp), and S̃ampG(pp, sp), respectively, we have

that

e(g0, ĥ) = 1, e(g0, h̃) = 1, e(ĝ0, h̃) = 1, and e(g̃0, ĥ) = 1.

G- and H-subgroups. The outputs of SampG, ŜampG, and S̃ampG are dis-

tributed uniformly over the generators of different nontrivial subgroups

of Gn+1 (that only depend on pp) of coprime order, respectively, while

the output of SampH is uniformly distributed over the generators of a

nontrivial subgroup of Hn+1 (that only depends on pp).

Non-degeneracy. For ĥ specified in sp and for ĝ0 which is the first output

of ŜampG(pp, sp), it holds that e(ĝ0, ĥ) is uniformly distributed over

the generators of a nontrivial subgroup of GT (that only depends on

pp). Similarly, e(g̃0, h̃) is uniformly distributed over the generators of

a nontrivial subgroup of GT (that only depends on pp), where h̃ is

specified in sp and g̃0 is the first output of S̃ampG(pp, sp).

Left-subgroup Indistinguishability 1 (LS1). Left-subgroup indistingu-

ishability 1 requires that for any PPT adversary D, the function

Advls1
ENDSG,G,D(k, n) := |Pr [D(pp,g) = 1]− Pr [D(pp,gĝ) = 1] |

is negligible in k, where g← SampG(pp) and ĝ← ŜampG(pp, sp).
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Left-subgroup Indistinguishability 2 (LS2). Left-subgroup indistingu-

ishability 2 requires that for any PPT adversary D, the function

Advls2
ENDSG,G,D(k, n) := |Pr

[
D(pp, ĥh̃,g′ĝ′,gĝ) = 1

]
− Pr

[
D(pp, ĥh̃,g′ĝ′,gg̃) = 1

]
|

is negligible in k, where g,g′ ← SampG(pp), ĝ, ĝ′ ← ŜampG(pp, sp),

and g̃← S̃ampG(pp, sp), for ĥ and h̃ specified in sp.

Nested-hiding Indistinguishability (NH). Nested-hiding indistinguish-

ability requires that for any PPT adversaryD, for all integers q′ = q′(k),

the function

Advnh
ENDSG,G,D(k, n, q′) :=

max
i∈[bn

2
c]

(
|Pr

[
D(pp, ĥ, h̃, ĝ−(2i−1), g̃−2i, (h1, . . . ,hq′)) = 1

]
− Pr

[
D(pp, ĥ, h̃, ĝ−(2i−1), g̃−2i, (h

′
1, . . . ,h

′
q′)) = 1

]
|
)
,

is negligible in k, where ĝ← ŜampG(pp, sp), g̃← S̃ampG(pp, sp), and

hi′ := (hi′,0, . . . , hi′,n)← SampH(pp),

h′i′ := (hi′,0, . . . , hi′,2i−1 · (ĥ)γ̂i′ , hi′,2i · (h̃)γ̃i′ , . . . , hi′,n),

for ĥ, h̃ specified in sp, for γ̂i′ , γ̃i′ ← Z∗ord(H), and for all i′ ∈ [q′].

Informal Comparison of NDSGs and ENDSGs. Loosely speaking, in

contrast to the NDSGs [CW13], ENDSGs have a second semi-functional G-

group sampling algorithm S̃ampG as well as a second nontrivial H-element in

sp (i.e., h̃). Further, the SampGT-algorithm is omitted in ENDSGs. Concern-

ing the ENDSG properties, we extend the NDSG properties appropriately

and introduce one additional property (i.e., LS2).
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4.2 An (Almost) Tightly Secure IBE

We are now ready to construct an (almost) tightly (µ, q)-IBE-IND-CPA-

secure IBE from an ENDSG system and a universal hash function. (This

section is reproduced and partly adopted verbatim from [HKS15].) We define

(weak) (µ, q)-IBE-IND-CPA-security as follows:

(Weak) (µ, q)-IBE-IND-CPA-security. We say an IBE scheme is (µ, q)-

IBE-IND-CPA-secure if and only if any PPT adversary A has only negligible

advantage in the following security experiment. Let

Enc′(pp,mpk , id , b,M0,M1)

be a PPT auxiliary encryption oracle that, given pp and mpk , a (challenge)

identity id ∈ ID, b ∈ {0, 1}, and two (challenge) messages M0,M1 ∈ M,

outputs a (challenge) ciphertext Cid ← Enc(mpk , id ,Mb). First, A gets hon-

estly generated public parameter pp and master public keys (mpk j)j, for all

j ∈ [µ]. During the experiment, A has access to Ext(msk j, ·)-oracles and

Enc′(pp,mpk j, ·, b, ·, ·)-oracles, for b← {0, 1} and for all j ∈ [µ]. Eventually,

A outputs a guess b′. We say that A is valid if

– it has not queried its instance-j Enc′-oracles and Ext-oracles with the

same identity,

– it has only provided equal-length messages as input to Enc′, and

– it has only queried Enc′ at most q times per instance.

Finally, if b = b′ and A is valid, then the experiment outputs 1.

More formally, we define the advantage function for an adversary A as

Adv
(µ,q)-ibe-ind-cpa
IBE,A (k, n) := |Pr

[
Exp

(µ,q)-ibe-ind-cpa
IBE,A (k, n) = 1

]
− 1/2 |,

where the experiment Exp
(µ,q)-ibe-ind-cpa
IBE,A (k, n) is given in Figure 4.2 and IBE is

an IBE as above. Then we say IBE is (µ, q)-IBE-IND-CPA-secure if and only

if for any PPT adversary A the function Adv
(µ,q)-ibe-ind-cpa
IBE,A (k, n) is negligible

in k.
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Further, we say an IBE scheme IBE is weakly (µ, q)-IBE-IND-CPA-secure if

and only if for any PPT weak adversary A the function Adv
(µ,q)-ibe-ind-cpa
IBE,A (k, n)

is negligible in k. In our case, a weak adversary does not query its Enc′-oracle

twice per identity and instance.

Experiment Exp
(µ,q)-ibe-ind-cpa
IBE,A (k,n)

(pp, sp)← Par(k, n)

(mpk j,msk j)
µ
j=1 ← Gen(pp, sp)µ

b← {0, 1}
b′ ← A(Ext(mskj ,·),Enc′(mpkj ,·,b,·,·))

µ
j=1(pp, (mpk j)

µ
j=1)

if b = b′ and A is valid then return 1 else return 0

Figure 4.2: (µ, q)-IBE-IND-CPA experiment for IBE schemes.

A Variant of Chen and Wee’s IBE. We are now ready to present our

variant of Chen and Wee’s IBE scheme from [CW13]. As a basic building

block, we use an ENDSG ENDSG = (SampP, SampG, SampH, ŜampG, S̃ampG)

from Section 4.1. Besides, for groups GT (defined below), let UH be a

family of universal hash functions H : GT → {0, 1}k such that for any

nontrivial subgroup G′T ⊂ GT , and for H ← UH, X ← G′T , and U ←
{0, 1}k, we have SD ((H,H(X)) ; (H, U)) = O(2−k). Let an IBE IBE =

(Par,Gen,Ext,Enc,Dec) with identity space ID = {0, 1}n, for integer n =

n(k), and message space M = {0, 1}k, be defined as follows:

Parameter generation. Par(k, n), given k and n, samples (pp ′, sp ′) ←
SampP(k, 2n), for

pp ′ = (G,H,GT , N, g, h, e,m, 2n, pars) and

sp ′ = (ĥ, h̃, p̂ars , p̃ars).

Further, Par samples H ← UH and outputs the public and secret pa-

rameters (pp, sp), where pp = (pp ′,H) and sp = sp ′.

Key generation. Gen(pp, sp), given parameters pp and sp, samples msk ←
H and outputs a master public key mpk := (pp,m(msk)) and a master

secret key msk .
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Secret-key extraction. Ext(msk , id), given msk ∈ H and an identity id =

(id1 . . . idn) ∈ ID, samples

(h0, . . . , h2n)← SampH(pp)

and outputs a user secret key

usk id := (h0,msk ·
n∏
i=1

h2i−idi).

Encryption. Enc(mpk , id ,M), given mpk = (pp,m(msk)), an identity id =

(id1 . . . idn) ∈ ID, and a message M ∈M, computes

(g0, . . . , g2n) := SampG(pp; s),

for s← Z∗N , and gT := m(msk)s (= e(g0,msk)), and outputs a cipher-

text

Cid := (g0,
n∏
i=1

g2i−idi ,H(gT )⊕M).

Decryption. Dec(usk id , Cid ′), given a user secret key usk id =: (K0, K1) and

a ciphertext Cid ′ =: (C0, C1, C2), outputs

M := H

(
e(C0, K1)

e(C1, K0)

)
⊕ C2.

We show correctness and (almost) tight (µ, q)-IBE-IND-CPA-security of IBE

as follows:

Correctness of IBE. We have

H

(
e(C0, K1)

e(C1, K0)

)
⊕ C2

= H

(
e(g0,msk ·

∏n
i=1 h2i−idi)

e(
∏n

i=1 g2i−id ′i , h0)

)
⊕ H(gT )⊕M

(∗)
= H(gT )⊕ H(gT )⊕M,

for id = id ′. Note that (∗) holds due to ENDSG’s associativity and projective

properties.
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(µ, q)-IBE-IND-CPA-security of IBE. We base our high-level proof strat-

egy on the IBE-IND-CPA proof strategy of Chen and Wee [CW13], but devi-

ate on the lower level. First, we define auxiliary secret-key extraction Ext and

auxiliary encryption Enc, random functions R̂j,i and R̃j,i, pseudo-normal ci-

phertexts, semi-functional type-(·, i) ciphertexts, and semi-functional type-i

user secret keys similarly to [CW13]:

Auxiliary secret-key extraction. Ext(pp,msk , id ; h), given the parame-

ter pp, master secret key msk , an identity id = id1 . . . idn ∈ ID, and

h = (h0, . . . , h2n) ∈ (H)2n+1, outputs a user secret key

usk id := (h0,msk ·
n∏
i=1

h2i−idi).

Auxiliary encryption function. Enc(pp, id ,M ; msk ,g), given parameter

pp, identity id = id1 . . . idn ∈ ID, message M ∈M, master secret key

msk , and g = (g0, . . . , g2n) ∈ (G)2n+1, outputs a ciphertext

Cid := (g0,
n∏
i=1

g2i−idi ,H(e(g0,msk))⊕M).

Random function families. Let id |i := id1 . . . id i be the i-bit prefix of an

identity id , and let ID|i := {0, 1}i. For an instance j and i ∈ [n]∪{0},
consider functions

R̂j,i : ID|i → H, id |i 7→ (ĥ)γ̂j,i(id |i) and

R̃j,i : ID|i → H, id |i 7→ (h̃)γ̃j,i(id |i),

where

γ̂j,i : ID|i → Z∗ord(H), id |i 7→ γ̂j,id |i and

γ̃j,i : ID|i → Z∗ord(H), id |i 7→ γ̃j,id |i

are independently and truly random functions.
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Pseudo-normal ciphertexts. Pseudo-normal ciphertexts are generated as

Cid := Enc(pp, id ,M ; msk ,gĝ)

= (g0ĝ0,

n∏
i=1

g2i−idi ĝ2i−idi ,H(e(g0ĝ0,msk))⊕M),

for uniform

g = (g0, . . . , g2n)← SampG(pp) and

ĝ = (ĝ0, . . . , ĝ2n)← ŜampG(pp, sp).

(Hence, pseudo-normal ciphertexts have G-components sampled from

ŜampG.)

Semi-functional type-(∧, i) and type-(∼, i) ciphertexts. We define the

random functions R̂j,i and R̃j,i as above. The semi-functional cipher-

texts of type (∧, i) are generated as

Ĉid := Enc(pp, id ,M ; msk · R̂j,i(id |i) · R̃j,i(id |i),gĝ)

(1)
= (g0ĝ0,

n∏
i=1

g2i−idi ĝ2i−idi ,H(e(g0ĝ0,msk · R̂j,i(id |i)))⊕M)

while semi-functional ciphertexts of type (∼, i) are generated as

C̃id := Enc(pp, id ,M ; msk · R̂j,i(id |i) · R̃j,i(id |i),gg̃)

(2)
= (g0g̃0,

n∏
i=1

g2i−idi g̃2i−idi ,H(e(g0g̃0,msk · R̃j,i(id |i)))⊕M),

where

g = (g0, . . . , g2n)← SampG(pp),

ĝ = (ĝ0, . . . , ĝ2n)← ŜampG(pp), and

g̃ = (g̃0, . . . , g̃2n)← S̃ampG(pp),

while (1) and (2) hold due to ENDSG’s properties.

Semi-functional type-i user secret keys. Let R̂j,i and R̃j,i be defined as

above. For

h = (h0, . . . , h2n)← SampH(pp),
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semi-functional type-i user secret keys are generated as

usk id := Ext(pp,msk · R̂j,i(id |i) · R̃j,i(id |i), id ; h)

= (h0,msk · R̂j,i(id |i) · R̃j,i(id |i) ·
n∏
i=1

h2i−idi).

Theorem 4.2.1. If ENDSG is an ENDSG system as defined in Section 4.1

and H is a universal hash function, then IBE defined as above is weakly (µ, q)-

IBE-IND-CPA-secure. Concretely, for any weak PPT adversary A with at

most q′ = q′(k) key extraction queries per instance and running time t in the

(µ, q)-IBE-IND-CPA security experiment with IBE, there are distinguishers

D1 on LS1, D2 on LS2, and D3 on NH with running times t′1 ≈ t′2 ≈ t′3 ≈
t+ O(µnkc(q + q′)), respectively, for some constant c ∈ N, with

Adv
(µ,q)-ibe-ind-cpa
IBE,A (k, n) ≤ Advls1

ENDSG,G,D1
(k, 2n) + 2n · Advls2

ENDSG,G,D2
(k, 2n)

+ n · Advnh
ENDSG,G,D3

(k, 2n, µq′) + µq ·O(2−k), (4.1)

for group generator G defined as above.

Proof. We show the (µ, q)-IBE-IND-CPA security of IBE for any weak PPT

adversary A in a sequence of games where we successively change the games

until we arrive at a game where A has only negligible advantage (i.e., success

probability only negligibly larger than 1/2) in the sense of (µ, q)-IBE-IND-

CPA. Let SA,j be the event that A succeeds in Game j. In Table 4.1, we give

an overview how the challenge ciphertexts and user secret keys are generated.

Game 0. Game 0 is the (µ, q)-IBE-IND-CPA experiment as defined above.

Game 1. Game 1 is defined as Game 0 apart from the fact that all challenge

ciphertexts are pseudo-normal.

Game 2.i.0. Game 2.i.0 is defined as Game 1 except that all user secret

keys are semi-functional of type (i − 1) and all challenge ciphertexts

are semi-functional of type-(∧, i− 1), for all i ∈ [n].

Game 2.i.1. Game 2.i.1 is defined as Game 2.i.0 except that if and only if

the i-th bit of a challenge identity is 1, then the corresponding challenge

ciphertext is semi-functional of type (∼, i−1). Otherwise, if and only if
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the i-th bit of a challenge identity is 0, then the corresponding challenge

ciphertext is semi-functional of type (∧, i− 1).

Game 2.i.2. Game 2.i.2 is defined as Game 2.i.1 except that the challenge

ciphertexts are semi-functional of type (·, i) (where · can be ∧ or ∼ as

defined in Game 2.i.1, i.e., depending on the i-th challenge identity bit)

and the user secret keys are semi-functional of type i.

Game 3. Game 3 is defined as Game 2.n.0 except that the challenge ci-

phertexts are semi-functional of type (∧, n) and the user secret keys

are semi-functional of type n.

Game 4. Game 4 is defined as Game 3 except that the challenge ciphertext

messages are uniform k-length bitstrings.

Lemma 4.2.2 (Game 0 – Game 1). If the G- and H-subgroups property

and LS1 of ENDSG hold, Game 0 and Game 1 are computationally indis-

tinguishable. Concretely, for any PPT adversary A with at most q′ = q′(k)

extraction queries per instance and running time t in the (µ, q)-IBE-IND-

CPA security experiment with IBE, there is a distinguisher D on LS1 with

running time t′ ≈ t+ O(µnkc(q + q′)), for some constant c ∈ N, such that

|Pr [SA,0]− Pr [SA,1] | ≤ Advls1
ENDSG,G,D(k, 2n), (4.2)

for group generator G defined as above.

Proof. In Game 0, all challenge ciphertexts are normal in the sense of IBE

while in Game 1, all challenge ciphertexts are pseudo-normal. In the follow-

ing, we give a description and an analysis of an efficient LS1 distinguisher

that uses any efficient IBE-attacker in the (µ, q)-IBE-IND-CPA sense.

Description. The challenge input is provided as (pp,T), where T is either

g or gĝ,

for g← SampG(pp), ĝ← ŜampG(pp, sp), and

pp = (G,H,GT , N, g, h, e,m, 2n, pars).
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Challenge ciphertexts for id∗j,i′

Game 0 Enc(mpk j , id
∗
j,i′ ,M

∗
j,i′,b)

Game 1 Enc(pp, id∗j,i′ ,M
∗
j,i′,b;msk j ,gĝ)

Game 2.i.0 Enc(pp, id∗j,i′ ,M
∗
j,i′,b;msk j · R̂j,i−1(id∗j,i′ |i−1),gĝ)

Game 2.i.1 if id∗j,i′,i = 0 : Enc(pp, id∗j,i′ ,M
∗
j,i′,b;msk j · R̂j,i−1(id∗j,i′ |i−1),gĝ)

if id∗j,i′,i = 1 : Enc(pp, id∗j,i′ ,M
∗
j,i′,b;msk j · R̃j,i−1(id∗j,i′ |i−1),gg̃)

Game 2.i.2 if id∗j,i′,i = 0 : Enc(pp, id∗j,i′ ,M
∗
j,i′,b;msk j · R̂j,i(id∗j,i′ |i),gĝ)

if id∗j,i′,i = 1 : Enc(pp, id∗j,i′ ,M
∗
j,i′,b;msk j · R̃j,i(id∗j,i′ |i),gg̃)

Game 3 Enc(pp, id∗j,i′ ,M
∗
j,i′,b;msk j · R̂j,n(id∗j,i′),gĝ)

Game 4 Enc(pp, id∗j,i′ , Rj,i′ ;msk j · R̂j,n(id∗j,i′),gĝ)

User secret keys for id

Game 0 Ext(msk j , id)

Game 1 Ext(pp,msk j , id ;h)

Game 2.i.0 Ext(pp,msk j · R̂j,i−1(id |i−1) · R̃j,i−1(id |i−1), id ;h)

Game 2.i.1 Ext(pp,msk j · R̂j,i−1(id |i−1) · R̃j,i−1(id |i−1), id ;h)

Game 2.i.2 Ext(pp,msk j · R̂j,i(id |i) · R̃j,i(id |i), id ;h)

Game 3 Ext(pp,msk j · R̂j,n(id) · R̃j,n(id), id ;h)

Game 4 Ext(pp,msk j · R̂j,n(id) · R̃j,n(id), id ;h)

Table 4.1: Instance-j challenge ciphertexts for challenge identity id∗j,i′ , for g ←
SampG(pp), for ĝ ← ŜampG(pp, sp), for g̃ ← S̃ampG(pp, sp), for Rj,i′ ← {0, 1}k,
and for instance-j user secret keys for identity id , for h ← SampH(pp), for all
(j, i′, i) ∈ [µ]× [q]× [n]. The differences between games are given by underlining.
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First, D samples (msk j)j ← (H)µ, sets mpk j := (pp,H,m(msk j)), for all j,

for H ← UH, and sends (mpk j)j to A. During the experiment, D answers

instance-j secret key extraction queries to oracle Ext(msk j, ·), for id ∈ ID,

as

Ext(pp,msk j, id ; SampH(pp)),

for all j. (We assume that A queries at most q′ user secret keys per instance.)

Then, D fixes a bit b ← {0, 1}. A may adaptively query its Enc′-oracle; for

A-chosen instance-j challenge identity id∗j,i ∈ ID and equal-length messages

(M∗
j,i,0,M

∗
j,i,1). D returns

Enc(pp, id∗j,i,M
∗
j,i,b; msk j,T

sj,i)

to A, for sj,i ← Z∗N , for all (j, i) ∈ [µ] × [q]. (We assume that A queries at

most q challenge ciphertexts per instance.) Eventually, A outputs a guess b′.

D outputs 1 if b′ = b and A is valid in the sense of (µ, q)-IBE-IND-CPA, else

outputs 0.

Analysis. The provided master public keys and the A-requested user secret

keys yield the correct distribution and are consistent in the sense of Game 0

and Game 1. Due to ENDSG’s G- and H-subgroups property, we have that

T is uniformly distributed over the generators of a nontrivial subgroup of

G2n+1. Hence, Ts, for s ← Z∗N , is distributed uniformly over the generators

of a nontrivial subgroup of G2n+1 and, thus, all challenge ciphertexts yield

the correct distribution in the sense of Game 0 and Game 1. If T = g, then

the challenge ciphertexts are distributed identically as in Game 0. Otherwise,

i.e., if T = gĝ, then the challenge ciphertexts are distributed identically as

in Game 1. Hence, (4.2) follows.

Lemma 4.2.3 (Game 1 – Game 2.1.0). If the orthogonality property of

ENDSG holds, the output distributions of Game 1 and Game 2.1.0 are the

same. Concretely, for any PPT adversary A in the (µ, q)-IBE-IND-CPA

security experiment with IBE, it holds that

Pr [SA,1] = Pr [SA,2.1.0] . (4.3)

Proof. In this bridging step, we argue that each instance-j master secret key

msk j, with msk j ← H, generated as in Game 1 and the (implicit) instance-j
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master secret keys msk ′j, with

msk ′j := msk ′′j · R̂j,0(ε) · R̃j,0(ε),

for msk ′′j ← H and R̂j,0, R̃j,0 defined as above, generated as in Game 2.1.0,

are identically distributed, for all j. Note that the master public keys for A

contain (m(msk j))j; but since

((m(msk ′j))j = (m(msk ′′j ))j,

which is due to the orthogonality property of ENDSG, no R̂j,0-information

and no R̃j,0-information is given out in the master public keys. Further,

since (msk j)j and (msk ′′j )j are identically distributed, it follows that (4.3)

holds.

Lemma 4.2.4 (Game 2.i.0 – Game 2.i.1). If the G- and H-subgroups

property and LS2 of ENDSG hold, Game 2.i.0 and Game 2.i.1 are compu-

tationally indistinguishable. Concretely, for any PPT adversary A with at

most q′ = q′(k) extraction queries per instance and running time t in the

(µ, q)-IBE-IND-CPA security experiment with IBE, there is a distinguisher

D on LS2 with running time t′ ≈ t + O(µnkc(q + q′)), for some constant

c ∈ N, such that

|Pr [S2.i.0]− Pr [S2.i.1] | ≤ Advls2
ENDSG,G,D(k, 2n), (4.4)

for group generator G defined as above and for all i ∈ [n].

Proof. In Game 2.i.0, we have semi-functional type-(∧, i − 1) challenge ci-

phertexts while in Game 2.i.1, challenge ciphertexts are semi-functional of

type (∼, i− 1) if and only if the i-th challenge identity bit is 1.

Description. The challenge input is provided as

(pp, ĥh̃,g′ĝ′,T),

where T is either

gĝ or gg̃,



76 Chapter 4. (Almost) Tight IBE Security

for pp as before, for ĥ, h̃ specified in sp, for

g,g′ ← SampG(pp),

ĝ, ĝ′ ← ŜampG(pp, sp), and

g̃← S̃ampG(pp, sp).

First, D samples (msk j)j ← (H)µ, sets mpk j := (pp,H,m(msk j)), for all j,

for H ← UH, for m specified in pp, and sends (mpk j)j to A. Further, D

defines a truly random function

R : [µ]× {0, 1}i−1 → 〈ĥh̃〉.

During the experiment, D answers instance-j secret key extraction queries

to oracle Ext(msk j, ·) as

Ext(pp,msk j · R(j, id |i−1), id ; SampH(pp)),

for id ∈ ID and all j. (Again, we assume that A queries at most q′ user secret

keys per instance and we set id |0 = {0, 1}0 =: ε.) A may adaptively query its

Enc′-oracle; for instance-j challenge identity id∗j,i′ = id∗j,i′,1 . . . , id
∗
j,i′,n ∈ ID

and equal-length messages (M∗
j,i′,0,M

∗
j,i′,1), D returns

Enc(pp, id∗j,i′ ,M
∗
j,i′,b; msk j · R(j, id∗j,i′|i−1), (g′ĝ′)sj,i′ ) if id∗j,i′,i = 0,

Enc(pp, id∗j,i′ ,M
∗
j,i′,b; msk j · R(j, id∗j,i′ |i−1),Tsj,i′ ) if id∗j,i′,i = 1,

to A, for b ← {0, 1}, for sj,i′ ← Z∗N , for all (j, i′) ∈ [µ] × [q]. Eventually,

A outputs a guess b′. D outputs 1 if b′ = b and A is valid in the sense of

(µ, q)-IBE-IND-CPA, else outputs 0.

Analysis. The master public keys yield the correct distribution as well as

the requested user secret keys (which is due to ENDSG’s G- and H-subgroups

property, i.e., the output of SampH is uniformly distributed over the genera-

tors of a nontrivial subgroup of H2n+1). For the challenge ciphertexts, note

that g′ĝ′ and T are uniformly distributed over the generators of their respec-

tive nontrivial subgroup of G2n+1 and, hence, (g′ĝ′)s and Ts, for s← Z∗N , are

distributed uniformly over the generators of their respective nontrivial G2n+1-

subgroup as well. If T = gĝ, then the challenge ciphertexts are distributed
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identically as in Game 2.i.0. Otherwise, if T = gg̃, then the challenge ci-

phertexts are distributed identically as in Game 2.i.1 (where, in both cases,

ENDSG’s orthogonality and non-degeneracy properties hold; thus, ĥ and h̃

must contain coprime nontrivial elements and the challenge ciphertexts yield

the correct distribution). Hence, (4.4) follows.

Lemma 4.2.5 (Game 2.i.1 – Game 2.i.2). If the G- and H-subgroups

property and NH of ENDSG hold, Game 2.i.1 and Game 2.i.2 are compu-

tationally indistinguishable. Concretely, for any PPT adversary A with at

most q′ = q′(k) extraction queries per instance and running time t in the

(µ, q)-IBE-IND-CPA security experiment with IBE, there is a distinguisher

D on NH with running time t′ ≈ t + O(µnkc(q + q′)), for some constant

c ∈ N, such that

|Pr [S2.i.1]− Pr [S2.i.2] | ≤ Advnh
ENDSG,G,D(k, 2n, µq′), (4.5)

for group generator G defined as above and for all i ∈ [n].

Proof. In Game 2.i.1, the challenge ciphertexts are semi-functional of type

(∧, i − 1) if the i-th bit of the challenge identity is 0 and semi-functional of

type (∼, i−1) if the i-th bit of the challenge identity is 1, while in Game 2.i.2,

all challenge ciphertexts are of type (·, i) (where · can be ∧ or ∼, depending

on the i-th bit of the respective challenge identity).

Description. The challenge input is

(pp, ĥ, h̃, ĝ−(2i−1), g̃−2i, (T1,1, . . . ,Tµ,q′)),

where Tj,i′ equals either

(hj,i′,0, . . . , hj,i′,2n) or (hj,i′,0, . . . , hj,i′,2i−1·(ĥ)γ̂j,i′ , hj,i′,2i·(h̃)γ̃j,i′ , . . . , hj,i′,2n),

for pp as before, ĥ, h̃ specified as in sp, for

ĝ← ŜampG(pp, sp),

g̃← S̃ampG(pp, sp),

(hj,i′,0, . . . , hj,i′,2n)← SampH(pp), and



78 Chapter 4. (Almost) Tight IBE Security

γ̂j,i′ , γ̃j,i′ ← Z∗ord(H),

for all (j, i′) ∈ [µ]× [q′]. D samples (msk j)j ← (H)µ, sets

mpk j := (pp,H,m(msk j)),

for all j, for H← UH, for m specified in pp, and sends (mpk j)j to A. Further,

D defines random functions R̂j,i−1, R̃j,i−1 as above. In addition, for identity

id = id1 . . . idn ∈ ID, we will define

R̂j,i(id |i) := R̂j,i−1(id |i−1) and (implicitly) R̃j,i(id |i) := R̃j,i−1(id |i−1) · (h̃)γ̃j,i′

if id i = 0 and

R̃j,i(id |i) := R̃j,i−1(id |i−1) and (implicitly) R̂j,i(id |i) := R̂j,i−1(id |i−1) · (ĥ)γ̂j,i′

if id i = 1, for suitable (j, i′) ∈ [µ]× [q′] as shown below. Further, during the

experiment, D returns the i′-th secret key extraction query in instance j for

an identity id , with prefix id |i not a prefix of an already queried identity in

instance j, as

Ext(pp,msk j · R̂j,i(id |i) · R̃j,i−1(id |i−1), id ; Tj,i′) if id i = 0,

Ext(pp,msk j · R̂j,i−1(id |i−1) · R̃j,i(id |i), id ; Tj,i′) if id i = 1,

for all (j, i′). (Note that id |i could be a valid prefix in any other instance

different to j. Further, we assume that A queries at most q′ user secret

keys per instance.) For an identity prefixes id |i that is a prefix of an already

queried identity in instance j, let (j, i′′) ∈ [µ]× [q′] be the index of that query.

In that case, D returns

Ext(pp,msk j · R̂j,i(id |i) · R̃j,i−1(id |i−1), id ; Tj,i′′ · SampH(pp)) if id i = 0,

Ext(pp,msk j · R̂j,i−1(id |i−1) · R̃j,i(id |i), id ; Tj,i′′ · SampH(pp)) if id i = 1,

for all j. (Note that we use SampH to rerandomize the H2n+1-subgroup

element of Tj,i′′ .) Further, A may adaptively query its Enc′-oracle; for A-

chosen instance-j challenge identity id∗j,i′′′ = id∗j,i′′′,1 . . . , id
∗
j,i′′′,n ∈ ID and

equal-length messages (M∗
j,i′′′,0,M

∗
j,i′′′,1) and returns

Enc(pp, id∗j,i′′′ ,M
∗
j,i′′′,b; msk j ·R̂j,i(id∗j,i′′′ |i), (g−(2i−1)ĝ−(2i−1))

sj,i′′′ ) if id∗j,i′′′,i = 0,
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Enc(pp, id∗j,i′′′ ,M
∗
j,i′′′,b; msk j · R̃j,i(id∗j,i′′′ |i), (g−2ig̃−2i)

sj,i′′′ ) if id∗j,i′′′,i = 1,

to A, for sj,i′′′ ← Z∗N , for g ← SampG(pp), for fixed b ← {0, 1}, for all

(j, i′′′). (Note that a modified Enc-input is provided with only 4n instead

of 4n + 2 elements. Nevertheless, the omitted elements are not needed to

generate a valid ciphertext (since it is consistent with the challenge identities

(id∗j,i′′′)j,i′′′). Hence, we assume that Enc works as desired.) Eventually, A

outputs a guess b′. D outputs 1 if b′ = b and A is valid in the sense of

(µ, q)-IBE-IND-CPA, else outputs 0.

Analysis. Note that the provided master public keys yield the correct distri-

bution. For the A-requested user secret keys, we have that since ĥ and h̃ have

nontrivial H-elements of coprime order (again, this is due to ENDSG’s or-

thogonality and non-degeneracy properties), the random functions R̂j,i−1, R̂j,i
and R̃j,i−1, R̃j,i yield the correct distributions in the sense of Game 2.i.1 and

Game 2.i.2, respectively. Due to theG- andH-subgroups property of ENDSG,

g−(2i−1) and ĝ−(2i−1) as well as g−2i and g̃−2i are uniformly distributed over

the generators of their respective nontrivial subgroups of G2n and, thus,

(g−(2i−1)ĝ−(2i−1))
s and (g−2ig̃−2i)

s, for s ← Z∗N , are distributed uniformly

over the generators of their respective nontrivial subgroup of G2n. Further,

if id∗j,i′′′,i = 0, then it holds that R̂j,i(id∗j,i′′′ |i) = R̂j,i−1(id∗j,i′′′ |i−1) and all

required components ĝ−(2i−1) to create the challenge ciphertexts are given.

Analogously, if id∗j,i′′′,i = 1, then we have R̃j,i(id∗j,i′′′ |i) = R̃j,i−1(id∗j,i′′′ |i−1) and

all necessary components g̃−2i are provided as needed. Hence, the challenge

ciphertexts and user secret keys yield the correct distribution. If

(Tj,i′)j,i′ = (hj,i′,0, . . . , hj,i′,2n)j,i′ ,

then the user secret keys are distributed identically as in Game 2.i.1. If

(Tj,i′)j,i′ = (hj,i′,0, . . . , hj,i′,2i−1 · (ĥ)γ̂j,i′ , hj,i′,2i · (h̃)γ̃j,i′ , . . . , hj,i′,2n)j,i′ ,

then the user secret keys are distributed identically as in Game 2.i.2. Thus,

(4.5) follows.

Lemma 4.2.6 (Game 2.i-1.2 – Game 2.i.0). If the G- and H-subgroups

property and LS2 of ENDSG hold, Game 2.i-1.1 and Game 2.i.0 are compu-

tationally indistinguishable. Concretely, for any PPT adversary A with at

most q′ = q′(k) extraction queries per instance and running time t in the
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(µ, q)-IBE-IND-CPA security experiment with IBE, there is a distinguisher

D with running time t′ ≈ t+O(µnkc(q+ q′)), for some constant c ∈ N, such

that

|Pr [S2.i−1.2]− Pr [S2.i.0] | ≤ Advls2
ENDSG,G,D(k, 2n), (4.6)

for group generator G defined as above and for all i ∈ [n] \ {1}.

Proof. In Game 2.i−1.2, challenge ciphertexts are of type (·, i − 1) and de-

pend on the (i − 1)-th challenge identity bit while in Game 2.i.0, challenge

ciphertexts are of type (∧, i − 1). This proof is very similar to the proof

of Lemma 4.2.4 except that the challenge ciphertexts depend on the (i− 1)-

th instead of the i-th challenge identity bit.

Lemma 4.2.7 (Game 2.n.2 – Game 3). If the G- and H-subgroups prop-

erty and LS2 of ENDSG hold, Game 2.n.2 and Game 3 are computation-

ally indistinguishable. Concretely, for any PPT adversary A with at most

q′ = q′(k) extraction queries per instance and running time t in the (µ, q)-

IBE-IND-CPA security experiment with IBE, there is a distinguisher D with

running time t′ ≈ t+ O(µnkc(q + q′)), for some constant c ∈ N, such that

|Pr [SA,2.n.2]− Pr [SA,3] | ≤ Advls2
ENDSG,G,D(k, 2n), (4.7)

for group generator G defined as above.

Proof. It is easy to see that Game 3 and a potential Game 2.n+1.0 would be

identical. Hence, we can reassemble the proof of Lemma 4.2.6 with i := n+1

and (4.7) directly follows.

Lemma 4.2.8 (Game 3 – Game 4, weak (µ, q)-IBE-IND-CPA-securi-

ty). Game 3 and Game 4 are statistically indistinguishable. Concretely, for

any weak PPT adversary A on the (µ, q)-IBE-IND-CPA security of IBE, it

holds that

|Pr [SA,3]− Pr [SA,4] | ≤ µq ·O(2−k). (4.8)

Proof. In Game 4, we replace each challenge message Mj,i′,b, for challenge bit

b ∈ {0, 1}, with a (fresh) uniformly random k-length bitstring Rj,i′ ← {0, 1}k.
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We argue with ENDSG’s non-degeneracy property and the universality of H

for this change. Concretely, for instance-j Game-3 challenge ciphertexts

Enc(pp, id∗j,i′ ,M
∗
j,i′,b; msk j · R̂j,n(id∗j,i′), (gĝ)sj,i′ )

= ((g0ĝ0)sj,i′ , (
n∏
i=1

g2i−id∗
j,i′,i

ĝ2i−id∗
j,i′,i

)sj,i′ ,H(e((g0ĝ0)sj,i′ ,msk j · R̂j,n(id∗j,i′)))

⊕M∗
j,i′,b),

with

g← SampG(pp), ĝ← ŜampG(pp, sp),

for sj,i′ ← Z∗N , for all i′ ∈ [q], note that

e((ĝ0)sj,i′ , R̂j,n(id∗j,i′)) = e((ĝ0)sj,i′ , ĥ)γ̂j,i′ ,

for uniform γ̂j,i′ ∈ Z∗ord(H), is uniformly distributed in a nontrivial subgroup

G′T ⊂ GT due to the non-degeneracy property of ENDSG. Furthermore,

since A is a weak adversary, all the R̂j,n are for different preimages and thus

independently random. Hence, since H is a (randomly chosen) universal hash

function, we have that

SD ((H,H(X)) ; (H, U)) = O(2−k),

for X ← G′T and U ← {0, 1}k. A union bound yields (4.8).

Lemma 4.2.9 (Game 4). For any PPT adversary A in the (µ, q)-IBE-IND-

CPA security experiment with IBE, it holds that

Pr [SA,4] = 1/2. (4.9)

Proof. In Game 4, for (uniform) challenge bit b ∈ {0, 1}, we provide A with

challenge ciphertexts that include a uniform k-length bitstring instead of a

A-chosen b-dependent message, for each instance and challenge ciphertext.

Hence, b is completely hidden from A and (4.9) follows.

Taking (4.2), (4.3), (4.4), (4.5), (4.6), (4.7), (4.8), and (4.9) together, shows

(4.1).
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From Weak (µ, q)-IBE-IND-CPA-security to (µ, q)-IBE-IND-CPA-

security. Theorem 4.2.1 only considers security against weak adversaries.

To achieve (µ, q)-IBE-IND-CPA-security against any PPT adversary, we have

to introduce a new simple assumption (which is similar to the known BDDH

assumption). Further, we need rerandomization algorithms to achieve (µ, q)-

IBE-IND-CPA-security. (See below.)

A (Subgroup) Variant of the BDDH Assumption (S-BDDH). For

any PPT adversary D, we have that the function

Advs-bddh
ENDSG,G,D(k, n) := |Pr

[
D(pp,g,ga, ĝ, ĝa, ĝb0, ĥ, ĥ

b, ĥc, e(ĝ0, ĥ)abc) = 1
]

− Pr
[
D(pp,g,ga, ĝ, ĝa, ĝb0, ĥ, ĥ

b, ĥc, e(ĝ0, ĥ)z) = 1
]
|

is negligible in k, for (pp, sp) ← SampP(k, n), for g ← SampG(pp), for ĝ =

(ĝ0, . . . , ĝn)← ŜampG(pp, sp), for ĥ specified in sp, for e specified in pp, and

for (uniform) a, b, c, z ← Z∗N .

Rerandomization. We use the efficient rerandomization algorithms given

in [HKS15]. Essentially, [HKS15] provides efficient algorithms Reranda and

Rerandabc that rerandomize challenge tupels such that parts of the algorithms’

output yield valid (rerandomized) challenge tupels. The Reranda-algorithm

is used to rerandomize the a-exponent and the T-element of the challenge

input while Rerandabc rerandomizes the challenge exponents a, b, c, and the

challenge T-element. (See Proof of Lemma 4.2.10 and the rerandomization

paragraph of [HKS15] for details.)

Lemma 4.2.10 (Game 3 to Game 4, (µ, q)-IBE-IND-CPA-security).

Let G be a group generator and Rerandabc, Reranda rerandomization algo-

rithms, all as in [HKS15]. If ENDSG is an ENDSG system, S-BDDH holds,

and H is a universal hash function, Game 3 and Game 4 are computation-

ally indistinguishable. Concretely, for any PPT adversary A with at most

q′ = q′(k) extraction queries per instance and running time t in the (µ, q)-

IBE-IND-CPA security experiment with IBE, there is a distinguisher D with

running time t′ ≈ t+ O(µnkc(q + q′)), for some constant c ∈ N, such that

|Pr [SA,3]− Pr [SA,4] | ≤ Advs-bddh
ENDSG,G,D(k, 2n) + µq ·O(2−k). (4.10)

Proof. In Game 3, each challenge ciphertext carries a b-dependent A-chosen
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message, for b← {0, 1}, while in Game 4, each challenge ciphertext message

is replace by uniform k-length b-independent bitstring.

Description. D is provided with challenge input

(pp,g,ga, ĝ, ĝa, ĝb0, ĥ, ĥ
b, ĥc,T),

where T is either

e(ĝ0, ĥ)abc or e(ĝ0, ĥ)z,

for

(pp, sp)← SampP(k, 2n),

g← SampG(pp),

ĝ = (ĝ0, . . . , ĝn)← ŜampG(pp, sp),

for ĥ specified in sp, for e specified in pp, and for a, b, c, z ← Z∗N . First, D

samples (msk j)j ← (H)µ, sets

mpk j := (pp,H,m(msk j)),

for all j, for H← UH, for m specified in pp, and sends (mpk j)j to A. Further,

D defines a truly random function

R̂ : [µ]× {0, 1}n → 〈ĥ〉.

During the experiment, D answers instance-j extraction queries for id ∈ ID
as

Ext(pp,msk j · R̂(j, id), id ; SampH(pp)),

for all j. Further, A may adaptively query its Enc′-oracle; for A-chosen

instance-j challenge identity id∗j,i′ = id∗j,i′,1 . . . , id
∗
j,i′,n ∈ ID and equal-length

messages (M∗
j,i′,0,M

∗
j,i′,1) ∈ (M)2, for all (j, i′) ∈ [µ] × [q]. For each fresh

instance-j challenge identity id∗j,i′ (i.e., id∗j,i′ was not queried before by A in

instance j), D computes

(gaj,i′ , ĝaj,i′ , ĝ
bj,i′
0 , ĥbj,i′ , ĥcj,i′ ,Tj,i′)← Rerandabc(N,g,g

a, ĝ, ĝa, ĝb0, ĥ, ĥ
b, ĥc,T)
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and returns

Enc(pp, id∗j,i′ ,M
∗
j,i′,b; msk j · R̂j,n(id∗j,i′), (gĝ)aj,i′ ((g0ĝ0)aj,i′ ,

(
n∏
i=1

g2i−id∗
j,i′,i

ĝ2i−id∗
j,i′,i

)aj,i′ ,H(e((g0ĝ0)aj,i′ ,msk j) ·Tj,i′)⊕M∗
j,i′,b)

to A, for b ← {0, 1}, for sj,i′ ← Z∗N , for all (j, i′). For a requeried challenge

identity id∗j,i′′ in instance j (where (j, i′′) ∈ [µ] × [q] is the index of that

previous query in instance j), D computes

(g
a′
j,i′′ , ĝ

a′
j,i′′ , ĝ

bj,i′′
0 , ĥbj,i′′ , ĥcj,i′′ ,T′j,i′′)←

Reranda(N,g,g
aj,i′′ , ĝ, ĝaj,i′′ , ĝ

bj,i′′
0 , ĥ, ĥbj,i′′ , ĥcj,i′′ ,Tj,i′′)

and returns

Enc(pp, id∗j,i′ ,M
∗
j,i′,b; msk j · R̂j,n(id∗j,i′), (gĝ)aj,i′ ((g0ĝ0)

a′
j,i′′ ,

(
n∏
i=1

g2i−id∗
j,i′′,i

ĝ2i−id∗
j,i′′,i

)
a′
j,i′′ ,H(e((g0ĝ0)

a′
j,i′′ ,msk j) ·T′j,i′′)⊕M∗

j,i′′,b)

to A, for all (j, i′′). Eventually, A outputs a guess b′. D outputs 1 if b′ = b

and A is valid in the sense of (µ, q)-IBE-IND-CPA, else outputs 0.

Analysis. The master public keys yield the correct distribution as well as

the requested user secret keys. If T = e(ĝ0, ĥ)abc, then the challenge cipher-

text exponents (as rerandomized in Rerandabc and Reranda, respectively) are

distributed O(2−k)-close to the challenge ciphertext exponents in Game 3.

(See rerandomization paragraph of [HKS15] for details.) For a fresh challenge

identity id∗j,i′ , we have that

((g0ĝ0)aj,i′ , (
n∏
i=1

g2i−id∗
j,i′,i

ĝ2i−id∗
j,i′,i

)aj,i′ ,

H(e((g0ĝ0)aj,i′ ,msk j) ·Tj,i′)⊕M∗
j,i′,b)

(∗)
= ((g0ĝ0)aj,i′ , (

n∏
i=1

g2i−id∗
j,i′,i

ĝ2i−id∗
j,i′,i

)aj,i′ ,

H(e((g0ĝ0)aj,i′ ,msk j · ĥbj,i′cj,i′ ))⊕M∗
j,i′,b),
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where (∗) holds due the orthogonality property of ENDSG. Note that we

(implicitly) set sj,i′ := aj,i′ and γ̂j,i′ := bj,i′ · cj,i′ . For a requeried challenge

identity id∗j,i′ , we rerandomize the previously used query value aj,i′ , for index

(j, i′), and leave γ̂j,i′ fixed. Otherwise, if T = e(ĝ0, ĥ)z, then the challenge

ciphertext exponents are distributed O(2−k)-close to the challenge ciphertext

exponents in Game 4, i.e., we have that

((g0ĝ0)aj,i′ , (
n∏
i=1

g2i−id∗
j,i′,i

ĝ2i−id∗
j,i′,i

)aj,i′ ,

H(e((g0ĝ0)aj,i′ ,msk j) ·Tj,i′)⊕M∗
j,i′,b)

= ((g0ĝ0)aj,i′ , (
n∏
i=1

g2i−id∗
j,i′,i

ĝ2i−id∗
j,i′,i

)aj,i′ ,

H(e((g0ĝ0)aj,i′ ,msk j · ĥz
′
j,i′ ))⊕M∗

j,i′,b),

for some uniform aj,i′ ∈ Z∗N and z′j,i′ := zj,i′a
−1
j,i′ ∈ Z∗N with overwhelming

probability. Further, since H is a (randomly chosen) universal hash function,

we have that SD ((H,H(X)) ; (H, U)) = O(2−k), for X ← G′T and U ←
{0, 1}k. Finally, via a union bound, (4.10) follows.

Corollary 4.2.11 ((µ, q)-IBE-IND-CPA-security of IBE). Let G be a group

generator as defined above. If ENDSG is an ENDSG system, S-BDDH holds,

and H is a universal hash function, then IBE is (µ, q)-IBE-IND-CPA-secure.

Concretely, for any PPT adversary A with at most q′ = q′(k) extraction

queries per instance and running time t in the (µ, q)-IBE-IND-CPA security

experiment with IBE, there are distinguishers D1 on LS1, D2 on LS2, D3

on NH, and D4 on s-BDDH with running times t′1 ≈ t′2 ≈ t′3 ≈ t′4 ≈ t +

O(µnkc(q + q′)), respectively, some constant c ∈ N, with

Adv
(µ,q)-ibe-ind-cpa
IBE,A (k, n) ≤ Advls1

ENDSG,G,D1
(k, 2n)

+ 2n · Advls2
ENDSG,G,D2

(k, 2n)

+ n · Advnh
ENDSG,G,D3

(k, 2n, µq′)

+ Advs-bddh
ENDSG,G,D4

(k, 2n) + µq ·O(2−k), (4.11)

for group generator G defined as above.

Proof. Taking (4.2), (4.3), (4.4), (4.5), (4.6), (4.7), (4.10), and (4.9) together,

yields (4.11).
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Chapter 5

A Generic View on

Trace-and-Revoke Systems

In this section, we give a new generic view on trace-and-revoke systems which

generalize new and known trace-and-revoke instantiations. (Some of the

following sections and paragraphs are reproduced, partly adopted verbatim,

from [HS14].)

Broadcast Encryption and Revocation Schemes. In a broadcast en-

cryption (BE) scheme with N users, a sender is able to generate ciphertexts

that only members of a “privileged” set S ⊆ {1, . . . , N}— each given a long-

lived user secret key — can decrypt correctly. There exists a large body of BE

schemes under various assumptions and with various efficiency characteristics

(e.g., [FN94, BGW05, Del07, BH08, GW09, FP12, LPQ12, BW13, BWZ14]).

In this work, we focus on (a specific form of) revocation schemes which can

be seen as variants of BE systems. But opposed to BE schemes, in revocation

schemes, a set of “revoked” users R ⊆ {1, . . . , N} is given to generate the

ciphertext such that users in R are not eligible to decrypt the ciphertext cor-

rectly while all other users of the system are able to decrypt (after receiving

a valid user secret key). Revocation schemes proposed in the literature are,

e.g., [NP01, NNL01, DF03, LSW10, Wee11].

Traitor Tracing and Trace-and-Revoke Schemes. A particularly in-

teresting property a BE system can have is traceability [CFN94], i.e., the

ability to trace a “pirate” decryption box back to the corrupted user(s),

87
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called traitor(s), who’s user secret keys were used to construct it. Thus,

traceability allows to identify a traitor (or a coalition of traitors). Such

schemes are called traitor tracing schemes and a variety of them was pro-

posed, e.g., [CFN94, NP98, BF99, KY02, CPP05, BSW06]. The combination

of revocation and traceability is an aspiring goal. We mention that combining

these properties is nontrivial (see [BW06, Section 4.1]). Nevertheless, there

are schemes, e.g., [NP01, NNL01, TT01, HS02, DF02, DFKY05, BW06]1,

which provide a solution to this problem. These schemes are called trace-

and-revoke schemes.

Revocable Key Encapsulation Mechanisms. We focus on a specific

form of revocation schemes, dubbed revocable key encapsulation mechanisms

(RKEMs). An RKEM consists of four PPT algorithms: key generation, user

secret key extraction, (shared key) encapsulation, and (shared key) decapsu-

lation. Key generation outputs master public and master secret keys. The

master secret key is used by the secret key extraction algorithm to derive

user secret keys. On input of a revoked-user set and the master public key,

the encapsulation algorithm outputs a ciphertext and a shared key. Given a

user secret key and a ciphertext, decapsulation outputs a shared key or an

“error message.” It holds that the shared keys output by encapsulation and

decapsulation, respectively, are equal if and only if the user secret key does

not belong to a user in the revoked-user set that was given to encapsulate

the key. A security notion for RKEMs is defined in chapter 2.

Threshold Extractable Hash Proof Systems and the Generaliza-

tion of RKEMs. Wee introduces threshold extractable hash proof sys-

tems (TEHPS) [Wee11] as a generalization of extractable hash proof sys-

tems [Wee10]. Applying the concept of TEHPSs, Wee explains threshold

public key encryption, threshold signatures, and revocation schemes (in de-

tail, RKEMs), and gives TEHPS instantiations from the Decisional Diffie-

Hellman (DDH), from the Computational Diffie-Hellman (CDH), and from

the factoring (FAC) assumptions, which — at least in the case of factoring

— led to new cryptosystems.

The Generic View of the RKEM Due to [Wee11]. We now restate

1Note that the schemes from [NNL01, HS02, DF02] support a different form of traitor
tracing. Particularly, their main goal is to find a setting in which the pirate box is not
useful anymore rather than identifying the traitor(s).
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the generic RKEM of [Wee11]. The master public key consists of

g, ga0 , ga1 , . . . , gat ,

for a group element g and integer coefficients a0, a1, . . . , at of a polynomial

f(x) = a0 + a1x+ · · ·+ atx
t. (These public-key elements can be used to de-

rive gf(x), for any integer x.) The master secret key contains the coefficients

a0, a1, . . . , at and can be used to derive user secret keys via the polynomial

evaluation usk id := f(id), for any user identity id . The ciphertext is con-

structed as

C = (R, u, (uf(id))id∈R),

for revoked-user set R and element u = gr, for a random exponent r. The

shared key is extracted from s := uf(0) via “post-processing.” (Note that this

scheme only allows |R| ≤ t.) Decryption works as follows: with a user secret

key usk id ′ and u from the ciphertext, the value uusk id′ = uf(id ′) is derived.

If id ′ /∈ R, we have t + 1 different identities and the element uf(0) = s

can be interpolated (via the Lagrange interpolation); s can then be post-

processed to derive the shared key. (Of course, Wee proves correctness and

(semantic) security.) As a consequence, depending on the domain, this yields

concrete RKEMs from the factoring, the CDH, or the DDH assumption.

More abstractly, Wee constructs RKEMs from TEHPSs and gives TEHPS

instantiations from the above mentioned assumptions.

Our Contribution. We extend the generic view of [Wee11] by providing

a TEHPS from the “Extended Decisional Diffie-Hellman” (EDDH) assump-

tion due to [HO12]. The EDDH assumption generalizes the DDH and De-

cisional Composite Residuosity (DCR) assumptions. (In Figure 5.1, we give

an overview of the assumptions used in this chapter.) By our first result, we

obtain revocation schemes from the EDDH assumption. In particular, our

generic system extends the generic view of revocation schemes from [Wee11]

and, additionally, via our second result, it yields a new trace-and-revoke

scheme from the DCR assumption. (This is not known for the factoring-

based instance of [Wee11] and we describe why this seems to be difficult to

achieve in Wee’s setting.)

More on the First Result: A TEHPS Instantiation from the EDDH

Assumption. By giving a slightly different generic view, we extend the

work of Wee to obtain TEHPS instantiations from the extended decisional
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FAC CDH

EDDH

DDH

DCR

Figure 5.1: Assumptions used in this chapter and their connections. The
arrows indicate that the EDDH assumption is implied by the DDH and DCR
assumptions, and that the DDH assumption implies the CDH assumption

Diffie-Hellman (EDDH) assumption. Concretely, for a group G, subset G ⊂
G, subgroup H ⊆ G, elements g ∈ G, gx, g,y (for uniform exponents x, y),

EDDH states that

gxy and gxy · h

are computationally indistinguishable, for uniform h ∈ H. If H = G, then

we have the DDH assumption; if G = Z∗N2 , G = {xN | x ∈ Z∗N}, and

H = 〈1 +N〉, then we have the DCR assumption, for N = PQ with distinct

odd equal-length primes P,Q. In particular, our first result yields EDDH-

based threshold encryption, signatures, and RKEMs. We stress that the

EDDH-based instances use a potential stronger assumption (i.e., the DCR

assumption) as opposed to Wee’s factoring-based schemes. Nevertheless, this

slightly stronger assumption enables us — via our second result — to obtain

a new DCR-based trace-and-revoke scheme which, again, is not known to

achieve from Wee’s factoring-based RKEM.

We now turn to a high-level overview of our RKEM, which is similar to Wee’s

generic scheme (given above), but has ciphertexts

C = (R, u1, (u
f(id)
1 )id∈R, u

f(0)
1 · h), (5.1)

for u1 ∈ G and (uniform) h ← H. The shared key is extracted from h.

Hence, instead of directly using u
f(0)
1 to extract the shared key, we use it

to blind the H-element h. The security analysis of this modified generic

scheme is similar to the analysis of Wee’s scheme and given below. The
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only difficulties arise out of the fact that the group order of elements in G

may not be known (e.g., in the case of the DCR assumption). Hence, we

must avoid inversion operations in the exponent. Such inversion operations

arise during Lagrange interpolation of the polynomial f in the exponent and

cryptographic tools to circumvent inversion operations (e.g., “clearing the

denominator”) are known. (See below for more details.)

More on the Second Result: Black-box Traceability of the EDDH-

based RKEM. We prove that our EDDH-based RKEM supports a “mild”

form of black-box traitor tracing. That is, assuming a coalition of T ≤
(t+ 1)/2 corrupted users that built any “pirate” decryption box, we are able

to trace (at least) one user in that coalition. The tracing strategy only needs

black-box access to the pirate box and works for imperfect boxes, where an

imperfect box is allowed to decrypt well-formed ciphertexts invalidly. Fur-

ther, we allow adversarially chosen revoked-user sets R. Similar black-box

tracing strategies in the revocation setting were considered in previous works,

e.g., in [TT01, DFKY05]. To achieve black-box traceability in the BE set-

ting, we note that similar techniques are common, e.g., see [BW06]. But

unlike in, e.g., [TT01], our tracing algorithm works with imperfect pirate

boxes that may even only work for an adversarially chosen set R of revoked

users. The tracing model in [DFKY05] considers imperfect decryption boxes

and adversarially chosen revoked users, but for a different scheme. However,

we stress that our focus is on the generic view of trace-and-revoke schemes.

More Technical Details. Concerning the first result: to construct revo-

cation schemes from the EDDH assumption — in which the group order of

the elements in G ⊂ G might not be known —, we use a technique called

“clearing the denominator” in the exponent. This tool was used before, but

in different scenarios to ours, e.g., in [Sho00, Wee11, ABV+12], and enables

us to avoid Lagrangian coefficient inversion in the exponent and to construct

an EDDH-based revocation scheme.

Concerning the second result: consider “pseudo-valid” ciphertexts of the form

CRpv = (R, u1, (u
f(id)
1 hzid )id∈R, u

f(0)
1 · hz0) (5.2)

for (uniform) h ← H and integers z0, (zid)id∈R. Under the EDDH assump-

tion, these pseudo-valid ciphertexts from Equation 5.2 are computationally

indistinguishable from the valid ciphertexts from Equation 5.1. We show
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that this is even the case if one knows one user secret key. This is crucial

and can be used for black-box tracing if the box contains only one user se-

cret key. Hence, this gives rise to trace a coalition of T = 1 corrupted users.

Basically, such tracing algorithm sends pseudo-valid ciphertexts to the pirate

box and examines the output by comparing the output of the pirate box with

an honestly decryption outputs using several user secret keys. (Hence, we

need access to all secret keys in the system.) If the output matches, we have

found a traitor. (Generally, this is the same tracing idea used in previous

works, e.g., in [BW06].) As we show, this is due to the fact that the used

user secret key determines the output of the pirate box. However, for T ≥ 2,

the pirate can distinguish valid and pseudo-valid ciphertexts by comparing

the output under all user secret keys. (See Kiayias and Yung’s work [KY01b]

for a formal analysis.) We adapt our strategy by considering “semi-valid”

ciphertexts of the form

CR,Isv = (R, u1, (u
f(id)
1 hf

′(id))id∈R, u
f(0)
1 · hf ′(0)) (5.3)

for uniform polynomial f ′(x) ∈ Zq[x] of degree ≤ t, for G-group order q, and

f ′(id) = 0 for id ∈ I. These semi-valid ciphertexts from Equation 5.3 are

indistinguishable from the valid ciphertexts from Equation 5.1 if one only

knows user secret keys for user identities in I. In the tracing context, if the

pirate box only contains user secret keys for identities in I, then these differ-

ent forms of ciphertexts are indistinguishable. Hence, out tracing algorithm

first guesses the identity set I whose user secret keys are potentially con-

tained in the pirate box. Secondly, it checks if the semi-valid ciphertext CR,Isv

is correctly decrypted by the pirate box. (This is essentially the “black-box

confirmation” argument defined in [BF99] and used in previous works, e.g.,

[BW06].) It is possible that the set I contains user secret keys that are not

built into the pirate box. In that case, the tracing algorithms has to ensure

to output an identity whose user secret key was used to construct the pirate

box. As mentioned before, similar traceability strategies were already con-

sidered, e.g., in [BF99] (but with a restriction on how the pirate box is built),

and in [KY01a, BSW06, BW06] (for very different schemes). In the revoca-

tion setting the tracing technique of Tzeng and Tzeng [TT01] also considers

semi-valid ciphertexts as those from Equation 5.3. However, the tracing al-

gorithm by [TT01] assumes a pirate box with perfect decryption, and, more

importantly, has to choose the revoked set R by itself. Dodis, Fazio, Ki-
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ayias, and Yung [DFKY05] consider imperfect pirate boxes and adversarially

chosen revoked users in the revocation setting, but for a different scheme.

Again, we stress that the novelty of our work lies in the fact that we extend

Wee’s generic view of revocation schemes by providing an EDDH-based trace-

and-revoke variant which, in particular, generalizes (known) DDH-based and

(new) DCR-based trace-and-revoke schemes.

5.1 Preliminaries

(Binary) Relations for Hard Search Problems [Wee10, Wee11]. Fol-

lowing the definition of (binary) relations for hard search problems in [Wee10,

Wee11], let (Rpp)pp be a family of (binary) relations and let (Gpp)pp a family

of PPT randomness extractors, both indexed by a public parameter pp. A

hard-search-problem system HSP consists of two PPT algorithms:

Parameter sampling. SampP(k), given k, outputs public and secret pa-

rameters (pp, sp).

Relation sampling. SampR(pp), on input pp, outputs a (binary) relation

(u, s) ∈ Rpp .

Further, we define one-way and indistinguishability properties for HSP as

follows:

One-wayness. With overwhelming probability over all pp (that are the

first output of SampP), for all u (that are the first output of SampR), there

exists at most one s such that (u, s) ∈ Rpp .

Indistinguishability. For any PPT adversary A, the function

AdvprgA,HSP,Gpp
(k) := |Pr [A(pp, u,Gpp(s)) = 1]− Pr [A(pp, u,R) = 1] |

is negligible in k, for all pp (that are the first output of SampP), for all

(u, s)← SampR(pp), for a PPT randomness extractor Gpp , and for uniformly

sampled random element R in the co-domain of Gpp .

Threshold Extractable Hash Proof Systems. We first restate the def-

inition of threshold extractable hash proof systems (TEHPSs) from [Wee11].
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Wee explains several cryptosystems, i.e., threshold encryption, threshold sig-

natures, and RKEMs as arising from TEHPSs for hard search problems with

instances u and solution s (defined as above). We define a family of hash

functions (Hhk)hk that are indexed by a public (hash) key hk . Hhk takes as in-

put a tag t (from a tag space T ) and an instance u, and outputs a hash value

Hhk(t, u). Further, let HSP = (SampP, SampR) be a hard-search-problem sys-

tem. A TEHPS TEHPS with tag space T consists of the PPT algorithms

(Gen,Ext,Pub,Priv,TExt) as follows:

Key generation. Gen((pp, sp), k, t), given public and secret parameters

(pp, sp)← SampP(k),

security parameter k, and threshold parameter t ∈ N, generates a

master public (hash) and master secret keys (hk ,msk).

Secret-key extraction. Ext(msk , t), given the master secret key msk and

a tag t ∈ T , generates a user secret key usk t for the tag t.

Public evaluation. Pub(hk , t, r), given a public key hk , a tag t ∈ T , and

random value r, outputs a hash value

Hhk(t, u),

for (u, s) = SampR(pp; r).

Private evaluation. Priv(usk t, u), given a user secret key usk t and an in-

stance u, outputs a hash value

Hhk(t, u).

Threshold Extraction. TExt(u, (ti, τi)
t+1
i=1), given an instance u, t+ 1 tags

(ti)
t+1
i=1 ∈ (T )t+1, and t + 1 hash values (hi)

t+1
i=1, outputs a value s or

{⊥}.

For all k, t ∈ N, with overwhelming probability over all (pp, sp)← SampP(k),

for all (hk ,msk)← Gen((pp, sp), k, t), for all random values r, for all (u, s)←
SampR(pp; r), we define correctness, (t+ 1)-extraction, and t-simulation of a

TEHPS as follows:
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Correctness. For all t ∈ T , for all usk t ← Ext(msk , t), we have that

Pub(hk , t, r) = Hhk(t, u) = Priv(usk t, u).

(t + 1)-extraction. For all distinct tags (ti)
t
i=1 ∈ (T )t+1, and for all hash

values (hi := Hhk(ti, u))i, for s′ = TExt(u, (ti, hi)i), we have that (u, s′) ∈ Rpp .

t-simulation. For all distinct tags (ti)
t
i=1 ∈ (T )t, there exists a PPT

algorithm Gen′ such that distributions of

ω = (hk , usk t1 , . . . , usk tt) and ω′ = (hk ,′ usk ′t1 , . . . , usk ′tt)

are statistically close. Concretely, we have that

{ω : (hk ,msk)← Gen((pp, sp), k, t), (usk ti ← Ext(msk , ti))i}
s
≈ {ω′ : (hk ′, usk ′t1 , . . . , usk ′tt)← Gen′(pp, t1, . . . , tt)},

where
s
≈ denotes statistically indistinguishable.

5.2 An EDDH-based TEHPS Instance

In this section, we construct a new EDDH-based threshold extractable hash

proof system. As opposed to the DDH-based construction in [Wee11], where

the orders of each is group is known, the orders of elements in a subset

G ⊂ G, given in the EDDH-assumption, may not be known. Hence, we must

avoid inversion operations in the exponent. To this end, we use a technique

called “clearing the denominator” that in a similar way was used before, but

in different scenarios, e.g., in [Sho00, Wee11, ABV+12].

We specify a (binary) relation for the EDDH problem as

Rpp = {(u, s) ∈ ((G× G)×H) | u = (u1, u2), u2 = usp1 s} ,

for g ← G, for s← H, and for sp ← K, where G, G, H, and K are determined

by SampP (given below). We instantiate the HSP-algorithms SampP and

SampR as follows:
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– SampP(k), given k, fixes an abelian group G with order q and an (ef-

ficiently samplable) subgroup H ⊆ G of order n. (We assume that a

(proper) lower bound d on the smallest prime divisor of n is known.)

Further, SampP sets G ⊂ G to be efficiently samplable and K := [B],

for B := B′ · 2k, for an upper bound B′ ≥ q , where B′ is determined

by SampP. (We need that for x← K, the value x mod q is statistically

close to uniform.) SampP then samples g ← G, sp ← K and outputs

public and secret parameters as

pp := (n, g, gsp) and sp.

– SampR(pp; r), given pp and random value r ∈ K, samples s ← H and

outputs

(u, s) := ((gr, (gsp)r · s), s).

Concerning the randomness extractor, we set Gpp(s) := G(s) (for G from the

EDDH assumption). Now, we are able to construct:

An EDDH-based Threshold Extractable Hash Proof System. We

construct an EDDH-based TEHPS TEHPS = (Gen,Ext,Pub,TExt,Priv) with

tag space T := [min{d,B}] ⊂ Z, with d and B as above, from a EDDH-

based HSP system HSP = (SampP, SampR) as above. To this end, we fix a

hash function Hhk(t, u) := u
f(t)
1 , for some tag t ∈ T , for f specified during

key generation below, for (u = (u1, u2), s) ← SampR(pp; r), for randomness

r ∈ K, and for pp as the first output of SampP(k).

Key generation. Gen((pp, sp), k, t), given k, t, and parameters (pp, sp) ←
SampP(k), for pp =: (n, g, gsp), chooses a polynomial

f(x) := sp + a1x+ · · ·+ atx
t

over K, with uniform exponents (ai)
t
i=1. The output is the master

public key

hk := (n, g̃, g̃sp , (g̃ai)ti=1),

with g̃ := gv, for uniform v ← K, and master secret key

msk := (sp, (ai)
t
i=1).
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Secret-key extraction. Ext(msk , t), given msk and t ∈ T , returns usk t :=

f(t).

Public evaluation. Pub(hk , t, r), given hk , tag t ∈ T , and randomness

r ∈ K, computes

(
g̃sp ·

t∏
i=1

(g̃ai)t
i )r (

=
(
g̃f(t)

)r
= u

f(t)
1 = Hhk(t, u)

)
,

with (u, s) = SampR(k, (n, g̃, g̃sp); r).

Private evaluation. Priv(usk t, u), given usk t and u =: (u1, u2), outputs

uusk t1

(
= u

f(t)
1 = Hhk(t, u)

)
.

Threshold extraction. TExt(u, (ti, hti)
t+1
i=1), given u = (u1, u2), tags (ti)i ∈

(T )t+1, and hash values (hti)i, computes fractional Lagrangian coeffi-

cients

Li(0) =
t+1∏

j=1,i 6=j

−tj
ti − tj

such that

f(0) =
t+1∑
i=1

Li(0) · f(ti) mod q.

(The Lagrangian coefficients can be computed if all tags (ti)i are dis-

tinct. If the tags are not distinct, then we output {⊥}.) For

∆ := lcm{
∏

i,j∈[t+1],i 6=j

(ti − tj) ∈ Z},

the values ∆ · Li(0), for all i ∈ [t+ 1], are integers. Hence, we are able

to extract and output the value

(( t+1∏
i=1

h
∆Li(0)
ti

)−1 · u∆
2

)∆−1 mod n
.

We now show correctness, (t + 1)-extraction, and t-simulation of the con-

structed EDDH-based TEHPS.
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Claim 5.2.1. For all t ∈ N, TEHPS from above is correct, (t+1)-extractable,

and t-simulatable.

Proof. For all k, t ∈ N, with overwhelming probability over (pp, sp) ←
SampP(k), for all r, for all (u, s) ← SampR((n, g̃, g̃sp); r), with u = (u1, u2),

for all (hk ,msk) ← Setup((pp, sp), t), for all tags t ∈ T , and all usk t ←
Ext(msk , t), we have:

Correctness. Correctness is easy to verify, i.e., it holds that

Pub(hk , t, r) = Hhk(t, u) = Priv(usk ti , u).

(t + 1)-extraction. For all distinct tags (ti)
t+1
i=1 ∈ (T )t+1, all hash values

(hi := Hhk(ti, u))t+1
i=1(= (u

f(ti)
1 )i), for ∆ and fractional Lagrangian coefficients

Li(0) as above, TExt(u, (ti, hti)i) yields

(( t+1∏
i=1

h
∆Li(0)
ti

)−1 · u∆
2

)∆−1 mod n (∗)
=
((
u

∆f(0)
1

)−1 · (usp1 · s)∆
)∆−1 mod n

=
(
u−∆sp

1 · u∆sp
1 · s∆

)∆−1 mod n
= s.

Recall that all ∆ · Li(0), for i ∈ [t+ 1], are integers and that Lagrangian

interpolation in the exponent is used in (∗). Hence, we obtain s such that

(u, s) ∈ Rpp .

t-simulation. We give a PPT algorithm Gen′. For all distinct tags (ti)
t+1
i=1 ∈

(T )t+1, Gen′ chooses uniformly y1, . . . , yt ← K and sets f(ti) := yi, for i ∈ [t].

Further, it sets ĝ := gv, for uniform v ← K, and ĝf(0) := (gsp)v = ĝsp . Note,

that this will uniquely define a polynomial f of degree ≤ t. Let ∆ be as

above, but with tt+1 = 0. That (implicitly) determines a vector

(∆a0,∆a1, . . . ,∆at)
> := (∆ · V −1

tt+1,t1,...,tt
) · (sp, y1, . . . , yt)

>.

(That is, every ∆ai can be written as linear combination of the yi, with appro-

priate integer coefficients. Here, again, we use ∆ to “clear the denominator”

of V −1’s entries.) Subsequently, for g̃ := ĝ∆, Gen′ outputs

(n, g̃, g̃a0 , g̃a1 , . . . , g̃at) and (usk t1 , . . . , usk tt) := (y1, . . . , yt).
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Hence, the distribution of the output of Gen′ and the distribution of

(hk , (Ext(msk , ti))
t
i=1)

are statistically indistinguishable.

Now, by [Wee11, Theorems 3], we derive non-adaptively t-RKEM-IND-CPA-

secure RKEMs from the hardness of the EDDH assumption which yields new

DCR-based RKEMs.

5.3 Traceability of an EDDH-based RKEM

We start by recapping how to build RKEMs from TEHPSs (from [Wee11]).

Further, the following paragraphs, subsections, theorems, lemmas, claims,

and proofs are restated, partly adopted verbatim, from [HS14].

RKEMs from TEHPSs. Following [Wee11], we recap the construction of

an RKEM RKEM = (Gen,Ext,Enc,Dec) with identity space ID := T from a

TEHPS TEHPS = (TEHPS.Gen,TEHPS.Ext,Pub,TExt,Priv) with tag space

T and an HSP system HSP = (SampP, SampR) as follows:

Key generation. Gen(k, t), given k and revocation threshold t ∈ N, sam-

ples (pp, sp)← SampP(k) and outputs master public and master secret

keys

(mpk ,msk) := TEHPS.Gen((pp, sp), t).

Secret-key extraction. Ext(msk , id), given msk and id ∈ ID, returns

usk id ← TEHPS.Ext(msk , id).

Encapsulation. Enc(mpk ,R), given master public key mpk and R ⊆ ID
of size exactly t, chooses a random value r, samples

(u, s)← SampR(mpk ; r),

and computes hid := Pub(hk , id , r), for id ∈ R. The ciphertext is given

by

C := (R, u, (hid)id∈R),
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the key is K := Gpp(s).

Decapsulation. Dec(id , usk id , C), given usk id and C, retrieves

s := TExt(u,R∪ {id}, (hid)id∈R,Priv(usk id, u))

and outputs K := Gpp(s).

Correctness is easy to verify. For t-RKEM-IND-CPA-security, we point

to [Wee11, Theorem 3]. Hence, as a result, we derive EDDH-based RKEMs.

Trace-and-Revoke Schemes. Essentially, a trace-and-revoke system is

the connection of a revocation scheme with a tracing algorithm. As men-

tioned before, combining these is nontrivial (see [BW06, Section 4.1]). Fol-

lowing the tracing definitions in [BF99, DFKY05, BW06], we define trace-

ability of an RKEM analogously. Intuitively, we require an efficient algorithm

Trace that can, from oracle access to a stateless pirated box B, deduce the

identity of at least one party that has been involved in the construction of B.

More concretely, suppose an adversary A corrupts a number of devices (i.e.,

obtains a number of user keys usk id), and constructs a pirate box B. Suppose

that B successfully decrypts ciphertexts for an adversarially specified set R
of revoked users. Then, we want that Trace, given oracle access to B, can

deduce at least one of the identities id whose device A has corrupted. We

will also define a relaxation of traceability, dubbed sid-traceability, in which

the adversary has to commit to corrupted identities in advance, before even

seeing the public key.

(Sid-)traceable RKEMs. We say that that an adversary A is T -valid if,

in experiment ExptraceRKEM,Trace,A (defined in Figure 5.2), it always chooses t ≥ T ,

it always outputs a set R of size at most t, and it always makes at most T

Ext queries. (Note that this definition does not actually depend on Trace,

and that t is specified by A itself.) Furthermore, for given pk ,R, we define

the quality of a pirate box B output by A as

QB,R := Pr [B(C) = K | (C,K)← Enc(pk ,R)] .

An RKEM RKEM is (T, ε)-traceable if there exists a PPT algorithm Trace

(that may depend on T and ε), so that for every PPT T -valid A,

AdvtraceRKEM,A(k) := Pr
[
ExptraceRKEM,Trace,A,ε(k) = 1

]
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is negligible. RKEM is (T, ε)-traceable under selective-identity attacks (short:

(T, ε)-sid-traceable) if the analogous statement holds with respect to

Advsid-trace
RKEM,A(k) := Pr

[
Expsid-trace

RKEM,Trace,A,ε(k) = 1
]

and Expsid-trace
RKEM,Trace,A,ε, defined in Figure 5.2, in which A has to output an

identity set C of corrupted users of size at most t in advance.

Experiment ExptraceRKEM,Trace,A,ε(k)

t← A(k)

(mpk ,msk)← Gen(k, t)

(B,R)← AExt(msk ,·)(mpk)

id ← TraceB(·)(msk ,R)

if A has queried Ext(msk , id)

or QB,R < ε return 0

return 1

Experiment Expsid-trace
RKEM,Trace,A,ε(k)

(t, C)← A(k)

(mpk ,msk)← Gen(k, t)

∀id ∈ C: usk id ← Ext(msk , id)

(B,R)← A(pk , (usk id)id∈C)

id ← TraceB(·)(msk ,R)

if id ∈ C or QB,R < ε return 0

return 1

Figure 5.2: Security experiments for (sid-)traceability of an RKEM.

From Sid-traceability to Traceability. There is a trivial (yet expensive)

way to convert sid-traceable RKEMs into traceable ones. Namely, we can

simply guess the identities for which an adversary (adaptively) requests user

keys. Concretely:

Lemma 5.3.1. Let RKEM by a (T, ε)-sid-traceable RKEM with N identities.

If
(
N
T

)
is polynomial in k, then RKEM is also (T, ε)-traceable (with the same

Trace algorithm). Concretely, for every adversary A on RKEM’s traceability,
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there is an adversary A′ of roughly the same complexity on RKEM’s sid-

traceability, such that

Advsid-traceRKEM,A′(k) ≥ AdvtraceRKEM,A(k)/

(
N

T

)
.

Proof. First, A′ outputs a uniformly chosen subset C ⊆ ID of size T , and

receives a public key pk along with user keys usk id for id ∈ C. Then A′ inter-

nally simulates A, answering A’s Ext queries using the usk id . If A requests

a user secret key for an identity id 6∈ C, then A′ fails. Otherwise, A′ relays

A’s output (B,R). Since A′ chooses C independently, the event that A′ fails

is independent of A’s output. Besides, the probability that A′ does not fail

is at least 1/
(
N
T

)
, which is significant.

Relation to the Traceability of an EDDH-based RKEM. Our sec-

ond result (below) shows the ((t+1)/2, ε)-sid-traceability of an EDDH-based

RKEM based on threshold extractable hash proofs. Our corresponding trac-

ing algorithm will have a runtime that is linear in
(
N
T

)
. Thus, in that case,

(
N
T

)
must be polynomial anyway, and the loss in Lemma 5.3.1 seems acceptable.

More on Our Tracing Strategy. We propose a tracing strategy that is

similar to the tracing techniques in the revocation setting given by [TT01,

DFKY05]. (In the BE setting, similar tracing techniques are also known, e.g.,

[BW06].) However, we stress that the tracing algorithm of [TT01] assumes

a pirate box with perfect decryption, i.e., ε = 1, and chooses the revoked

set R by itself. The tracing mode in [DFKY05] also considers imperfect

decryption boxes, adversarially chosen revoked user sets, and, additionally,

allows of querying user secret keys adaptively. (This is possible since their

scheme allows to change the public key continuously even after the system

setup.) Additionally, both, i.e., [TT01, DFKY05], only address the DDH

setting. Nevertheless, we stress that the novelty of our work lies in the fact

that we propose a new generic view of trace-and-revoke schemes.

5.3.1 (1, 2/3)-Sid-traceability of RKEM

We are now ready to state our second result; i.e., we show the traceability

of RKEM which is an EDDH-based RKEM as defined and constructed in
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Section 5.2. (This immediately translates to an EDDH-based trace-and-

revoke scheme.) As a warmup, we first showcase the (1, 2/3)-sid-traceability

of RKEM.

Informal Proof Strategy. To explain the overall idea of our tracing

algorithm, observe that the decryption of a ciphertext generated by Enc does

not depend on which user key was used to decrypt. (This is necessary for

correctness.) Hence, we cannot expect that a pirate box B can be traced by

feeding it valid ciphertexts generated by Enc. Instead, we will feed B random

ciphertexts of the form

CRpv = (R, u1, (u
f(id)
1 hzid )id∈R, u

f(0)
1 · hz0) (5.4)

for uniform h ∈ H and zid , z0. We will show that for such random ciphertexts,

the result of the (honest) decryption depends on the identity of the used user

key usk id . Furthermore, a suitable reduction to the EDDH assumption will

show that honestly generated ciphertexts are indistinguishable from random

ones. Hence, Trace can go through the set of all possible identities id , and

check how often B(CRpv) coincides with Dec(id , usk id , C
R
pv). In case B outputs

the same as Dec with probability close to 2/3, chances are that we have found

the pirate identity. We can formalize these claims:

Theorem 5.3.2 ((1, 2/3)-sid-traceability of RKEM). Assuming the EDDH

assumption, we have that the RKEM RKEM = (Gen,Ext,Enc,Dec), with iden-

tity space ID, polynomial number N of identities, and key derivation function

G(s) = s, is (1, 2/3)-sid-traceable. The corresponding tracing algorithm Trace

runs for O(kN logN) steps, and makes O(k logN) oracle queries. Con-

cretely, for every T -valid adversary A, there is an EDDH adversary D, such

that ∣∣AdvtraceRKEM,A(k)
∣∣ ≤ O(2−k),

for all k that satisfy ∣∣AdveddhG,H,D(k)
∣∣ ≤ 1/9− εG,

for negligible εG.

Proof. The tracing algorithm. First, TraceB(·)(msk ,R) approximates for

every identity id ∈ ID the random quality

RQid
B,R := Pr

[
B(CRpv) = Dec(id , usk id , C

R
pv)
]
,
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where the probability is over B’s random coins and random CRpv as in (5.4).

Concretely, say that for each id 6∈ R, we check

B(CRpv) = Dec(id , usk id , C
R
pv)

for O(k · logN) independent values of CRpv. Then a standard argument (i.e.,

Hoeffding’s inequality and a union bound) shows that we obtain approxima-

tions R̃Q
id

B,R of RQid
B,R, such that

for all id :
∣∣∣R̃Q

id

B,R − RQid
B,R

∣∣∣ < 1/9, (5.5)

except with probability O(2−k). After having obtained all these R̃Q
id

B,R,

Trace outputs an identity with maximal R̃Q
id

B,R. The whole process takes

O(Nk logN) steps and (if we re-use B-queries across different identities)

O(k logN) B-queries.

Why tracing works. To analyze Trace, consider an adversary A in the

1-sid-traceability experiment. We assume without loss of generality that A

always requests exactly one user key. Let id∗ be the corresponding identity.

Furthermore, we assume that the set R that A finally outputs contains ex-

actly t identities, which we denote by id∗1, . . . , id
∗
t . We finally assume id∗ 6∈ R.

(If id∗ ∈ R, then any pirate box B that is able to decrypt with significant

probability would contradict RKEM’s semantic security.) We denote by B
the pirate box that A eventually outputs.

Claim 5.3.3. There is a EDDH distinguisher D whose runtime is essentially

that of the sid-traceability experiment with A, such that

QB,R − RQid∗

B,R = AdveddhG,H,D(k). (5.6)

Proof. On challenge input

(n = ord(H), g, u1, g
y, Z = uy1h

b),

where either b = 0 or b = 1, D runs the first stage of the sid-traceability

experiment to obtain t and C = {id∗} from A. It then constructs an RKEM
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public key as follows. First, D re-randomizes its input to obtain t tuples

(gy1 , Z1 := uy11 h
bz1), . . . , (gyt , Zt := uyt1 h

bzt)

with

gyi := (gy)αigβi and Zi := Zαiuβi1 = uyαi1 hbαiuβi1 = uyi1 h
bαi ,

for i ∈ [t] and exponents αi, βi that are (statistically close to) uniform modulo

n and modulo q. Hence, the yi and zi := αi mod n, for all i, are indepen-

dently uniform. Now, choose an arbitrary set {id1, . . . , id t} ⊂ T of t distinct

identities that does not contain id∗ and sample y∗ ← K. We (implicitly)

define f(x) := a0 +a1x+ · · ·+atx
t as the unique ≤ t-degree polynomial over

K that satisfies f(id i) = yi, for i ∈ [t], and f(id∗) = y∗. Note that D cannot

directly compute f . However, D does know id∗ and all id i, as well as all

ĝyi = ĝf(idi) and ĝy
∗

= ĝf(id∗), with ĝ := gv, for uniform exponent v). Hence,

for ∆ := lcm{
∏

i,j∈[t+1],i 6=j(id i− id j) ∈ Z}, with idt+1 := id∗, D can compute

(ĝ∆a0 , . . . , ĝ∆at)> :=
(

∆ · V −1
id1,...,idt,id

∗

)
◦ (ĝy1 , . . . , ĝyt , ĝy

∗
)>

without modular inversion in the exponent. Thus, for g̃ := ĝ∆, D can set

up a public key pk := (n, g̃, (g̃ai)ti=0) for A, and run the next stage of the

1-sid-traceability experiment (using y∗ as a user key for identity id∗). Now,

D obtains a set R = {id∗1, . . . , id∗t} of t revoked identities and a pirate box

B from A. Consider the following (t + 1) × (t + 1)-matrix M = (Mi,j) over

K given by

M := V(id∗1,...,id
∗
t ,id
∗)·V −1

(id1,...,idt,id
∗), so that M ·


f(id1)

...

f(id t)

f(id∗)

 =


f(id∗1)

...

f(id∗t )

f(id∗)

 . (5.7)

Note that M only depends on (and can be computed efficiently from) the id i,

the id∗i , and id∗. Furthermore, since all respective identities in {id i}i∪{id∗}
and {id∗i }i∪{id∗} are distinct, M is invertible. Now, D computes the vector

((Z ′1)∆, . . . , (Z ′t)
∆, (Z ′t+1)∆)> := (∆ ·M) ◦ (Z1, . . . , Zt, Zt+1)>, (5.8)
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with Zt+1 := uy
∗

1 . With these t + 1 values (Z ′i)
∆ and t + 1 identities in

{id∗i }i ∪ {id∗}, we are able to obtain

(Z ′0)∆ := (u
f(0)
1 hf

′(0)·b)∆

through Lagrangian interpolation (without modular inversion in the expo-

nent), with implicitly defined ≤ t-degree polynomial f ′ such that f ′(id∗i ) = zi,

for all i, and f ′(id∗) = 0. Intuitively, f ′ is the “h-exponent” of the Zi, resp.

Z ′i. Finally, D hands a ciphertext

C := (R, u1, (Z
′
1)∆, . . . , (Z ′t)

∆, (Z ′0)∆ · s),

with (Z ′0)∆ as above and (Z ′i)
∆ as in (5.8, for i ∈ [t], and uniform s ∈ H)

to B to obtain a potential decryption K. If K = Dec(id∗, y∗, C), then D

outputs 1, else 0. This completes our description of D.

First observe that when b = 0, Zi = uyi1 = u
f(idi)
1 for all i, then (5.7) implies

Z ′i = u
f(id∗i )
1 for all i. Hence, C is distributed exactly like an honest encryption

Enc(pk ,R), and by correctness of RKEM, we have

Pr
[
D(1k, n, g, u1, g

y, Z) = 1 | Z = uy1
]

= Pr [B(C) = K | (C,K)← Enc(pk ,R)]

= QB,R, (5.9)

Conversely, assume b = 1, we have Zi = uyi1 h
zi , for all i ∈ [t], and Zt+1 := uy

∗

1 .

Consider the (implicitly) defined degree-≤ t polynomial f ′ with f ′(id i) = zi
for i ∈ [t] and f ′(id∗) = 0. In other words, Zi = uyi1 h

f ′(idi). By the interpola-

tion properties of M , this sets Z ′i = uyi1 h
f ′(id∗i ) and thus Z ′0 = u

f(0)
1 hf

′(0). The

ciphertext now includes t values (Z ′i)
∆ and a value (Z ′0)∆ ·s, in which the uni-

form value s ∈ H blinds hf
′(0). That means that, information-theoretically,

the adversary sees t evaluations f ′(id∗i ) of a polynomial f ′ that has t de-

grees of freedom (through the zi). Hence, D prepares a random ciphertext

C distributed exactly as CRpv from (5.4). Thus,

Pr
[
D(1k, n, g, u1, g

y, Z) = 1 | Z = uy1h
]

= Pr
[
B(CRpv) = Dec(id∗, usk id∗ , C

R
pv)
]

= RQid∗

B,R. (5.10)
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Taking (5.9) and (5.10) together shows (5.6) as desired.

Claim 5.3.3 essentially says that the pirate box B decrypts even malformed,

random ciphertexts just as decryption with the user key usk id∗ for the traitor

identity id∗ would. It remains to prove that this decryption really uniquely

identifies the traitor id∗.

Claim 5.3.4. For any fixed pk , id∗,R, and any identity id ′ 6∈ R∪ {id∗}, we

have

RQid ′

B,R ≤ 1−QB,R + εG, (5.11)

for negligible εG.

Proof. We will prove that for any pk , id∗,R, id ′ as above, we have that

Pr
[
Dec(id∗, usk id∗ , C

R
pv) = Dec(id ′, usk id ′ , C

R
pv)
]

is negligible, (5.12)

where the probability is over a random CRpv as in (5.4). From (5.12), we can

deduce (5.11) by a union bound on the events that

B(CRpv) = Dec(id∗, usk id∗ , C
R
pv)

and

Dec(id∗, usk id∗ , C
R
pv) 6= Dec(id ′, usk id ′ , C

R
pv).

To show (5.12), recall that (honest) decryption under secret key usk id∗ com-

putes K through a Lagrange interpolation in the exponent and postprocess-

ing. In particular, observe that upon input a random ciphertext

CRpv = (R, u1, (u
f(id)
1 hzid )id∈R, u

f(0)
1 hz0),

decryption will output Geddh
G,H (hz0−f

∗(0)), for the unique degree-≤ t polynomial

f ∗ with f ∗(id) = zid , for id ∈ R and f ∗(id∗) = 0. (We have f ∗(id∗) = 0 since

decryption uses uusk id∗
1 = uusk id∗

1 · h0 for interpolation.) Analogously, decryp-

tion under secret key usk id ′ yields Geddh
G,H (hz0−f

′(0)), for the unique polynomial

f ′ with f ′(id) = zid , for id ∈ R and f ′(id ′) = 0. Since id∗ 6= id ′, we have

f ∗(0) 6= f ′(0), except with probability 1/n. Thus, by the pseudorandomness

of Geddh
G,H , it follows that

Geddh
G,H (hz0−f

∗(0)) 6= Geddh
G,H (hz0−f

′(0)),
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except with negligible probability εG. This shows the claim.

Claim 5.3.4 upper bounds the probability that the decryption under the

“wrong” identity yields the “right” result by accident. In particular, if we

take QB,R ≥ 2/3 in (5.11) and (5.6), we get

RQid∗

B,R − RQid ′

B,R ≥ 1/3− AdveddhG,H,D(k)− εG for all id ′ 6∈ R ∪ {id∗}.

For the approximations R̃Q
id

B,R of RQid
B,R computed by Trace, this implies

R̃Q
id∗

B,R − R̃Q
id ′

B,R ≥ 1/9− AdveddhG,H,D(k)− εG for all id ′ 6∈ R ∪ {id∗},
(5.13)

with overwhelming probability over the approximations. In particular, (5.13)

implies that id∗ maximizes R̃Q
id

B,R for sufficiently large k. Hence, if QB,R ≥
2/3, and AdveddhG,H,D(k) ≤ 1/9− εG, and all the approximations are accurate in

the sense of (5.5), then Trace outputs id∗.

5.3.2 ((t+ 1)/2, ε)-Sid-traceability of RKEM

Why our Tracing Strategy for T = 1 does not Work. First, observe

that our concrete tracing strategy from the proof of Theorem 5.3.2 fails if A

requests multiple user keys. For instance, A could use multiple user keys to

distinguish valid from random ciphertexts (which would break Claim 5.3.3).

Concretely, A could request two keys usk id1 and usk id2 and let B first check if

a given ciphertext decrypts to the same value under both usk id1 and usk id2 .

If the decryptions do not match, then B immediately fails. (Recall that our

proof uses the fact that random ciphertexts decrypt differently under different

keys.) Such a box B would be useless to our tracing algorithm Trace, since

Trace feeds B only random ciphertexts. (See [KY01b] for more details.)

How to adapt our strategy. A natural way to adapt our strategy —

this essentially follows the “black-box confirmation argument” from [BF99]

— would seem as follows. Given a set I ⊆ ID of identities, we can construct

“pseudo-valid ciphertexts” of the form

CR,Ipv = (R, u1, (u
f(id)
1 hf

′(id))id∈R, u
f(0)
1 hf

′(0)), (5.14)
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for f ′(x) ∈ Zq[x] uniform of degree ≤ t, but subject to f ′(id) = 0 for id ∈ I.

We will also define the random quality RQI
B,R of a box B relative to a given

revoked set R, and an identity set I ⊆ ID:

RQI
B,R := Pr

[
B(CR,Ipv ) = Dec(id , usk id , C

R
pv)
]
, (5.15)

for some id ∈ I. Intuitively, ciphertexts CR,Ipv look consistent from the point of

a pirate box that only knows user keys for identities in I. Hence, our tracing

strategy for a larger number T of traitors will be as follows. We iterate over

all
(
N
T

)
identity subsets I ⊆ ID of size T , and approximate RQI

B,R. If the

approximation indicates that RQI
B,R ≥ ε, then we have a candidate for the

set C of traitors. Unfortunately, there may be many candidates, and not all of

them contain only traitors. To filter out one identity that surely is a traitor,

we remove identities from I, one at a time. If the quality RQI
B,R drops, we

must have removed a traitor. (If the removed identity was no traitor, then

B would not have noticed.) Again, this tracing strategy is similar to that

of [BF99, NNL01, KY01a, TT01, DFKY05, BSW06]. More formally:

Theorem 5.3.5 (((t+1)/2, ε)-sid-traceability of RKEM). Assuming EDDH,

RKEM is (T, ε)-sid-traceable for every T ≤ (t + 1)/2 for which
(
N
T

)
is poly-

nomial, and every significant ε. The corresponding tracing algorithm Trace

runs for O(k
(
N
T

)
/ε2) steps, where N denotes the number of identities in the

system. Concretely, for every T -valid adversary A, there are adversaries

D,E, F , such that ∣∣AdvtraceRKEM,A(k)
∣∣ ≤ O(2−k),

for all k that satisfy

∣∣AdveddhG,H,D(k)
∣∣+( T∑

i=2

(
N

i

))
·
∣∣AdveddhG,H,E(k)

∣∣+(N−T ) ·
∣∣AdveddhG,F (k)

∣∣ ≤ ε

3T
.

Proof. Fix T and ε = ε(k) as above.

The tracing algorithm. First, TraceB(·)(msk ,R) iterates over all identity

sets I ⊆ ID of size T and approximates the random quality RQI
B,R (as

defined in (5.15)). Again, a standard argument shows that with O(k/ε2)

B-queries for each I, we obtain approximations R̃Q
I

B,R such that

for all I:
∣∣∣R̃Q

I

B,R − RQI
B,R

∣∣∣ < ε

3T
, (5.16)
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except with probability O(2−k). If no I with R̃Q
I

B,R > ε − ε/(3T ) is found,

Trace halts with output “fail”. Otherwise, let I = {id1, . . . , idT} be such an

I, and write Ii := {id i, . . . , idT}. Now Trace approximates the values RQIi
B,R

(for 1 ≤ i ≤ T ) as in (5.16). Finally, Trace outputs id i for the smallest i that

meets ∣∣∣R̃Q
Ii

B,R − R̃Q
Ii+1

B,R

∣∣∣ > ε

T
(5.17)

(or idT if (5.17) holds for no i < T ).

Why tracing works. To analyze Trace, consider an adversary A in the

(T, ε)-sid-traceability experiment. We assume without loss of generality that

A always requests a set C of exactly T user keys, and finally outputs a set

R = {id∗1, . . . , id∗t}, along with a pirate box B.

Our first claim essentially states that tracing does not output “fail” (except

with small probability):

Claim 5.3.6. There is a EDDH distinguisher D whose runtime is essentially

that of the sid-traceability experiment with A, such that

QB,R − RQCB,R = AdveddhG,H,D(k). (5.18)

Proof. We proceed as in the proof of Claim 5.3.3. First, D obtains C from

A. Then D prepares a public key pk and user keys (usk id)id∈C for A, and a

ciphertext C for B, such that

• if b = 0, then C is an honest encryption, and

• if b 6= 0, then C is distributed as CR,Cpv .

(Note that Claim 5.3.3 can be seen as the special case C = {id∗}.) Finally,

D outputs 1 if and only if B(C) = Dec(id , usk id , C) for some id ∈ C. The

analysis of D is analogous to that from Claim 5.3.3.

Next, we show that a pirate box B does not notice if we remove an identity

id ′ 6∈ C from the set I in CR,Ipv :

Claim 5.3.7. There is a EDDH distinguisher E whose runtime is essentially

that of the sid-traceability experiment with A, such that

RQI
B,R − RQ

I\{id ′}
B,R =

(
T∑
i=2

(
N

i

))
· AdveddhG,H,E(k), (5.19)
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for all I ⊆ ID with 2 ≤ |I| ≤ T , and every id ′ ∈ I \ C.

Proof. E runs A to obtain C, and then guesses I and id ′ as above uniformly.

Then, E prepares a public key pk and a ciphertext C for A, such that

• D knows the user keys usk id for all id ∈ C ∪ I \ {id ′},
• if b = 0, then C is distributed as CR,Ipv , and

• if b 6= 0, then C is distributed as C
R,I\{id}
pv .

This can be done analogously to the proof of Claim 5.3.3. We stress, however,

that at this point, we use that T ≤ (t+1)/2 to fix the implicitly defined poly-

nomial f at all id ∈ C ∪ I. Finally, D outputs 1 iff B(C) = Dec(id , usk id , C)

for some id ∈ I \ {id ′}. The analysis of D is again analogous to that from

Claim 5.3.3, and (5.19) follows through an averaging argument.

Finally, we show that if tracing ends up with a singleton set I = {id} (such

that the random quality RQI
B,R still is high), then we must have id ∈ C.

Claim 5.3.8. There is a EDDH adversary D whose runtime is essentially

that of the sid-traceability experiment with A, such that

RQ
{id ′}
B,R = (N − T ) · AdveddhG,H,D(k), (5.20)

for all id ′ ∈ ID \ (C ∪ R).

Proof. D obtains C from A, and then guesses id ′ ∈ ID\C uniformly. Then D

interprets its EDDH challenge as g, gf(0), u1, u
f(0)
1 hb, and forms a public key

pk for A (with otherwise uniform and known f) as in the proof of Claim 5.3.3.

Now observe that the distributions CRpv and C
R,{id ′}
pv are identical as soon as

id ′ 6∈ R. (To see this, note that a uniform f ′ subject to f ′(id ′) = 0 still has t

degrees of freedom.) Hence, D can generate a ciphertext C with u1 as above

and u2 = u
f(0)
1 hbs for uniform s ∈ H and uniformly and independently dis-

tributed τi. Regular decryption would decrypt C to Geddh
G,H (hbs) under usk id ′ .

So whenever B(C) outputs K = Geddh
G,H (hbs), D can solve its own EDDH chal-

lenge (by comparing K to Geddh
G,H (s)), and through an averaging argument, we

obtain (5.20).

Finishing Up. We can now put the pieces together and analyze the tracing

algorithm Trace. Let us assume that all approximations are suitably close
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in the sense of (5.16). Then, by Claim 5.3.6, and the assumption about B,

Trace will not output “fail” (except with negligible probability). Besides,

every time Trace finishes because (5.17) holds for an i, then Claim 5.3.7 (in

contrapositive form) says that id i ∈ C really must be a traitor. Finally, if no

i < T meets (5.17), then RQ
{idT }
B,R must be significant. Claim 5.3.8 implies

that then, idT ∈ C is a traitor.

5.3.3 Potential Generalizations of Our Tracing Result

There are several dimensions in which one might want to improve our tracing

result. We will comment on how our result can be generalized (and when a

generalization seems problematic).

Full (Instead of Sid-)traceability. In case of a polynomial number of

identities (which is necessary for efficient tracing anyway), Lemma 5.3.1 im-

mediately yields:

Corollary 5.3.9 (((t + 1)/2, ε)-traceability of RKEM). Assuming EDDH,

RKEM is (T, ε)-traceable for every T ≤ (t+1)/2 for which
(
N
T

)
is polynomial,

and every significant ε.

Generalization to Wee’s Factoring-based RKEM. [Wee11] also con-

structs an RKEM RKEMFact whose t-RKEM-IND-CPA-security is based on

the factoring assumption. (For convenience, we have reproduced RKEMFact

in Corollary 5.3.3.) Conceptually, RKEM and RKEMFact are very similar.

RKEMFact works over a group QR+
N ⊆ Z∗N of size ϕ(N)/4 for a Blum integer

N . In particular, ciphertexts are of the form

C = (R, u, (uf(id))id∈R),

for some degree-≤ t polynomial f(x) = a0 + a1x + · · · + atx
t ∈ Zϕ(N)/4[X]

implicitly given in the public key. With RKEMFact, however, we always have

f(0) = a0 = 2−(t+1)k mod ϕ(N)/4.

Moreover, decryption of an honestly generated ciphertext yields BBSN(s) for

the BBS pseudorandom generator [BBS82] and s = u−2k . These modifica-

tions (compared to RKEM) enable a reduction to the factoring assumption;

however, they also have a number of other effects.



5.3. Traceability of an EDDH-based RKEM 113

Specifically, given a potential raw key s, we can always check if s is the correct

decryption of a (consistent) ciphertext by checking if s2k = u holds. This also

gives a way to distinguish completely random ciphertexts CRpv from honestly

generated ciphertexts. (Pseudo-valid ciphertexts CRpv yield uniform values s

upon decryption, which can be recognized.) This leads to problems during

the proof of Claim 5.3.3. Hence, we do not even know if Wee’s factoring-based

scheme RKEMFact is (1, 2/3)-sid-traceable.

Now, we restate Wee’s construction based on the hardness of factoring.

(Again, this construction is similar to the EDDH-based construction RKEM.)

Wee’s Factoring-based RKEM [Wee11]. The factoring-based RKEMFact

of Wee consists of four PPT algorithms (Gen,Ext,Enc,Dec) as follows:

Key generation. Gen(k, t) chooses a Blum integer N = PQ, along with a

uniform generator g of the group QR+
N of signed quadratic residues.2

Gen then chooses uniform exponents ai ∈ Zϕ(N)/4 (for i ∈ [t]) and sets

f(x) := 2−(t+1)k + a1x+ . . . atx
t mod ϕ(N)/4.

The output is

pk := (N, g, (gai2
(t+1)k

)ti=1) and msk := (P,Q, (ai)
t
i=1).

Key extraction. Ext(msk , id), for id ∈ [
√
N/4], returns

usk id := f(id) mod ϕ(N)/4.

Encapsulation. Enc(pk ,R) chooses an exponent3 r ← ZdN/4e, and com-

2If we write ZN = {−(N − 1)/2, . . . , (N − 1)/2}, and denote with JN ⊆ ZN all
elements with Jacobi symbol 1, then QR+

N = {|x| : x ∈ JN}. When letting x ·y := |xy| for
x, y ∈ QR+

N , then QR+
N is isomorphic to the group QRN of quadratic residues modulo N .

In particular, |QR+
N | = ϕ(N)/4. However, unlike QRN , QR+

N is efficiently recognizable,
which can be advantageous in some cases. See [HK09] for details and further references.

3While Enc cannot choose a uniform exponent via r ← Zϕ(N)/4, choosing r ← ZdN/4e
is statistically close.
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putes

u := gr2
(t+1)k

, s := gr2
tk (

= u2−k = uf(0)·2tk),
hid :=

(
g ·

t∏
i=1

(
gai2

(t+1)k
)idi)r (

= uf(id)
)
.

(for id ∈ R). Ciphertext is

C := (R, u, (hid)id∈R),

and key is K := BBSN(s), where BBSN(s) is the BBS pseudorandom

generator [BBS82] applied to s and modulo N .

Decapsulation. Dec(id , usk id , C), with usk id = f(id) and C as above, sets

hid := uf(id)·2(t+1)k

and then retrieves

s := uf(0)·2tk

from the hid through Lagrange interpolation in the exponent. Note that

this has to be done via a “gcd in the exponent” argument (see [Sha81]),

since decryption cannot compute the fractional Lagrange coefficients

directly. (This also explains the slightly tedious additional 2tk-factor in

the exponent; we refer to [Wee11] for details.)



Chapter 6

Conclusion and Open Problems

In this work, we consider three aspects of cryptographic building blocks and

transformations. We give a brief conclusion.

Confined Guessing. In the digital signature context, we present the con-

cept of confined guessing. This technique is developed two-staged. First, we

define the cryptographic building block tag-based signatures (where a sig-

nature additionally includes a tag) together with a milder security notion

in comparison to the standard security notion for signatures. (The idea is

that this milder security notion can easier be achieved by tag-based signa-

ture instantiations.) Secondly, we give a cryptographic transformation from

several only mildly secure tag-based signatures to standard secure signatures

with compact parameters. Within the transformation, we make use of the

confined guessing concept. Concretely, we partition the tag space in the

transformation such that there exist a large enough (but not too large) set.

From this confined set, we are able to guess tags with significant probability

which is helpful in the transformation. A downside of the transformation

might be that it possesses a large loss. Hence, an open problem would be to

reduce this loss.

(Almost) Tight IBE security. We consider and present a tight transfor-

mation in the IBE context. (IBE can be seen as an extended form of encryp-

tion, where any public identifier and some public parameter suffice to encrypt

a message.) Common IBE security notions usually involve only one instance

and one chiphertext. Real-world scenarios, however, often consider multiple

115
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instances with multiple ciphertexts. It is known that one can trivially trans-

form standard secure IBE systems in the one-instance, one-ciphertext setting

to the multi-instance, multi-ciphertext case. Unfortunately, within this cryp-

tographic transformation, the security guarantees degrade in the number of

instances and ciphertexts. In [CW13], Chen and Wee propose an (almost)

tightly secure IBE system in the one-instance, one-ciphertext setting. We

extend their underlying building block and propose an (almost) tightly se-

cure IBE in the multi-instance, multi-ciphertext setting. Concretely, we give

a cryptographic transformation from the security of our IBE to the secu-

rity of the underlying building block in the multi-instance, multi-ciphertext

setting. Concerning open problems, we mention that in the reduction, we

need an additional assumption to prove a very strong form of IBE security

in the multi-instance, multi-ciphertext setting. An open problem would be:

is it possible to extend the underlying building block further to prove an IBE

strongly secure in multi-instance, multi-ciphertext setting without relying on

the additional assumption?

A Generic View on Trace-and-Revoke Systems. Trace-and-revoke sys-

tems yield a strong cryptographic tool to fight piracy in the area of content

protection. We give a new generic view of trace-and-revoke instantiations un-

der a simple generic assumption. Concretely, we first extend a generic work

by Wee [Wee11] by giving a slightly different generic view. Essentially, we

connect a generic assumption due to Hemenway and Ostrovsky [HO12] with

the work from Wee. In particular, this yields a new generic view of revoca-

tion systems. Secondly, we show that the emerged revocation instantiations

are traceable (i.e., they allow a form of catching traitors). Hence, we derive

trace-and-revoke instantiations. In particular, this yields a new generic view

on trace-and-revoke instantiations under a simple generic assumption. Put

together, we give a new generic view of trace-and-revoke systems that gen-

eralizes known and new trace-and-revoke instantiations. An open problem

would be to generalize our result further; e.g., a trace-and-revoke instantia-

tion under the factoring assumption is currently, to the best of our knowledge,

unknown. (In particular, Wee provides factoring-based revocation instantia-

tions, but it is unknown if those instantiations are traceable.)
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[Cor00] Jean-Sébastien Coron. On the exact security of full domain hash. In

Mihir Bellare, editor, CRYPTO 2000, volume 1880 of LNCS, pages

229–235. Springer, August 2000.

[CPP05] Hervé Chabanne, Duong Hieu Phan, and David Pointcheval. Public



References 121

traceability in traitor tracing schemes. In Ronald Cramer, editor, EU-

ROCRYPT 2005, volume 3494 of LNCS, pages 542–558. Springer, May

2005.

[CS99] Ronald Cramer and Victor Shoup. Signature schemes based on the

strong RSA assumption. In ACM CCS 99, pages 46–51. ACM Press,

November 1999.

[CW13] Jie Chen and Hoeteck Wee. Fully, (almost) tightly secure IBE

and dual system groups. In Ran Canetti and Juan A. Garay, edi-

tors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 435–460.

Springer, August 2013.

[CW14] Jie Chen and Hoeteck Wee. Dual system groups and its applications —

compact HIBE and more. Cryptology ePrint Archive, Report 2014/265,

2014. http://eprint.iacr.org/2014/265.

[Del07] Cécile Delerablée. Identity-based broadcast encryption with constant

size ciphertexts and private keys. In Kaoru Kurosawa, editor, ASI-

ACRYPT 2007, volume 4833 of LNCS, pages 200–215. Springer, De-

cember 2007.

[DF02] Yevgeniy Dodis and Nelly Fazio. Public key broadcast encryption for

stateless receivers. In Joan Feigenbaum, editor, Digital Rights Manage-

ment Workshop, volume 2696 of Lecture Notes in Computer Science,

pages 61–80. Springer, 2002.

[DF03] Yevgeniy Dodis and Nelly Fazio. Public key trace and revoke scheme

secure against adaptive chosen ciphertext attack. In Yvo Desmedt,

editor, PKC 2003, volume 2567 of LNCS, pages 100–115. Springer,

January 2003.

[DFKY05] Yevgeniy Dodis, Nelly Fazio, Aggelos Kiayias, and Moti Yung. Scalable

public-key tracing and revoking. Distributed Computing, 17(4):323–

347, 2005.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptogra-

phy. IEEE Transactions on Information Theory, 22(6):644–654, 1976.
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