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Abstract

Functional encryption is a novel paradigm for public-key encryption that enables both fine-grained

access control and selective computation on encrypted data, as is necessary to protect big, complex

data in the cloud. In this thesis, I provide a brief introduction to functional encryption, and an overview

of my contributions to the area.
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Part I

Advances in Functional Encryption

1 Introduction

Recent computing and technological advances such as the ubiquity of high-speed network access and

the proliferation of mobile devices have had a profound impact on our society, our lives and our behavior.

In the past decade, we have seen a substantial shift towards a digital and paperless society, along with a

migration of data and computation to the cloud. Storing data in the cloud offers tremendous benefits:

easy and convenient access to the data and reliable data storage for individuals, as well as scalability

and financial savings for organizations. On the flip side, storing data remotely poses an acute security

threat as these data – government, financial, medical records as well as personal information exchanged

over email and social networks – are outside our control and could potentially be accessed by untrusted

parties. Without taking measures to protect our data, we are at risk of devastating privacy breaches and

living under digital surveillance in an Orwellian future.

However, traditional public-key encryption lacks the expressiveness needed to protect big, complex

data:

(i) First, traditional encryption only provides coarse-grained access to encrypted data, namely, only a

single secret key can decrypt the data. Corporate entities want to share data with groups of users

based on their credentials. Similarly, individuals want to selectively grant access to their personal

data on social networks and Google Docs.

(ii) Second, access to encrypted data is “all or nothing”: one either decrypts the entire plaintext or

learns nothing about the plaintext. In applications such as data-mining on encrypted medical

records or social networks, we want to provide only partial access and selective computation on

the encrypted data, for instance, restricted classes of statistical or database queries.

Ideally, we want to encrypt data while enabling fine-grained access control and selective computa-

tion; that is, we want control over who has access to the encrypted data and what they can compute.

Such a mechanism would reconcile the conflict between our desire to outsource and compute on data

and the need to protect the data.

2 Functional Encryption

Over the past decade, cryptographers have put forth a novel paradigm for public-key encryption [140,

89, 33, 131] that addresses the above goal: (i) attribute-based encryption (ABE), which enables fine-grain

access control, and (ii) its generalization to functional encryption, which enables selective computation.

• In attribute-based encryption (ABE), encrypted data are associated with a set of attributes and

secret keys with policies that control which ciphertexts the key can decrypt. For instance, a digital
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content provider can issue keys that decrypt basic and premium channel contents on weekdays

and only basic ones on weekends.

• In functional encryption, a secret key enables a user to learn a specific function of the encrypted

data and nothing else. For example, decrypting an encrypted image with a cropping key will reveal

a cropped version of the image and nothing else about the image.

A salient feature of both attribute-based and functional encryption is that there are many possible

secret keys with different decryption capabilities. Moreover, the keys are resilient to collusion attacks,

namely any group of users holding different secret keys learns nothing about the plaintext beyond what

each of them could individually learn. Together, attribute-based and functional encryption constitute

a crisp generalization of several advanced notions of encryption, such as broadcast and identity-based

encryption as well as searching on encrypted data; indeed, many advances in public-key encryption over

the past decade can be viewed as special cases of attribute-based and functional encryption.

medical

records

doctor

receptionist

drug company
+ collusion

As a concrete application, consider an encrypted

database of medical records. With functional encryp-

tion, we can create customized keys for a doctor to

obtain medical records for her patients, for a recep-

tionist to retrieve appointment history, and for drug

companies to collect anonymized aggregate statistics.

On the other hand, even a collusion of a receptionist

and a drug company should not able to compromise

any individual medical record.

State of the art

The fundamental goals in the study of attribute-based and functional encryption are two-fold: (i) to

build expressive schemes that support a large class of policies and functions; and (ii) to obtain efficient

instantiations based on widely-believed intractability of basic computational problems.

The simplest example of attribute-based encryption (ABE) is that of identity-based encryption (IBE),

where both the ciphertext and secret key are associated with identities i.e. bit strings, and decryption is

possible exactly when the identities are equal. Starting with identity-based encryption (IBE), substantial

advances in ABE were made over the past decade showing how to support fairly expressive but

nonetheless limited subset of policies, culminating most recently in schemes supporting any policy

computable by general circuits [86, 34].

In addition, we have a wide spectrum of techniques for efficient IBE and ABE that yields various

trade-offs between efficiency, expressiveness, security and intractability assumptions. The specific

assumptions in use may be broadly classified into two categories: (i) pairing-based, such as variants of

the Diffie-Hellman problem over bilinear groups, and (ii) lattice-based, notably the learning with errors

(LWE) assumption.

Beyond ABE, our understanding of functional encryption is much more limited. The only efficient

schemes we have are for very simple functionalities related to computing an inner product [106]. In
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functional encryption [68, 85]

predicate encryption [88]

ABE [86, 34]
prior

Figure 1: Advances in attribute-based and functional encryption since 2012. The white region refers to ABE and

functionalities for which we have efficient instantiations under standard assumptions; the grey region refers to

functionalities beyond ABE for which our understanding is much more limited.

a recent break-through work, Garg et al. [68] gave a beautiful construction of functional encryption

for general circuits; however, the construction relies on “multi-linear maps”, for which we have few

candidates, along with complex intractability assumptions which are presently poorly understood. In

contrast, if we consider collusions of a priori bounded size, a weaker guarantee that is still meaningful

for many applications, then it is possible to obtain functional encryption for general circuits under a

large class of standard assumptions.

Along with these cryptographic advances, the community has also made a greater push towards

implementation, prototypes and deployment of attribute-based and functional encryption: several

IBE schemes are now standardized in RFC 5091; the CHARM project provides a Python framework for

rapidly prototyping cryptosystems and includes implementations of several IBE and ABE schemes; the

SHARPS project explores the use of ABE for protecting health-care data; the Mylar project presents a web

application platform that uses ABE to provide fine-grained access to encrypted data.

3 My Contributions

My research over the past five years addresses the fundamental goals of building (i) expressive schemes

that support a large class of policies and functions, along with (ii) efficient instantiations, both based

on widely-believed intractability of basic computational problems. In particular, my research has

significantly advanced the state-of-the-art vis-a-viz expressiveness (c.f. Figure 6).

Expressiveness. In joint work with Gorbunov and Vaikuntanathan [86], I presented the first attribute-

based encryption scheme that supports the class of all circuits (i.e. polynomial-time computable

policies), resolving a central open problem in the area. Our scheme resists collusion attacks, as long

as a well-studied problem in lattices remains intractable —which is widely believed to be true, even

against quantum computers— and provides further evidence of the power of lattice-based cryptography.

Our work also provided the critical building block towards a resolution of the 25-year-old open problem

of constructing reusable garbled circuits [82]. In addition, our construction yields a so-called publicly

verifiable delegation scheme: that is, a computationally weak client can delegate any arbitrarily

expensive computation to the cloud, with the assurance that the computation is done correctly. In a

subsequent work [88], we built ABE for circuits that achieve the additional security guarantee of attribute

privacy, providing the first construction of so-called predicate encryption for all circuits. This result can
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also be viewed as realizing a weaker one-sided variant of functional encryption. Together, these two

works constitute the frontier of attribute-based and functional encryption under standard intractability

assumptions.

In [85], Gorbunov, Vaikuntanathan and I put forth and investigated functional encryption secure

against collusions of an a priori bounded size, a weaker guarantee that is still meaningful for many

applications. We presented a construction that supports the class of all (polynomial-time computable)

functions, which is more general than policies as it supports revealing partial information about the

plaintext. Our construction relies on a novel connection to secure multi-party computation, a well-

studied area in cryptography, and also presents a powerful technique for bootstrapping from shallow

circuits of small depth to arbitrary circuits via fully homomorphic encryption, which has been used in

several subsequent works [82, 68, 88]. Moreover, our construction achieves strong simulation-based

security, which we later demonstrated in [11] to be impossible to achieve for unbounded collusions.

Efficiency. Together with several collaborators and my PhD students, I have also been working on

efficient ABE schemes based on pairing groups. This is motivated in part by the fact that pairing groups

are in use in many cryptographic standards and implementations, including applications beyond ABE.

The use of pairing groups does come at a cost: we seem limited in expressiveness to ABE for shallow

circuits, which are nonetheless sufficient for many applications. An example of such an ABE is identity-

based encryption (IBE), where both the ciphertext and secret key are associated with identities e.g. email

addresses, and decryption is possible only when the identities match.

In [148, 53], we put forth a new conceptual framework for building efficient ABE in pairing groups,

by showing how to compile certain private-key primitive —which are much easier to design and to

analyze— into a public-key one via Waters’ “dual system” methodology [146]. This provides a simple and

unifying approach for constructing efficient ABE in pairing groups that achieve a very strong guarantee of

adaptive security; in addition, we obtained concrete efficiency improvements for several ABE schemes.

In yet another work [71], we used the framework to explain why further efficiency improvements seem

unlikely: we showed that the trade-offs between ciphertext and key sizes in existing ABE schemes are in

some sense almost optimal; we obtained our result via a new connection to communication complexity,

a well-studied area in theoretical computer science.

Our framework also uncovered a new connection between IBE schemes and pseudo-random

functions; this connection in turn inspired several new IBE schemes. In [48], we constructed the first

IBE whose performance does not deteriorate with the number of secret keys the adversary sees, thereby

resolving an open problem posed in several prior works; along the way, we showed how to overcome

seemingly inherent limitations of prior proof techniques. The ideas and techniques developed in this

work have already been used in a number of follow-up works, e.g. [25, 117, 95, 73]. In [150], I built an IBE

of essentially optimal efficiency, albeit in the less efficient composite-order pairing groups. Nonetheless,

the construction suggests a path towards a 50% improvement in the state-of-the-art IBE schemes in

prime-order groups.

In two other recent works [108, 109], we leveraged insights from the framework for applications

beyond IBE and ABE. We obtained improved constructions of powerful building blocks for advanced

pairing-based cryptographic primitives such as anonymous credentials. Our approach is conceptually
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different from those of prior works, and yields simpler schemes that admit a modular and intuitive proof

of security. In joint work with Gay et al. [73] building upon our earlier IBE scheme [48], we constructed

a CCA-secure encryption scheme under the standard Diffie-Hellman assumption whose performance

does not deteriorate with the number of challenge ciphertexts or decryption queries.

Organization. In the rest of this thesis, I provide a more detailed exposition of my works. In Section 4,

I describe the assumptions used for efficient IBE and ABE. In Sections 5 and 6, I present two results

on efficient IBE and ABE schemes. In Sections 7 and 8, I present two results on applications of IBE-

inspired techniques. In Section 9, I describe additional results and contributions in the field of functional

encryption. Finally, in Parts III, IV, V and VI, I attached several articles corresponding to my most

significant contributions in functional encryption, of which two were joint works with my PhD students.

4 Computational Assumptions

As described in Section 2, there are two main specific assumptions used for efficient IBE and ABE, notably

the decisional k-Linear (k-Lin) assumption —of which the standard Diffie-Hellman assumption is a

special case with k = 1— used in pairing-based schemes, and the learning with errors (LWE) assumption

used in lattice-based schemes. Both assumptions essentially stipulate that random linear equations of a

random secret unknown vector s are computationally indistinguishable from random, namely:

( A , A s ) ≈c ( A , z )
where A,s,z denote uniformly random matrices and vectors over Zq . Of course, such a statement

is blatantly false thanks to Gaussian elimination, and the two specific assumptions refers to two

computational settings for which we do not know how to carry out Gaussian elimination efficiently:

• The k-Lin assumption refers to random linear equations in the exponent of a cyclic group of prime

order q , that is, both A ∈ Z
(k+1)×k
q ,As ∈ Zk+1

q are computed in the exponent component-wise.

Concretely, we will typically work with a pairing group (G1,G2,GT ) with e : G1 ×G2 →GT . We adopt

the implicit representation notation for group elements: for fixed generators g1 and g2 of G1 and

G2, respectively, and for a matrix M ∈ Zn×t
q , we define [M]1 := g M

1 and [M]2 := g M
2 (component-

wise).

• The LWE assumption refers to noisy random linear equations (A,As+e) where e is a small “noise”

vector whose entries are bounded by B ≪ q . LWE hardness depends on the modulus-to-noise ratio

q/B as a function of the length n of the secret s: the smaller the ratio, the harder the problem. LWE

is believed to be hard even for q/B as large as 2nϵ

for some ϵ< 1.
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5 Attribute-Based Encryption for Circuits

— “Breakthrough result on a mainstream problem in cryptography” (STOC 13 reviewer)

In an attribute-based encryption (ABE) scheme, a ciphertext is associated with an ℓ-bit public index

ind and a message m, and a secret key is associated with a Boolean predicate P . The secret key allows

to decrypt the ciphertext and learn m iff P (ind) = 1. Moreover, the scheme should be secure against

collusions of users, namely, given secret keys for polynomially many predicates, an adversary learns

nothing about the message if none of the secret keys can individually decrypt the ciphertext.

We present attribute-based encryption schemes for circuits of any arbitrary polynomial size, where

the public parameters and the ciphertext grow linearly with the depth of the circuit. Our construction is

secure under the standard learning with errors (LWE) assumption. Previous constructions of attribute-

based encryption were for Boolean formulas, captured by the complexity class NC1.

In the course of our construction, we present a new framework for constructing ABE schemes.

As a by-product of our framework, we obtain ABE schemes for polynomial-size branching programs,

corresponding to the complexity class LOGSPACE, under quantitatively better assumptions.

5.1 Trapdoor functions

Informally, a trapdoor function is a function that is easy to evaluate and hard to invert on its own, but

which can be generated together with some extra “trapdoor” information that makes inversion easy.

The prototypical candidate trapdoor function is the RSA function fN ,e (x) = xe (mod N ), where N is the

product of distinct primes p, q , and gcd(e,ψ(N )) = 1. Under the LWE assumption, we may also derive a

candidate trapdoor function given by fA(u) = Au [77], which may be represented pictorially as:

A
u

= p

We should think of A and p as matrices and vectors over Zq with uniformly random entries, whereas

we restrict u to be a “short” vector with small entries; without the restriction, we may trivially solve for

u satisfying Au = p via Gaussian elimination. It follows from the LWE assumption that given a random

A,p, finding a short u satisfying Au = p is hard; on the other hand, it is possible to sample A along with a

trapdoor for which finding such a u is easy.

Note that u allows us to “recode” a noisy version of A⊤s to that of p⊤s via the relation:

u⊤(A⊤s+
small︷︸︸︷

e ) = p⊤s+
small︷︸︸︷
u⊤e

where the noise blows up slightly from e to u⊤e.

In our ABE for circuits based on LWE [86], we essentially considered a variant of the above trapdoor

function in which we replaced the vectors u,p with matrices U,P, where P has the same dimensions as A

and U is short; this may be represented pictorially as:
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A P=
U

We may then associate P with another trapdoor function fP. More generally, our construction uses a

sequence of trapdoor functions fA1 , fA2 , fA3 , . . . along with short matrices U1,U2, . . . such that

A1
U1

= A2

A2
U2

= A3

where the matrix Ai is associated with wires at level i of a circuit. Observe that given U1,U2, we may

“recode” a noisy version of A⊤
1s to that of A⊤

3s via the relation:

U⊤
2U⊤

1(A⊤
1s+

small︷︸︸︷
e ) = A⊤

3s+
small︷ ︸︸ ︷

U⊤
2U⊤

1e

where the noise blows up slightly from e to U⊤
2U⊤

1e. In the setting of bilinear groups, the quantities corre-

sponding to A,u,p lie in different groups G1,G2 and GT respectively whereas matrix-vector multiplication

correspond to a pairing. As such, defining an analogous sequence of of trapdoor functions would require

the use of multi-linear maps.

5.2 Handling circuits

Our ABE for circuits essentially proceeds by replacing labels in Yao’s garbled circuits with trapdoor

functions. The underlying intuition is that labels are single-use and therefore susceptible to collusion

attacks, whereas functions are reusable and resists collusions.

Handling a single gate. Consider a two-input boolean gate with incoming wires u, v and outgoing wire

w computing a function g : {0,1}× {0,1} → {0,1}:

g

u v

w

g

Au,0,Au,1 Av,0,Av,1

Aw,0,Aw,1

In garbled circuits, we associate each wire w with a pair of strings Lw,0,Lw,1 (called “labels”) and we

provide a translation table comprising of four values µ0,0,µ0,1,µ1,0,µ1,1 where µb,c allows us to perform
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the transformation:

Lu,b ,Lv,c 7→ Lw,g (b,c)

In our construction, we associate each wire w in a circuit with a pair of matrices Aw,0,Aw,1. For each

gate, we publish four “short” matrices U0,0,U0,1,U1,0,U1,1 (analogous to the translation table in garbled

circuits) satisfying

(Au,0 | Av,0)U0,0 = Aw,g (0,0)

(Au,0 | Av,1)U0,1 = Aw,g (0,1)

(Au,1 | Av,0)U1,0 = Aw,g (1,0)

(Au,1 | Av,1)U1,1 = Aw,g (1,1)

That is, for all b,c ∈ {0,1}, we have

Au,b Av,c Aw,g (b,c)=

Ub,c

Observe that given Ub,c , we may recode noisy versions of A⊤
u,bs and A⊤

v,c s to that of A⊤
w,g (b,c)s via the

relation:

U⊤
b,c

(
A⊤

u,bs+eu,b

A⊤
v,c s+ev,c

)
= A⊤

w,g (b,c)s+U⊤
b,c

(
eu,b

ev,c

)

For circuits of depth d , the noise grows from B to nΩ(d) ·B so we need to set q/B > nΩ(d). We also provided

an ABE for branching programs where the noise grow is polynomial in the length of the branching

program.

ABE for circuits. Recall that in an ABE scheme for circuits, a ciphertext is associated with an ℓ-bit public

index ind and a message m ∈ {0,1}, and a secret key is associated with a circuit C : {0,1}ℓ → {0,1}. The

secret key decrypts the ciphertext iff C (ind) = 1.

• The public parameters comprises of a matrix A together withℓpairs of matrices (A1,0,A1,1), . . . , (Aℓ,0,Aℓ,1)

for the ℓ input wires, and a pair of matrices (Aout,0,Aout,1) for the output wire.

• The ciphertext contains noisy versions of A⊤s,A⊤
1,ind1

s, . . . ,A⊤
ℓ,indℓ

s along with a noisy version of

A⊤
out,1s+m ·q/2.

• The secret key for a circuit C is generated as follows: (i) associate the wires going out of the i ’th

input bit with (Ai ,0,Ai ,1) for i ∈ [ℓ] and the output wire with (Aout,0,Aout,1), (ii) pick fresh random

matrices Aw,0,Aw,1 for each internal wire w , (iii) for each internal gate g , compute and output the
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four matrices (Ug
0,0,Ug

0,1,Ug
1,0,Ug

1,1).

Correctness follows from the fact that if wire w in C on input ind carries the bit b, then we can compute

a noisy version of A⊤
w,bs. This holds trivially for the input wires by definition of the ciphertext, and the

general case follows from the recoding properties for each gate. In particular, this means that if C (ind) =
1, then we can compute a noisy version of A⊤

out,1s and recover m. Security follows roughly by showing

that the noisy version of A⊤
w,1−bs is pseudorandom. This means that if C (ind) = 0, then the noisy version

of A⊤
out,1s is pseudorandom and masks m.

5.3 Applications

Tools and techniques developed in the context of functional encryption have often found numerous

applications beyond functional encryption. We outline two examples here.

Verifiable computation. In verifiable computation, a computationally weak client with input x wishes

to delegate a complex computation f to an untrusted server, with the assurance that the server cannot

convince the client to accept an incorrect computation [81, 74]. We focus on the online/offline setting,

where the protocol proceeds in two phases. In the offline phase, the client sends to the server a possibly

long message that may be expensive to compute. Later on, in the online phase (when the input x arrives),

the client sends a short message to the server, and receives the result of the computation f (x) together

with a certificate for correctness. Applying an existing transformation [132] to our ABE for general

circuits [86], we obtain a protocol for verifiable computation on general circuits f with a number of

highly desirable properties: (i) the client’s communication and computational complexity in the online

phase depends only on the input/output lengths and depth of the circuit computing f but not the circuit

size; (ii) anyone can check the server’s work given a “verification” key published by the client; (iii) we

may securely reuse the computation of the offline phase across multiple inputs in the online phase (in

particular, our construction is immune to the “rejection problem” from [74]).

Fully homomorphic encryption. In 2009, Gentry [76] presented the first candidate fully homomorphic

encryption (FHE) for all circuits, and substantial progress have since been made towards improving

the efficiency and the underlying assumptions [37, 78]. We note that while both FHE and functional

encryption support some form of computation on encrypted data, it is not known how to construct

functional encryption from FHE or vice versa. Nonetheless, our lattice-based ABE for branching

programs [86] has recently inspired the first FHE schemes based on the LWE assumption with a

polynomial modulus-to-noise ratio [39, 14]. Roughly speaking, we propagate LWE samples across

computation during decryption in ABE, and during homomorphic evaluation in FHE. If we compute on

circuits, the noise accumulated in the LWE samples grows exponentially with the depth D of the circuit

(the noise grows as nD where n is the length of the LWE secret). On the other hand, by exploiting an

asymmetry in computation on branching programs, it is possible to achieve noise growth that is linear

in the length of the branching program. The latest FHE schemes in [39, 14] then use a branching program

instead of a log-depth circuit to compute the decryption function during bootstrapping, thus incurring

a polynomial as opposed to a quasi-polynomial noise growth.
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6 Déjà Q: Encore! Un Petit IBE

— “masterfully written”, “extremely elegant” (TCC 16A reviewers)

We present an identity-based encryption (IBE) scheme in composite-order bilinear groups with

essentially optimal parameters: the ciphertext overhead and the secret key are one group element each

and decryption requires only one pairing. Our scheme achieves adaptive security and anonymity under

standard decisional subgroup assumptions as used in Lewko and Waters (TCC ’10). Our construction

relies on a novel extension to the Déjà Q framework of Chase and Meiklejohn (Eurocrypt ’14).

6.1 Introduction

In identity-based encryption (IBE) [142, 29], ciphertexts and secret keys are associated with identities,

and decryption is possible only when the identities match. IBE has been studied extensively over the

last decade, with a major focus on obtaining constructions that simultanously achieve short parameters

and full adaptive security under static assumptions in the standard model. This was first achieved in

the works of Lewko and Waters [146, 113], which also introduced the powerful dual system encryption

methodology. The design of the Lewko-Waters IBE and the underlying proof techniques have since had

a profound impact on both attribute-based encryption and pairing-based cryptography.

6.2 Our Contributions

In this work, we obtain the first efficiency improvement to the Lewko-Waters IBE in composite-order

bilinear groups. We present an adaptively secure and anonymous identity-based encryption (IBE)

scheme with essentially optimal parameters: the ciphertext overhead and the secret key are one group

element each, and decryption only requires one pairing; this improves upon the Lewko-Waters IBE

[113] in three ways: shorter parameters, faster decryption, and anonymity. Via Naor’s transformation,

we obtain a fully secure signature scheme where the signature is again only one group element. We

stress that we achieve all of these improvements while relying on the same computational subgroup

assumptions as in the Lewko-Waters IBE, notably in composite-order groups whose order is the product

of three primes. We refer to Fig 10 for a comparison with prior works.

The Lewko-Waters IBE has played a foundational role in recent developments of IBE and more

generally attribute-based encryption (ABE). Indeed, virtually all of the state-of-the-art prime-order IBE

schemes in [111, 25] —along with the subsequent extensions to ABE [115, 148, 17, 53]— follow the basic

design and proof strategy introduced in the Lewko-Waters IBE. For this reason, we are optimistic that

our improvement to the Lewko-Waters IBE will lead to further advances in IBE and ABE. In fact, our

improved composite-order IBE already hints at the potential of a more efficient prime-order IBE that

subsumes all known schemes.

13



Scheme |mpk| |sk| |ct| decryption anonymous number of primes
TCC:LewWat10 [113] 3|GN |+ |GT | 2|GN | 2|GN |+ |GT | 2 pairings no 3
DIP10 [44] 3|GN |+ |GT | 2|GN | 2|GN |+ |GT | 2 pairings ✓ 4
YCZY14 [151] 3|GN |+ |GT | 2|GN | 2|GN |+ |GT | 2 pairings ✓ 4
this work (Fig 3) 2|GN |+ |GT | |GN | |GN |+ |GT | 1 pairing ✓ 3

Figure 2: Comparison amongst adaptively secure IBEs in composite-order bilinear groups e : GN ×GN →
GT .

6.3 Our Techniques

The starting point of our constructions is the Déjà Q framework introduced by Chase and Meiklejohn

[47]; this is an extension of Waters’ dual system techniques to eliminate the use of q-type assumptions in

settings beyond the reach of previous techniques. These settings include deterministic primitives such as

pseudo-random functions (PRF) and —quite remarkably— schemes based on the inversion framework

[141, 27, 35]. However, the Déjà Q framework is also limited in that it cannot be applied to advanced

encryption systems such as identity-based and broadcast encryption, where certain secret exponents

appear in both ciphertexts and secret keys on both sides of the pairing. We show how to overcome this

limitation using several simple ideas.

IBE Overview. We describe our IBE scheme and the security proof next. We present a simplified variant

of the constructions, suppressing many details pertaining to randomization and subgroups. Following

the Lewko-Waters IBE [113], we rely on composite-order bilinear groups whose order N is the product

of three primes p1, p2, p3. We will use the subgroup Gp1 of order p1 for functionality, and the subgroup

Gp2 of order p2 in the proof of security. The third subgroup corresponding to p3 is used for additional

randomization.

Recall that the Lewko-Waters IBE has the following form:

mpk := (g , gβ, gγ,e(g ,u)), ctid := (g s , g (β+γid)s ,e(g ,u)s ·m), skid := (u · g (β+γid)r , g r ))

Our IBE scheme has the following form:

mpk := (g , gα,e(g ,u)), ctid := (g (α+id)s ,e(g ,u)s ·m), skid := (u
1

α+id )

Note that our scheme uses the “exponent inversion” framework [35], which has traditionally eluded a

proof of security under static assumptions. In both schemes, g ,u are random group elements of order p1,

and α,β,γ are random exponents over ZN . It is easy to see that decryption in our scheme only requires a

single pairing to compute e(g (α+id)s ,u
1

α+id ) = e(g ,u)s .

IBE security proof. We rely on the same assumption as the Lewko-Waters IBE in [113], namely the

(p1 7→ p1p2)-subgroup assumption, which asserts that random elements of order p1 and those of order

p1p2 are computationally indistinguishable. In the proof of security, we rely on the assumption to

introduce random Gp2 -components to the ciphertext and the secret keys.

We begin with the secret keys. We introduce a random Gp2 -component to the secret key skid following
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Setup(G):

msk := (α,u, g3) ←R ZN ×Gp1 ×G∗
p3

;
mpk := (g1, gα

1 , e(g1,u), H);
return (mpk,msk)

KeyGen(msk, id ∈ZN ):

pick R3 ←R Gp3 ;

return skid := u
1

α+id R3

Enc(mpk, id ∈ZN ):

pick s ←R ZN ;
return (ct,κ) := (g (α+id)s

1 ,H(e(g1,u)s))

Dec(skid,ct):

return H(e(ct,skid))

Figure 3: Adaptively secure anonymous IBE w.r.t. a composite-order bilinear group G. Here, H :
GT → {0,1}λ is drawn from a family of pairwise-independent hash functions. In asymmetric groups,
randomization with R3 in KeyGen is not necessary (i.e., KeyGen is deterministic).

the Déjà Q framework [47] as follows:

skid = u
1

α+id
subgroup−→ u

1
α+id g

r1
α+id

2
CRT−→ u

1
α+id g

r1
α1+id

2 , (1)

where α1 ← ZN . In the first transition, we use the (p1 7→ p1p2)-subgroup assumption which says that

u ≈c ug r1
2 ,r1 ←R ZN , where g2 is a generator of order p2. In the second transition, we use the Chinese

Reminder Theorem (CRT), which tell us α mod p1 and α mod p2 are independently random values, so

we may replace α mod p2 with α1 mod p2 for a fresh α1 ←R ZN ; this is fine as long as the challenge

ciphertext and mpk reveal no information about α mod p2, as is the case here. We may then repeat this

transition q more times:

u
1

α+id
subgroup−→ u

1
α+id g

r1
α+id

2
CRT−→ u

1
α+id g

r1
α1+id

2
subgroup−→ u

1
α+id g

r2
α+id

2 g
r1

α1+id
2

CRT−→ u
1

α+id g
r2

α2+id+
r1

α1+id
2

−→ ·· · CRT−→ u
1

α+id g

rq+1
αq+1+id+···+

r2
α2+id+

r1
α1+id

2

where r1, . . . ,rq+1,α1, . . . ,αq+1 ←R ZN , and q is an upper bound on the number of key queries made by

the adversary.1

Next, we show that for distinct x1, . . . , xq , the following matrix
1

α1+x1

1
α1+x2

· · · 1
α1+xq

...
...

. . .
...

1
αq+x1

1
αq+x2

· · · 1
αq+xq

 (2)

is invertible with overwhelming probability over α1, . . . ,αq ←R Zp . As it turns out, we can write the

determinant of this matrix explicitly as:

Π1≤i< j≤q (xi −x j )(αi −α j )

Π1≤i , j≤q (αi + x j )
;

1We use q +1 values to account for the q key queries plus the challenge identity.
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this is the only place in the proof where we crucially exploit the “exponent inversion” structure. We can

then replace

id 7→ rq+1

αq+1 + id
+·· ·+ r2

α2 + id
+ r1

α1 + id

by a truly random function RF(·). Indeed, skid can now be written as u
1

α+id gRF(id)
2 , which have indepen-

dently random Gp2 -components.

So far, what we have done is the same as the use of Déjà Q framework for showing that x 7→ u
1

x+α

yields a PRF [47] (the explicit formula for the matrix determinant is new), and this is where the similarity

ends. At this point, we still need to hide the message m in the ciphertext (g (α+id)s ,e(g ,u)s ·m). Towards

this goal, we want to introduce a Gp2 -component into the ciphertext, which will then interact with newly

random Gp2 -component in the keys to generate extra statistical entropy to hide m. At the same time,

we need to ensure that the ciphertext still hides α mod p2 so that we may carry out the transition of the

secret keys in (1). Indeed, naively applying the (p1 7→ p1p2)-subgroup assumption to g s in the ciphertext

would leak α mod p2.

To circumvent this difficulty, note that we can rewrite the ciphertext in terms of skid as

ctid = (g (α+id)s ,e(g (α+id)s ,skid) ·m)

Moreover, as long as α+ id ̸= 0, we can replace (α+ id)s with s without changing the distribution, which

allows us to rewrite the challenge ciphertext as

ctid = (g s ,e(g s ,skid) ·m).

This means that the challenge ciphertext leaks no information about α except through skid. In addition,

the challenge ciphertext also leaks no information about id, which allows us to prove anonymity. In

contrast, the Lewko-Waters IBE is not anonymous, and anonymous variants there-of in [44, 151] requires

the use of 4 primes and additional assumptions.

We can now apply the (p1 7→ p1p2)-subgroup assumption to the ciphertext to replace g s with g s g r ′
2 .

Now, the ciphertext distribution is completely independent of α except what is leaked through skid, so

we can apply the secret key transitions as before, at the end of which the challenge ciphertext is given by:

(g s g r ′
2 ,e(g s g r ′

2 ,u
1

α+id gRF(id)
2 ) ·m) = (g s g r ′

2 ,e(g s ,u
1

α+id ) · e(g r ′
2 , gRF(id)

2 ) ·m)

Recall that we only allow the adversary to request for secret keys corresponding to identities different

from id, which means those keys leak no information about RF(id). We can then use the log p2 bits

of entropy from RF(id) over Gp2 to hide m; this requires modifying the original scheme so that an

encryption of m is given by (g (α+id)s ,H(e(g ,u)s) ·m), where H denotes a strong randomness extractor

whose seed is specified in mpk.
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7 Quasi-Adaptive NIZK for Linear Subspaces Revisited

— “very refreshing ... core lemma is fantastic” (EUROCRYPT 15 reviewer)

Non-interactive zero-knowledge (NIZK) proofs for algebraic relations in a group, such as the Groth-

Sahai proofs, are an extremely powerful tool in pairing-based cryptography. A series of recent works

focused on obtaining very efficient NIZK proofs for linear spaces in a weaker quasi-adaptive model. We

revisit recent quasi-adaptive NIZK constructions, providing clean, simple, and improved constructions

via a conceptually different approach inspired by recent developments in identity-based encryption.

We then extend our techniques also to linearly homomorphic structure-preserving signatures, an object

both of independent interest and with many applications.

7.1 Introduction

Non-interactive zero-knowledge (NIZK) proofs for efficiently proving algebraic relations in a group

[93, 94, 91, 26] have had a profound impact on pairing-based cryptography, notably in (i) improving

the concrete efficiency of non-interactive cryptography schemes like group signatures [92], (ii) realizing

stronger security guarantees in applications like anonymous credentials [19, 20, 65], and (iii) minimizing

interaction in secure computation and two-party protocols [105, 63].

A recent fruitful line of works has focused in obtaining very efficient NIZK proofs for proving

membership in a linear subspace over a group, which is an important subset of the algebraic relations

supported by the Groth-Sahai NIZK [93]. For linear subspaces, the Groth-Sahai proofs were linear

in the dimensions of the (sub)space. The first substantial improvement was obtained by Jutla and

Roy [102] in a weaker quasi-adaptive model, where the CRS may depend on the linear subspace, and

the soundness guarantee is computational but adaptive. In addition, they used quasi-adaptive NIZK

(QANIZK) for linear subspaces to obtain improved KDM-CCA2-secure encryption as well as CCA2-secure

IBE scheme with short, publicly verifiable ciphertexts [41, 43]. Further efficiency improvements were

subsequently obtained in [118, 103, 2], leading to constant-size proofs, independent of the dimensions

of space and subspace; several of these constructions also realized stronger notions of soundness like

one-time simulation soundness and unbounded simulation soundness [138, 60], which in turn enable

new applications.

7.2 Our Results and Techniques: QANIZK

We present clean, simple, and improved constructions of QANIZK protocols via a conceptually novel ap-

proach. Previous constructions use fairly distinct techniques, resulting in a large family of schemes with

incomparable efficiency and security guarantees. We obtain a family of schemes that simultaneously

match – and in many settings, improve upon – the efficiency, assumptions, and security guarantees of all

of the previous constructions. Figure 4 summarizes the efficiency of our constructions. Like the earliest

Jutla-Roy scheme [102], our schemes are fully explicit and simple to describe: the prover and verifier

carry out simple matrix-vector products in the exponent, and both correctness and zero-knowledge

follow readily from one simple equation. Furthermore, our schemes have a natural derivation from a
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symmetric-key setting, and the derivation even extends to a modular and intuitive proof of security.

Finally, in all but the settings with unbounded security, we obtain a qualitative improvement in the

underlying assumptions from decisional to computational (search) assumptions; specifically, security

relies on a natural computational analogue of the decisional k-Lin assumption.

Our constructions and techniques are inspired by recent developments in obtaining adaptively se-

cure identity-based encryption schemes, notably the use of pairing groups to “compile” a symmetric-key

primitive into an asymmetric-key primitive [25, 148, 53], and the dual system encryption methodology

for achieving adaptive security against unbounded collusions [146, 113]. We then extend our techniques

to linearly homomorphic structure-preserving signatures [116, 118], an object both of independent

interest and with many applications.

Overview of our constructions.

Fix a pairing group (G1,G2,GT ) with e : G1×G2 →GT . We present a very simple non-interactive argument

system for linear subspaces over G1 as defined by a matrix [M]1 := g M
1 ∈Gn×t

1 (n > t ) and captured by the

language:

LM =
{[

y
]

1 ∈Gn
1 : ∃ x ∈Zt

q s.t. y = Mx
}

.

The starting point of our construction is a hash proof system [58] for the language, which is essentially

a symmetric-key analogue of NIZK with a designated verifier. Namely, we pick a secret hash key

K ←R Z
n×(k+1)
q known to the verifier (k ≥ 1 is a parameter of the security assumption) and publish the

projection [P]1 := [M⊤K]1 in the CRS. The proof is given by [π]1 := [x⊤P]1, and verification works by

checking whether π
?= y⊤K. Completeness and perfect zero-knowledge follow readily from the fact that

for all y = Mx and P = M⊤K:

x⊤P = x⊤(M⊤K) = y⊤K.

x⊤

M⊤

K

= y⊤

K

Next, observe that if y is outside the span of M, then y⊤K is completely random given M⊤K; this is the

case even if such a y is adaptively chosen after seeing M⊤K. Thus, the construction achieves statistical

adaptive soundness: namely, a computationally unbounded cheating prover, upon seeing P, still cannot

produce a vector outside LM along with an accepting proof.

To achieve public verifiability, we carry out the hash proof system in G1 and publish a “partial

commitment” to K in G2 as given by [A]2, [KA]2,

A
,

A
K
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where the choice of A ∈ Z
(k+1)×k
q is defined by the security assumption. Instead of checking whether

π
?= y⊤K as before, anyone can now publicly check whether πA

?= y⊤KA via a pairing. As [A]2, [KA]2

leaks additional information about the secret hash key K, we can only prove computational adaptive

soundness. In particular, we rely on the k-KerLinAssumption [123], which stipulates that given a random

[A]2, it is hard to find a non-zero [s]1 ∈ Gk+1
1 such that s⊤A = 0; this is implied by the k-Lin Assumption

(c.f. Section 4). Therefore, for any ([y]1, [π]1) produced by an efficient adversary,

πA = y⊤KA =⇒ (π−y⊤K)A = 0
using assumption=⇒ π−y⊤K = 0 =⇒π= y⊤K,

upon which we are back in the symmetric-key setting, with a little more work to account for the leakage

about K from KA. Moreover, adaptive security in the symmetric-key setting (which is easy to analyze via

a purely information-theoretic argument) carries over to adaptive security in the public-key setting.

Two simple extensions.

We extend this simple construction in two simple ways:

• First, we show that we can use A with the bottom row deleted, which saves one element to obtain

proofs of size k, albeit at the cost of a more intricate security reduction and a restriction to witness-

sampleable (WS) distributions for [M]1 [102]. The latter means that we are given an explicit

description of M in the security reduction, which we need to program the CRS as with prior works

[103, 2] that achieve the same proof size. In the case k = 1, the proof consists of 1 element and the

CRS only contains n + t group elements, which seems optimal.

• Second, we show how to achieve one-time simulation soundness, by replacing K with 2-wise

independent hash function K0+τK1 where τ is a tag, and we publish [A]2, [K0A]2, [K1A]2 for public

verification. A single simulated proof reveals only an evaluation of the hash function at a single

point, while its evaluation at every other point remains hidden, upon which we are back in the

setting of standard adaptive soundness.

8 Tightly CCA-secure Encryption without Pairings

— “this year’s best paper award for your work” (EUROCRYPT 16 PC Chair)

We present the first CCA-secure public-key encryption scheme based on DDH where the security

loss is independent of the number of challenge ciphertexts and the number of decryption queries. Our

construction extends also to the standard k-Lin assumption in pairing-free groups, whereas all prior

constructions starting with Hofheinz and Jager (Crypto ’12) rely on the use of pairings. Moreover,

our construction improves upon the concrete efficiency of existing schemes, reducing the ciphertext

overhead by about half (to only 3 group elements under DDH), in addition to eliminating the use of

pairings.
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Soundness WS? Assumption Proof CRS #pairings
GS08 [93] AS 2-Lin (G2) 2n +3t 6 3n(t +3)
LPJY14 [118] AS 2-KerLin (G2) 3 2n +3t +3 2n +4
ABP15 [2] AS k-Lin (G2) k +1 kn + (k +1)t +k kn +k +1
KW15 (Fig 4) AS k-KerLin (G2)✓ k +1 kn + (k +1)t +k kn +k✓
JR13 [102] AS yes k-KerLin (G2) k(n − t ) 2kt (n − t )+k +1 k(n − t )(t +2)
JR14 [103] AS yes k-Lin (G2) k kn +kt +k2 kn +k2

ABP15 [2] AS yes k-Lin (G2) k kn +kt +k kn +k
KW15 (Fig 5) AS yes k-KerLin (G2)✓ k kn +kt +k −1✓ kn +k −1✓
ABP15 [2] OTSS k-Lin (G2) k +1 2kn +2(k +1)t +k kn +k +1
KW15 (Fig 6) OTSS k-KerLin (G2)✓ k +1 2kn +2(k +1)t +k kn +k✓
ABP15 [2] OTSS yes k-Lin (G2) k 2λ(kn + (k +1)t )+k λkn +k
KW15 (Fig 9) OTSS yes k-KerLin (G2)✓ k 2λ(kn + (k +1)t )+k −1✓ λkn +k −1✓
CCS09 [41] USS 2-Lin (G1,G2) 2n +6t +52 18 O(tn)
LPJY14 [118] USS yes 2-Lin (G1,G2) 20 2n +3t +3λ+10 2n +30
KW15 (Fig 7) USS yes k-Lin (G1,G2)✓ 2k +2✓ kn +4(k + t +1)k +2k✓ k(n +k +1)+k✓

Figure 4: QANIZK for linear subspaces of Zn
q of dimension t and tag-space {0,1}λ. For the soundness

column we use AS for adaptive soundness, OTSS for one-time simulation soundness, and USS for
unbounded simulation soundness. WS stands for witness sampleability [102] and slightly restricts the
class of languages. We omit the generators for the group when computing the CRS size. In all settings,
we improve upon either the assumption, the CRS size, or # pairings used in verification (which can be
further reduced using randomized verification), as indicated by a ✓.

We also show how to use our techniques in the NIZK setting. Specifically, we construct the first tightly

simulation-sound designated-verifier NIZK for linear languages without pairings. Using pairings, we can

turn our construction into a highly optimized publicly verifiable NIZK with tight simulation-soundness.

8.1 Introduction

The most basic security guarantee we require of a public key encryption scheme is that of semantic

security against chosen-plaintext attacks (CPA) [80]: it is infeasible to learn anything about the plaintext

from the ciphertext. On the other hand, there is a general consensus within the cryptographic research

community that in virtually every practical application, we require semantic security against adaptive

chosen-ciphertext attacks (CCA) [134, 61], wherein an adversary is given access to decryptions of

ciphertexts of her choice.

In this work, we focus on the issue of security reduction and security loss in the construction of CPA

and CCA-secure public-key encryption from the DDH assumption. Suppose we have such a scheme

along with a security reduction showing that attacking the scheme in time t with success probability

ϵ implies breaking the DDH assumption in time roughly t with success probability ϵ/L; we refer to L

as the security loss. In general, L would depend on the security parameter λ as well as the number of

challenge ciphertexts Qenc and the number decryption queries Qdec, and we say that we have a tight

security reduction if L depends only on the security parameter and is independent of both Qenc and Qdec.

Note that for typical settings of parameters (e.g., λ = 80 and Qenc,Qdec ≈ 220, or even Qenc,Qdec ≈ 230 in

truly large settings), λ is much smaller than Qenc and Qdec.

In the simpler setting of CPA-secure encryption, the ElGamal encryption scheme already has a tight

security reduction to the DDH assumption [124, 22], thanks to random self-reducibility of DDH with
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a tight security reduction. In the case of CCA-secure encryption, the best result is still the seminal

Cramer-Shoup encryption scheme [59], which achieves security loss Qenc.2 This raises the following

open problem:

Does there exist a CCA-secure encryption scheme with a tight security reduction to the DDH

assumption?

Hofheinz and Jager [96] gave an affirmative answer to this problem under stronger (and pairing-related)

assumptions, notably the 2-Lin assumptions in bilinear groups, albeit with large ciphertexts and secret

keys; a series of follow-up works [117, 119, 18, 83] leveraged techniques introduced in the context of

tightly-secure IBE [48, 25, 99] to reduce the size of ciphertext and secret keys to a relatively small constant.

However, all of these works rely crucially on the use of pairings, and seem to shed little insight on

constructions under the standard DDH assumption; in fact, a pessimist may interpret the recent works

as strong indication that the use of pairings is likely to be necessary for tightly CCA-secure encryption.

We may then restate the open problem as eliminating the use of pairings in these prior CCA-

secure encryption schemes while still preserving a tight security reduction. From a theoretical stand-

point, this is important because an affirmative answer would yield tightly CCA-secure encryption under

qualitatively weaker assumptions, and in addition, shed insight into the broader question of whether

tight security comes at the cost of qualitative stronger assumptions.

Eliminating the use of pairings is also important in practice as it allows us to instantiate the

underlying assumption over a much larger class of groups that admit more efficient group operations

and more compact representations, and also avoid the use of expensive pairing operations. Similarly,

tight reductions matter in practice because as L increases, we should increase the size of the underlying

groups in order to compensate for the security loss, which in turn increases the running time of the

implementation. Note that the impact on performance is quite substantial, as exponentiation in a r -bit

group takes time roughly O(r 3).

8.2 Our Results

We settle the main open problem affirmatively: we construct a tightly CCA-secure encryption scheme

from the DDH assumption without pairings. Moreover, our construction improves upon the concrete

efficiency of existing schemes, reducing the ciphertext overhead by about half, in addition to eliminating

the use of pairings. We refer to Figure 14 for a comparison with prior works.

Overview of our construction. In this overview, we will consider a weaker notion of security, namely

tag-based KEM security against plaintext check attacks (PCA) [126]. In the PCA security experiment, the

adversary gets no decryption oracle (as with CCA security), but a PCA oracle that takes as input a tag and

a ciphertext/plaintext pair and checks whether the ciphertext decrypts to the plaintext. Furthermore,

we restrict the adversary to only query the PCA oracle on tags different from those used in the challenge

ciphertexts. PCA security is strictly weaker than the CCA security we actually strive for, but allows us to

present our solution in a clean and simple way. (We show how to obtain full CCA security separately.)

2We ignore contributions to the security loss that depend only on a statistical security parameter.
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The starting point of our construction is the Cramer-Shoup KEM. The public key is given by

pk := ([M], [M⊤k0], [M⊤k1]) for M ←R Z
(k+1)×k
q corresponding to the matrix in the k-Lin assumption

(c.f. Section 4). On input pk and a tag τ, the encryption algorithm outputs the ciphertext/plaintext pair

([y], [z]) = ([Mx], [x⊤M⊤kτ]), (3)

where kτ = k0 +τk1 and x ←R Zk
q . Decryption relies on the fact that

x⊤

M⊤

kτ

= y⊤

kτ

The KEM is PCA-secure under k-Lin, with a security loss that depends on the number of ciphertexts Q

(via a hybrid argument) but independent of the number of PCA queries [59, 3].

Following the “randomized Naor-Reingold” paradigm introduced by Chen and Wee on tightly secure

IBE [48], our starting point is (4), where we replace kτ = k0 +τk1 with

kτ =
λ∑

j=1
k j ,τ j

and pk := ([M], [M⊤k j ,b] j=1,...,λ,b=0,1), where (τ1, . . . ,τλ) denotes the binary representation of the tag τ ∈
{0,1}λ.

Following [48], we want to analyze this construction by a sequence of games in which we first replace

[y] in the challenge ciphertexts by uniformly random group elements via random self-reducibility of

MDDH (k-Lin), and then incrementally replace kτ in both the challenge ciphertexts and in the PCA oracle

by kτ+m⊥RF(τ), where RF is a truly random function and m⊥ is a random element from the kernel of

M, i.e., M⊤m⊥ = 0. Concretely, in Game i , we will replace kτ with kτ+m⊥RFi (τ) where RFi is a random

function on {0,1}i applied to the i -bit prefix of τ. We proceed to outline the two main ideas needed to

carry out this transition. Looking ahead, note that once we reach Game λ, we would have replaced kτ

with kτ+m⊥RF(τ), upon which security follows from a straight-forward information-theoretic argument

(and the fact that ciphertexts and decryption queries carry pairwise different τ).

First idea. First, we show how to transition from Game i to Game i +1, under the restriction that the

adversary is only allowed to query the encryption oracle on tags whose i +1-st bit is 0; we show how to

remove this unreasonable restriction later. Here, we rely on an information-theoretic argument similar

to that of Cramer and Shoup to increase the entropy from RFi to RFi+1. This is in contrast to prior works

which rely on a computational argument; note that the latter requires encoding secret keys as group

elements and thus a pairing to carry out decryption.

More precisely, we pick a random function RF′
i on {0,1}i , and implicitly define RFi+1 as follows:

RFi+1(τ) =
RFi (τ) if τi+1 = 0

RF′
i (τ) if τi+1 = 1
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Observe all of the challenge ciphertexts leak no information about RF′
i or ki+1,1 since they all correspond

to tags whose i +1-st bit is 0. To handle a PCA query (τ, [y], [z]), we proceed via a case analysis:

• if τi+1 = 0, then kτ +RFi+1(τ) = kτ +RFi (τ) and the PCA oracle returns the same value in both

Games i and i +1.

• if τi+1 = 1 and y lies in the span of M, we have

y⊤m⊥ = 0 =⇒ y⊤(kτ+m⊥RFi (τ)) = y⊤(kτ+m⊥RFi+1(τ)),

and again the PCA oracle returns the same value in both Games i and i +1.

• if τi+1 = 1 and y lies outside the span of M, then y⊤ki+1,1 is uniformly random given M,M⊤ki+1,1.

(Here, we crucially use that the adversary does not query encryptions with τi+1 = 1, which ensures

that the challenge ciphertexts do not leak additional information about ki+1,1.) This means that

y⊤kτ is uniformly random from the adversary’s view-point, and therefore the PCA oracle will reject

with high probability in both Games i and i +1. (At this point, we crucially rely on the fact that the

PCA oracle only outputs a single check bit and not all of kτ+RF(τ).)

Via a hybrid argument, we may deduce that the distinguishing advantage between Games i and i +1 is

at most Q/q where Q is the number of PCA queries.

Second idea. Next, we remove the restriction on the encryption queries using an idea of Hofheinz, Koch

and Striecks [99] for tightly-secure IBE in the multi-ciphertext setting, and its instantiation in prime-

order groups [83]. The idea is to create two “independent copies” of (m⊥,RFi ); we use one to handle

encryption queries on tags whose i +1-st bit is 0, and the other to handle those whose i +1-st bit is 1. We

call these two copies (M∗
0 ,RF(0)

i ) and (M∗
1 ,RF(1)

i ), where M⊤M∗
0 = M⊤M∗

1 = 0.

Concretely, we replace M ←R Z
(k+1)×k
q with M ←R Z3k×k

q . We decompose Z3k
q into the span of the

respective matrices M,M0,M1, and we will also decompose the span of M⊥ ∈Z3k×2k
q into that of M∗

0 ,M∗
1 .

Similarly, we decompose M⊥RFi (τ) into M∗
0RF

(0)
i (τ)+M∗

1RF
(1)
i (τ). We then refine the prior transition

basis for Z3k
q

basis for span(M⊥)

M M0 M1

M∗
0 M∗

1

Figure 5: Solid lines mean orthogonal, that is: M⊤M∗
0 = M⊤

1M∗
0 = 0 = M⊤M∗

1 = M⊤
0M∗

1 .

from Games i to i +1 as follows:

• Game i .0 (= Game i ): pick y ←Z3k
q for ciphertexts, and replace kτ with kτ+M∗

0RF
(0)
i (τ)+M∗

1RF
(1)
i (τ);

• Game i .1: replace y ←R Z3k
q with y ←R span(M,Mτi+1 );

• Game i .2: replace RF(0)
i (τ) with RF(0)

i+1(τ);

23



• Game i .3: replace RF(1)
i (τ) with RF(1)

i+1(τ);

• Game i .4 (= Game i +1): replace y ←R span(M,Mτi+1 ) with y ←R Z3k
q .

For the transition from Game i .0 to Game i .1, we rely on the fact that the uniform distributions over Z3k
q

and span(M,Mτi+1 ) encoded in the group are computationally indistinguishable, even given a random

basis for span(M⊥) (in the clear). This extends to the setting with multiple samples, with a tight reduction

to the k-Lin Assumption independent of the number of samples.

For the transition from Game i .1 to i .2, we rely on an information-theoretic argument like the one

we just outlined, replacing span(M) with span(M,M1) and M⊥ with M∗
0 in the case analysis. In particular,

we will exploit the fact that if y lies outside span(M,M1), then y⊤ki+1,1 is uniformly random even given

M,Mki+1,1,M1,M1ki+1,1. The transition from Game i .2 to i .3 is completely analogous.

From PCA to CCA. Using standard techniques from [59, 110, 107, 32, 4], we could transform our basic

tag-based PCA-secure scheme into a “full-fledged” CCA-secure encryption scheme by adding another

hash proof system (or an authenticated symmetric encryption scheme) and a one-time signature

scheme. However, this would incur an additional overhead of several group elements in the ciphertext.

Instead, we show how to directly modify our tag-based PCA-secure scheme to obtain a more efficient

CCA-secure scheme with the minimal additional overhead of a single symmetric-key authenticated

encryption. In particular, the overall ciphertext overhead in our tightly CCA-secure encryption scheme

is merely one group element more than that for the best known non-tight schemes [110, 97].

To encrypt a message M in the CCA-secure encryption scheme, we will (i) pick a random y as in

the tag-based PCA scheme, (ii) derive a tag τ from y, (iii) encrypt M using a one-time authenticated

encryption under the KEM key [y⊤kτ]. The naive approach is to derive the tag τ by hashing [y] ∈ G3k , as

in [110]. However, this creates a circularity in Game i .1 where the distribution of [y] depends on the tag.

Instead, we will derive the tag τ by hashing [y] ∈Gk , where y ∈Zk
q are the top k entries of y ∈Z3k

q . We then

modify M0,M1 so that the top k rows of both matrices are zero, which avoids the circularity issue. In the

proof of security, we will also rely on the fact that for any y0,y1 ∈ Z3k
q , if y0 = y1 and y0 ∈ span(M), then

either y0 = y1 or y1 ∉ span(M). This allows us to deduce that if the adversary queries the CCA oracle on a

ciphertext which shares the same tag as some challenge ciphertext, then the CCA oracle will reject with

overwhelming probability.
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9 Additional Contributions

We describe our additional results and contributions in the field of functional encryption, beyond those

covered in Sections 5 through 8 [87, 149, 108, 73].

Functional Encryption with Bounded Collusions via Multi-Party Computation [85, CRYPTO
12]

We construct a functional encryption scheme secure against an a-priori bounded polynomial number of

collusions for the class of all polynomial-size circuits. Our constructions require only semantically secure

public-key encryption schemes and pseudorandom generators computable by small-depth circuits

(known to be implied by most concrete intractability assumptions). For certain special cases such as

predicate encryption schemes with public index, the construction requires only semantically secure

encryption schemes, which is clearly the minimal necessary assumption.

Functional Encryption: New Perspectives and Lower Bounds [11, CRYPTO 13]

Functional encryption is an emerging paradigm for public-key encryption that enables fine-grained

control of access to encrypted data. In this work, we present new lower bounds and impossibility results

on functional encryption, as well as new perspectives on security definitions. Our main contributions

are as follows:

• We show that functional encryption schemes that satisfy even a weak (non-adaptive) simulation-

based security notion are impossible to construct in general. This is the first impossibility result

that exploits unbounded collusions in an essential way. In particular, we show that there are no

such functional encryption schemes for the class of weak pseudo-random functions (and more

generally, for any class of incompressible functions).

More quantitatively, our technique also gives us a lower bound for functional encryption schemes

secure against bounded collusions. To be secure against q collusions, we show that the ciphertext

in any such scheme must have size Ω(q).

• We put forth and discuss a simulation-based notion of security for functional encryption, with an

unbounded simulator (called USIM). We show that this notion interpolates indistinguishability

and simulation-based security notions, and is inspired by results and barriers in the zero-

knowledge and multi-party computation literature.

Fully, (Almost) Tightly Secure IBE and Dual System Groups [48, CRYPTO 13]

We present the first fully secure Identity-Based Encryption scheme (IBE) from the standard assumptions

where the security loss depends only on the security parameter and is independent of the number of

secret key queries. This partially answers an open problem posed by Waters (EUROCRYPT 2005). Our

construction combines Waters’ dual system encryption methodology (CRYPTO 2009) with the Naor-

Reingold pseudo-random function (J. ACM, 2004) in a novel way. The security of our scheme relies on
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the DLIN assumption in prime-order groups. Along the way, we introduce a novel notion of dual system

groups and a new randomization and parameter-hiding technique for prime-order bilinear groups.

Dual System Encryption via Predicate Encodings [148, TCC 14]

We introduce the notion of predicate encodings, an information-theoretic primitive reminiscent of linear

secret-sharing that in addition, satisfies a novel notion of reusability. Using this notion, we obtain a

unifying framework for adaptively-secure public-index predicate encryption schemes for a large class of

predicates. Our framework relies on Waters’ dual system encryption methodology (CRYPTO ’09), and

encompass the identity-based encryption scheme of Lewko and Waters (TCC ’10), and the attribute-

based encryption scheme of Lewko et al. (Eurocrypt ’10). In addition, we obtain several concrete

improvements over prior works. Our work offers a novel interpretation of dual system encryption as

a methodology for amplifying a one-time private-key primitive (i.e. predicate encodings) into a many-

time public-key primitive (i.e. predicate encryption).

Partial Garbling Schemes and Their Applications [101, ICALP 14]

Garbling schemes (aka randomized encodings of functions) represent a function F by a “simpler”

randomized function F̂ such that F̂ (x) reveals F (x) and no additional information about x. Garbling

schemes have found applications in many areas of cryptography. Motivated by the goal of improving the

efficiency of garbling schemes, we make the following contributions:

• We suggest a general new notion of partial garbling which unifies several previous notions from

the literature, including standard garbling schemes, secret sharing schemes, and “conditional

disclosure of secrets”. This notion considers garbling schemes in which part of the input is public,

in the sense that it can be leaked by F̂ .

• We present constructions of partial garbling schemes for (boolean and arithmetic) formulas and

branching programs which take advantage of the public input to gain better efficiency.

• We demonstrate the usefulness of the new notion by presenting applications to efficient attribute-

based encryption, delegation, and secure computation. In each of these applications, we obtain

either new schemes for larger classes of functions or efficiency improvements from quadratic to

linear. In particular, we obtain the first ABE scheme in bilinear groups for arithmetic formulas, as

well as more efficient delegation schemes for boolean and arithmetic branching programs.

Semi-Adaptive Attribute-Based Encryption and Improved Delegation for Boolean Formula
[50, SCN 14]

We consider semi-adaptive security for attribute-based encryption, where the adversary specifies the

challenge attribute vector after it sees the public parameters but before it makes any secret key queries.

We present two constructions of semi-adaptive attribute-based encryption under static assumptions

with short ciphertexts. Previous constructions with short ciphertexts either achieve the weaker notion of

selective security, or require parameterized assumptions.
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As an application, we obtain improved delegation schemes for Boolean formula with semi-adaptive

soundness, where correctness of the computation is guaranteed even if the client’s input is chosen

adaptively depending on its public key. Previous delegation schemes for formula achieve one of adaptive

soundness, constant communication complexity, or security under static assumptions; we show how to

achieve semi-adaptive soundness and the last two simultaneously.

Predicate Encryption for Multi-Dimensional Range Queries from Lattices [72, PKC 15]

We construct a lattice-based predicate encryption scheme for multi-dimensional range and multi-

dimensional subset queries. Our scheme is selectively secure and weakly attribute-hiding, and its

security is based on the standard learning with errors (LWE) assumption. Multi-dimensional range and

subset queries capture many interesting applications pertaining to searching on encrypted data. To the

best of our knowledge, these are the first lattice-based predicate encryption schemes for functionalities

beyond IBE and inner product.

Improved Dual System ABE in Prime-Order Groups via Predicate Encodings [53, EURO-
CRYPT 15]

We present a modular framework for the design of efficient adaptively secure attribute-based encryption

(ABE) schemes for a large class of predicates under the standard k-Lin assumption in prime-order

groups; this is the first uniform treatment of dual system ABE across different predicates and across both

composite and prime-order groups. Via this framework, we obtain concrete efficiency improvements for

several ABE schemes. Our framework has three novel components over prior works: (i) new techniques

for simulating composite-order groups in prime-order ones, (ii) a refinement of prior encodings

framework for dual system ABE in composite-order groups, (iii) an extension to weakly attribute-hiding

predicate encryption (which includes anonymous identity-based encryption as a special case).

Predicate Encryption for Circuits from LWE [88, CRYPTO 15]

In predicate encryption, a ciphertext is associated with descriptive attribute values x in addition to a

plaintext µ, and a secret key is associated with a predicate f . Decryption returns plaintext µ if and

only if f (x) = 1. Moreover, security of predicate encryption guarantees that an adversary learns nothing

about the attribute x or the plaintext µ from a ciphertext, given arbitrary many secret keys that are not

authorized to decrypt the ciphertext individually.

We construct a leveled predicate encryption scheme for all circuits, assuming the hardness of the

subexponential learning with errors (LWE) problem. That is, for any polynomial function d = d(λ), we

construct a predicate encryption scheme for the class of all circuits with depth bounded by d(λ), where

λ is the security parameter.
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Structure-Preserving Signatures from Standard Assumptions, Revisited [109, CRYPTO 15]

Structure-preserving signatures (SPS) are pairing-based signatures where all the messages, signatures

and public keys are group elements, with numerous applications in public-key cryptography. We present

new, simple and improved SPS constructions under standard assumptions via a conceptually different

approach. Our constructions significantly narrow the gap between existing constructions from standard

assumptions and optimal schemes in the generic group model.

Communication Complexity of Conditional Disclosure of Secrets and Attribute-Based En-
cryption [71, CRYPTO 15]

We initiate a systematic treatment of the communication complexity of conditional disclosure of secrets

(CDS), where two parties want to disclose a secret to a third party if and only if their respective inputs

satisfy some predicate. We present a general upper bound and the first non-trivial lower bounds for

conditional disclosure of secrets. Moreover, we achieve tight lower bounds for many interesting setting

of parameters for CDS with linear reconstruction, the latter being a requirement in the application to

attribute-based encryption. In particular, our lower bounds explain the trade-off between ciphertext

and secret key sizes of several existing attribute-based encryption schemes based on the dual system

methodology.

10 Conclusion

New developments in cryptography tend to go hand-in-hand with the emergence of new computing

technologies like smart phones, cloud computing and social networks. After all, the success of new

computing technologies and paradigms hinges crucially on our ability to ensure security; indeed, e-

commerce would not have thrived without secure online payments and public key cryptography. It is this

synergistic and symbiotic relationship between cryptography and computing technologies that makes

cryptography such an exciting area to work in: new computing technologies pose new cryptographic

challenges, and solutions to these challenges facilitate adoption and deployment of these technologies.

My long-term vision is the ubiquitous use of functional encryption to secure our data and our

computation, just as public-key encryption is widely used today to secure our communications. The use

of functional encryption could help eliminate devastating privacy breaches and the prospect of massive

digital surveillance, threats borne out by the Snowden leaks and several high-profile security breaches.

Furthermore, functional encryption enables searches on encrypted travel records and surveillance video

as well as medical studies on encrypted medical records in a privacy-preserving manner we can give law

enforcement authorities and drug companies restricted secret keys that allow them to only learn the

outcome of specific searches and tests. These mechanisms ensure that we can maintain public safety

without compromising on civil liberties, and facilitate medical break-throughs without compromising

on individual privacy. Realizing this vision requires further advances in the foundations of functional

encryption, which is the goal of my future research.
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Part III

Attribute-Based Encryption for Circuits
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Abstract. In an attribute-based encryption (ABE) scheme, a ciphertext is associated with an ℓ-bit public
index ind and a message m, and a secret key is associated with a Boolean predicate P . The secret key
allows to decrypt the ciphertext and learn m iff P (ind) = 1. Moreover, the scheme should be secure
against collusions of users, namely, given secret keys for polynomially many predicates, an adversary
learns nothing about the message if none of the secret keys can individually decrypt the ciphertext.

We present attribute-based encryption schemes for circuits of any arbitrary polynomial size, where
the public parameters and the ciphertext grow linearly with the depth of the circuit. Our construction is
secure under the standard learning with errors (LWE) assumption. Previous constructions of attribute-
based encryption were for Boolean formulas, captured by the complexity class NC1.

In the course of our construction, we present a new framework for constructing ABE schemes.
As a by-product of our framework, we obtain ABE schemes for polynomial-size branching programs,
corresponding to the complexity class LOGSPACE, under quantitatively better assumptions.

1 Introduction

Attribute-based encryption [140, 89] is an emerging paradigm for public-key encryption which enables
fine-grained control of access to encrypted data. In traditional public-key encryption, access to the
encrypted data is all or nothing: given the secret key, one can decrypt and read the entire message, but
without it, nothing about the message is revealed (other than its length). In attribute-based encryption,
an encryption of a message m is labeled with a public attribute vector ind (also called the “index”), and
secret keys are associated with predicates P . A secret key skP decrypts the ciphertext and recovers the
message m if and only if ind satisfies the predicate, namely if and only if P (ind) = 1.

Attribute-based encryption captures as a special case previous cryptographic notions such as
identity-based encryption (IBE) [142, 29, 56] and fuzzy IBE [140]. It has also found applications in
scenarios that demand complex policies to control access to encrypted data, as well as in designing
cryptographic protocols for verifiably outsourcing computations [132].

The crucial component in the security requirement for attribute-based encryption stipulates that it
resists collusion attacks, namely any group of users collectively learns nothing about the message m if
none of them is individually authorized to decrypt the ciphertext.

In the past few years, there has been significant progress in attribute-based encryption in terms
of efficiency, security guarantees, and diversifying security assumptions [89, 146, 113, 115, 46, 7, 128].
On the other hand, little progress has been made in terms of supporting larger classes of predicates.
The state of the art is Boolean formulas [89, 115, 128], which is a subclass of log-space computations.
Constructing a secure attribute-based encryption for all polynomial-time predicates was posed as a
central challenge by Boneh, Sahai and Waters [33]. We resolve this problem affirmatively in this work.
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2 Our Contributions

We construct attribute-based encryption schemes for circuits of every a-priori bounded depth, based
on the learning with errors (LWE) assumption. In the course of our construction, we present a new
framework for constructing attribute-based encryption schemes, based on a primitive that we call
“two-to-one recoding” (TOR). Our methodology departs significantly from the current line of work
on attribute-based encryption [89, 115] and instead, builds upon the connection to garbled circuits
developed in the context of bounded collusions [144, 85]. Along the way, we make the first substantial
progress towards the 25-year-old open problem of constructing (fully) reusable garbled circuits. In
a follow-up work, Goldwasser et al. [82] completely resolved this open problem; moreover, their
construction relies crucially on our ABE scheme as an intermediate building block. More details follow.

2.1 Attribute-based encryption

For every class of predicate circuits with depth bounded by a polynomial function d = d(λ) (where
λ is the security parameter), we construct an ABE scheme that supports this class of circuits, under
the learning with errors (LWE) assumption. Informally, the (decisional) LWE problem [136] asks to
distinguish between “noisy” random linear combinations of n numbers s = (s1, . . . , sn) ∈ Zn

q from
uniformly random numbers over Zq .

Regev [136] showed that solving the LWE problem on the average is as hard as (quantumly) solving
several notoriously difficult lattice problems in the worst case. Since then, the LWE assumption has
become a central fixture in cryptography. We now have a large body of work building cryptographic
schemes under the LWE assumption, culminating in the construction of a fully homomorphic encryp-
tion scheme [37].

The key parameter that determines the hardness of LWE is the ratio between the modulus q and
the maximum absolute value of the noise B ; as such, we refer to q/B as the hardness factor of LWE.
The problem becomes easier as this ratio grows, but is believed to be hard for 2nϵ

-time algorithms when
q/B = 2O(nϵ), where 0 < ϵ< 1/2. Our results will hold as long as the latter holds for some constant ϵ.

In particular, we show:

Theorem 2.1 (informal). Assume that there is a constant 0 < ϵ< 1 for which the LWE problem is hard for
a exp(nϵ) factor in dimension n, for all large enough n. Then, for any polynomial d, there is a selectively
secure attribute encryption scheme for general circuits of depth d.

Moreover, our scheme has succinct ciphertexts, in the sense that the ciphertext size depends
polynomially on the depth d and the length ℓ of the attribute vector ind, but not on the size of the circuits
in the class. The construction as stated achieves the weaker notion of selective security, but we can easily
obtain a fully secure scheme following [27] (but using sub-exponential hardness in a crucial way):

Corollary 2.2. Assume that there is a constant 0 < ϵ < 1/2 such that the LWE problem with a factor of
exp(nϵ) is hard in dimension n for exp(nϵ)-time algorithms. Then, for any polynomial d, there is a fully
secure attribute-based encryption scheme for general circuits of depth d.

We also obtain a new ABE scheme for branching programs (which correspond to the complexity class
LOGSPACE) under the weaker quasi-polynomial hardness of LWE:

36



Theorem 2.3 (informal). There exist attribute-based encryption schemes for the class of branching
programs under either (1) the hardness of the LWE problem with an nω(1) factor, or (2) the bilinear
decisional Diffie-Hellman assumption.

Here, there is no a-prori bound on the size or the depth of the branching program. In addition, we
achieve succinct ciphertexts of size O(ℓ) where ℓ is the number of bits in the index. Prior to this work,
we only knew how to realize IBE and inner product encryption under nω(1)-hardness of LWE [46, 7, 9],
whereas our bilinear construction is a different way to achieve the results of Goyal et al. [89] which
uses secret-sharing for general access structures. Our construction exploits a combinatorial property
of branching programs to overcome limitations of previous approaches based on secret sharing for
monotone formulas (c.f. [10]). The construction is inspired by a pairings-based scheme for regular
languages in [147].

We now move on to provide a technical roadmap of our construction: first, we define a new primitive
that we call a two-to-one recoding (TOR) scheme; we then show how TOR gives us an attribute-based
encryption scheme for circuits, and how to construct a TOR scheme from the LWE assumption.

2.2 New Framework: TOR

A Two-to-One Recoding (TOR) scheme is a family of (probabilistic) functions {Encode(pk, ·)} indexed by
pk, together with a “two-to-one” recoding mechanism. The basic computational security guarantee for
Encode(pk, ·) is that of (correlated) pseudorandomness [137]: Encode(pk, s) should be pseudorandom
given Encode(pki , s) for polynomially many pki ’s, where s is a uniformly random “seed”.

The recoding mechanism guaratees that given any triple of public keys (pk0,pk1,pktgt), there is a
recoding key rk that allows us to perform the transformation

(Encode(pk0, s),Encode(pk1, s)) 7→Encode(pktgt, s).

Such a recoding key rk can be generated using either of the two secret keys sk0 or sk1. Furthermore, the
recoding mechanism must satisfy a natural simulation requirement: namely, we can generate rk given
just pk0,pk1 (and neither of the two secret keys), if we are allowed to “program” pktgt. That is, there
are three ways of generating the pair (pktgt,rk) that are (statistically) indistinguishable: (1) given pktgt,
generate rk using the secret key sk0; (2) given pktgt, generate rk using the secret key sk1; and (3) generate
rk without either secret key, by “programming” the output public key pktgt.

This requirement demonstrates the intuitive guarantee that we expect from a two-to-one recoding
mechanism: namely, the recoding key is “useless” given only one encoding, but not both encodings.
For example, it is easy to see that given Encode(pk0, s) and rk (but not Encode(pk1, s)), the output
Encode(pktgt, s) is pseudorandom. Indeed, this is because rk could as well have been “simulated” using
sk1, in which case it is of no help in the distinguishing task.

The simulation requirement also rules out the trivial construction from trapdoor functions where rk

is a trapdoor for inverting Encode(pk0, ·) or Encode(pk1, ·).

From TOR to Garbled Circuits. We start from the observation that our TOR primitive implies a form
of reusable garbled circuits with no input or circuit privacy, but instead, with a form of authenticity
guarantee. As we will see, this leads directly into our attribute-based encryption scheme.
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Consider a two-input boolean gate with input wires u, v and output wire w , computing a function
G : {0,1}× {0,1} → {0,1}. In Yao’s garbled circuit construction, we associate each wire with a pair of strings
(called “labels”), and we provide a translation table comprising of four values vb,c where vb,c allows us to
perform the transformation:

Lu,b ,Lv,c 7→ Lw,G(b,c)

The garbled circuits construction guarantees that given the translation table and labels Lu,b∗ and Lv,c∗

for specific input bits b∗ and c∗, we can obtain Lw,G(b∗,c∗); however, the other label at the output, namely
Lw,1−G(b∗,c∗) remains hidden.

In our setting, we replace labels with public keys, so that each wire is associated with a pair of public
keys. As before, we also provide a translation table comprising four values rkb,c where the recoding key
rkb,c allows us to perform the transformation

Encode(pku,b , s),Encode(pkv,c , s) 7→Encode(pkw,G(b,c), s)

The security properties of the TOR scheme then give us the following guarantee: Given the translation
table and encodings of s corresponding to b∗,c∗, we clearly compute the encoding of s corresponding to
G(b∗,c∗). However, the encoding corresponding to 1−G(b∗,c∗) remains pseudorandom.

Moreover, crucially, the translation table is independent of s, so we can now “reuse” the translation
table by providing fresh encodings with different choices of s. In a sentence, replacing strings by
functions gives us the power of reusability.

In the garbled circuits construction, the four entries of the table are permuted and thus, one can
perform the translation even without knowing what the input bits b∗ and c∗ are. This is possible because
there is an efficient way to verify when the “correct” translation key is being used. In contrast, in the
reusable construction above, one has to know exactly which of the recoding keys to use. This is part of
the reason why we are unable to provide circuit or input privacy, but instead, only guarantee authenticity,
namely that an adversary can obtain only one of the two possible encodings at the output wire.

This construction forms the cornerstone of the subsequent work of Goldwasser, Kalai, Popa,
Vaikuntanathan and Zeldovich [82] who construct reusable garbled circuits with input and circuit
privacy, by additionally leveraging the power of fully homomorphic encryption [76, 37].

From TOR to Attribute-Based Encryption. How is all this related to attribute-based encryption? In
our attribute-based encryption scheme for circuits, the encodings of s are provided in the ciphertext,
and the translation tables are provided in the secret key. More precisely, each wire is associated with
two TOR public keys, and the encryption of a message m under an index ind is obtained by computing
Encode(pki ,indi

, s) for every input wire i . The output encoding Encode(pkout, s) is then used to mask the
message. We obtain the secret key corresponding to a circuit C by “stitching” multiple translation tables
together, where the public keys for the input and output wires are provided in the public parameters,
and we pick fresh public keys for the internal wires during key generation. In a nutshell, this gives us the
guarantee that given a secret key skC and an encryptionEnc(ind,m) such that C (ind) = 1, we can compute
Encode(pkout, s) and thus recover the message. On the other hand, this value looks pseudorandom if
C (ind) = 0.

In our outline of reusable garbled circuits with authenticity, we wanted to reuse the garbled circuit
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G(C ) across multiple encryptions with indices ind1, ind2, . . . on which C always evaluates to 0. In
attribute-based encryption, we also want reusability across multiple circuits C1,C2, . . . all of which
evaluate to 0 on a fixed index ind (in addition to multiple indices). Fortunately, the strong security
properties of the TOR primitive provide us with this guarantee.

To obtain attribute-based encryption for branching programs, we are able to support a different
notion of translation tables, which we can realize using a slightly weaker notion of TOR. In branching
programs, the transition function depends on an input variable and the current state. The fact that one
of these two values is always an input variable makes things simpler; in circuits, both of the input values
to a gate could be internal wires.

TOR from LWE. We show how to instantiate TOR from LWE, building upon previous lattice-based IBE
techniques in [77, 46, 7, 8]. The public key is given by a matrix A ∈Zn×m

q , and

Encode(A,s) = AT s+e

where s ∈ Zn
q , e ∈ Zm

q is an error vector, and AT denotes the transpose of the matrix A. (Correlated)
pseudorandomness follows directly from the LWE assumption. Given A0,A1,Atgt ∈ Zn×m

q , the recoding
key rk is given by a low-norm matrix R ∈Z2m×m

q such that

[ A0 ∥ A1 ] R = Atgt

Note that

RT

[
AT

0 s+e0

AT
1 s+e1

]
≈ AT

tgts

which gives us the recoding mechanism. There are three ways of generating the public key Atgt together
with the recoding key R: (1) using the trapdoor for A0, (2) using the trapdoor for A1, or (3) first generating
R and then “programming” Atgt := [A0||A1] R. These three ways are statistically indistinguishable by the
“bonsai trick” of [46]. In fact, our recoding mechanism is very similar to the lattice delegation mechanism
introduced in [8], which also uses random low norm matrices to move from one lattice to another.

The multiplicative mechanism for recoding means that the noise grows exponentially with the
number of sequential recodings. This, in turn, limits the depth of the circuits we can handle. In
particular, the noise grows by a multiplicative poly(n) factor on each recoding, which means that after
depth d , it becomes nO(d). Since nO(d) < q/4 < 2nϵ

, we can handle circuits of depth Õ(nϵ) (here, the first
inequality is for correctness and the second for security). Viewed differently, setting the LWE dimension
n = d 1/ϵ lets us handle circuits of maximum depth d = d(ℓ).

Our weak TOR for branching programs uses an additive mechanism, namely the recoding key is given
by a low-norm matrix R ∈Zm×m

q such that A0R = Atgt−A1. Note that RT (AT
0 s+e0)+(AT

1 s+e1) ≈ AT
tgts which

gives us our recoding mechanism. Since in our branching program construction, AT
0 s+e0 will always be a

fresh encoding provided in the ciphertext, the noise accumulation is additive rather than multiplicative.

39



2.3 Applications

Let us now explain the application of our result to the problem of publicly verifiable delegation of
computation without input privacy.

A verifiable delegation scheme allows a computationally weak client to delegate expensive compu-
tations to the cloud, with the assurance that a malicious cloud cannot convince the client to accept
an incorrect computation [120, 81, 74, 55, 15]. Recent work of Parno, Raykova and Vaikuntanathan
[132] showed that any attribute-based encryption scheme for a class of circuits with encryption time
at most linear in the length of the index immediately yields a two-message delegation scheme for the
class in the pre-processing model. Namely, there is an initial pre-processing phase which fixes the
circuit C the client wishes to compute, produces a circuit key and sends it to the server. Afterwards,
to delegate computation on an input x, the client only needs to send a single message. Moreover, the
ensuing delegation scheme satisfies public delegatability, namely anyone can delegate computations to
the cloud; as well as public verifiability, namely anyone can check the cloud’s work (given a “verification”
key published by the client). The previous delegation schemes that satisfy both these properties (secure
in the standard model) supported the class NC 1 [132, 89, 114]. Our attribute-based encryption schemes
for circuits gives us a verifiable delegation scheme for all circuits, where the computation time of the
client in the online phase is polynomial in the length of its input and the depth of the circuit, but is
otherwise independent of the circuit size. We note that this scheme does not guarantee privacy of the
input. Building on this work, Goldwasser et al. [82] show how to achieve a publicly verifiable delegation
scheme with input privacy.

2.4 Related Work

Prior to this work, the state-of-art for lattice-based predicate encryption was threshold and inner product
predicates [10, 9]; realizing Boolean formula was itself an open problem. A different line of work
considers definitional issues in the more general realm of functional encryption [33, 131], for which
general feasibility results are known for the restricted setting of a-priori bounded collusions developed
from classical “one-time” garbled circuits [139, 85] (the ciphertext size grows with both the circuit size
and the collusion bound). Our methodology takes a fresh perspective on how to achieve reusability of
garbled circuits with respect to authenticity. Our primitive (TOR) can be thought of as a generalization
of the notion of proxy re-encryption [24, 16, 100] which can be thought of as a one-to-one re-encryption
mechanism.

Independent work. Boyen [36] gave a construction of an ABE scheme for Boolean formulas based on
LWE; our result for LWE-based branching program subsumes the result since Boolean formulas are a
subclass of branching programs. Garg, Gentry, Halevi, Sahai and Waters [69] gave a construction of
attribute-based encryption for general circuits under a DBDH-like assumption in multi-linear groups;
the construction extends to so-called graded encodings, for which we have candidates under non-
standard assumptions in ideal lattices [66, 57]. The public parameters in the construction also grow
with the depth of the circuit.
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Subsequent Work. Our attribute-based encryption scheme has been used as the crucial component
in the subsequent work of [82] to construct a (private index) functional encryption scheme with
succinct ciphertexts. They also show a number of applications of their construction, including reusable
garbled circuits with input and circuit privacy. Also subsequently, Boneh et al. [34] gave asymptotic
improvements on the sizes of secret keys and ciphertexts in two different constructions respectively.
Their main construction is built from a new fully key-homomorphic encryption reduces the size of the
secret key for a predicate P from |P | ×poly(λ,d), shown in this work, to |P | +poly(λ,d) where λ is the
security parameter and d is the circuit depth.

Organization. We present our TOR framework and its instantiation in Sections 4 and 5. We present our
ABE scheme in Section 6. We present the scheme for branching programs in Section 7.

3 Preliminaries

Notation. Let PPT denote probabilistic polynomial-time. For any integer q ≥ 2, we let Zq denote the
ring of integers modulo q and we represent Zq as integers in (−q/2, q/2]. We let Zn×m

q denote the set of
n ×m matrices with entries in Zq . We use bold capital letters (e.g. A) to denote matrices, bold lowercase
letters (e.g. x) to denote vectors. The notation AT denotes the transpose of the matrix A.

If A1 is an n ×m matrix and A2 is an n ×m′ matrix, then [A1∥A2] denotes the n × (m +m′) matrix
formed by concatenating A1 and A2. A similar notation applies to vectors. When doing matrix-vector
multiplication we always view vectors as column vectors.

We say a function f (n) is negligible if it is O(n−c ) for all c > 0, and we use negl(n) to denote a negligible
function of n. We say f (n) is polynomial if it is O(nc ) for some c > 0, and we use poly(n) to denote
a polynomial function of n. We say an event occurs with overwhelming probability if its probability is
1−negl(n). The function lg x is the base 2 logarithm of x. The notation ⌊x⌉ denotes the nearest integer to
x, rounding towards 0 for half-integers.

3.1 Attribute-Based Encryption

We define attribute-based encryption (ABE), following [89].An ABE scheme for a class of predicate
circuits C (namely, circuits with a single bit output) consists of four algorithms (Setup,Enc,KeyGen,Dec):

Setup(1λ,1ℓ) → (pp,mpk,msk) : The setup algorithm gets as input the security parameter λ, the length
ℓ of the index, and outputs the public parameter (pp,mpk), and the master key msk. All the other
algorithms get pp as part of its input.

Enc(mpk, ind,m) → ctind : The encryption algorithm gets as input mpk, an index ind ∈ {0,1}ℓ and a
message m ∈M. It outputs a ciphertext ctind. Note that ind is public given ctind.

KeyGen(msk,C ) → skC : The key generation algorithm gets as input msk and a predicate specified by
C ∈C. It outputs a secret key skC (where C is also public).

Dec(skC ,ctind) → m : The decryption algorithm gets as input skC and ctind, and outputs either ⊥ or a
message m ∈M.
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We require that for all (ind,C ) such that C (ind) = 1, all m ∈M and ctind ←Enc(mpk, ind,m),Dec(skC ,ctind) =
m.

Security Definition. For a stateful adversary A, we define the advantage function AdvPE
A (λ) to be

Pr


b = b′ :

ind←A(1λ,1ℓ);
(mpk,msk) ← Setup(1λ,1ℓ);
(m0,m1) ←AKeyGen(msk,·)(mpk), |m0| = |m1|;
b

$← {0,1};
ctind ←Enc(mpk, ind,mb);
b′ ←AKeyGen(msk,·)(ctind)


− 1

2

with the restriction that all queries C that A makes to KeyGen(msk, ·) satisfies C (ind) = 0 (that is, skC does
not decrypt ctind). an attribute-based encryption scheme is selectively secure if for all PPT adversaries A,
the advantage AdvPE

A (λ) is a negligible function in λ. We call an attribute-based encryption scheme fully
secure if the adversary A is allowed to choose the challenge index ind after seeing secret keys, namely,
along with choosing (m0,m1).

3.2 Learning With Errors (LWE) Assumption

The LWE problem was introduced by Regev [136], who showed that solving it on the average is as hard as
(quantumly) solving several standard lattice problems in the worst case.

Definition 3.1 (LWE). For an integer q = q(n) ≥ 2 and an error distribution χ=χ(n) over Zq , the learning
with errors problem dLWEn,m,q,χ is to distinguish between the following pairs of distributions:

{A,As+x} and {A,u}

where A
$←Zn×m

q ,s
$←Zn

q ,x
$←χm ,u

$←Zm
q .

Connection to lattices. Let B = B(n) ∈N. A family of distributions χ= {χn}n∈N is called B-bounded if

Pr[χ ∈ {−B , . . . ,B −1,B }] = 1.

There are known quantum [136] and classical [133] reductions between dLWEn,m,q,χ and approximating
short vector problems in lattices in the worst case, where χ is a B-bounded (truncated) discretized
Gaussian for some appropriate B . The state-of-the-art algorithms for these lattice problems run in
time nearly exponential in the dimension n [13, 122]; more generally, we can get a 2k -approximation
in time 2Õ(n/k). Combined with the connection to LWE, this means that the dLWEn,m,q,χ assumption is
quite plausible for a poly(n)-bounded distribution χ and q as large as 2nϵ

(for any constant 0 < ϵ < 1).
Throughout this paper, the parameter m = poly(n), in which case we will shorten the notation slightly to
LWEn,q,χ.
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3.3 Trapdoors for Lattices and LWE

Gaussian distributions. Let DZm ,σ be the truncated discrete Gaussian distribution over Zm with
parameter σ, that is, we replace the output by 0 whenever the || · ||∞ norm exceeds

p
m ·σ. Note that

DZm ,σ is
p

m ·σ-bounded.

Lemma 3.1 (Lattice Trapdoors [12, 77, 121]). There is an efficient randomized algorithmTrapSamp(1n ,1m , q)
that, given any integers n ≥ 1, q ≥ 2, and sufficiently large m =Ω(n log q), outputs a parity check matrix
A ∈Zn×m

q and a ‘trapdoor’ matrix T ∈Zm×m such that the distribution of A is negl(n)-close to uniform.

Moreover, there is an efficient algorithm SampleD that with overwhelming probability over all random
choices, does the following: For any u ∈ Zn

q , and large enough s = Ω(
√

n log q), the randomized
algorithm SampleD(A,T,u, s) outputs a vector r ∈ Zm with norm ||r||∞ ≤ ||r||2 ≤ s

p
n (with probability

1). Furthermore, the following distributions of the tuple (A,T,U,R) are within negl(n) statistical distance
of each other for any polynomial k ∈N:

• (A,T) ←TrapSamp(1n ,1m , q); U ←Zn×k
q ; R ← SampleD(A,T,U, s).

• (A,T) ←TrapSamp(1n ,1m , q); R ← (DZm ,s)k ; U := AR (mod q).

4 Two-to-One Recoding Schemes

An overview is provided in Section 2.2.

Symmetric encryption. In our construction, we will useEncode(pk, s) as a one-time key for a symmetric-
key encryption scheme (E,D). If Encode is deterministic, then we could simply use a one-time pad.
However, since Encode is probabilistic, the one-time pad will not guarantee correctness. Instead, we
require (E,D) to satisfy a stronger correctness guarantee, namely for all messages m and for all ψ,ψ′ in
the support Encode(pk, s), D(ψ′,E(ψ,m)) = m.

Allowing degradation. With each recoding operation, the “quality” of encoding potentially degrades.
In order to formalize this, we allow the initial global public parameters to depend on dmax, an a-prior
upper bound on the number of nested recoding operations. We then require that given any encodings
ψ and ψ′ that are a result of at most dmax nested recodings, D(ψ′,E(ψ,m)) = m. We stress that we allow
dmax to be super-polynomial, and in fact, provide such instantiations for a relaxed notion of TOR.

4.1 Definition of TOR

Formally, a TOR scheme over the input space S = {Sλ} consists of six polynomial-time algorithms
(Params,Keygen,Encode,ReKeyGen,SimReKeyGen,Recode) and a symmetric-key encryption scheme
(E,D) with the following properties:

• Params(1λ,dmax) is a probabilistic algorithm that takes as input the security parameter λ and
an upper bound dmax on the number of nested recoding operations (written in binary), outputs
“global” public parameters pp.
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• Keygen(pp) is a probabilistic algorithm that outputs a public/secret key pair (pk,sk).

• Encode(pk, s) is a probabilistic algorithm that takes pk and an input s ∈ S, and outputs an encoding
ψ.

In addition, there is a recoding mechanism together with two ways to generate recoding keys: given one
of the two secret keys, or by programming the output public key.

• ReKeyGen(pk0,pk1,sk0,pktgt) is a probabilistic algorithm that takes a key pair (pk0,sk0), another
public key pk1, a “target” public key pktgt, and outputs a recoding key rk.

• SimReKeyGen(pk0,pk1) is a probabilistic algorithm that takes two public keys pk0,pk1 and outputs
a recoding key rk together with a “target” public key pktgt.

• Recode(rk,ψ0,ψ1) is a deterministic algorithm that takes the recoding key rk, two encodings ψ0

and ψ1, and outputs an encoding ψtgt.

Remark 4.1. For our instantiation from lattices, we can in fact invert Encode(pk, s) to recover s using
the corresponding sk. However, we will not require this property in our generic constructions from TOR.
Indeed, realizing this property over bilinear groups would be hard, since s is typically encoded in the
exponent.

Correctness. Correctness of a TOR scheme requires two things. First, for every pk and s ∈ S, there exists
a family of sets Ψpk,s, j , j = 0,1, . . . ,dmax:

• Pr[Encode(pk, s) ∈Ψpk,s,0] = 1, where the probability is taken over the coin tosses of Encode;

• Ψpk,s,0 ⊆Ψpk,s,1 ⊆ ·· · ⊆Ψpk,s,dmax .

• for all ψ,ψ′ ∈Ψpk,s,dmax and all m ∈M, D(ψ′,E(ψ,m)) = m.

Note that these properties hold trivially if Encode is deterministic and (E,D) is the one-time pad. Sec-
ondly, the correctness of recoding requires that for any triple of key pairs (pk0,sk0), (pk1,sk1), (pktgt,sktgt),
and any encodings ψ0 ∈Ψpk0,s, j0 and ψ1 ∈Ψpk1,s, j1 ,

Recode(rk,ψ0,ψ1) ∈Ψpktgt,s,max( j0, j1)+1

Statistical Security Properties. Note that we have three ways of sampling recoding keys: using
ReKeyGen along with one of two secret keys sk0 or sk1; using SimReKeyGen while programming pktgt.
We require that all three ways lead to the same distribution of recoding keys, up to some statistical error.

(Key Indistinguishability) : Let (pkb ,skb) ←Keygen(pp) for b = 0,1 and (pktgt,sktgt) ←Keygen(pp).

The following two ensembles must be statistically indistinguishable:[
Aux,ReKeyGen(pk0,pk1, sk0 ,pktgt)

]
s≈[

Aux,ReKeyGen(pk1,pk0, sk1 ,pktgt)
]
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where Aux = ((pk0,sk0), (pk1,sk1), (pktgt,sktgt)). Informally, this says that sampling recoding keys
using sk0 or sk1 yields the same distribution.

(Recoding Simulation) : Let (pkb ,skb) ← Keygen(pp) for b = 0,1. Then, the following two ways of
sampling the tuple

[
(pk0,sk0), (pk1,sk1),pktgt,rk

]
must be statistically indistinguishable:[

(pk0,sk0), (pk1,sk1),pktgt,rk : (pktgt,sktgt) ←Keygen(pp);rk←ReKeyGen(pk0,pk1,sk0,pktgt)
]

s≈[
(pk0,sk0), (pk1,sk1),pktgt,rk : (pktgt,rk) ← SimReKeyGen(pk0,pk1)

]
In addition, we require one-time semantic security for (E,D):

(One-time Semantic Security) : For all m0,m1 ∈M, the following two distributions must be statistically
indistinguishable: [

E(ψ,m0) : ψ
$←K

]
s≈

[
E(ψ,m1) : ψ

$←K
]

For all three properies, computational indistinguishability is sufficient for our applications, but we will
achieve the stronger statistical indistinguishability in our instantiations.

Computational Security Property. We require that given the encoding of a random s on ℓ = poly(λ)
keys, the evaluation at a fresh key is pseudorandom.

(Correlated Pseudorandomness) : For every polynomial ℓ = ℓ(λ), let (pki ,ski ) ← Keygen(pp) for i ∈
[ℓ+ 1]. Let s

$← S, and let ψi ← Encode(pki , s) for i ∈ [ℓ+ 1]. Then, the following two ensembles
must be computationally indistinguishable:[

(pki ,ψi )i∈[ℓ],pkℓ+1, ψℓ+1

]
c≈[

(pki ,ψi )i∈[ℓ],pkℓ+1, ψ : ψ
$←K

]
That is, we define the advantage function AdvCP

A (λ) to be:

Pr


b = b′ :

pp← Setup(1λ); s ← S;
(pki ,ski ) ←Keygen(pp),
ψi ←Encode(pki , s), i = 1, . . . ,ℓ;
ψ′

0 ←Encode(pkℓ+1, s);

b
$← {0,1};ψ′

1
$←K

b′ ←A(pk1, . . . ,pkℓ+1,ψ1, . . . ,ψℓ,ψ′
b)


− 1

2

and we require that for all PPT A, the advantage function AdvCP
A (λ) is a negligible function in λ.

4.2 Simple Applications of TOR

First example. We revisit the example from Section 2.2. Consider a two-input boolean gate g with input
wires u, v and output wire w , computing a function G : {0,1}× {0,1} → {0,1}. Analogous to Yao’s garbled
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circuit, we provide a translation table Γ comprising four values

Γ := ( rkb,c : b,c ∈ {0,1} )

where rkb,c allows us to perform the transformation

Encode(pku,b , s),Encode(pkv,c , s) 7→Encode(pkw,G(b,c), s)

Now, fix b∗,c∗ and d∗ :=G(b∗,c∗). Given an encoding of s corresponding to b∗ and c∗, we can compute
that under for d∗ using the recoding key rkb∗,c∗ ; in addition, we claim that the encoding corresponding
to 1−d∗ remains pseudorandom. To prove this, it suffices to simulate Γ given pku,b∗ ,pkv,c∗ ,pkw,1−d∗ as
follows:

• we sample (pkw,d∗ ,rkb∗,c∗) using SimReKeyGen;

• we sample pku,1−b∗ and pkv,1−c∗ along with the corresponding secret keys; using these secret keys,
we can sample the other three recoding keys rk1−b∗,c∗ ,rkb∗,1−c∗ ,rk1−b∗,1−c∗ .

IBE from TOR. As a warm-up, we show how to build a selectively secure IBE for identity space {0,1}ℓ.

mpk :=
(
pk1,0 pk2,0 . . . pkℓ,0 pkstart

pk1,1 pk2,1 . . . pkℓ,1 pkout

)

The ciphertext for identity ind and message m is given by:(
Encode(pk1,ind1

, s), . . . ,Encode(pkℓ,indℓ , s),Encode(pkstart, s),E(Encode(pkout, s),m)
)

The secret key for identity ind is given by (rk1, . . . ,rkℓ) where we first sample

(pk′1,sk′1), . . . , (pk′ℓ−1,sk′ℓ−1) ←Keygen(pp)

and then sample

rk1 ←ReKeyGen(pkstart, pk1,ind1
,skstart, pk

′
1)

rk2 ←ReKeyGen(pk′1, pk2,ind2
,sk′1, pk′2)

...
rkℓ ←ReKeyGen(pk′ℓ−1, pkℓ,indℓ ,sk′ℓ−1, pkout)

To prove selective security, we need to generate secret keys for any ind ̸= ind∗, given sk1,1−ind∗1 , . . . ,skℓ,1−ind∗ℓ
but not skstart or skout. We can achieve this as follows: pick an i for which indi ̸= ind∗i ;

• pick (rk1,pk′1), . . . , (rki−1,pk′i−1) using SimReKeyGen;

• pick (pk′i ,sk′i ), . . . , (pk′ℓ−1,sk′ℓ−1) using Keygen;

• pick rki ,rki+1, . . . ,rkℓ using ReKeyGen with secret keys sk1−ind∗i ,sk′i , . . . ,sk′ℓ−1 respectively.
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5 TOR from LWE

In this section, we present an instantiation of TOR from LWE, building upon ideas previously introduced
in [77, 46, 7, 8].

Lemma 5.1. Assuming dLWEn,q,χ where q = nΘ(dmax), there is a TOR scheme that is correct up to dmax

levels.

• Params(1λ,dmax): First choose the LWE dimension n = n(λ). Let the error distribution χ = χ(n) =
DZ,

p
n , the error bound B = B(n) = O(n), the modulus q = q(n) = Õ(n2dmax)dmax n, the number of

samples m = m(n) = O(n log q) and the Gaussian parameter s = s(n) = O(
√

n log q). Output the
global public parameters pp= (n,χ,B , q,m, s).

• Keygen(pp): Run the trapdoor generation algorithm TrapGen(1n ,1m , q) to obtain a matrix A ∈
Zn×m

q together with the trapdoor matrix T ∈Zm×m . Output pk := A and sk := T.

• Encode(pk, s): Sample an error vector e ←χm and output the encoding ψ := AT s+e ∈Zn
q .

The recoding algorithms work as follows:

• ReKeyGen(pk0,pk1,skb ,pktgt): Let pk0 = A0, pk1 = A1, skb = Tb and pktgt = Atgt. Compute the matrix
R ∈Z2m×m in the following way:

– Choose a discrete Gaussian matrix R1−b ← (DZ,s)m×m . Namely, each entry of the matrix is an
independent sample from the discrete Gaussian distribution DZ,s .

– Compute U := Atgt −A1−bR1−b ∈Zn×m
q .

– Compute the matrix Rb by running the algorithm SampleD to compute a matrix Rb ∈ Zm×m

as follows:
Rb ← SampleD(Ab ,Tb ,U)

Output

rk
tgt
0,1 :=

[
R0

R1

]
∈Z2m×m

(We remark that AbRb = U = Atgt −A1−bR1−b , and thus, A0R0 +A1R1 = Atgt).

• SimReKeyGen(pk0,pk1): Let pk0 = A0 and pk1 = A1.

– Sample a matrix R ← (DZ,s)2m×m by sampling each entry from the discrete Gaussian distri-
bution DZ,s .

– Define
Atgt := [A0 || A1] R ∈Zn×m

q

Output the pair (pktgt := Atgt,rk
tgt
0,1 := R).

• Recode(rktgt
0,1,ψ0,ψ1): Let rktgt

0,1 = R. Compute the recoded ciphertext

ψtgt = [ψT
0 ||ψT

1 ] R
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We also need a one-time symmetric encryption scheme (E,D) which we will instantiate as an error-
tolerant version of the one-time pad with K=Zn

q ,M= {0,1}n , as follows:

• E(ψ,µ) takes as input a vector ψ ∈Zn
q and a bit string µ ∈M and outputs the encryption

γ :=ψ+⌈q/2⌉ µ (mod q)

• D(ψ′,γ) takes as input a vector ψ′ = (ψ′
1, . . . ,ψ′

n) ∈Zn
q , an encryption γ= (γ1, . . . ,γn) ∈Zn

q and does
the following. Define a function Round(x) where x ∈ [−(q −1)/2, . . . , (q −1)/2] as:

Round(x) =
{

0 if |x| < q/4
1 otherwise

The decryption algorithm outputs a vector µ= (Round(γ1 −ψ′
1), . . . ,Round(γn −ψ′

n)).

We defer the analysis of (E,D) to the full version.

5.1 Analysis

Correctness. We define the sets ΨA,s, j for pk := A ∈Zn×m
q , s ∈Zn

q and j ∈ [1 . . .dmax] as follows:

ΨA,s, j =
{

AT s+e : ||e||∞ ≤ B · (2sm
p

m) j }
Given this definition:

• Observe that when e ←χm , ||e||∞ ≤ B by the definition of χ and B . Pr[Encode(A,s) ∈ΨA,s,0] = 1.

• ΨA,s,0 ⊆ΨA,s,1 ⊆ . . . ⊆ΨA,s,dmax , by definition of the sets above.

• For any two encodings ψ= AT s+e,ψ′ = AT s+e′ ∈ΨA,s,dmax ,

||ψ−ψ′||∞ = ||e−e′||∞ ≤ 2 ·B · (2sm
p

m)dmax < q/4,

which holds as long as n ·O(n2 log q)dmax < q/4. Thus, ψ and ψ′ are “close”, and by the correctness
property of the symmetric encryption scheme (E,D) described above, D(ψ′,E(ψ,µ)) = µ for any
µ ∈ {0,1}n .

• Consider two encodings ψ0 ∈ ΨA0,s, j0 and ψ1 ∈ ΨA1,s, j1 for any j0, j1 ∈ N, any A0,A1 ∈ Zn×m
q and

s ∈ Zn
q . Then, ψ0 = AT

0 s+ e0 and ψ1 := AT
1 s+ e1 where ||e0||∞ ≤ B · (2sm

p
m) j0 and ||e1||∞ ≤ B ·

(2sm
p

m) j1 .

Then, the recoded ciphertext ψtgt is computed as follows:

ψT
tgt := [

ψT
0 ||ψT

1

]
Rtgt

0,1

= [
sT A0 +eT

0 || sT A1 +eT
1

]
Rtgt

0,1

= sT [
A0 || A1

]
Rtgt

0,1 +
[
eT

0 || eT
1 ] Rtgt

0,1

= sT Atgt +etgt
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where the last equation is because Atgt =
[
A0 || A1

]
Rtgt

0,1 and we define etgt := [
eT

0 || eT
1 ] Rtgt

0,1. Thus,

||etgt||∞ ≤ m · ||Rtgt
0,1||∞ · (||e0||∞+||e1||∞)

≤ m · s
p

m · (B · (2sm
p

m) j0 +B · (2sm
p

m) j1 )

≤ B · (2sm
p

m)max( j0, j1)+1

exactly as required. Here, the second inequality is because ||Rtgt
0,1||∞ ≤ s

p
m by Lemma 3.1. This

finishes our proof of correctness.

Key Indistinguishability. Recall that in ReKeyGen, we given sampling (R0,R1) satisfying A0R0 +A1R1 =
Atgt. Key indistinguishability basically says that we obtain the same distribution whether we use a
trapdoor for A0 or that for A1. Indeed, this follows directly from the following statement in [46, 77]
(see also [45, Theorem 3.4]): for every (A0,T0), (A1,T1) generated by TrapSamp(1n ,1m , q), every matrix
V ∈ Zn×m

q , and any s = Ω(
√

n log q), the following two experiments generate distributions with negl(n)
statistical distance:

• Sample R0 ← (DZm ,s)m , compute U := V−A0R0 ∈ Zn×m
q and R1 ← SampleD(A1,T1,U, s). Output

(R0,R1).

• Sample R1 ← (DZm ,s)m , compute U := V−A1R1 ∈ Zn×m
q and R0 ← SampleD(A0,T0,U, s). Output

(R0,R1).

The recoding simulation property follows readily from Lemma 3.1, as is done in [46]. Correlated
pseudorandomness directly from the decisional LWE assumption dLWEn,(ℓ+1)·m,q,χ where q = nΘ(dmax).

6 Attribute-Based Encryption for Circuits

In this section, we show how to construct attribute-based encryption for circuits from any TOR
scheme. Let TOR be the scheme consisting of algorithms (Params,Keygen,Encode) with the “two-to-
one” recoding mechanism (Recode,ReKeyGen,SimReKeyGen) with input space S. For every dmax, let
dmax-TOR denote a secure “two-to-one” recoding scheme that is correct for dmax recoding levels.

Theorem 6.1. For every ℓ and polynomial dmax = dmax(λ), let Cℓ,dmax denote a family of polynomial-size
circuits of depth at most dmax that take ℓ bits of input. Assuming the existence of a dmax-TOR scheme, there
exists a selectively secure attribute-based encryption scheme ABE for C.

Combining Theorem 1.1 and Lemma 5.1, we obtain a selectively secure attribute-based encryption
scheme from LWE. Furthermore, invoking an argument from [27, Theorem 7.1] and using subexponen-
tial hardness of LWE, we obtain a fully secure scheme:

Corollary 6.2. For all ℓ and polynomial dmax = dmax(ℓ), there exists a selectively secure attribute-based
encryption scheme ABE for any family of polynomial-size circuits with ℓ inputs and depth at most dmax,
assuming the hardness of dLWEn,q,χ for sufficiently large n = poly(λ,dmax), q = nO(dmax) and some poly(n)-
bounded error distribution χ.

Moreover, assuming 2O(ℓ)-hardness of dLWEn,q,χ for parameters n = poly(λ,dmax,ℓ), and q and χ as
above, the attribute-based encryption scheme ABE is fully secure.
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The reader is referred to the text after the construction for further explanation of how to choose the
LWE parameters.

Observe that if we start with a TOR scheme that supports dmax = ℓω(1), then our construction
immediately yields an attribute-based encryption scheme for arbitrary polynomial-size circuit families
(without any restriction on the depth). This can be achieved if, for example, we had an LWE-based TOR
scheme where q grows polynomially instead of exponentially in dmax as in our LWE-based weak TOR.

We now prove Theorem 1.1.

Circuit Representation. Let Cλ be a collection of circuits each having ℓ = ℓ(λ) input wires and one
output wire. Define a collection C = {Cλ}λ∈N. For each C ∈ Cλ, we index the wires of C in the following
way. The input wires are indexed 1 to ℓ, the internal wires have indices ℓ+1,ℓ+2, . . . , |C |−1 and the output
wire has index |C |, which also denotes the size of the circuit. We assume that the circuit is composed of
arbitrary two-to-one gates. Each gate g is indexed as a tuple (u, v, w) where u and v are the incoming wire
indices, and w > max{u, v} is the outgoing wire index. The gate computes the function gw : {0,1}×{0,1} →
{0,1}. The “fan-out wires” in the circuit are given a single number. That is, if the outgoing wire of a gate
feeds into the input of multiple gates, then all these wires are indexed the same. (See e.g. [23, Fig 4].)

6.1 Construction from TOR

The ABE scheme ABE= (Setup,Enc,KeyGen,Dec) is defined as follows.

Setup(1λ,1ℓ,dmax) : For each of the ℓ input wires, generate two public/secret key pairs. Also, generate
an additional public/secret key pair:

(pki ,b ,ski ,b) ←Keygen(pp) for i ∈ [ℓ],b ∈ {0,1}

(pkout,skout) ←Keygen(pp)

Output

mpk :=
(
pk1,0 pk2,0 . . . pkℓ,0

pk1,1 pk2,1 . . . pkℓ,1 pkout

)
msk :=

(
sk1,0 sk2,0 . . . skℓ,0

sk1,1 sk2,1 . . . skℓ,1

)

Enc(mpk, ind,m) : For ind ∈ {0,1}ℓ, choose a uniformly random s
$← S and encode it under the public

keys specified by the index bits:

ψi ←Encode(pki ,indi
, s) for all i ∈ [ℓ]

Encrypt the message m:
τ←E(Encode(pkout, s),m)

Output the ciphertext
ctind :=

(
ψ1, ψ2, . . . , ψℓ, τ

)
KeyGen(msk,C ) :
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1. For every non-input wire w = ℓ+ 1, . . . , |C | of the circuit C , and every b ∈ {0,1}, generate
public/secret key pairs:

(pkw,b ,skw,b) ←Keygen(pp) if w < |C | or b = 0

and set pk|C |,1 := pkout.

2. For the gate g = (u, v, w) with outgoing wire w , compute the four recoding keys rkw
b,c (for

b,c ∈ {0,1}):
rkw

b,c ←ReKeyGen
(
pku,b ,pkv,c ,sku,b ,pkw,gw (b,c)

)
Output the secret key which is a collection of 4(|C |−ℓ) recoding keys

skC :=
(
rkw

b,c : w ∈ [
ℓ+1, |C |], b,c ∈ {0,1}

)
Dec(skC ,ctind) : We tacitly assume that ctind contains the index ind. For w = ℓ+1, . . . , |C |, let g = (u, v, w)

denote the gate with outgoing wire w . Suppose wires u and v carry the values b∗ and c∗, so that
wire w carries the value d∗ := gw (b∗,c∗). Compute

ψw,d∗ ←Recode
(
rkw

b∗,c∗ ,ψu,b∗ ,ψv,c∗
)

If C (ind) = 1, then we would have computed ψ|C |,1. Output the message

m ←D
(
ψ|C |,1,τ

)
If C (ind) = 0, output ⊥.

LWE Parameters. Fix ℓ= ℓ(λ) and dmax = dmax(ℓ), and suppose the dLWEn,m,q,χ assumption holds for
q = 2nϵ

for some 0 < ϵ< 1. Then, in our LWE-based TOR, we will set:

n = Θ̃(d 1/ϵ
max) and q = nΘ(dmax)

By Corollary 6.2, we get security under 2nϵ

-LWE.

6.2 Correctness

Lemma 6.3 (correctness). Let C= {Cλ}λ∈N be family where each Cλ is a finite collection of polynomial-size
circuits each of depth at most dmax. Let TOR be a correct “two-to-one” recoding scheme for dmax levels.
Then, the construction presented above is a correct attribute-based encryption scheme.

Proof. Fix a circuit C of depth at most dmax and an input ind such that C (ind) = 1. Informally, we rely on
recoding correctness for dmax recodings to show that w = 1, . . . , |C |, we have

ψw,d∗ =Encode(pkw,d∗ , s),

where d∗ is the value carried by the wire w and ψw,d∗ is computed as in Dec. Formally, we proceed via
induction on w to show that

ψw,d∗ ∈Ψpkw,d∗ ,s, j .
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where j is the depth of wire w . The base case w = 1, . . . ,ℓ follows immediately from correctness of
Encode. For the inductive step, consider a wire w at depth j for some gate g = (u, v, w) where u, v < w .
By the induction hypothesis,

ψu,b∗ ∈Ψpku,b∗ ,s, j0 , ψu,c∗ ∈Ψpkv,c∗ ,s, j1

where j0, j1 < j denote the depths of wires u and v respectively. It follows immediately from the
correctness of Recode that

ψw,d∗ ∈Ψpkw,d∗ ,s,max(i0,i1)+1 ⊆Ψpkw,d∗ ,s, j

which completes the inductive proof. Since C (ind) = 1 and pk|C |,1 = pkout, we have ψ|C |,1 ∈Ψpkout,s,dmax .
Finally, by the correctness of (E,D), D(ψ|C |,1,τ) = m.

6.3 Security

Lemma 6.4 (selective security). For any adversary A against selective security of the attribute-based
encryption scheme, there exist an adversary B against correlated pseudorandomness of TOR whose
running time is essentially the same as that of A, such that

AdvPE
A (λ) ≤AdvCP

B (λ)+negl(λ)

where negl(λ) captures the statistical security terms in TOR.

We begin by describing alternative algorithms, which would be useful later for constructing the
adversary B for the correlated pseudorandomness security game.

Alternative algorithms. Fix the selective challenge ind. We get from the “outside” the challenge
pp, (pki ,ψi )i∈[ℓ+1] for correlated pseudorandomness, The main challenge is to design an alternative
algorithm KeyGen∗ for answering secret key queries without knowing sk1,ind1 , . . . ,skℓ,indℓ or skout. The
algorithm KeyGen∗ will maintain the following invariant: on input C with C (ind) = 0,

• for every non-output wire w = 1, . . . , |C | − 1 carrying the value b∗, we will know skw,1−b∗ but not
skw,b∗ .

Moreover, we do not know sk|C |,0 or sk|C |,1 = skout.

Setup∗(ind,1λ,1ℓ,dmax) : Let

(pki ,1−indi
,ski ,1−indi ) ← Keygen(pp) for i ∈ [ℓ]

pkout := pkℓ+1

pki ,indi
:= pki for i ∈ [ℓ]

Output mpk=
(
pk1,0 pk2,0 . . . pkℓ,0

pk1,1 pk2,1 . . . pkℓ,1 pkout

)
Enc∗(mpk, ind,m) : Set τ←E(ψℓ+1,m) and output the ciphertext

ctind =
(
ψ1, ψ2, . . . , ψℓ, τ

)
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where ψ1, . . . ,ψℓ+1 are provided in the challenge.

KeyGen∗(ind,msk,C ) : where C (ind) = 0,

1. For each internal wire w ∈ [ℓ+1, |C | −1] of the circuit C carrying the value b∗ for input ind,
generate public/secret key pairs:

(pkw,1−b∗ ,skw,1−b∗) ←Keygen(pp)

We will generate pkw,b∗ using SimReKeyGen as described next.

2. For w = ℓ+1, . . . , |C |, let g = (u, v, w) denote the gate for which w is the outgoing wire. Suppose
wires u and v carry the values b∗ and c∗, so that wire w carries the value d∗ := gw (b∗,c∗).
By the invariant above, we know sku,1−b∗ and skv,1−c∗ but not sku,b∗ and skv,c∗ . We start by
generating

(pkw,d∗ ,rkw
b∗,c∗) ← SimReKeyGen(pku,b∗ ,pkv,c∗)

We generate the other three recoding keys using ReKeyGen as follows:

rkw
1−b∗,c∗ ←ReKeyGen

(
pku,1−b∗ , pkv,c∗ , sku,1−b∗ , pkw,gw (1−b∗,c∗)

)
rkw

b∗,1−c∗ ←ReKeyGen
(
pkv,1−c∗ , pku,b∗ , skv,1−c∗ , pkw,gw (b∗,1−c∗)

)
rkw

1−b∗,1−c∗ ←ReKeyGen
(
pku,1−b∗ , pkv,1−c∗ , sku,1−b∗ , pkw,gw (1−b∗,1−c∗)

)
Note that rkw

1−b∗,c∗,rkw
1−b∗,1−c∗ are generated the same way in both KeyGen and KeyGen∗

using sku,1−b∗ .

Output the secret key

skC :=
(
rkw

b,c : w ∈ [
ℓ+1, |C |], b,c ∈ {0,1}

)
Informally, the recoding key rkw

b∗,1−c∗ looks the same as in Keygen because of key indistinguishability,
and rkw

b∗,c∗ (together with the simulated pkw,d∗) looks the same as in Keygen because of the recoding
simulation property.

Game sequence. Next, consider the following sequence of games. We use Adv0,Adv1, . . . to denote the
advantage of the adversary A in Games 0, 1, etc. Game 0 is the real experiment.

Game i for i = 1,2, . . . , q. As in Game 0, except the challenger answers the first i − 1 key queries using
KeyGen∗ and the remaining q − i key queries using KeyGen. For the i ’th key query Ci , we consider
sub-Games i .w as follows:

Game i .w , for w = ℓ+1, . . . , |Ci |. The challenger switches (rkw
b,c : b,c ∈ {0,1}) from KeyGen to

KeyGen∗. More precisely:

• First, we switch (pkw,d∗ ,rkw
b∗,c∗) from KeyGen to KeyGen∗. This relies on recoding

simulation.

• Next, we switch rkw
b∗,1−c∗ from KeyGen to KeyGen∗. This relies on key indistinguishabil-

ity, w.r.t. skb∗ and sk1−c∗ .
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• The other two keys rkw
1−b∗,c∗,rkw

1−b∗,1−c∗ are generated the same way in both KeyGen and
KeyGen∗.

By key indistinguishability and recoding simulation, we have

|Advi ,w −Advi ,w+1| ≤ negl(λ) for all i , w

Note that in Game q , the challenger runs Setup∗ and answers all key queries using KeyGen∗ with
the selective challenge ind and generates the challenge ciphertext using Enc.

Game q +1. Same as Game q , except the challenger generates the challenge ciphertext using Enc∗ with
ψℓ+1 =Encode(pkℓ+1, s). Clearly,

Advq+1 =Advq

Game q +2. Same as Game q +1, except ψℓ+1
$←K. It is straight-forward to construct an adversary B

such that
|Advq+1 −Advq+2| ≤AdvCP

B (λ)

Finally, Advq+2 ≤ negl(λ) by the one-time semantic security of (E,D). The lemma then follows readily.

7 Attribute-Based Encryption for Branching Programs

In this section, we present weak TOR and attribute-based encryption for branching programs, which
capture the complexity class log-space. As noted in Section 2.2, we exploit the fact that in branching
programs, the transition function depends on an input variable and the current state; this means that
one of the two input encodings during recoding is always a “depth 0” encoding.

Branching programs. Recall that a branching program Γ is a directed acyclic graph in which every
nonterminal node has exactly two outgoing edges labeled (i ,0) and (i ,1) for some i ∈ [ℓ]. Moreover,
there is a distinguished terminal accept node. Every input x ∈ {0,1}ℓ naturally induces a subgraph Γx

containing exactly those edges labeled (i , xi ). We say that Γ accepts x iff there is a path from the start
node to the accept node in Γx . At the cost of possibly doubling the number of edges and vertices, we may
assume that there is at most one edge connecting any two nodes in Γ.

7.1 Weak TOR

A weak “two-to-one” encoding (wTOR) scheme consists of the same algorithms as TOR, except that
Keygen(pp, j ) takes an additional input j ∈ {0,1}. That is, Keygen may produce different distribution of
public/secret key pairs depending on j . Moreover, in ReKeyGen, the first public key is always generated
using Keygen(pp,0) and the second using Keygen(pp,1); similarly, in Recode, the first encoding is always
generated with respect to a public key from Keygen(pp,0) and the second from Keygen(pp,1). Similarly,
the correctness and statistical security properties are relaxed.
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Correctness. First, for every pk and s ∈ S, there exists a family of sets Ψpk,s, j , j = 0,1, . . . ,dmax:

• Ψpk,s,1 ⊆ ·· · ⊆Ψpk,s,dmax .

• for all ψ,ψ′ ∈Ψpk,s,dmax and all m ∈M,

D(ψ′,E(ψ,m)) = m

Secondly, the correctness of recoding requires that for any triple of key pairs (pk0,sk0), (pk1,sk1), (pktgt,sktgt)
respectively in the support ofKeygen(pp,0),Keygen(pp,1),Keygen(pp,1) and any encodingsψ0 ∈Encode(pk0, s)
and ψ1 ∈Ψpk1,s, j1 where 0 < j1,

Recode(rk,ψ0,ψ1) ∈Ψpktgt,s, j1+1

Statistical Security Properties. We require recoding simulation as before, but not key indistinguisha-
bility. However, we require the following additional property:

(Back-tracking) : For all (pk0,sk0) ← Keygen(pp,0) and all (pk1,sk1), (pktgt,sktgt) ← Keygen(pp,1), the
following distributions are identical:

ReKeyGen(pk0,pk1,sk0,pktgt) ≡−ReKeyGen(pk0,pktgt,sk0,pk1)

Informally, this says that switching the order of pk1 and pktgt as inputs to ReKeyGen is the same as
switching the “sign” of the output. In our instantiations, the output of ReKeyGen lies in a group, so
negating the output simply refers to applying the group inverse operation.

Remark 7.1. Due to the additional back-tracking property, it is not the case that a TOR implies a weak
TOR. However, we are able to instantiate weak TOR under weaker and larger classes of assumptions than
TOR.

Computational Security Property. We define the advantage function AdvCP
A (λ) (modified to account

for the additional input to Keygen) to be the absolute value of:

Pr


b = b′ :

pp← Setup(1λ); s ← S;
(pki ,ski ) ←Keygen(pp,0),
ψi ←Encode(pki , s), i = 1, . . . ,ℓ;
(pkℓ+1,skℓ+1) ←Keygen(pp,1);
ψ′

0 ←Encode(pkℓ+1, s);

b
$← {0,1};ψ′

1
$←K

b′ ←A(pk1, . . . ,pkℓ+1,ψ1, . . . ,ψℓ,ψ′
b)


− 1

2

and we require that for all PPT A, the advantage function AdvCP
A (λ) is a negligible function in λ.

7.2 Weak TOR from LWE

We provide an instantiation of weak TOR from LWE. The main advantage over our construction of TOR
in Section 5 is that the dependency of q on dmax is linear in dmax instead of exponential. Therefore, if q
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is quasi-polynomial, we can handle any polynomial dmax, as opposed to an a-prior bounded dmax.

Lemma 7.1. Assuming dLWEn,(ℓ+2)m,q,χ where q = O(dmaxn3 logn), there is a weak TOR scheme that is
correct up to dmax levels.

Note that the parameters here are better than in Lemma 5.1. The construction of weak TOR from
learning with errors follows:

• Params(1λ,dmax): First choose the LWE dimension n = n(λ). Let the error distribution χ = χ(n) =
DZ,

p
n , the error bound B = B(n) = O(n), the modulus q = q(n) = dmax ·O(n3 logn), the number

of samples m = m(n) = O(n log q) and the Gaussian parameter s = s(n) = O(
√

n log q). Output the
global public parameters pp= (n,χ,B , q,m, s). Define the domain S of the encoding scheme to be
Zn

q .

• Keygen(pp, j ): Run the trapdoor generation algorithm TrapGen(1n ,1m , q) to obtain a matrix A ∈
Zn×m

q together with the trapdoor T. Output

pk= A; sk= T.

• Encode(A,s): Sample an error vector e ←χm and output the encoding ψ := AT s+e ∈Zn
q .

• ReKeyGen(A0,A1,Atgt,T): Outputs a low-norm matrix R such that A0R = Atgt −A1. In particular,

R ← SampleD(A0,T0,Atgt −A1, s)

• SimReKeyGen(A0,A1): Sample a matrix R ← (DZ,s)m×m by sampling each entry from the discrete
Gaussian distribution DZ,s . Output

rk := R; Atgt := A0R+A1

• Recode(rk,ψ0,ψ1): Outputs rkT ψ0 +ψ1.

Correctness. We define the sets ΨA,s, j for pk := A ∈Zn×m
q , s ∈Zn

q and j ∈ [1 . . .dmax] as follows:

ΨA,s, j =
{

AT s+e : ||e||∞ ≤ B · j · (sm
p

m)
}

The analysis is similar to that in the previous section. In particular, we observe right away that

• ΨA,s,1 ⊆ΨA,s,1 ⊆ . . . ⊆ΨA,s,dmax .

• For any two encodings ψ,ψ′ ∈ΨA,s,dmax and µ ∈ {0,1}n , D(ψ′,E(ψ,µ)) =µ, as long as

B ·dmax · (sm
p

m) ≤ q/4.

• Consider two encodings AT s+e ∈Encode(A,s) and ψ1 ∈ΨA1,s, j1 for any j1 ∈N. Then, ψ0 = AT
0 s+e0

and ψ1 := AT
1 s+e1 where ||e0||∞ ≤ B and ||e1||∞ ≤ j1 ·B · (sm

p
m).
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Then, the recoded ciphertext ψtgt is computed as follows:

ψtgt := RT ψ0 +ψ1

= RT (AT
0 s+e0)+ (AT

1 s+e1)

= AT
tgts+etgt

where the last equation is because Atgt = A0R+A1 and we define etgt := RT e0 +e1. Thus,

||etgt||∞ ≤ m · ||R||∞||e0||∞+||e1||∞
≤ m · s

p
m ·B +B · j1 · (sm

p
m)

= ( j1 +1) ·B · (sm
p

m)

exactly as required. Here, the second inequality is because ||R||∞ ≤ s
p

m by Lemma 3.1. This
finishes our proof of correctness.

Security. Correlated pseudorandomness follows from dLWEn,(ℓ+2)m,q,χ where q = n ·dmax. Recoding
simulation follows from Lemma 3.1 by an argument identical to the one for the construction of TOR in
Section 5. For back-tracking, negation is simply the additive inverse over Zm

q .

7.3 Weak TOR from Bilinear Maps

We use asymmetric groups for maximal generality and for conceptual clarity. We consider cyclic groups
G1,G2,GT of prime order q and e : G1 × G2 → GT is a non-degenerate bilinear map. We require
that the group operations in G and GT as well the bilinear map e are computable in deterministic
polynomial time with respect to λ. Let g1, g2 denote random generators of G1,G2 respectively. The DBDH
Assumption says that, given g1, g2, g a

1 , g a
2 , g b

2 and g s
1, e(g1, g2)abs is pseudorandom.

• Params(1λ,dmax): Outputs pp := (g1, g2, g a
1 , g a

2 ).

• Keygen(pp, j ):

– If j = 0, then samples t
$←Zq and outputs

(pk,sk) := ((g a/t
1 , g a/t

2 ), t )

– If j ≥ 1, output pk
$←G2.

• Encode(pk, s):

– If pk= (g a/t
1 , g a/t

2 ) ∈G1 ×G2, output (g a/t
1 )s

– If pk ∈G2, output e(g a
1 ,pk)s

• Recode(rk,c0, ,c1): Outputs e(c0,rk) · c1.

• ReKeyGen((g a/t
1 , g a/t

2 ),pk1,pktgt, t ): Outputs rk := (pktgt ·pk−1
1 )t ∈G2.
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• SimReKeyGen((g a/t
1 , g a/t

2 ),pk1): Picks z
$← Zq and outputs

rk := (g a/t
2 )z , pktgt := pk1 · (g a

2 )z

Correctness. Define Ψpk,s, j := {Encode(pk, s)}. For recoding, observe that:

Recode((pktgt ·pk−1
1 )t , g as/t

1 ,e(g a
1 ,pk1)s

= e(g as/t
1 , (pktgt ·pk−1

1 )t ) ·e(g a
1 ,pk1)s

= e(g a
1 , (pktgt ·pk−1

1 )s) ·e(g a
1 ,pk1)s

= e(g a
1 ,pktgt)

s =Encode(pktgt, s)

For back-tracking, negation is simply the multiplicative inverse over Gq .

Security. Correlation pseudorandomness follows readily from the DBDH assumption and its random
self-reducibility.

7.4 Attribute-Based Encryption from weak TOR

Setup(1λ,1ℓ,dmax) : For each one of ℓ input bits, generate two public/secret key pairs. Also, generate a
public/secret key pair for the start and accept states:

(pki ,b ,ski ,b) ←Keygen(pp,0) for i ∈ [ℓ],b ∈ {0,1}

(pkstart,skstart) ←Keygen(pp,1)

(pkaccept,skaccept) ←Keygen(pp,1)

Output

mpk :=
(
pk1,0 pk2,0 . . . pkℓ,0 pkstart

pk1,1 pk2,1 . . . pkℓ,1 pkaccept

)

msk :=
(
sk1,0 sk2,0 . . . skℓ,0 skstart

sk1,1 sk2,1 . . . skℓ,1 skaccept

)

Enc(mpk, ind,m) : For ind ∈ {0,1}ℓ, choose a uniformly random s
$← S and encode it under the public

keys specified by the index bits and the start state:

ψi ←Encode(pki ,indi
, s) for all i ∈ [ℓ]

ψstart ←Encode(pkstart, s)

Encrypt the message:
τ←E(Encode(pkaccept, s),m)

Output the ciphertext:
ctind =

(
ψ1, ψ2, . . . , ψℓ, ψstart, τ

)
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KeyGen(msk,Γ): Γ : {0,1}ℓ → {0,1} is a branching program that takes a ℓ-bit input and outputs a single
bit.

• For every node u, except the start and accept nodes, sample public/secret key pair:

(pku ,sku) ←Keygen(pp,1)

• For every edge (u, v) labeled (i ,b) in Γ, sample a recoding key rku,v as follows:

rku,v ←ReKeyGen
(
pki ,b ,pku ,ski ,b ,pkv

)
The secret key skΓ is the collection of all the recoding keys rku,v for every edge (u, v) in Γ.

Dec(skΓ,ctind) : Suppose Γ(ind) = 1; output ⊥ otherwise. Let Π denote the (directed) path from the start
node to the accept node in Γind. For every edge (u, v) labeled (i , indi ) in Π, apply the recoding
algorithm on the two encodings ψi ,ψu and the recoding key rku,v :

ψv ←Recode
(
rku,v ,ψi ,ψu

)
If Γ(ind) = 1, we obtain ψaccept. Decrypt and output the message:

m ←D(ψaccept,τ)

7.4.1 Correctness

Lemma 7.2 (correctness). Let G= {Γ}λ be a collection of polynomial-size branching programs of depth at
most dmax and let wTOR be a weak “two-to-one” recoding scheme for dmax levels. Then, the construction
presented above is a correct attribute-based encryption scheme for G.

Proof. Let Π denote the directed path from the start to the accept nodes in Γind. We show via induction
on nodes v along the path Π that

ψv ∈Ψpkv ,s, j

where j is the depth of node v along the path. The base case for v := start node follows immediately from
correctness of Encode. For the inductive step, consider a node v along the path Π at depth j for some
edge (u, v) labeled (i , indi ). By the induction hypothesis,

ψu ∈Ψpku ,s, j0

where j0 < j denote the depths of node u. Also by the correctness of the Encode algorithm, for all i ∈ [ℓ]

ψi ∈Ψpki ,indi
,s,0

It follows immediately from the correctness of Recode that

ψv ∈Ψpkv ,s, j0+1 ⊆Ψpkv ,s, j
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which completes the inductive proof. Since C (ind) = 1, we have

ψaccept ∈Ψpkaccept,s,dmax

Recall that τ←E(Encode(pkaccept, s),m). Finally, by the correctness of (E,D),

D(ψaccept,τ) = m

7.4.2 Selective Security

Lemma 7.3 (selective security). For any adversary A against selective security of the attribute-based en-
cryption scheme for branching programs, there exist an adversaryB against correlated pseudorandomness
of wTOR whose running time is essentially the same as that of A, such that

AdvPE
A (λ) ≤AdvCP

B (λ)+negl(λ)

where negl(λ) captures the statistical security terms in TOR.

In the proof of security, we will rely crucially on the following combinatorial property of branching
programs: for any input x, the graph Γx does not contain any cycles as an undirected graph.

Alternative algorithms. Fix the selective challenge ind. We also get a collection of public keys,
corresponding encodings from the “outside”: (pki ,ψi )i∈[ℓ+2], where the challenge is to decide whether
ψℓ+1 is Encode(pkℓ+2, s) or random. The main challenge is design an alternative algorithm KeyGen∗

for answering secret key queries without knowing sk1,ind1 , . . . ,skℓ,indℓ or skstart,skaccept. We consider the
following “alternative” algorithms.

Setup∗(1λ,1ℓ,dmax) : Let

(pki ,1−indi
,ski ,1−indi ) ← Keygen(pp,0) for i ∈ [ℓ]

pki ,indi
:= pki for i ∈ [ℓ]

pkstart := pkℓ+1

pkaccept := pkℓ+2

Define and output the master public key as follows:

mpk=
(
pk1,0 pk2,0 . . . pkℓ,0 pkstart

pk1,1 pk2,1 . . . pkℓ,1 pkaccept

)

Enc∗(mpk, ind,m) : Define

ψi ,indi := ψi for all i ∈ [ℓ]

ψstart := ψℓ+1

ψaccept := ψℓ+2
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Encrypt the message m:
τ←E(ψaccept,b)

Output the simulated ciphertext

ctind =
(
ψ1, ψ2, . . . , ψℓ, ψstart, τ

)
KeyGen∗(msk,Γ) : Let Γ′

ind denote the undirected graph obtained from Γind by treating every directed
edge as an undirected edge (while keeping the edge label). Observe that Γ′

ind satisfies the following
properties:

• Γ′
ind contains no cycles. This is because Γind is acyclic and every nonterminal node contains

exactly one outgoing edge.

• The start node and the accept node lie in different connected components in Γ′
ind, since

Γ(ind) = 0.

Simulation invariant: for each “active” edge labeled (i , indi ) from node u to node v , simulate the
recoding key. Choose our own public/secret key pair for each “inactive” edges (i ,1 − indi ) and
generate the recoding key honestly.

• Run a DFS in Γ′
ind starting from the start node. Whenever we visit a new node v from a node

u along an edge labeled (i , indi ), we set:

(pkv ,rku,v ) ← SimReKeyGen
(
pki ,ind,pku

)
if (u, v) is a directed edge in Γ

(pkv ,−rkv,u) ← SimReKeyGen
(
pki ,ind,pku

)
if (v,u) is a directed edge in Γ

Here, we exploit the back-tracking property in wTOR.

Note that since Γ(ind) = 0, then the accept node is not assigned a public key by this process.

• For all nodes u without an assignment, run (pku ,sku) ←Keygen(pp,1).

• For every remaining edge (u, v) labeled (i ,1− indi ) in Γ, sample a recoding key rku,v as in
KeyGen using ski ,1−ind as follows:

rku,v ←ReKeyGen
(
pki ,1−ind,pku ,ski ,1−ind,pkv

)
The secret key skΓ is simply the collection of all the recoding keys rku,v for every edge (u, v) in Γ.

Game sequence. Next, consider the following sequence of games. We use Adv0,Adv1, . . . to denote the
advantage of the adversary A in Games 0, 1, etc. Let n denote the number of edges in a branching
program Γ labeled (i , indi ) for some i , and for all j ∈ [n] let e j denote the actual edge.

Game 0. Real experiment.

Game i for i = 1,2, . . . , q. As in Game 0, except the challenger answers the first i − 1 key queries using
KeyGen∗ and the remaining q − i key queries using KeyGen. For the i ’th key query Γi , we consider
sub-Games i .e as follows:
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Game i . j , for j = 1, . . . ,n. For edge e j = (u, v) labeled (i , indi ), the challenger switches the simu-
lated recoding key rku,v from KeyGen to KeyGen∗. We rely on recoding simulation and back-
tracking properties simultaneously.

By recoding simulation and back-tracking, we have:

|Advi ,e −Advi ,e+1| ≤ negl(λ) for all i ,e

Note that in Game q , the challenger runs Setup∗ and answers all key queries using KeyGen∗ with
the selective challenge ind and generates the challenge ciphertext using Enc.

Game q +1. Same as Game q , except the challenger generates the challenge ciphertext using Enc∗ with
ψℓ+2 ←Encode(pkℓ+2, s).

Advq+1 =Advq

Game q +2. Same as Game q +1, except ψℓ+2
$←K. It is straight-forward to construct an adversary B

such that
|Advq+1 −Advq+2| ≤AdvCP

B (λ)

Finally, Advq+2 ≤ negl(λ) by the one-time semantic security of (E,D). The lemma then follows readily.

8 Extensions

8.1 Outsourcing Decryption

In this section we show how to modify our main construction of attribute-based encryption to support
outsourcing of decryption circuits, similar to [90]. We require that the Keygen algorithm returns two
keys:

• the evaluation key ekC , that is given to a computationally powerful proxy,

• and a decryption key dk, given to the client.

Given a ciphertext ctind, the proxy must perform the “bulk” of the computation and return a new
ciphertext ct′ind that is forwarded to the client. Using the decryption key dk, the client can decrypt and
learn the message m iff the predicate C (ind) is satisfied. We emphasize that that amount of computation
the client needs to perform to decrypt the message must be independent on the circuit size. Intuitively,
the security ensures that an adversary should learn nothing about the message, conditioned on that it
queries for decryption keys dk’s for predicates that are not satisfied by the challenge index (note, the
adversary can query for evaluation keys separately for predicates that are satisfied).

Intuitively, we modify the main construction as follows. As before, the key-generation algorithm
assigns two keys for each circuit wire. The evaluation key consists of all the recoding keys for the circuit.
In addition, the output wire has another key pkout which now plays a special role. The recoding key from
pk|C |,1 to pkout is only given to the client as the decryption key. If C (ind) = 1, the the proxy computes
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an encoding under the pk|C |,1 and forwards it to the client. The client applies the transformation, and
decrypts the message. For technical reasons, since we are using “two-to-one” recoding mechanism, we
need to introduce an auxiliary public key pkin and a corresponding encoding.

Setup(1λ,1ℓ,dmax) : For each of the ℓ input wires, generate two public/secret key pairs. Also, generate
an additional public/secret key pair:

(pki ,b ,ski ,b) ←Keygen(pp) for i ∈ [ℓ],b ∈ {0,1}

(pkout,skout) ←Keygen(pp)

(pkin,skin) ←Keygen(pp)

Output

mpk :=
(
pk1,0 pk2,0 . . . pkℓ,0 pkin

pk1,1 pk2,1 . . . pkℓ,1 pkout

)
msk :=

(
sk1,0 sk2,0 . . . skℓ,0 skin

sk1,1 sk2,1 . . . skℓ,1 skout

)

Enc(mpk, ind,m) : For ind ∈ {0,1}ℓ, choose a uniformly random s
$← S and encode it under the public

keys specified by the index bits:

ψi ←Encode(pki ,indi
, s) for all i ∈ [ℓ]

Encode s under the input public key:

ψin ←Encode(pkin, s)

Encrypt the message m:
τ←E(Encode(pkout, s),m)

Output the ciphertext
ctind :=

(
ψ1, ψ2, . . . , ψℓ, ψin, τ

)
KeyGen(msk,C ) :

1. For every non-input wire w = ℓ+ 1, . . . , |C | of the circuit C , and every b ∈ {0,1}, generate
public/secret key pairs:

(pkw,b ,skw,b) ←Keygen(pp)

2. For the gate g = (u, v, w) with output wire w , compute the four recoding keys rkw
b,c (for b,c ∈

{0,1}):
rkw

b,c ←ReKeyGen
(
pku,b ,pkv,c ,sku,b ,pkw,gw (b,c)

)
3. Also, compute the recoding key

rkout ←ReKeyGen
(
pk|C |,1,pkin,sk|C |,1,pkout

)
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Output the evaluation key which is a collection of 4(|C |−ℓ) recoding keys

ekC :=
(
rkw

b,c : w ∈ [
ℓ+1, |C |], b,c ∈ {0,1}

)
and the decryption key dk := rkout.

Eval(ekC ,ctind) : We tacitly assume that ctind contains the index ind. For w = ℓ+1, . . . , |C |, let g = (u, v, w)
denote the gate with output wire w . Suppose wires u and v carry the values b∗ and c∗, so that wire
w carries the value d∗ := gw (b∗,c∗). Compute

ψw,d∗ ←Recode
(
rkw

b∗,c∗ ,ψu,b∗ ,ψv,c∗
)

If C (ind) = 1, then we would have computed ψ|C |,1. Output

ct′ind := (ψ|C |,1,ψin,τ)

If C (ind) = 0, output ⊥.

Dec(dk,ct′ind) : Apply the transformation

ψout ←Recode
(
rkout,ψin,ψ|C |,1

)
and output the message

m ←D
(
ψout,τ

)
Security. We informally state how to modify the simulator in the proof of security in Section-6.4. The
simulator gets {pki ,ψi }i∈[ℓ+2] from the “outside”. It assigns pk1, . . . ,pkℓ as the public keys specified by the
bits of ind and pkin := pkℓ+1,pkout := pkℓ+2. It is easy to see how to simulate the ciphertext: all the input
encodings become a part of it, as well as an encryption of the message using ψout := ψℓ+2. Now, the
evaluation key ek is simulated by applying the TOR simulator.

• For query C such that C (ind) = 0, the simulator can choose (pk|C |,1,sk|C |,1) by itself (the public key
pk|C |,0 is “fixed” by the TOR simulator). Hence, the decryption key dk can be computed using sk|C |,1.

• On the other hand, for query C such that C (ind) = 1, the adversary is not allowed to obtain the
decryption key dk, hence there is not need to simulate it.

8.2 Extending Secret Keys

Consider the following problem: a users holds two (or more) secret keys skC1 and skC2 . C1 allows to
decrypt all ciphertexts addressed to human resources department and C2 allows to decrypt ciphertexts
addressed to share holders. The user wishes to create (and delegate) another secret key skC∗ that allows
to decrypt ciphertexts addressed to human resources and share holders. The question that we study
is whether it is possible to allow the user to compute skC∗ without calling the authority holding the
master secret key msk.3 More formally, given {skCi }i∈[q] a users should be able to compute a secret key

3In a subsequent work, Boneh et al. [34] showed how to construct a more general notion of delegatable ABE. In their scheme,
given only the secret key for C1, users can delegate a secret key for C1 AND C2 for any circuit C2.
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skC∗ for any circuit C∗ that is an black-box monotone composition of Ci ’s. Note that only monotone
compositions are realizable, since otherwise a users holding a secret keys skC1 where C1(ind) = 0 could
come up with a secret key for C1 and hence break any notion of security.

To suppose monotone extensions, it is enough to show how to obtain (1) skC1 AND C2 given skC1 ,skC2 ,
and (2) skC1 OR C2 given skC1 ,skC2 . We start from the construction presented in Section-8.1. We note that
the security of that construction does not break if we give the secret key associated with the output
value 0 (sk|Ci |,1) as a part of the secret key skCi . This is because our simulation proceeds by sampling
(pk|Ci |,1,sk|Ci |,1) honestly using Keygen algorithm and the fact the adversary is restricted to quires Ci

such that Ci (ind) = 0. Hence, given sk|C1|,1 and sk|C2|,1, let C∗ = C1 AND C2. The user computes skC∗

as (ekC1 ,ekC2 ) plus four recoding keys rkC∗
b,c (for b,c ∈ {0,1}):

(pk|C∗|,0,rkC∗
0,0) ← SimReKeyGen(pk|C1|,0,pk|C2|,0)

rkC∗
0,1 ←ReKeyGen

(
pk|C1|,0,pk|C2|,1,sk|C2|,1,pk|C∗|,0

)
rkC∗

1,0 ←ReKeyGen
(
pk|C1|,1,pk|C2|,0,sk|C1|,1,pk|C∗|,0

)
rkC∗

1,1 ←ReKeyGen
(
pk|C1|,1,pk|C2|,1,sk|C1|,1,pkout

)
As before, the message is encrypted under the encoding ψout ← Encode(pkout, s). The construction
extends similarly to support OR compositions. Furthermore, arbitrary monotone structures can be
realized by sampling keys associated with value 1 (pk1,sk1) honestly and computing the recoding keys as
above, until the final wire is assigned to pkout.
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Part IV

Predicate Encryption for Circuits from LWE

Sergey Gorbunov and Vinod Vaikuntanathan and Hoeteck Wee
CRYPTO 2015, invited to SPECIAL ISSUE

Abstract. In predicate encryption, a ciphertext is associated with descriptive attribute values x in
addition to a plaintext µ, and a secret key is associated with a predicate f . Decryption returns plaintext
µ if and only if f (x) = 1. Moreover, security of predicate encryption guarantees that an adversary learns
nothing about the attribute x or the plaintext µ from a ciphertext, given arbitrary many secret keys that
are not authorized to decrypt the ciphertext individually.

We construct a leveled predicate encryption scheme for all circuits, assuming the hardness of the
subexponential learning with errors (LWE) problem. That is, for any polynomial function d = d(λ), we
construct a predicate encryption scheme for the class of all circuits with depth bounded by d(λ), where
λ is the security parameter.

1 Introduction

Predicate encryption [30, 143, 106] is a new paradigm for public-key encryption that supports searching
on encrypted data. In predicate encryption, ciphertexts are associated with descriptive attribute values
x in addition to plaintexts µ, secret keys are associated with a predicate f , and a secret key decrypts the
ciphertext to recover µ if and only if f (x) = 1. The security requirement for predicate encryption enforces
privacy of x and the plaintext even amidst multiple secret key queries: an adversary holding secret keys
for different query predicates learns nothing about the attribute x and the plaintext (apart from the fact
that x does not satisfy any of the query predicates) if none of them is individually authorized to decrypt
the ciphertext.

Motivating applications. We begin with several motivating applications for predicate encryption [30,
143]:

• For inspecting recorded log files for network intrusions, we would encrypt network flows labeled
with a set of attributes from the network header, such as the source and destination addresses, port
numbers, time-stamp, and protocol numbers. We could then issue auditors with restricted secret
keys that can only decrypt the network flows that fall within a particular range of IP addresses and
some specific time period.

• For credit card fraud investigation, we would encrypt credit card transactions labeled with a set of
attributes such as time, costs and zipcodes. We could then issue investigators with restricted secret
keys that decrypt transactions over $1,000 which took place in the last month and originated from
a particular range of zipcodes.
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• For anti-terrorism investigation, we would encrypt travel records labeled with a set of attributes
such as travel destination and basic traveller data. We could then issue investigators with restricted
secret keys that match certain suspicious travel patterns.

• For online dating, we would encrypt personal profiles labeled with dating preferences pertaining
to age, height, weight, salary and hobbies. Secret keys are associated with specific attributes and
can only decrypt profiles for which the attributes match the dating preferences.

In all of these examples, it is important that unauthorized parties do not learn the contents of the
ciphertexts, nor of the meta-data associated with the ciphertexts, such as the network header or dating
preferences. On the other hand, it is often okay to leak the meta-data to authorized parties. We stress that
privacy of the meta-data is an additional security requirement provided by predicate encryption but not
by the related and weaker notion of attribute-based encryption (ABE) [140, 89]; the latter only guarantees
the privacy of the plaintext µ and not the attribute x.

Utility and expressiveness. The utility of predicate encryption is intimately related to the class of
predicates for which we could create secret keys. Ideally, we would like to support the class of all circuits.
Over the past decade, substantial advances were made for the weaker primitive of ABE, culminating most
recently in schemes supporting any policy computable by general circuits [86, 34] under the standard
LWE assumption [136]. However, the state-of-the-art for predicate encryption is largely limited to very
simple functionalities related to computing an inner product [30, 143, 106, 9, 72].

1.1 Our Contributions

In this work, we substantially advance the state of the art to obtain predicate encryption for all circuits
(c.f. Figure 6):

Theorem (informal). Under the LWE assumption, there exists a predicate encryption
scheme for all circuits, with succint ciphertexts and secret keys independent of the size of
the circuit.

As with prior LWE-based ABE for circuits [86, 34], to support circuits of depth d , the parameters of the
scheme grow with poly(d), and we require sub-exponential nΩ(d) hardness of the LWE assumption. In
addition, the security guarantee is selective, but can be extended to adaptive security via complexity
leveraging [27].

Privacy guarantees. The privacy notion we achieve is a simulation-based variant of “attribute-hiding”
from the literature [143, 128, 9]. That is, we guarantee privacy of the attribute x and the plaintextµ against
collusions holding secret keys for functions f such that f (x) = 0. An even stronger requirement would
be to require privacy of x even against authorized keys corresponding to functions f where f (x) = 1;
in the literature, this stronger notion is referred to as “full attribute-hiding” [30, 106]. This stronger
requirement is equivalent to “full-fledged” functional encryption [33], for which we cannot hope to
achieve simulation-based security for all circuits as achieved in this work [33, 11].
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Functional Encryption
[139, 85, 82, 68]

Predicate Encryption
[this work]

Attribute-Based Enc
[86, 34]IPE

[106]

Figure 6: State of the art in functional encryption. The white region refers to functionalities for which
we have constructions under standard cryptographic assumptions like LWE or decisional problems in
bilinear groups: these functionalities include inner product encryption (IPE), attribute-based encryption
for general circuits (ABE) and predicate encryption for general circuits. The grey region refers to
functionalities beyond predicate encryption for which we only have constructions for weaker security
notions like bounded collusions, or under non-standard cryptographic assumptions like obfuscation or
multilinear maps.

Relation to prior works. Our result subsumes all prior works on predicate encryption under standard
cryptographic assumptions, apart from a few exceptions pertaining to the inner product predicate [30,
106, 130]. These results achieve a stronger security notion for predicate encryption, known as full (or
strong) security (please refer to Section 3.1, and the full version for definitions).

In a recent break-through work, Garg et al. [68] gave a beautiful candidate construction of functional
encryption (more general primitive than predicate encryption) for arbitrary circuits. However, the
construction relies on “multi-linear maps” [67, 57, 79], for which we have few candidates and which rely
on complex intractability assumptions that are presently poorly understood and not extensively studied
in the literature. It remains an intriguing open problem to construct a functional encryption scheme
from a standard assumption, such as LWE.

In contrast, if we consider functional encryption with a-priori bounded collusions size (that is, the
number of secret keys any collusion of adversaries may obtain is fixed by the scheme at the setup phase),
then it is possible to obtain functional encryption for general circuits under a large class of standard
assumptions [139, 85, 82]. This notion is weaker than standard notion of functional encryption, yet
remains very meaningful for many applications.

1.2 Overview of Our Construction

Our starting point is the work of Goldwasser, Kalai, Popa, Vaikuntanathan and Zeldovich [82] who
show how to convert an attribute-based encryption (ABE) scheme into a single key secure functional
encryption (FE) scheme. Recall that in an attribute-based encryption scheme [89], a ciphertext is
associated with a descriptive value (a public “attribute”) x and plaintext µ, and it hides µ, but not x. The
observation of Goldwasser et al. [82] is to hide x by encrypting it using a fully homomorphic encryption
(FHE) scheme [76, 37], and then using the resulting FHE ciphertext as the public “attribute” in an ABE
scheme for general circuits [86, 34]. This has the dual benefit of guaranteeing privacy of x, while at the
same time allowing homomorphic computation of predicates f on the encryption of x.

This initial idea quickly runs into trouble. The decryptor who is given the predicate secret key for
f and a predicate encryption of (x,µ) can indeed compute an FHE encryption of f (x). However, the
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Interface Security Guarantee given sk f

ABE Enc(x,µ) µ is secret iff f (x) = 0
x is always public

PE Enc(x,µ) (x,µ) is secret iff f (x) = 0
FE Enc(x) user learns only f (x)

Figure 7: Comparison of the security guarantees provided by attribute-based (ABE), predicate (PE)
and functional encryption (FE), where secret keys are associated with a Boolean function f ; the main
distinction lies in how much information about x is potentially leaked to the adversary. The main
distinction between ABE and PE is that x is always public in ABE, but remains secret in PE when the
user is not authorized to decrypt. The main distinction between PE and FE is that x always remains
hidden (even when f (x) = 1) and hence the user only learns the output of the computation of f on x.

decryption process is confronted with a decision, namely whether to release the message µ or not,
and this decision depends on whether the plaintext f (x) is 0 or 1.4 Clearly, resolving this conundrum
requires obtaining f (x), which requires knowledge of the FHE secret key. Goldwasser et al. [82] solved
this by employing a (single use) Yao garbling of the FHE decryption circuit, however this limited them to
obtaining single key secure predicate/functional encryption schemes.5

Our first key idea is to embed the FHE secret key as part of the attributes in the ABE ciphertext. That
is, in order to encrypt a plaintext µ with attributes x in the predicate encryption scheme, we first choose
a symmetric key fhe.sk for the FHE scheme, encrypt x into a FHE ciphertext x̂, and encrypt µ using the
ABE scheme with (fhe.sk, x̂) as the attributes to obtain an ABE ciphertext ct. Our predicate encryption
ciphertext is then given by

(x̂,ct)

To generate the predicate secret key for a function f , one simply generates the ABE secret key for the
function g that takes as input (fhe.sk, x̂) and computes

g (fhe.sk, x̂) =FHE.Dec(fhe.sk;FHE.Eval( f , x̂))

That is, g first homomorphically computes a FHE encryption of f (x), and then decrypts it using the FHE
secret key to output f (x).

At first glance, this idea evokes strong and conflicting emotions as it raises two problems. The first
pertains to correctness: we can no longer decrypt the ciphertext since the ABE decryption algorithm
needs to know all of the attributes (x̂ and fhe.sk), but fhe.sk is missing. The second pertains to security:
the ABE ciphertext ct is not guaranteed to protect the privacy of the attributes, and could leak all of fhe.sk
which together with x̂ would leak all of x. Solving both of these problems seems to require designing a

4In fact, there is a syntactic mismatch since f̂ (·) is not a predicate, as it outputs an FHE ciphertext.
5A reader familiar with [82] might wonder whether replacing single-use garbled circuits in their construction with reusable

garbled circuits (also from [82]) might remove this limitation. We remark that this does not seem possible, essentially because
the construction in [82] relies crucially on the simplicity of computing garbled inputs from the “garbling key”. In particular, in
Yao’s garbled circuit scheme, the garbling key is (many) pairs of “strings” L0 and L1, and a garbling of an input bit b is simply Lb .
This fits perfectly with the semantics of ABE (rather, a variant termed two-input ABE in [82]) that releases one of two possible
“messages” L0 or L1 depending on the outcome of a computation. In contrast, computing a garbled input in the reusable
garbling scheme is a more complex and randomized function of the garbling key, and does not seem to align well with the
semantics of ABE.
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predicate encryption scheme from scratch!

Our next key observation is that the bulk of the computation in g , namely the homomorphic
evaluation of the function f , is performed on the public attribute x̂. The only computation performed on
the secret value fhe.sk is FHE decryption which is a fairly lightweight computation. In particular, with all
known FHE schemes [76, 37, 38, 40, 78, 39, 14], decryption corresponds to computing an inner product
followed by a threshold function. Furthermore, we do know how to construct lattice-based predicate
encryption schemes for threshold of inner product [9, 72]. We stress that the latter do not correspond
to FHE decryption since the inner product is computed over a vector in the ciphertext and one in the
key, whereas FHE decryption requires computing an inner product over two vectors in the ciphertext;
nonetheless, we will build upon the proof techniques in achieving attribute-hiding in [9, 72] in the proof
of security.

In other words, if we could enhance ABE with a modicum of secrecy so that it can perform a heavy-
weight computation on public attributes followed by a lightweight privacy-preserving computation on
secret attributes, we are back in business. Our first contribution is to define such an object, that we call
partially hiding predicate encryption.

Partially Hiding Predicate Encryption. We introduce the notion of partially hiding predicate encryp-
tion (PHPE), an object that interpolates between attribute-based encryption and predicate encryption
(analogously to partial garbling in [101]). In PHPE, the ciphertext, encrypting message µ, is associated
with an attribute (x, y) where x is private but y is always public. The secret key is associated with a
function f , and decryption succeeds iff f (x, y) = 1. On the one extreme, considering a dummy x or
functions f that ignore x and compute on y , we recover attribute-based encryption. On the other end,
considering a dummy y or functions f that ignore y and compute on x, we recover predicate encryption.

We will be interested in realizing PHPE for functions ϕ of the form ϕ(x, y) = g (x,h(y)) for some
functions g and h where h may perform arbitrary heavy-weight computation on the public y and g only
performs light-weight computation on the private x. Mapping back to our discussion, we would like to
achieve PHPE for the “evaluate-then-decrypt” class of functions, namely where g is the FHE decryption
function, h is the FHE evaluation function, x is the FHE secret key, and y is the FHE ciphertext. In general,
we would like g to be simple and will allow h to be complex. It turns out that we can formalize the
observation above, namely that PHPE for this class of functions gives us a predicate encryption scheme.
The question now becomes: can we construct PHPE schemes for the “evaluate-then-decrypt” class of
functions?

Assuming the subexponential hardness of learning with errors (LWE), we show how to construct a
partially hiding predicate encryption for the class of functions f : Zt

q × {0,1}ℓ → {0,1} of the form

fγ(x,y) = IPγ(x,h(y)),

where h : {0,1}ℓ → {0,1}t , γ ∈Zq , and IPγ(x,z) = 1 iff 〈x,z〉 =
(∑

i∈[t ] x[i ] ·z[i ]
)
= γ mod q .

This is almost what we want, but not quite. Recall that FHE decryption in many recent schemes [37,
40, 78, 39, 14] is a function that checks whether an inner product of two vectors in Zt

q (one of which
could be over {0,1}t ) lies in a certain range. Indeed, if z ∈ {0,1}t is an encryption of 1 and x ∈ Zt

q is the
secret key, we know that 〈x,z〉 ∈ [q/2−B , q/2+B ] (mod q), where B is the noise range. Applying the
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so-called “modulus reduction” [37] transformation to all these schemes, we can assume that this range
is polynomial in size.

In other words, we will manage to construct a partially hiding PE scheme for the function

fγ(x,y) : 〈x,h(y)〉 ?= γ (mod q)

whereas we need a partially hiding PE scheme for the FHE decryption function which is

f ′
R (x,y) : 〈x,h(y)〉 ?∈ R (mod q)

where R is the polynomial size range [q/2−B , q/2+B ] from above. How do we reconcile this disparity?

The “Lazy OR” Trick. The solution, called the “lazy OR trick” [143, 72] is to publish secret keys for
all functions fγ for γ ∈ R := [q/2−B , q/2+B ]. This will indeed allow us to test if the FHE decryption
of the evaluated ciphertext is 1 (and reveal the message µ if it is), but it is also worrying. Publishing

these predicate secret keys for the predicates fγ reveals more information than whether 〈x,h(y)〉 ?∈ R. In
particular, it reveals what 〈x,h(y)〉 is. This means that an authorized key would leak partial information
about the attribute, which we do allow for predicate encryption. On the other hand, for an unauthorized
key where the FHE decryption is 0, each of these fγ,γ ∈ R is also an unauthorized key in the PHPE and
therefore leaks no information about the attribute. This extends to the collection of keys in R since
the PHPE is secure against collusions. For simplicity, we assume in the rest of this overview that FHE
decryption corresponds to exactly to inner product.

Asymmetry to the Rescue: Constructing Partially Hiding PE. Our final contribution is the construc-
tion of a partially hiding PE for the function class fγ(x,y) above. We will crucially exploit the fact that
fγ computes an inner product on the private attribute x. There are two challenges here: first, we
need to design a decryption algorithm that knows fγ and y but not x (this is different from decryption
in ABE where the algorithm also knows x); second, show that the ciphertext does not leak too much
information about x. We use the fully key-homomorphic encryption techniques developed by Boneh et
al [34] in the context of constructing an “arithmetic” ABE scheme. The crucial observation about the ABE
scheme of [34] is that while it was not designed to hide the attributes, it can be made to partially hide
them in exactly the way we want. In particular, the scheme allows us to carry out an inner product
of a public attribute vector (corresponding to the evaluated FHE ciphertext) and a private attribute
vector (corresponding to the FHE secret key fhe.sk), thanks to an inherent asymmetry in homomorphic
evaluation of a multiplication gate on ABE ciphertexts. More concretely, in the homomorphic evaluation
of a ciphertext for a multiplication gate in [34], the decryption algorithm works even if one of the attribute
remains private, and for addition gates, the decryption algorithms works even if both attributes remain
private. This addresses the first challenge of a decryption algorithm that is oblivious to x. For the second
challenge of security, we rely on techniques from inner product predicate encryption [9] to prove the
privacy of x Note that in the latter, the inner product is computed over a vector in the ciphertext and
one in the key, whereas in our scheme, the inner product is computed over two vectors in the ciphertext.
Interestingly, the proof still goes through since the ciphertext in the ABE [34] has the same structure as
the ciphertext in [9]. We refer the reader to Section 3.2 for a detailed overview of the partial hiding PE,
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and to Section 4 for an overview of how we combine the partial hiding PE with FHE to obtain our main
result.

Finally, we remark that exploiting asymmetry in multiplication has been used in fairly different
contexts in both FHE [78, 39] and in ABE [86, 84]. In [78] and in this work, the use of asymmetry
was crucial for realizing the underlying cryptographic primitive; whereas in [86, 39, 84], asymmetry
was used to reduce the noise growth during homomorphic evaluation, thereby leading to quantitative
improvements in the underlying assumptions and hence improved efficiency.

1.3 Discussion

Comparison with other approaches. The two main alternative approaches for realizing predicate and
functional encryption both rely on multi-linear maps either implicitly, or explicitly. The first is to use
indistinguishability obfuscation as in [68], and the second is to extend the dual system encryption
framework to multi-linear maps [146, 70]. A crucial theoretical limitation of these approaches is that
they all rely on non-standard assumptions; we have few candidates for multi-linear maps [67, 57, 79]
and the corresponding assumptions are presently poorly understood and not extensively studied in
cryptanalysis, and in some cases, broken [54]. In particular, the latest attack in [54] highlight the im-
portance of obtaining constructions and developing techniques that work under standard cryptographic
assumptions, as is the focus of this work.

Barriers to functional encryption from LWE. We note the two main barriers to achieving full-fledged
functional encryption from LWE using our framework. First, the lazy conjunction approach to handle
threshold inner product for FHE decryption leaks the exact inner product and therefore cannot be used
to achieve full attribute-hiding. Second, we do not currently know of a fully attribute-hiding inner
product encryption scheme under the LWE assumption, although we do know how to obtain such
schemes under standard assumptions in bilinear groups [130, 106].

2 Preliminaries

We refer the reader to the full version for the background on lattices.

2.1 Fully-Homomorphic Encryption

We present a fairly minimal definition of fully homomorphic encryption (FHE) which is sufficient for
our constructions. A leveled homomorphic encryption scheme is a tuple of polynomial-time algorithms
(HE.KeyGen,HE.Enc,HE.Eval,HE.Dec):

• Key generation. HE.KeyGen(1λ,1d ,1k ) is a probablistic algorithm that takes as input the security
parameter λ, a depth bound d and message length k and outputs a secret key sk.

• Encryption. HE.Enc(sk,µ) is a probabilistic algorithm that takes as input sk and a message µ ∈
{0,1}k and outputs a ciphertext ct.
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• Homomorphic evaluation. HE.Eval( f ,ct) is a deterministic algorithm that takes as input a
boolean circuit C : {0,1}k → {0,1} of depth at most d and a ciphertext ct and outputs another
ciphertext ct′.

• Decryption. HE.Dec(sk,ct′) is a deterministic algorithm that takes as input sk and ciphertext ct′

and outputs a bit.

Correctness. We require perfect decryption correctness with respect to homomorphically evaluated
ciphertexts: namely for all λ,d ,k and all sk ← HE.KeyGen(1λ,1d ,1k ), all µ ∈ {0,1}k and for all boolean
circuits C : {0,1}k → {0,1} of depth at most d :

Pr
[
HE.Dec(sk, HE.Eval(C , HE.Enc(sk,µ))) =C (µ)

]
= 1

where the probablity is taken over HE.Enc and HE.KeyGen.

Security. We require semantic security for a single ciphertext: namely for every stateful p.p.t. adversary
A and for all d ,k = poly(λ), the following quantity

Pr

b = b′ :

sk← Setup(1λ,1d ,1k );
(µ0,µ1) ←A(1λ,1d ,1k );

b
$← {0,1};

ct←Enc(sk,µb);
b′ ←A(ct)

− 1

2

is negligible in λ.

2.1.1 FHE from LWE

We will rely on an instantiation of FHE from the LWE assumption:

Theorem 2.1 (FHE from LWE [37, 40, 78, 39, 14]). There is a FHE schemeHE.KeyGen,HE.Enc,HE.Eval,HE.Dec
that works for any q with q ≥O(λ2) with the following properties:

• HE.KeyGen outputs a secret key sk ∈Zt
q where t = poly(λ);

• HE.Enc outputs a ciphertext ct ∈ {0,1}ℓ where ℓ= poly(k,d ,λ, log q);

• HE.Eval outputs a ciphertext ct′ ∈ {0,1}t ;

• for any boolean circuit of depth d,HE.Eval(C , ·) is computed by a boolean circuit of depth poly(d ,λ, log q).

• HE.Dec on input sk,ct′ outputs a bit b ∈ {0,1}. If ct′ is an encryption of 1 then

t∑
i=1

sk[i ] ·ct′[i ] ∈ [⌊q/2⌋−B ,⌊q/2⌋+B ]
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for some fixed B = poly(λ). Otherwise, if ct′ is an encryption of 0, then

t∑
i=1

sk[i ] ·ct′[i ] ∉ [⌊q/2⌋−B ,⌊q/2⌋+B ];

• security relies on dLWEΘ(t ),q,χ.

We highlight several properties of the above scheme: (1) the ciphertext is a bit-string, (2) the bound
B is a polynomial independent of q (here, we crucially exploit the new results in [39] together with the
use of leveled bootstrapping)6, (3) the size of normal ciphertexts is independent of the size of the circuit
(this is the typical compactness requirement).

3 Partially Hiding Predicate Encryption

3.1 Definitions

We introduce the notation of partially hiding predicate encryption (PHPE), which interpolates attribute-
based encryption and predicate encryption (analogously to partial garbling in [101]). In PHPE, the
ciphertext, encrypting message µ, is associated with an attribute (x, y) where x is private but y is always
public. The secret key is associated with a predicate C , and decryption succeeds iff C (x, y) = 1. The
requirement is that a collusion learns nothing about (x,µ) if none of them is individually authorized to
decrypt the ciphertext. Attribute-based encryption corresponds to the setting where x is empty, and
predicate encryption corresponds to the setting where y is empty. We refer the reader to the full version
for the standard notion of predicate encryption.

Looking ahead to our construction, we show how to:

• construct PHPE for a restricted class of circuits that is “low complexity” with respect to x and allows
arbitrarily polynomial-time computation on y ;

• bootstrap this PHPE using FHE to obtain PE for all circuits.

Syntax. A Partially-Hiding Predicate Encryption scheme PHPE for a pair of input-universes X,Y, a
predicate universeC, a message spaceM, consists of four algorithms (PH.Setup,PH.Enc,PH.Keygen,PH.Dec):

PH.Setup(1λ,X,Y,C,M) → (ph.mpk,ph.msk). The setup algorithm gets as input the security parameter
λ and a description of (X,Y,C,M) and outputs the public parameter ph.mpk, and the master key
ph.msk.

PH.Enc(ph.mpk, (x, y),µ) → cty . The encryption algorithm gets as input ph.mpk, an attribute (x, y) ∈
X×Y and a message µ ∈M. It outputs a ciphertext cty .

PH.Keygen(ph.msk,C ) → skC . The key generation algorithm gets as input ph.msk and a predicate C ∈C.
It outputs a secret key skC .

6Recall that no circular security assumption needs to be made for leveled bootstrapping.
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PH.Dec((skC ,C ), (cty , y)) →µ. The decryption algorithm gets as input the secret key skC , a predicate C ,
and a ciphertext cty and the public part of the attribute y . It outputs a message µ ∈M or ⊥.

Correctness. We require that for all PH.Setup(1λ,X,Y,C,M) → (ph.mpk,ph.msk), for all (x, y,C ) ∈ X×
Y×C, for all µ ∈M,

• if C (x, y) = 1, Pr
[
PH.Dec((skC ,C ), (cty , y)) =µ

]≥ 1−negl(λ),

• if C (x, y) = 0, Pr
[
PH.Dec((skC ,C ), (cty , y)) =⊥ ]≥ 1−negl(λ),

where the probabilities are taken over skC ←PH.Keygen(ph.msk,C ), cty ←PH.Enc(ph.mpk, (x, y),µ) and
coins of PH.Setup.

Definition 3.1 (PHPE Attribute-Hiding). Fix (PH.Setup,PH.Enc,PH.Keygen, PH.Dec). For every stateful
p.p.t. adversary Adv, and a p.p.t. simulator Sim, consider the following two experiments:

expreal
PHPE,Adv(1λ): expideal

PHPE,Sim(1λ):

1: (x, y) ← Adv(1λ,X,Y,C,M)
2: (ph.mpk,ph.msk) ←

PH.Setup(1λ,X,Y,C,M)
3: µ← AdvPH.Keygen(msk,·)(ph.mpk)
4: cty ←PH.Enc(ph.mpk, (x, y),µ)
5: α← AdvPH.Keygen(ph.msk,·)(cty )
6: Output (x, y,µ,α)

1: (x, y) ← Adv(1λ,X,Y,C,M)
2: (ph.mpk,ph.msk) ←

PH.Setup(1λ,X,Y,C,M)
3: µ← AdvPH.Keygen(ph.msk,·)(ph.mpk)
4: cty ← Sim(mpk, y,1|x|,1|µ|)
5: α← AdvPH.Keygen(msk,·)(cty )
6: Output (x, y,µ,α)

We say an adversary Adv is admissible if all oracle queries that it makes C ∈ C satisfy C (x, y) = 0. The
Partially-Hiding Predicate Encryption scheme PHPE is then said to be attribute-hiding if there is a
p.p.t. simulator Sim such that for every stateful p.p.t. adversary Adv, the following two distributions are
computationally indistinguishable:{

expreal
PHPE,Adv(1λ)

}
λ∈N

c≈
{

expideal
PHPE,Sim(1λ)

}
λ∈N

Remarks. We point out some remarks of our definition (SIM-AH) when treated as a regular predicate
encryption (i.e. the setting where y is empty; see the full version for completeness) and how it compares
to other definitions in the literature.

• We note the simulator for the challenge ciphertext gets y but not x; this captures the fact that
y is public whereas x is private. In addition, the simulator is not allowed to program the public
parameters or the secret keys. In the ideal experiment, the simulator does not explicitly learn any
information about x (apart from its length); nonetheless, there is implicit leakage about x from
the key queries made by an admissible adversary. Finally, we note that we can efficiently check
whether an adversary is admissible.
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• Our security notion is “selective”, in that the adversary “commits” to (x, y) before it sees ph.mpk.
It is possible to bootstrap selectively-secure scheme to full security using standard complexity
leveraging arguments [27, 86], at the price of a 2|x| loss in the security reduction.

• Our definition refers to a single challenge message, but the definition extends readily to a setting
with multiple challenge messages. Moreover, our definition composes in that security for a single
message implies security with multiple messages (see the full version). The following remarks refer
to many messages setting.

• We distinguish between two notions of indistinguishability-based (IND) definitions used in the
literature: attribute-hiding (IND-AH)7 and strong attribute-hiding (IND-SAH)8 [30, 143, 106,
9]. In the IND-AH, the adversary should not be able to distinguish between two pairs of
attributes/messages given that it is restricted to queries which do not decrypt the challenge
ciphertext (See the full version for details). It is easy to see that our SIM-AH definition is stronger
than IND-AH. Furthermore, IND-SAH also ensures that adversary cannot distinguish between the
attributes even when it is allowed to ask for queries that decrypt the messages (in this case, it must
output µ0 = µ1). Our SIM-AH definition is weaker than IND-SAH, since we explicitly restrict the
adversary to queries that do not decrypt the challenge ciphertext.

• In the context of arbitrary predicates, strong variants of definitions (that is, IND-SAH and SIM-
SAH) are equivalent to security notions for functional encryption (the simulation definition must
be adjusted to give the simulated the outputs of the queries). However, the strong variant of notion
(SIM-SAH) is impossible to realize for many messages [33, 11]. We refer the reader to the full
version for a sketch of the impossibility. Hence, SIM-AH is the best-possible simulation security
for predicate encryption which we realize in this work. The only problem which we leave open is
to realize IND-SAH from standard LWE.

3.2 Our Construction

We refer the reader to the full version for the complete description of our construction. Below, we provide
an overview.

Overview. We construct a partially hiding predicate encryption for the class of predicate circuits C :
Zt

q × {0,1}ℓ → {0,1} of the form Ĉ ◦ IPγ where Ĉ : {0,1}ℓ → {0,1}t is a boolean circuit of depth d , γ ∈ Zq ,
and

(Ĉ ◦ IPγ)(x,y) = IPγ(x,Ĉ (y)),

where IPγ(x,z) = 1 iff 〈x,z〉 =
(∑

i∈[t ] x[i ] · z[i ]
)
= γ mod q . We refer to circuit IP as the generic inner-

product circuit of two vectors.

Looking ahead, Ĉ corresponds to FHE evaluation of an arbitrary circuit C , whereas IPγ corresponds
to roughly to FHE decryption; in the language of the introduction in Section 1, Ĉ corresponds to heavy-
weight computation h, whereas IPγ corresponds to light-weight computation g .

7Sometimes also referred as weak attribute-hiding.
8Sometimes also referred as full attribute-hiding.
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The scheme. The public parameters are matrices(
A, A1, . . . ,Aℓ, B1, . . . ,Bt

)
An encryption corresponding to the attribute (x,y) ∈ Zt

q × {0,1}ℓ is a GPV ciphertext (an LWE sample)
corresponding to the matrix[

A | A1 +y[1] ·G | · · · | Aℓ+y[ℓ] ·G | B1 +x[1] ·G | · · · | Bt +x[t ] ·G
]

To decrypt the ciphertext given y and a key for Ĉ ◦ IPγ, we apply the BGGHNSVV algorithm to first
transform the first part of the ciphertext into a GPV ciphertext corresponding to the matrix[

A | AĈ1
+z[1] ·G | · · · | AĈt

+z[t ] ·G
]

where Ĉi is the circuit computing the i ’th bit of Ĉ and z = Ĉ (y) ∈ {0,1}t . Next, observe that

−
(
(AĈi

+z[i ] ·G) ·G−1(Bi )
)
+z[i ] ·

(
Bi +x[i ] ·G

)
=−AĈi

G−1(Bi )+x[i ] ·z[i ] ·G.

Summing over i , we have

ℓ∑
i=1

−
(
(AĈi

+z[i ] ·G) ·G−1(Bi )
)
+z[i ] ·

(
Bi +x[i ] ·G

)
= AĈ ◦ IP+〈x,z〉 ·G

where
AĈ ◦ IP :=−

(
AĈ1

G−1(B1)+·· ·+AĈt
G−1(Bt )

)
.

Therefore, given only the public matrices and y (but not x), we may transform the ciphertext into a GPV
ciphertext corresponding to the matrix [

A | AĈ ◦ IP+〈x,z〉 ·G
]
.

The secret key corresponding to Ĉ ◦ IPγ is essentially a “short basis” for the matrix[
A | AĈ ◦ IP+γ ·G

]
which can be sampled using a short trapdoor T of the matrix A.

Proof strategy. There are two main components to the proof. Fix the selective challenge attribute x,y.
First, we will simulate the secret keys without knowing the trapdoor for the matrix A: here, we rely on the
simulated key generation for the ABE [34]. Roughly speaking, we will need to generate a short basis for
the matrix [

A | ARĈ ◦ IP+ (γ− Ĉ ◦ IP(x,y)) ·G
]

where RĈ ◦ IP is a small-norm matrix known to the simulator. Now, whenever Ĉ ◦ IP(x,y) ̸= γ as is the case
for admissible adversaries, we will be able to simulate secret keys using the puncturing techniques in
[7, 9, 121]

Next, we will show that the attribute x is hidden in the challenge ciphertext. Here, we adopt the proof
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strategy for attribute-hiding inner product encryption in [9, 72]. In the proof, we simulate the matrices
A,B1, . . . ,Bt using

A,AR′
1 −x[1]G, . . . ,AR′

t −x[t ]G

where R′
1, . . . ,R′

t
$← {±1}m×m . In addition, we simulate the corresponding terms in the challenge

ciphertext by c,cTR′
1, . . . ,cTR′

t , where c is a uniformly random vector, which we switched from ATs+ e
using the LWE assumption. Here we crucially rely on the fact that switched to simulation of secret keys
without knowing the trapdoor of A. Going further, once c is random, we can switch back to simulating
secret keys using the trapdoor T. Hence, the secret keys now do not leak any information about R′

1, . . . ,R′
t .

Therefore, we may then invoke the left-over hash lemma to argue that x is information-theoretically
hidden.

4 Predicate Encryption for Circuits

In this section, we present our main construction of predicate encryption for circuits by bootstrapping
on top of the partially-hiding predicate encryption. That is,

• We construct a Predicate Encryption scheme PE= (Setup,Keygen,Enc,Dec) for boolean predicate
family C bounded by depth d over k bit inputs.

starting from

• an FHE scheme FHE = (HE.KeyGen,HE.Enc,HE.Dec,HE.Eval) with properties as described in
Section 2.1. Define ℓ as the size of the initial ciphertext encrypting k bit messages, and t as the
size of the FHE secret key and evaluated ciphertext vectors;

• a partially-hiding predicate encryption scheme PHPE= (PH.Setup,PH.Keygen, PH.Enc,PH.Dec)
for the class CPHPE of predicates bounded by some depth parameter d ′ = poly(d ,λ, log q). Recall
that

(Ĉ ◦ IPγ)(x ∈Zt
q ,y ∈ {0,1}t ) = 1 iff

( ∑
i∈[t ]

x[i ] · Ĉ (y)[i ]
)
= γ mod q

where Ĉ : {0,1}ℓ → {0,1}t is a circuit of depth at most d ′.

Overview. At a high level, the construction proceeds as follows:

• the PE ciphertext corresponding to an attribute a ∈ {0,1}k is a PHPE ciphertext corresponding to
an attribute (fhe.sk, fhe.ct) where fhe.sk

$←Zt
q is private and fhe.ct :=HE.Enc(a) ∈ {0,1}ℓ is public;

• the PE secret key for a predicate C : {0,1}k → {0,1} ∈C is a collection of 2B +1 PHPE secret keys for
the predicates {Ĉ ◦ IPγ : Zt

q ×{0,1}ℓ → {0,1}}γ=⌊q/2⌋−B ,...,⌊q/2⌋+B where Ĉ : {0,1}ℓ → {0,1} is the circuit:

Ĉ (fhe.ct) :=HE.Eval(fhe.ct,C ),

so Ĉ is a circuit of depth at most d ′ = poly(d ,λ, log q);

• decryption works by trying all possible 2B +1 secret keys.
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Note that the construction relies crucially on the fact that B (the bound on the noise in the FHE evaluated
ciphertexts) is polynomial. For correctness, observe that for all C ,a:

C (a) = 1

⇔ HE.Dec(fhe.sk,HE.Eval(C , fhe.ct)) = 1

⇔ ∃ γ ∈ [⌊q/2⌋−B ,⌊q/2⌋+B ] such that
( ∑

i∈[t ]
fhe.sk[i ] · fhe.ct[i ]

)
= γ mod q

⇔ ∃ γ ∈ [⌊q/2⌋−B ,⌊q/2⌋+B ] such that (Ĉ ◦ IPγ)(fhe.sk, fhe.ct) = 1

where fhe.sk, fhe.ct,Ĉ are derived from C ,a as in our construction.

4.1 Our Predicate Encryption scheme

Our construction proceeds as follows:

• Setup(1λ,1k ,1d ): The setup algorithm takes the security parameter λ, the attribute length k and
the predicate depth bound d .

1. Run the partially-hiding PE scheme for family CPHPE to obtain a pair of master public and
secret keys:

(ph.mpk,ph.msk) ←PH.Setup(1λ,1t ,1ℓ,1d ′
)

where for k-bit messages and depth d circuits: t is the length of FHE secret key, ℓ is the
bit-length of the initial FHE ciphertext and d ′ is the bound on FHE evaluation circuit (as
described at the beginning of this section).

2. Output (mpk := ph.mpk,msk := ph.msk).

• Keygen(msk,C ): The key-generation algorithms takes as input the master secret key msk and a
predicate C . It outputs a secret key skC computed as follows.

1. Let Ĉ (·) :=HE.Eval(·,C ) and let (Ĉ ◦ IPγ) be the predicates for γ= ⌊q/2⌋−B , . . . ,⌊q/2⌋+B .

2. For all γ= ⌊q/2⌋−B , . . . ,⌊q/2⌋+B , compute

skĈ ◦ IPγ
←PH.Keygen

(
ph.msk,Ĉ ◦ IPγ

)
3. Output the secret key as skC := (

{skĈ ◦ IP}γ=⌊q/2⌋−B ,...,⌊q/2⌋+B
)
.

• Enc(mpk,a,µ): The encryption algorithm takes as input the public key mpk, the input attribute
vector a ∈ {0,1}k and message µ ∈ {0,1}. It proceeds as follow.

1. Samples a fresh FHE secret key fhe.sk ∈Zt
q by running HE.KeyGen(1λ,1d ′

,1k ).

2. Encrypt the input to obtain

fhe.ct←HE.Enc(fhe.sk,a) ∈ {0,1}ℓ
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3. Compute
ctfhe.ct ←PH.Enc

(
mpk, (fhe.sk, fhe.ct),µ

)
Note that the fhe.sk corresponds to the hidden attribute and fhe.ct corresponds to the public
attribute.

4. Output the ciphertext ct= (ctfhe.ct, fhe.ct).

• Dec((skC ,C ),ct) : The decryption algorithm takes as input the secret key skC with corresponding
predicate C and the ciphertext ct. If there exists γ= ⌊q/2⌋−B , . . . ,⌊q/2⌋+B such that

PH.Dec((skĈ ◦ IPγ
,Ĉ ◦ IPγ), (ctfhe.ct, fhe.ct)) =µ ̸=⊥

then output µ. Otherwise, output ⊥.

4.2 Correctness

Lemma 4.1. Let C be a family of predicates bounded by depth d and let PHPE be the partially-hiding PE
and FHE be a fully-homomorphic encryption as per scheme description. Then, our predicate encryption
scheme PE is correct. Moreover, the size of each secret key is poly(d ,λ) and the size of each ciphertext is
poly(d ,λ,k).

We refer the reader to the full version for the proof.

4.3 Security

Theorem 4.2. Let C be a family of predicates bounded by depth d and let PHPE be the secure partially-
hiding PE and FHE be the secure fully-homomorphic encryption as per scheme description. Then, our
predicate encryption scheme PE is secure.

Proof. We define p.p.t. simulator algorithms EncSim and argue that its output is indistinguishable from
the output of the real experiment. Let PH.EncSim be the p.p.t. simulator for partially-hiding predicate
encryption scheme.

• EncSim(mpk,1|a|,1|µ|): To compute the encryption, the simulator does the following. It samples
FHE secret key fhe.sk by running HE.KeyGen(1λ,1d ′

,1k ). It encrypts a zero-string fhe.ct ←
HE.Enc(fhe.sk,0). It obtains the ciphertext as ctfhe.ct ←PH.EncSim(mpk, fhe.ct,1|fhe.sk|,1|µ|).

We now argue via a series of hybrids that the output of the ideal experiment.

• Hybrid 0: The real experiment.

• Hybrid 1: The real encryption algorithm is replaced with Enc∗, where Enc∗ is an auxiliary
algorithm defined below. On the high level, Enc∗ computes the FHE ciphertext honestly by
sampling a secret key and using the knowledge of a. It then invokes PH.EncSim on the honestly
generated ciphertext.

• Hybrid 2: The simulated experiment.
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Auxiliary Algorithms. We define the auxiliary algorithm Enc∗ used in Hybrid 1.

• Enc∗(a,1|µ|): The auxiliary encryption algorithm takes as input the attribute vector a and message
length.

1. Sample a fresh FHE secret key fhe.sk by running HE.KeyGen(1λ,1d ′
,1k ).

2. Encrypt the input attribute vector to obtain a ciphertext

fhe.ct←HE.Enc(fhe.sk,a) ∈ {0,1}ℓ

3. Run PH.EncSim on input (mpk, fhe.ct,1|fhe.sk|,1|µ|) to obtain the ciphertext ctfhe.ct.

Lemma 4.3. The output of Hybrid 0 is computationally indistinguishable from the Hybrid 1, assuming
security of Partially-Hiding Predicate Encryption.

Proof. Assume there is an adversary Adv and a distinguisher D that distinguishes the output (a,µ,α)
produced in either of the two hybrids. We construct an adversary Adv′ and a distinguisher D′ that break
the security of the Partially-Hiding Predicate Encryption. The adversary Adv′ does the following.

1. Invoke the adversary Adv to obtain an attribute vector a.

2. Sample a fresh FHE secret key fhe.sk using HE.KeyGen(1λ,1d ′
,1k ). Encrypt the attribute vector

fhe.ct←HE.Enc(fhe.sk,a)

and output the pair (fhe.sk, fhe.ct) as the “selective” challenge attribute.

3. Upon receiving mpk, it forwards it to Adv.

4. For each oracle query C that Adv makes which satisfies C (a) ̸= 0, Adv′ uses its oracle to obtain secret
keys skĈ ◦ IPγ

for γ= ⌊q/2⌋−B , . . . ,⌊q/2⌋+B . It outputs skC = (
{skĈ ◦ IPγ

}γ=⌊q/2⌋−B ,...,⌊q/2⌋+B
)
.

5. It outputs message µ that Adv produces, obtains a ciphertext ctfhe.ct and sends ct= (ctfhe.ct, fhe.ct)
back to Adv to obtain α.

We note that given Adv that is admissible, Adv′ is also admissible. That is, for all queries Ĉ ◦ IPγ that Adv′

makes satisfies (Ĉ ◦ IPγ)(fhe.sk, fhe.ct) = 0 since 〈fhe.sk,Ĉ (fhe.ct)〉 ̸= γ for γ = ⌊q/2⌋−B , . . . ,⌊q/2⌋+B by
the correctness of FHE in Section 2.1 and the fact that C (a) ̸= 0. Finally, the distinguisher D′ on input
(fhe.sk, fhe.ct,µ,α) invokes D and outputs whatever it outputs. Now, in Hybrid 0 the algorithms used as
PH.Setup,PH.Keygen,PH.Enc which corresponds exactly to the real security game of PHPE. However, in
Hybrid 1 the algorithms correspond exactly to the simulated security game. Hence, we can distinguish
between the real and simulated experiments contradicting the security of PHPE scheme.

Lemma 4.4. The output of Hybrid 1 and Hybrid 2 are computationally indistinguishable, assuming
semantic security of Fully-Homomorphic Encryption Scheme.

Proof. The only difference in Hybrids 1 and 2 is how the FHE ciphertext is produced. In one experiment,
it is computed honestly by encrypting the attribute vector a, while in the other experiment it is always an
encryption of 0. Hence, we can readily construct an FHE adversary that given a, distinguishes encryption
of a from encryption of 0 as follows:
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1. Invoke the admissible PE adversary Adv to obtain an attribute vector a.

2. Run the honest PH.Setup and forwards mpk to Adv.

3. For each oracle query C that Adv makes which satisfies C (a) ̸= 0, return skC = (
{skĈ ◦ IPγ

}γ=⌊q/2⌋−B ,...,⌊q/2⌋+B
)

as computed using the honest PH.Keygen algorithm.

4. To simulate the ciphertext, first forward the pair (a,0) to the FHE challenger to obtain a ciphertext
fhe.ct. Then, run PH.EncSim(mpk, fhe.ct,1|fhe.sk|,1µ) to obtain a ciphertext ctfhe.ct and forward it to
Adv

5. Finally, it runs the PE distinguisher on input (a,µ,α) and outputs its guess.

The lemma then follows from semantic security of the FHE completing the security proof. We also refer
the reader to the full version for the summary of parameters selection.
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Part V

Fully, (Almost) Tightly Secure IBE and Dual System
Groups

Jie Chen and Hoeteck Wee
CRYPTO 2013

Abstract. We present the first fully secure Identity-Based Encryption scheme (IBE) from the standard
assumptions where the security loss depends only on the security parameter and is independent of the
number of secret key queries. This partially answers an open problem posed by Waters (Eurocrypt 2005).
Our construction combines Waters’ dual system encryption methodology (Crypto 2009) with the Naor-
Reingold pseudo-random function (J. ACM, 2004) in a novel way. The security of our scheme relies on
the DLIN assumption in prime-order groups. Along the way, we introduce a novel notion of dual system
groups and a new randomization and parameter-hiding technique for prime-order bilinear groups.

1 Introduction

In an Identity-Based Encryption (IBE) scheme [142], encryption requires only the identity of the recipient
(e.g. an email address or an IP address) and a set of global public parameters, thus eliminating the
need to distribute a separate public key for each user in the system. The first realizations of IBE were
given in 2001; the security of these schemes were based on either Bilinear Diffie-Hellman or QR in the
random oracle model [29, 56]. Since then, tremendous progress has been made towards obtaining IBE
and HIBE schemes that are secure in the standard model based on pairings [42, 27, 28, 145, 75, 146] as
well as lattices [77, 46, 7, 8]. Specifically, starting with [146], we now have very efficient constructions
of IBE based on standard assumptions which achieve the strongest security notion of full (adaptive)
security, where the adversary may choose the challenge identity after seeing both the public parameters
and making key queries.

In this work, we focus on the issue of security reduction and security loss in the construction of
fully secure IBE. Consider an IBE scheme with a security reduction showing that attacking the scheme
in time t with success probability ϵ implies breaking some conjectured hard problem in time roughly
t with success probability ϵ/L; we refer to L as the security loss, and a tight reduction is one where L
is a constant. All known constructions of fully secure IBE schemes from standard assumptions incur a
security loss that is at least linear in the number of key queries q ; the only exceptions are constructions
in the random oracle model [29] and those based on q-type assumptions [75]. Motivated by this
phenomenon, Waters [145] posed the following problem in 2005 (reiterated in [75, 21]):

“ Design an IBE with a tight security reduction to a standard assumption. "
That is, we are interested in constructions based on “static” assumptions like the Decisional Linear
(DLIN) assumption or the subgroup decisional assumption and which do not rely on random oracles.
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Note that an IBE with a tight security reduction would also imply signatures with a tight security
reduction via Naor’s transformation [29]; indeed, the latter were the focus in a series of very recent works
[1, 104, 96].

We stress that tight reductions are not just theoretical issues for IBE, rather they are of utmost
practical importance: as L increases, we need to increase the size of the underlying groups in order
to compensate for the security loss, which in turn increases the running time of the implementation.
Note that the impact on performance is quite substantial, as exponentiation in a r -bit group takes time
roughly O(r 3).

While the ultimate goal is to achieve constant security loss (i.e. L =O(1)), even achieving L = poly(λ)
and independent of q is already of both practical and theoretical interest. For typical settings of
parameters (e.g. λ = 128 and q = 220), λ is much smaller than q . From the theoretical stand-point, we
currently have two main techniques for obtaining fully secure IBE from standard assumptions: random
partitioning [145] and dual system encryption framework [146]. For the former, we now know that an
Ω(q) security loss is in fact inherent [98]. For the latter, all known instantiations also incur an Ω(q)
security loss; an interesting theoretical question is whether this is in fact inherent to the dual system
encryption framework.

1.1 Our results

Our main result is an IBE scheme based on the (generalized) d-LIN assumption with security loss O(λ)
for λ-bit identities:

Theorem 1.1. There exists an IBE scheme for identity space {0,1}n based on the d-LIN assumption with
the following property: for any adversary A that makes at most q key queries against the IBE scheme, there
exist an adversary B such that:

AdvIBE
A (λ) ≤ (2n +1) ·Advd -LIN

B (λ)+2−Ω(λ)

and

Time(B) ≈Time(A)+q ·poly(λ,n),

where poly(λ,n) is independent of Time(A).

We compare our scheme with prior constructions in Figure 8. Applying Naor’s transformation, we
also obtain a d-LIN-based signature scheme with constant-size signatures and security loss independent
of the number of signature queries. This yields an alternative construction for an analogous result in [96].

1.1.1 Our approach.

The inspiration for our construction comes from a recent connection between predicate encryption and
one-time symmetric-key primitives [148] — namely one-time MACs in the case of IBE — via dual system
encryption [146]. Our key observation is to extend this connection to “reusable MACs”, namely that if we
start with an appropriate pseudorandom function (PRF) with security loss L, we may derive an IBE with
the security loss O(L). More concretely, we begin with the Naor-Reingold DDH-based PRF [124] which
has security loss n for input domain {0,1}n , and obtain a fully secure IBE with security loss O(n) via a
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Reference |MPK| security loss additive overhead assumption

BB1 [27] O(1) O(2n) q ·poly(λ,n) DBDH

Waters [145] O(n) O(qn) q2ϵ−2 ·poly(λ,n) DBDH

Gentry [75] O(1) O(1) q2 ·poly(λ,n) q-ABDHE

BR [21] O(n) O(qn/ϵ) q ·poly(λ,n) DBDH

LW[146, 113, 111] O(1) O(q) q ·poly(λ,n) DLIN or composite

Ours O(n) O(n) q ·poly(λ,n) DLIN or composite

(Sec 5) O(d 2n) O(n) d 2q ·poly(λ,n) d-LIN

Figure 8: Comparison amongst IBE schemes, where {0,1}n is the identity space, q is the number of
adversary’s key queries, and ϵ is the adversary’s advantage. In all of these constructions, |SK| = |CT| =O(1).

novel variant of the dual system encryption methodology. Our IBE scheme is essentially that obtained
by embedding Waters’ fully secure IBE based on DBDH [145] into composite-order groups, and then
converting this to a prime-order scheme following [51, 127, 111, 64] (along with some new technical
ideas). Here, we exploit the fact that Waters’ IBE and the Naor-Reingold PRF share a similar algebraic
structure based on bit-by-bit encoding of the identity and PRF input respectively.

1.2 Technical overview

We provide a more technical overview of our main results, starting with the proof idea and then the
construction. Here, we assume some familiarity with prior works.

1.2.1 Proof idea.

Our security proof combines Waters’ dual system encryption methodology [146] with ideas from the
analysis of the Naor-Reingold PRF. In a dual system encryption scheme [146], there are two types of keys
and ciphertexts: normal and semi-functional. A key will decrypt a ciphertext properly unless both the key
and the ciphertext are semi-functional, in which case decryption will fail with overwhelming probability.
The normal keys and ciphertexts are used in the real system, and keys are gradually introduced in the
hybrid security proof, one at a time. Ultimately, we arrive at a security game in which the simulator only
has to produce semi-functional objects and security can be proved directly. In all prior instantiations of
this methodology, the semi-functional keys are introduced one at a time. As a result, we require q hybrid
games to switch all of the keys from normal to semi-functional, leading to an Ω(q) security loss, since
each step requires a computational assumption.

We deviate from the prior paradigm by using only n hybrid games, iterating over the bits in the bit-
by-bit encoding of the identity, as was done in the Naor-Reingold PRF. That is, we introduce n types of
semi-functional ciphertexts and keys, where type i objects appear in game i , while gradually increasing
the entropy in the semi-functional components in each game. This strategy introduces new challenges
specific to the IBE setting, namely that the adversary could potentially use the challenge ciphertext to
test whether we have switched from type i − 1 keys to type i keys. Prior works exploit the fact that we
only switch a single key in each step, whereas we could be switching up to q keys in each step.
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Property
Where it is used

nested dual system groups dual system groups

projective correctness correctness

normal to type 0 (Lemma 4.2) normal to semi-functional CT

associative correctness correctness

orthogonality normal to type 0 (Lemma 4.3) final transition

non-degeneracy final transition (Lemma 4.5) pseudo-normal to pseudo-SF keys

final transition

H-subgroup type i −1 to type i (Lemma 4.4) key delegation

left subgroup normal to type 0 (Lemma 4.2) normal to semi-functional CT

nested-hiding type i −1 to type i (Lemma 4.4) unavailable

right subgroup unavailable normal to pseudo-normal keys

pseudo-SF to semi-functional keys

parameter-hiding unavailable pseudo-normal to pseudo-SF keys

Figure 9: Summary of dual system groups (c.f. Section 3 and Section 6)

We overcome this difficulty as follows. At step i of the hybrid game, we guess the i ’th bit bi of the
challenge identity ID∗, and abort if our guess is incorrect. This results in a security loss of 2, which we
can afford. If our guess bi is correct,

• for all identities whose i ’th bit equals bi , the corresponding type i − 1 and type i object are the
same;

• for all other identities, we increase the entropy of the keys going from type i −1 to type i (via a tight
reduction to a computational assumption).

The first property implies that the adversary cannot use the challenge ciphertext to distinguish between
type i − 1 and type i keys; in the proof, the simulator will not be able to generate type i − 1 or type i
ciphertexts for identities whose i ’th bit is different from bi (c.f. Remark 3.3 and Section 4.4). Interestingly,
decryption capabilities remain unchanged throughout the hybrid games: a type i key for ID∗ can decrypt
a type i ciphertext for ID∗ (c.f. Remark 4.2). This is again different from prior instantiations of the dual
system encryption methodology where decryption fails for semi-functional objects.

In the final transition, a semi-functional type n object for identity ID has semi-functional component
Rn(ID) where Rn is a truly random function. In particular, the semi-functional ciphertext has semi-
functional component Rn(ID∗). Moreover, Rn(ID∗) is truly random from the adversary’s view-point
because it only learns SKID and thus Rn(ID) for ID ̸= ID∗. We can then argue that the message which
is masked by Rn(ID∗) is information-theoretically hidden.
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1.2.2 Construction.

To achieve a modular analysis, we introduce a novel notion of nested dual system groups (see Section 3.1
for an overview). Our construction proceeds into two steps: the first builds an (almost) tight IBE from
nested dual system groups where we rely on the Naor-Reingold PRF argument and the dual system
encryption methodology; the second builds nested dual system groups from d-LIN where we handle all
of the intricate linear algebra associated with simulating composite-order groups in prime-order groups
from [51, 111] and with achieving a tight reduction via random self-reducibility.

1.2.3 Perspective.

In spite of the practical motivation for tight security reductions, we clarify that our contributions are
largely of theoretical and conceptual interest. This is because any gain in efficiency from using smaller
groups is overwhelmed by the loss from the bit-by-bit encoding of identities. Our work raises the
following open problems:

• Can we reduce the size of the public parameters to a constant?

• Can we achieve tight security, namely L =O(1)?

We note that progress on either problem would likely require improving on the Naor-Reingold PRF:
namely, reducing respectively the seed length and the security loss to a constant, both of which are long-
standing open problems. We also note that the present blow-up in public parameters and security loss
arise only in using the Naor-Reingold approach to build an IBE from nested dual system groups; our
instantiation of nested dual system groups do achieve tight security.

1.3 Additional results

As a pre-cursor to nested dual system groups, we introduce a basic notion of dual system groups. We
present

• a generic construction of compact HIBE from dual system groups similar to the Lewko-Waters
scheme over composite-order groups [113]; and

• instantiations of dual system groups under the d-LIN assumption in prime-order bilinear groups
and the subgroup decisional assumption in composite-order bilinear groups respectively. Along
the way, we provide a new randomization and parameter-hiding technique for prime-order
groups.

Putting the two together, we obtain a new construction of compact HIBE in prime-order groups (see
Figures 10 and 11), as well as new insights into the structural properties needed for Waters’ dual system
encryption methodology [146]. We proceed to present an overview of dual system groups, our new
techniques for prime-order groups and then an overview of nested dual system groups.
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Reference |MPK| |SK| |CT| TKeyGen TEnc TDec assumption

Wat05 [145] (λ+4)|G1| 2|G2| 2|G1|+|GT | 2E2 2E1+ET 2P DBDH

Wat09 [146] 13|G1|+|GT | 8|G2|+|Zp | 9|G1|+|GT |+|Zp | 8E2 14E1+ET 9P +ET DLIN

Lewko [111] 24|G1|+|GT | 6|G2| 6|G1|+|GT | 6E2 24E1+ET 6P DLIN

RCS [135] 9|G1|+|GT | 6|G2|+|Zp | 7|G1|+|GT |+|Zp | 6E2 10E1+ET 7P +ET XDH + DLIN

CLL + [52] 8|G1|+|GT | 4|G2| 4|G1|+|GT | 4E2 8E1+ET 4P SXDH

Ours 6|G1|+|GT | 4|G2| 4|G1|+|GT | 4E2 6E1+ET 4P SXDH

(Sec 7) 18|G1|+2|GT | 6|G2| 6|G1|+|GT | 6E2 18E1+2ET 6P DLIN

Figure 10: Comparison amongst IBE schemes based on asymmetric bilinear groups of prime order p
with pairing e : G1 ×G2 →GT and security parameter λ, where (E1,E2,ET ,P ) denote G1-exponentiation,
G2-exponentiation, GT -exponentiation and a pairing respectively. For KeyGen, we assume that we store
exponents instead of group elements in MSK. Here, we omitted the G2 terms in MPK in our scheme, which
are not needed for the correctness of the scheme.

1.3.1 Dual system groups.

Informally, dual system groups contain a triple of groups (G,H,GT ) and a non-degenerate bilinear map
e : G×H→ GT . For concreteness, we may think of (G,H,GT ) as composite-order bilinear groups. Dual
system groups take as input a parameter 1n (think of n as the depth of the HIBE) and satisfy the following
properties:

(subgroup indistinguishability.) There are two computationally indistinguishable ways to sample cor-
related (n+1)-tuples from Gn+1: the “normal” distribution, and a higher-entropy distribution with
“semi-functional components”. An analogous statement holds for Hn+1.

(associativity.) For all (g0, g1, . . . , gn) ∈ Gn+1 and all (h0,h1, . . . ,hn) ∈ Hn+1 drawn from the respective
normal distributions, we have that for all i = 1, . . . ,n,

e(g0,hi ) = e(gi ,h0).

(parameter-hiding.) Both normal distributions can be efficiently sampled given the public parameters;
on the other hand, given only the public parameters, the higher-entropy distributions contain n
“units” of information-theoretic entropy (in the semi-functional component), one unit for each of
the n elements in the (n +1)-tuple apart from the first.

The key novelty in the framework lies in identifying the role of associativity in the prior instantiations of
the dual system encryption methodology in composite-order groups [113].

1.3.2 Instantiation in prime-order groups.

We present a new randomization and parameter-hiding technique for prime-order bilinear groups,
which we use to instantiate dual system groups. This technique allows us to hide arbitrarily large
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Reference |CT| TKeyGen TEnc TDec assumption

BBG [31] 2|G1|+ |GT | (n +1)E2 (n +2)E1+ET 2P n-DBDHE

Wat09 [146] (n +8)|G1|+ |GT | (2n +7)E2 (3n +11)E1+ET (2n +7)P +nET DLIN

LW [113] 2|GN |+ |GT | (n +1)EN (n +2)EN +ET 2P composite

OT10 [128] (7n +5)|G1|+ |GT | (7n +5)E2 (21n +15)E1+ET (7n +5)P DLIN

CLL+ [52] (4n +3)|G1|+ |GT | (4n +3)E2 (8n +6)E1+ET (4n +3)P SXDH

OT11 [129] 13|G1|+ |GT | (16n −3)E2 (8n +13)E1+ET 13P DLIN

Ours 4|G1|+ |GT | 2(n +1)E2 2(n +1)E1+ET 4P SXDH

(Sec 7) 6|G1|+ |GT | 3(n +1)E2 6(n +1)E1+2ET 6P DLIN

2(d +1)|G1|+ |GT | (d +1)(n +1)E2 d(d +1)(n +1)E1+dET 2(d +1)P d-LIN

Figure 11: Comparison between existing and our HIBE schemes, where n is the depth parameter; in
addition, EN denotes GN -exponentiation. In all of the prime-order constructions, |MPK| = O(n|G1| +
n|G2|+ |GT |) and |SK| =O(n|G2|). For TDec, we omitted the overhead of O(n) exponentiations associated
with delegating a key before decrypting. Apart from [31], all of the schemes achieve full security.

amounts of entropy while working with a vector space of constant dimensions, whereas prior works
require a linear blow-up in dimensions.

To motivate the new technique, we begin with a review of composite-order bilinear groups. Let
(GN ,GT ) denote a composite-order bilinear group of order N = p1p2 which is the product of two primes,
endowed with an efficient bilinear map e : GN ×GN → GT . Let g denote an element of GN of order
p1. A useful property of composite-order groups, especially in the context of dual system encryption
[113, 115], is that we can perform randomization by raising a group element to the power of a random
exponent a ←R ZN . This operation satisfy the following useful properties:

(parameter-hiding.) given g , g a , the quantity a (mod p2) is completely hidden;

(associativity.) for all u ∈GN , we have e(g a ,u) = e(g ,ua).

We show how to achieve randomization in the prime-order setting under the d-LIN assumption. Fix a
prime-order bilinear group (G ,GT ) of order p, endowed with an efficient bilinear map e : G×G →GT . Let
g denote an element of G of order p. Elements in GN correspond to elements in Gd+1 and we consider
the bilinear map e : Gd+1 ×Gd+1 → GT given by e(g x, g y) := e(g , g )x⊤y. Following [127, 64], we pick a
random pair of orthogonal basis (B,B∗) ←R GLd+1(Zp )×GLd+1(Zp ) so that B⊤B∗ is the identity matrix.
We consider the projection maps πL ,πR that map a (d + 1)× (d + 1) matrix to the left d columns and
right-most column; they correspond to projecting a ∈ZN to a (mod p1) and a (mod p2) respectively.

We randomize a basis (B,B∗) as follows: pick a random A ←R Z
(d+1)×(d+1)
p and replace (B,B∗) with

(BA,B∗A⊤). Observe that this transformation satisfy the following properties similar to those in the
composite-order setting:

(parameter-hiding.) given gπL (B), gπL (BA), gπL (B∗), gπL (B∗A⊤), the bottom-right entry of A is completely
hidden;
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(associativity.) for all (B,B∗) and all A ∈Z
(d+1)×(d+1)
p , we have

e(g BA, g B∗
) = e(g B, g B∗A⊤

)
(= e(g , g )A⊤)

where e(g X, g Y) := e(g , g )X⊤Y.

We also establish a subspace indistinguishability assumption similar to those in prior works [128, 111,
52].

1.3.3 Nested dual system groups.

In nested dual system groups, we require a so-called nested-hiding property. Roughly speaking, this
property says that it is computationally infeasible to distinguish q samples from some distribution
with another; specifically, it allows us to boost the entropy of the semi-functional components. In the
instantiation, we will need to establish this property with a tight reduction to some standard assumption.
The nested-hiding property allows us to “embed” the Naor-Reingold analysis into the semi-functional
space of a dual system encryption scheme. We stress that the nested-hiding property even for q = 1 is
qualitatively different from right subgroup indistinguishability in dual system groups.

We outline the instantiations of nested dual system groups in the composite-order and prime-order
settings:

• The composite-order instantiation is very similar to that as before. We rely on composite-order
group whose order is the product of three primes p1, p2, p3. The subgroup Gp1 of order p1

serves as the “normal space” and Gp2 of order p2 serves as the “semi-functional space”. We also
require a new static, generically secure assumption, which roughly speaking, states that DDH is
hard in the Gp2 subgroup. Here, we extend the techniques from [124] to establish nested-hiding
indistinguishability without losing a factor of q in the security reduction. Our IBE analysis may
also be viewed as instantiating the Naor-Reingold PRF in the Gp2 subgroup.

• For the prime-order instantiation based on d-LIN, we extend the prior instantiation in several
ways. First, we work with 2d × 2d matrices instead of (d + 1) × (d + 1) matrices. In both
constructions, the first d dimensions serve as the “normal space”; in our construction, we require a
d-dimensional semi-functional space instead of a 1-dimensional one so that we may embed the d-
LIN assumption into the semi-functional space. Next, we extend the techniques from [124, 112] to
establish nested-hiding indistinguishability without losing a factor of q in the security reduction.

Perspective.

In developing the framework for dual system groups, we opted to identify the minimal properties
needed for the application to dual system encryption in the most basic setting of (H)IBE; we adopted
an analogous approach also for nested dual system groups. An alternative approach would have been
to maximize the properties satisfied by both the composite-order and prime-order instantiations, with
the hope of capturing a larger range of applications. In choosing the minimalist approach, we believe
we can gain better insights into how and why dual system encryption works, as well as guide potential
lattice-based instantiations. In addition, we wanted the framework to be as concise as possible and the
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instantiations to be as simple as possible. Nonetheless, the framework remains fairly involved and we
hope to see further simplifications in future work.

Organization.

We present nested dual system groups in Section 3, our IBE scheme in Section 4 and a self-contained
description of our d-LIN-based scheme in Section 5. For completeness, we included a formal description
of dual system group in Section 6 and the d-LIN-based compact HIBE we derive from it in Section 7. We
defer all other details to the full versions of this paper [49, 51].

2 Preliminaries

Notation.

We denote by s ←R S the fact that s is picked uniformly at random from a finite set S and by x, y, z ←R

S that all x, y, z are picked independently and uniformly at random from S. By PPT, we denote a
probabilistic polynomial-time algorithm. Throughout, we use 1λ as the security parameter. We use · to
denote multiplication (or group operation) as well as component-wise multiplication. We use lower case
boldface to denote (column) vectors over scalars or group elements and upper case boldface to denote
vectors of group elements as well as matrices. Given a group G , we use ord(G) to denote the smallest
positive integer c such that g c = 1 for all g ∈G .

Identity-Based Encryption.

An IBE scheme consists of four algorithms (Setup,Enc, KeyGen,Dec):

Setup(1λ,1n) → (MPK, MSK). The setup algorithm takes in the security parameter 1λ and the length
parameter 1n . It outputs public parameters MPK and a master secret key MSK.

Enc(MPK,x,m) → CTx. The encryption algorithm takes in the public parameters MPK, an identity x, and
a message m. It outputs a ciphertext CTx.

KeyGen(MPK, MSK,y) → SKy. The key generation algorithm takes in the public parameters MPK, the
master secret key MSK, and an identity y. It outputs a secret key SKy.

Dec(MPK, SKy, CTx) → m. The decryption algorithm takes in the public parameters MPK, a secret key SKy

for an identity y, and a ciphertext CTx encrypted under an identity x. It outputs a message m if
x = y.
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Correctness.

For all (MPK, MSK) ← Setup(1λ,1n), all identities x, all messages m, all decryption keys SKy, all x such that
x = y, we have

Pr[Dec(MPK, SKy,Enc(MPK,x,m)) = m] = 1.

Security Model.

The security game is defined by the following experiment, played by a challenger and an adversary A.

Setup. The challenger runs the setup algorithm to generate (MPK, MSK). It gives MPK to the adversary A.

Phase 1. The adversary A adaptively requests keys for any identity y of its choice. The challenger re-
sponds with the corresponding secret key SKy, which it generates by running KeyGen(MPK, MSK,y).

Challenge. The adversary A submits two messages m0 and m1 of equal length and a challenge identity
x∗ with the restriction that x∗ is not equal to any identity requested in the previous phase. The
challenger picks β ←R {0,1}, and encrypts mβ under x∗ by running the encryption algorithm. It
sends the ciphertext to the adversary A.

Phase 2. A continues to issue key queries for any identity y as in Phase 1 with the restriction that y ̸= x∗.

Guess. The adversary A must output a guess β′ for β.

The advantage AdvIBE
A (λ) of an adversary A is defined to be |Pr[β′ =β]−1/2|.

Definition 2.1. An IBE scheme is fully secure if all PPT adversaries A, AdvIBE
A (λ) is a negligible function in

λ.

3 Nested Dual System Groups

In this section, we present nested dual system groups, a variant of dual system groups with a notable
difference: we require (computational) nested-hiding indistinguishability, in place of (computational)
right subgroup indistinguishability and (information-theoretic) parameter-hiding. As noted in the
introduction, the nested-hiding property even for q = 1 is qualitatively different from right subgroup
indistinguishability in dual system groups.

3.1 Overview

Informally, nested dual system groups contain a triple of groups (G,H,GT ) and a non-degenerate bilinear
map e : G×H → GT . For concreteness, we may think of (G,H,GT ) as composite-order bilinear groups.
Nested dual system groups take as input a parameter 1n and satisfy the following properties:
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(left subgroup G.) There are two computationally indistinguishable ways to sample correlated (n +1)-
tuples from Gn+1: the “normal” distribution, and a higher-entropy distribution with “semi-
functional components”. We sample the normal distribution usingSampG and the semi-functional
components using áSampG.

(right subgroup H.) There is a single algorithm SampH to sample correlated (n +1)-tuples from Hn+1.
We should think of these tuples as already having semi-functional components, generated by
some distinguished element h∗ ∈ H. It is convenient to think of h∗ as being orthogonal to each
component in the normal distribution over G (c.f. orthogonality and Remark 3.1). On the other
hand, we require that h∗ is not orthogonal to the semi-functional components in G (c.f. non-
degeneracy) in order to information-theoretically hide the message in the final transition.

(nested-hiding.) We require a computational assumption over H which we refer to as nested-hiding,
namely that for each i = 1, . . . ,n,

(h0,hi ) and (h0,hi · (h∗)γ)

are computationally indistinguishable, where (h0,h1, . . . ,hn) is sampled using SampH and γ is a
random exponent. In the formal definition, we provide the adversary with q samples from these
distributions, and in the instantiations, we provide a tight reduction (independent of q) to a static
assumption such as DLIN.

(associativity.) For all (g0, g1, . . . , gn) ∈ Gn+1 and all (h0,h1, . . . ,hn) ∈ Hn+1 sampled using SampG and
SampH respectively, we have that for all i = 1, . . . ,n,

e(g0,hi ) = e(gi ,h0).

We require this property for correctness.

3.2 Definitions

3.2.1 Syntax.

Nested dual system groups consist of five randomized algorithms given by (SampP,SampGT,SampG,SampH)
along with áSampG:

SampP(1λ,1n): On input (1λ,1n), output public and secret parameters (PP, SP), where:

• PP contains a triple of groups (G,H,GT ) and a non-degenerate bilinear map e : G×H→ GT , a
linear map µ defined on H, along with some additional parameters used by SampG,SampH;

• given PP, we know ord(H) (i.e. the order of the group, which is independent of n) and can
uniformly sample from H;

• SP contains h∗ ∈H (where h∗ ̸= 1), along with some additional parameters used by áSampG;

SampGT : Im(µ) →GT. (As a concrete example, suppose µ : H→GT and Im(µ) =GT.)
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SampG(PP): Output g ∈Gn+1.

SampH(PP): Output h ∈Hn+1.

áSampG(PP, SP): Output ĝ ∈Gn+1.

The first four algorithms are used in the actual scheme, whereas the last algorithm is used only in the
proof of security. We define SampG0 to denote the first group element in the output of SampG, and we
define áSampG0 analogously.

3.2.2 Correctness.

The requirements for correctness are as follows:

(projective.) For all h ∈H and all coin tosses s, we have SampGT(µ(h); s) = e(SampG0(PP; s),h).

(associative.) For all

(g0, g1, . . . , gn) ← SampG(PP), (h0,h1, . . . ,hn) ← SampH(PP),

and for all i = 1, . . . ,n, we have e(g0,hi ) = e(gi ,h0).

3.2.3 Security.

The requirements for security are as follows (we defer a discussion to the end of this section):

(orthogonality.) µ(h∗) = 1.

(non-degeneracy.) With probability 1 − 2−Ω(λ) over ĝ0 ← áSampG0(PP, SP), we have that e(ĝ0,h∗)α is
identically distributed to the uniform distribution over GT , where α←R Zord(H).

(H-subgroup.) The output distribution of SampH(PP) is the uniform distribution over a subgroup of
Hn+1.

(left subgroup indistinguishability.) For any adversary A, we define the advantage function:

AdvLS
A (λ) := |Pr[A(PP, g ) = 1 ]−Pr[A(PP, g · ĝ ) = 1 ]|

where

(PP, SP) ← SampP(1λ,1n);

g ← SampG(PP); ĝ ← áSampG(PP, SP).

For any g = (g0, . . . , gn) ∈Gn+1, and any i ∈ [n], we use g−i to denote (g0, . . . , gi−1, gi+1, . . . , gn) ∈Gn .
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(nested-hiding indistinguishability.) For any adversary A, we define the advantage function:

AdvNS
A (λ, q) := max

i∈[n]
|Pr[A(PP,h∗, ĝ−i , h1, . . . ,hq ) = 1 ]

−Pr[A(PP,h∗, ĝ−i , h′1, . . . ,h′q ) = 1 ]|
where

(PP, SP) ← SampP(1λ,1n);

ĝ ← áSampG(PP, SP);

h j := (h0, j ,h1, j , . . . , hi , j , . . . ,hn, j ) ← SampH(PP), j = 1, . . . , q ;

h′ j := (h0, j ,h1, j , . . . , hi , j · (h∗)γ j , . . . ,hn, j ), γ j ←R Zord(H), j = 1, . . . , q.

Discussion.

We provide additional justification and discussion on the preceding security properties.

Remark 3.1 (orthogonality). We may deduce from µ(h∗) = 1 that e(g0,h∗) = 1 for all g0 = SampG0(PP; s):
for all γ ∈ {0,1},

e(g0, (h∗)γ) = SampGT(µ((h∗)γ); s) (by projective)

= SampGT(µ(h∗)γ; s) (by linearity of µ)

= SampGT(1; s) (by orthogonality)

Thus, we have e(g0,h∗) = e(g0,1) = 1. For the instantiation from composite-order groups, h∗ is orthogonal
to each element in the output of SampG, that is,

e(g0,h∗) = e(g1,h∗) = ·· · = e(gn ,h∗) = 1

for all (g0, g1, . . . , gn) ← SampG(PP). On the other hand, for the instantiation from prime-order groups, h∗

is in general not orthogonal to g1, . . . , gn .

Remark 3.2 (H-subgroup). We rely on H-subgroup to re-randomize the secret keys in the proof of security
for queries that share the same i -bit prefix; see Section 4.4 case 3.

Remark 3.3 (indistinguishability). Observe that in left subgroup indistinguishability, the distinguisher
does not get h∗; otherwise, it is possible to distinguish between the two distributions using orthogonality.
It is also crucial that for nested-hiding, the distinguisher gets ĝ−i and not ĝ := (ĝ0, ĝ1, . . . , ĝn). (Looking
ahead to the proof in Section 4.4, not having ĝ means that the simulator cannot generate ciphertexts to
distinguish between Type i − 1 and Type i secret keys.) Otherwise, given ĝi , it is possible to distinguish
between h j and h′ j by using the relation:

e(g0 · ĝ0,hi , j ) = e(gi · ĝi ,h0, j ).

This relation follows from associative and left subgroup indistinguishability.
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4 (Almost) Tight IBE from Nested Dual System Groups

We provide a construction of an IBE scheme from nested dual system groups where the ciphertext
comprises two group elements in G and one in GT .

4.0.4 Overview.

We begin with an informal overview of the scheme. Fix a bilinear group with a pairing e : G ×G → GT .
The starting point of our scheme is the following variant of Waters’ IBE [145] with identity space {0,1}n :

MPK := (g ,u1, . . . ,u2n ,e(g , g )α)

CTx := (g s , (
n∏

k=1
u2k−xk )s ,e(g , g )αs ·m)

SKy := (g r , MSK · (
n∏

k=1
u2k−yk )r )

Note that MPK contains 2n +1 group elements in G , which we will generate using SampP(1λ, 12n ). We
will use SampG(PP) to generate the terms (g s ,us

1, . . . ,us
2n) in the ciphertext, and SampH(PP) to generate

the terms (g r ,ur
1 , . . . ,ur

2n) in the secret key.

4.1 Construction

Let {0,1}n be the identity space.

• Setup(1λ,1n): On input length parameter 1n , first sample

(PP, SP) ← SampP(1λ,12n).

Pick MSK ←R H and output the master public and secret key pair

MPK := (
PP, µ(MSK)

)
and MSK.

• Enc(MPK,x,m): On input an identity x := (x1, . . . , xn) ∈ {0,1}n and m ∈GT , sample

(g0, g1, . . . , g2n) ← SampG(PP; s), g ′
T ← SampGT(µ(MSK); s)

and output

CTx := (
C0 := g0, C1 := g2−x1 · · ·g2n−xn , C2 := g ′

T ·m
) ∈ (G)2 ×GT .

• KeyGen(MPK, MSK,y): On input an identity y ∈ {0,1}n , sample

(h0,h1, . . . ,h2n) ← SampH(PP)

and output

SKy := (
K0 := h0, K1 := MSK ·h2−y1 · · ·h2n−yn

) ∈ (H)2.
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• Dec(MPK, SKy, CTx): If x = y, compute

e(g0, MSK) ← e(C0,K1)/e(C1,K0)

and recover the message as

m ←C2 ·e(g0, MSK)−1 ∈GT .

Correctness.

Fix x := (x1, . . . , xn) ∈ {0,1}n , observe that

e(C0,K1)/e(C1,K0)

= e(g0, MSK ·h2−x1 · · ·h2n−xn ) ·e(g2−x1 · · ·g2n−xn ,h0)−1

= e(g0, MSK) ·
(
e(g0,h2−x1 ) · · ·e(g0,h2n−xn )

)
·
(
e(g2−x1 ,h0) · · ·e(g2n−xn ,h0)

)−1

= e(g0, MSK)

where the last equality relies on associative, namely, e(g0,h2i−xi ) = e(g2i−xi ,h0). In addition, by projective,
we have g ′

T = e(g0, MSK). Correctness follows readily.

4.2 Proof of Security

We prove the following theorem:

Theorem 4.1. Under the left subgroup and nested-hiding indistinguishability (described in Section 3) and
the additional requirement that ord(H) is prime, our IBE scheme in Section 4.1 is fully secure (in the sense
of Definition 2.1). More precisely, for any adversary A that makes at most q key queries against the IBE
scheme, there exist adversaries B1,B2 such that:

AdvIBE
A (λ) ≤AdvLS

B1
(λ)+2n ·AdvNS

B2
(λ, q)+2−Ω(λ)

and

max{Time(B1),Time(B2)} ≈Time(A)+q ·poly(λ,n),

where poly(λ,n) is independent of Time(A).

Remark 4.1. In our instantiations of nested dual system groups, the quantityAdvNS
B2

(λ, q) will be related to
the advantage function corresponding to some static assumption, with a constant overhead independent
of q. Putting the two together, this means that AdvIBE

A (λ) is independent of q, as stated in Theorem 1.1.

The proof follows via a series of games, summarized in Figure 12. To describe the games, we must first
define semi-functional keys and ciphertexts. Following [51, 148], we first define two auxiliary algorithms,
and define the semi-functional distributions via these auxiliary algorithms.

4.2.1 Auxiliary algorithms.

We consider the following algorithms:
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Ênc(PP,x,m; MSK′,t): On input x := (x1, . . . , xn) ∈ {0,1}n , m ∈ GT , MSK′ ∈ H, and t := (T0,T1, . . . ,T2n) ∈
G2n+1, output

CTx :=
(

T0,
n∏

k=1
T2k−xk , e(T0, MSK′) ·m

)
.

áKeyGen(PP, MSK′,y;t): On input MSK′ ∈ H, y := (y1, . . . , yn) ∈ {0,1}n , and t := (T0,T1, . . . ,T2n) ∈ H2n+1,
output

SKy :=
(

T0, MSK′ ·
n∏

k=1
T2k−yk

)
.

4.2.2 Auxiliary distributions.

For i = 0,1, . . . ,n, we pick a random function Ri : {0,1}i →〈h∗〉 (we use {0,1}0 to denote the singleton set
containing just the empty string ε). More concretely, given (PP,h∗), we sample the function Ri by first
choosing a random function R ′

i : {0,1}i → Zord(H) (via lazy sampling), and define Ri (x) := (h∗)R ′
i (x) for all

x ∈ {0,1}i .

Pseudo-normal ciphertext.

Ênc(PP,x,m; MSK, g · ĝ ),

where g ← SampG(PP) and ĝ ← áSampG(PP, SP) ; we can also write this distribution more explicitly as(
g0 · ĝ0,

n∏
k=1

(g2k−xk · ĝ2k−xk ), e(g0 · ĝ0, MSK) ·m
)
,

where (g0, g1, . . . , g2n) ← SampG(PP) and (ĝ0, ĝ1, . . . , ĝ2n) ← áSampG(PP, SP).

Semi-functional ciphertext type i (for i = 0,1, . . . ,n).

Ênc(PP,x,m; MSK ·Ri (x|i ) ,g · ĝ),

where g ← SampG(PP) and ĝ ← áSampG(PP, SP) and x|i denotes the i -bit prefix of x; we can also write this
distribution more explicitly as(

g0 · ĝ0,
n∏

k=1
(g2k−xk · ĝ2k−xk ), e(g0 · ĝ0, MSK ·Ri (x|i )) ·m

)
,

where (g0, g1, . . . , g2n) ← SampG(PP) and (ĝ0, ĝ1, . . . , ĝ2n) ← áSampG(PP, SP).

Semi-functional secret key type i (for i = 0,1, . . . ,n).

áKeyGen(PP, MSK ·Ri (y|i ) ,y;h),
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Game Ciphertext CTx∗ Secret Key SKy

0 Enc(MPK,x∗,mβ) KeyGen(MPK, MSK,y)

(g0,
∏

g2k−xk
,e(g0, MSK) ·mβ) (h0, MSK ·∏h2k−yk

)

1 Ênc(PP,x∗,mβ; MSK, g · ĝ ) áKeyGen(PP, MSK,y;h)

(g0 ĝ0,
∏

(g2k−xk
ĝ2k−xk

),e(g0 ĝ0, MSK) ·mβ) (—,—)

2,i Ênc(PP,x∗,mβ; MSK ·Ri (x∗|i ) ,g · ĝ) áKeyGen(PP, MSK ·Ri (y|i ) ,y;h)

(—,—,e(g0 ĝ0, MSK ·Ri (x∗|i )) ·mβ) (—, MSK ·Ri (y|i ) ·∏h2k−yk
)

3 Ênc(PP,x∗, random ; MSK ·Rn(x∗),g · ĝ) áKeyGen(PP, MSK ·Rn(y),y;h)

(—,—,e(g0 ĝ0, MSK ·Rn(x∗)) ·random) (—, MSK ·Rn(y) ·∏h2k−yk
)

Figure 12: Sequence of games, where we drew a box to highlight the differences between each game and
the preceding one, a dash (—) means the same as in the previous game. Recall that Ri : {0,1}i → 〈h∗〉 is
a random function. Here, the product Π denotes Πn

k=1. We transition from Game0 to Game1 and from
Game2,i−1 to Game2,i using a computational argument via left subgroup and nested-hiding respectively;
for the remaining transitions, we use a statistical argument via orthogonality and non-degeneracy.

where a fresh h ← SampH(PP) is chosen for each secret key; we can also write this distribution more
explicitly as (

h0, MSK ·Ri (x|i ) ·
n∏

k=1
h2k−yk

)
where (h0,h1, . . . ,h2n) ← SampH(PP).

Remark 4.2 (decryption capabilities). As noted in the introduction, decryption capabilities remain the
same through the hybrid games. Observe that a type i secret key for x∗ can decrypt a type i ciphertext for
x∗ since they share Ri (x∗|i ). In addition, a type i secret key for x∗ can decrypt a normal ciphertext for x∗

because e(g0,Ri (x∗|i )) = 1, which follows readily from Ri (x∗|i ) ∈ 〈h∗〉 and e(g0,h∗) = 1 (see Remark 3.1).

Game sequence.

We present a series of games. We write Advxx(λ) to denote the advantage of A in Gamexx.

• Game0: is the real security game (c.f. Section 2).

• Game1: is the same as Game0 except that the challenge ciphertext is pseudo-normal.

• Game2,i for i from 0 to n, Game2,i is the same as Game1 except that the challenge ciphertext and
all secret keys are of type i .

• Game3: is the same as Game2,n , except that the challenge ciphertext is a semi-functional encryp-
tion of a random message in GT .

InGame3, the view of the adversary is statistically independent of the challenge bitβ. Hence,Adv3(λ) = 0.
We complete the proof by establishing the following sequence of lemmas.
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4.3 Normal to Pseudo-Normal to Type 0

Lemma 4.2 (Game0 to Game1). For any adversary A that makes at most q key queries, there exists an
adversary B1 such that:

|Adv0(λ)−Adv1(λ)| ≤AdvLS
B1

(λ),

and Time(B1) ≈Time(A)+q ·poly(λ,n) where poly(λ,n) is independent of Time(A).

Proof. The adversary B1 gets as input

(PP,t) ,

where t is either g or g · ĝ and

g ← SampG(PP), ĝ ← áSampG(PP, SP),

and proceeds as follows:

Setup. Pick MSK ←R H and output

MPK := (
PP, µ(MSK)

)
.

Key Queries. On input the j ’th secret key query y, output

SKy ← áKeyGen(PP, MSK,y;SampH(PP)).

Ciphertext. Upon receiving a challenge identity x∗ and two equal length messages m0,m1, pick β ←R

{0,1} and output

CTx∗ ← Ênc(PP,x∗,mβ; MSK,t).

Guess. When A halts with output β′, B1 outputs 1 if β′ =β and 0 otherwise.

Observe that when t = g, CTx∗ is properly distributed as Enc(MPK,x∗,mβ) from projective, the output is
identical to that in Game0; and when t = g · ĝ, the output is identical to that in Game1. We may therefore
conclude that: |Adv0(λ)−Adv1(λ)| ≤AdvLS

B1
(λ).

Lemma 4.3 (Game1 to Game2,0). For any adversary A,

Adv1(λ) =Adv2,0(λ)

Proof. Observe that MSK and MSK ·R0(ε) (where MSK ←R H) are identically distributed, so we may replace
MSK in Game1 by MSK ·R0(ε). The resulting distribution is identically distributed to that in Game2,0 except
we use µ(MSK ·R0(ε)) instead of µ(MSK) in MPK. Now, by orthogonality, these two quantities are in fact
equal.
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4.4 Type i −1 to Type i

We begin with an informal overview of our proof strategy. For simplicity, suppose the adversary only
requests secret keys for two identities y0 and y1 that differ only in the i ’th bit, that is,

y0 = (y1, . . . , yi−1, 0 , yi+1, . . . , yn) and y1 = (y1, . . . , yi−1, 1 , yi+1, . . . , yn)

Recall that Type i −1 secret keys for y0 and y1 are of the form:

SKy0 =
(

h0, MSK · Ri−1(y1, . . . , yi−1) ·h2−y1 · · · h2i · · ·h2n−yn

)
and

SKy1 =
(

h0, MSK · Ri−1(y1, . . . , yi−1) ·h2−y1 · · · h2i−1 · · ·h2n−yn

)
whereas Type i secret keys for y0 and y1 are of the form:

SKy0 =
(

h0, MSK · Ri (y1, . . . , yi−1,0) ·h2−y1 · · · h2i · · ·h2n−yn

)
and

SKy1 =
(

h0, MSK · Ri (y1, . . . , yi−1,1) ·h2−y1 · · · h2i−1 · · ·h2n−yn

)
In order to show that Type i −1 and Type i secret keys for y0 and y1 are indistinguishable, it suffices to
show that

(Ri−1(y1, . . . , yi−1) ·h2i ,Ri−1(y1, . . . , yi−1) ·h2i−1) and

(Ri (y1, . . . , yi−1,0) ·h2i ,Ri (y1, . . . , yi−1,1) ·h2i−1)

are computationally indistinguishable (*).

Now, suppose for simplicity that the i ’th bit of the identity x∗ for challenge ciphertext is 1. Then,
nested-hiding indistinguishability with index 2i tells us that

h2i and h2i · (h∗)γ

are computationally indistinguishable, where γ←R Z|H|. Moreover, this holds even if the distinguisher
is given ĝ−2i , which we will need to simulate the semi-functional ciphertext for x∗. (On the other hand,
given only ĝ−2i , we cannot simulate semi-functional ciphertext for identities whose i ’th bit is 0.) This
means that

(Ri−1(y1, . . . , yi−1) ·h2i ,Ri−1(y1, . . . , yi−1) ·h2i−1) and

(Ri−1(y1, . . . , yi−1) ·h2i · (h∗)γ,Ri−1(y1, . . . , yi−1) ·h2i−1)

are computationally indistinguishable, even given the semi-functional ciphertext for x∗.

To achieve (*), we can then implicitly set:

Ri (y1, . . . , yi−1,0) := Ri−1(y1, . . . , yi−1) · (h∗)γ and

Ri (y1, . . . , yi−1,1) := Ri−1(y1, . . . , yi−1)

This corresponds to Case 2 and Case 1 below respectively.

More generally, we guess at random the i ’th bit of x∗ to be bi and use nested-hiding indistinguisha-
bility with index 2i − bi . In addition, we need to handle q keys and not just two keys, along with an
additional complication arising from the fact that multiple queries may share the same i -bit prefix (see
Case 3 below).
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Lemma 4.4 (Game2,i−1 to Game2,i ). For i = 1, . . . ,n, for any adversary A that makes at most q key queries,
there exists an adversary B2 such that:

|Adv2,i−1(λ)−Adv2,i (λ)| ≤ 2AdvNS
B2

(λ, q),

and Time(B2) ≈Time(A)+q ·poly(λ,n) where poly(λ,n) is independent of Time(A).

Proof. On input i ∈ [n], B2 picks a random bit bi ←R {0,1} (that is, it guesses the i ’th bit of the challenge
identity x∗) and requests nested-hiding instantiation for index 2i −bi . The adversary B2 gets as input(

PP,h∗, ĝ−(2i−bi ),t1, . . . ,tq

)
,

where (t1, . . . ,tq ) is either (h1, . . . ,hq ) or (h′1, . . . ,h′q ) and

h j := (h0, j ,h1, j , . . . ,h2n, j ) ← SampH(PP),

h′ j := (h0, j ,h1, j , . . . ,h2i−bi , j · (h∗)γ j , . . . ,h2n, j ),

and proceeds as follows:

Setup. Pick MSK ←R H, and output

MPK := (
PP, µ(MSK)

)
.

Programming Ri−1,Ri . Pick a random function R̃i−1 : {0,1}i−1 → 〈h∗〉 (which we use to program
Ri−1,Ri ). Recall that we can sample a uniformly random element in 〈h∗〉 by raising h∗ to a
uniformly random exponent in Zord(H). For all prefixes x′ ∈ {0,1}i−1, we implicitly set

Ri (x′∥bi ) := R̃i−1(x′) and Ri−1(x′) := R̃i−1(x′).

(We set Ri (x′∥bi ) later.) This means that for any x = (x1, . . . , xn) such that xi = bi , we have:

Ri (x|i ) = Ri−1(x|i−1) = R̃i−1(x|i−1).

Key Queries. On input the j ’th secret key query y = (y|i−1, yi , . . . , yn), we consider three cases:

• Case 1: yi = bi . Here, B2 can compute

Ri (y|i ) = Ri−1(y|i−1) = R̃i−1(y|i−1)

and simply outputs áKeyGen(PP, MSK · R̃i−1(y|i−1),y; h̃ j ),

where h̃ j ← SampH(PP).

• Case 2: yi = bi and Ri (y|i ) has not been previously set. Here, we implicitly set

Ri (y|i−1∥bi ) := R̃i−1(y|i−1) · (h∗)γ j ,

where γ j is as defined in the nested-hiding instantiation. Observe that this is the correct
distribution since Ri (y|i−1∥bi ) and Ri (y|i−1∥bi ) are two independently random values. Then
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B2 outputs: áKeyGen(PP, MSK · R̃i−1(y|i−1),y;t j ).

• Case 3: yi = bi and Ri (y|i ) has been previously set. Let j ′ be the index of key query in which
we set Ri (y|i ), recall that

Ri (y|i−1∥bi ) := R̃i−1(y|i−1) · (h∗)γ j ′ .

Then B2 outputs: áKeyGen(PP, MSK · R̃i−1(y|i−1),y;t j ′ · h̃ j ).

where h̃ j ← SampH(PP). Here, we rely on the H-subgroup property to re-randomize t j ′ .

Ciphertext. Upon receiving a challenge identity x∗ := (x∗
1 , . . . , x∗

n ) and two equal length messages m0,m1

from A, output a random bit and halt if x∗
i ̸= bi . Observe that up to the point when A submits

x∗, its view is statistically independent of bi . Therefore, the probability that we halt is exactly 1/2.
Suppose that we do not halt, which means we have x∗

i = bi . Hence, B2 knows

Ri (x∗|i ) = Ri−1(x∗|i−1) = R̃i−1(x∗|i−1).

Then, B2 picks β←R {0,1} and outputs the semi-functional challenge ciphertext as:

Ênc(PP,x∗,mβ; MSK · R̃i−1(x∗|i−1),g · ĝ),

Here, B2 picks g ← SampG(PP), whereas g is as defined in the nested-hiding instantiation. Observe
that B2 can compute the output of Ênc using just ĝ−(2i−bi ) since since x∗

i = bi .

Guess. When A halts with output β′, B2 outputs 1 if β′ =β and 0 otherwise.

Suppose x∗
i = bi . Then, when (t1, . . . ,tq ) = (h1, . . . ,hq ), the output is identical to that in Game2,i−1; and

when (t1, . . . ,tq ) = (h′1, . . . ,h′q ), the output is identical to that in Game2,i . Hence,

AdvNS
B2

(λ, q)

=
∣∣∣Pr[x∗

i ̸= bi ] ·0+Pr[x∗
i = bi ]

·(Pr[A outputs β′ =β in Game2,i−1]−Pr[A outputs β′ =β in Game2,i ])
∣∣∣

= 1/2 ·
∣∣∣Pr[A outputs β′ =β in Game2,i−1]−Pr[A outputs β′ =β in Game2,i ]

∣∣∣
≥ 1/2 · |Adv2,i−1(λ)−Adv2,i (λ)|.

We may therefore conclude that |Adv2,i−1(λ)−Adv2,i (λ)| ≤ 2AdvNS
B2

(λ, q).

4.5 Final Transition

Lemma 4.5 (Game2,n to Game3). For any adversary A:

|Adv2,n(λ)−Adv3(λ)| ≤ 2−Ω(λ).
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Proof. Observe that the challenge ciphertext in Game2,n is given by:

Ênc(PP,x∗,mβ; MSK ·Rn(x∗),g · ĝ) = (C0,C1,C ′
2 ·mβ),

where (C0,C1) depend only on g · ĝ = (g0 · ĝ0, . . .), and C ′
2 is given by:

C ′
2 = e(g0 · ĝ0, MSK ·Rn(x∗)) = e(g0 · ĝ0, MSK) · e(ĝ0,Rn(x∗)) ,

where in the last equality, we use the fact that e(g0,Rn(x∗)) = 1 (see Remarks 3.1 and 4.2). In addition,
MPK and all of the secret key queries reveal no information about Rn(x∗). Then, by non-degeneracy, with
probability 1−2−Ω(λ) over ĝ0, we have e(ĝ0,Rn(x∗)) is uniformly distributed over GT . This implies that
the challenge ciphertext is identically distributed to a semi-functional encryption of a random message
in GT , as in Game3. We may then conclude that: |Adv2,n(λ)−Adv3(λ)| ≤ 2−Ω(λ).

Remark 4.3. In our composite-order instantiation, we only have the weaker guarantee that e(ĝ0,Rn(x∗))
has at least 2λ bits of min-entropy, instead of being uniform over GT . We will modify the IBE scheme as
follows: the message space is now {0,1}λ, and we replace the term g ′

T ·m in the ciphertext with:

H(g ′
T )⊕m,

where H : GT → {0,1}λ is a pairwise independent hash function. By the left-over hash lemma, we still have
|Adv2,n(λ)−Adv3(λ)| ≤ 2−Ω(λ).

5 Concrete (almost) tight IBE scheme from d-LIN in prime-order groups

In this section, we provide a self-contained description of the (almost) tight IBE scheme in [49] under
d-LIN assumption in prime-order bilinear groups (G1,G2,GT ,e). Recall that πL : Z2d×2d

p → Z2d×d
p is the

projection map that maps a 2d ×2d matrix to the left d columns.

Setup(1λ,1n): On input (1λ,1n), sample

B,B∗,R ←R GL2d (Zp ), A1, . . . ,A2n ←R Z
(2d)×(2d)
p , k ←R Z

2d
p

such that B⊤B∗ = I, and output the master public and secret key pair

MPK :=
(

gπL (B)
1 , gπL (BA1)

1 , . . . , gπL (BA2n )
1 ;e(g1, g2)k⊤πL (B)

)
∈ (G2d×d

1 )2n+1 ×Gd
T ,

MSK :=
(

g k
2 , g B∗R

2 , g
B∗A⊤

1 R
2 , . . . , g

B∗A⊤
2n R

2

)
∈G2d

2 × (G2d×2d
2 )2n+1.

Enc(MPK,x,m): On input an identity vector x := (x1, . . . , xn) ∈Zn
p and m ∈GT , pick s ←R Z

d
p and output

CTx :=
 C0 := gπL (B)s

1 , C1 := g
πL (B(A2−x1+···+A2n−xn ))s
1

C2 := e(g1, g2)k⊤πL (B)s ·m

 ∈ (G2d
1 )2 ×GT .
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KeyGen(MPK, MSK,y): On input an identity vector y := (y1, . . . , yn) ∈Zn
p , pick r ←R Z

2d
p and output

SKy :=
(

K0 := g B∗Rr
2 , K1 := g

k+B∗(A2−y1+···+A2n−yn )⊤Rr
2

)
∈ (G2d

2 )2.

Dec(MPK, SKy, CTx): If x = y, compute

e(g1, g2)k⊤πL (B)s ← e(C0,K1)/e(C1,K0),

and recover the message as

m ←C2 ·e(g1, g2)−k⊤πL (B)s ∈GT .

6 Dual System Groups

6.0.1 Syntax.

Dual system groups consist of six randomized algorithms given by (SampP, SampGT,SampG,SampH)
along with (áSampG, áSampH):

SampP(1λ,1n): On input (1λ,1n), output public and secret parameters (PP, SP), where:

• PP contains a triple of groups (G,H,GT ) and a non-degenerate bilinear map e : G×H→ GT , a
linear map µ defined on H, along with some additional parameters used by SampG,SampH;

• given PP, we know ord(H) (i.e. the order of the group, which is independent of n) and can
uniformly sample from H;

• SP contains h∗ ∈H (where h∗ ̸= 1), along with some additional parameters used by áSampG;

SampGT : Im(µ) →GT.

SampG(PP): Output g ∈Gn+1.

SampH(PP): Output h ∈Hn+1.

áSampG(PP, SP): Output ĝ ∈Gn+1.

áSampH(PP, SP): Output ĥ ∈Hn+1.

The first four algorithms are used in the actual scheme, whereas the last two algorithms are used only in
the proof of security. We define SampG0 to denote the first group element in the output of SampG, and
we define áSampG0, áSampH0 analogously.

6.0.2 Correctness.

The requirements for correctness are as follows:
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(projective.) For all h ∈H and all coin tosses s, we have SampGT(µ(h); s) = e(SampG0(PP; s),h).

(associative.) For all (g0, g1, . . . , gn) ← SampG(PP) and (h0,h1, . . . ,hn) ← SampH(PP) and for all i =
1, . . . ,n, we have e(g0,hi ) = e(gi ,h0).

(H-subgroup.) The output distribution of SampH(PP) is the uniform distribution over a subgroup of
Hn+1.

6.0.3 Security.

The requirements for security are as follows:

(orthogonality.) µ(h∗) = 1.

(non-degeneracy.) For all ĥ0 ← áSampH0(PP, SP), h∗ lies in the group generated by ĥ0. For all ĝ0 ←áSampG0(PP, SP), we have e(ĝ0,h∗)α is identically distributed to the uniform distribution over GT ,
where α←R Zord(H).

(left subgroup indistinguishability.) For any adversary A, we define the advantage function:

AdvLS
A (λ) := |Pr[A(PP, g ) = 1 ]−Pr[A(PP, g · ĝ ) = 1 ]|

where

(PP, SP) ← SampP(1λ,1n);

g ← SampG(PP); ĝ ← áSampG(PP, SP).

(right subgroup indistinguishability.) For any adversary A, we define the advantage function:

AdvRS
A (λ) := |Pr[A(PP,h∗,g · ĝ, h ) = 1 ]−Pr[A(PP,h∗,g · ĝ, h · ĥ ) = 1 ]|

where

(PP, SP) ← SampP(1λ,1n);

g ← SampG(PP); ĝ ← áSampG(PP, SP);

h ← SampH(PP); ĥ ← áSampH(PP, SP).

(parameter-hiding.) The following distributions are identically distributed

{PP,h∗, ĝ, ĥ } and {PP,h∗, ĝ · ĝ′, ĥ · ĥ′ }
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where

(PP, SP) ← SampP(1λ,1n);

ĝ = (ĝ0, . . .) ← áSampG(PP, SP);

ĥ = (ĥ0, . . .) ← áSampH(PP, SP);

γ1, . . . ,γn ←R Zord(H);

ĝ′ := (1, ĝγ1

0 , . . . , ĝγn

0 ) ∈Gn+1;

ĥ′ := (1, ĥγ1

0 , . . . , ĥγn

0 ) ∈Hn+1.

7 Compact HIBE scheme from d-LIN in prime-order groups

In this section, we provide a self-contained description of our compact HIBE scheme (c.f. [51]) under
d-LIN assumption in prime-order bilinear groups (G1,G2,GT ,e). Recall that πL : Z(d+1)×(d+1)

p →Z
(d+1)×d
p

is the projection map that maps a (d +1)× (d +1) matrix to the left d columns.

Setup(1λ,1n): On input (1λ,1n), sample

B,B∗,R ←R GLd+1(Zp ), A1, . . . ,An+1 ←R Z
(d+1)×(d+1)
p , k ←R Z

d+1
p

such that B⊤B∗ = I and R is a diagonal matrix whose bottom-right entry is 1, and output the master
public and secret key pair

MPK :=
 gπL (B)

1 , gπL (BA1)
1 , . . . , gπL (BAn+1)

1

gπL (B∗R)
2 , g

πL (B∗A⊤
1 R)

2 , . . . , g
πL (B∗A⊤

n+1R)
2

;e(g1, g2)k⊤πL (B)


∈ (G (d+1)×d

1 )n+2 × (G (d+1)×d
2 )n+2 ×Gd

T

and

MSK := g k
2 ∈Gd+1

2 .

Enc(MPK,x,m): On input an identity vector x := (x1, . . . , xℓ) ∈Zℓ
p and m ∈GT , pick s ←R Z

d
p and output

CTx :=
(

C0 := gπL (B)s
1 , C1 := gπL (B(An+1+x1A1+···+xℓAℓ))s

1 , C2 := e(g1, g2)k⊤πL (B)s ·m
)

∈Gd+1
1 ×Gd+1

1 ×GT .

KeyGen(MPK, MSK,y): On input an identity vector y := (y1, . . . , yℓ) ∈Zℓ
p , pick r ←R Z

d
p and output

SKy :=
 K0 := gπL (B∗R)r

2 , K1 := g k+πL (B∗(An+1+y1A1+···+yℓAℓ)⊤R)r
2

Kℓ+1 := g
πL (B∗A⊤

ℓ+1R)r
2 , . . . , Kn := g

πL (B∗A⊤
n R)r

2

 ∈ (Gd+1
2 )n−ℓ+2.

Dec(MPK, SKy, CTx): If y is a prefix of x, run

SKx := (K0,K1, . . .) ←KeyDel(MPK, SKy,x).
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Compute

e(g1, g2)k⊤πL (B)s ← e(C0,K1)/e(C1,K0),

and recover the message as

m ←C2 ·e(g1, g2)−k⊤πL (B)s ∈GT .

KeyDel(MPK, SKy,y′): On input a secret key SKy := (K0,K1,Kℓ+1, . . . ,Kn) and an identity vector y′ :=
(y1, . . . , yℓ′) ∈Zℓ′

p , first compute

S̃Ky′ := (
K0, K1 ·K yℓ+1

ℓ+1 · · ·K yℓ′
ℓ′ , Kℓ′+1, . . . , Kn

)
.

Then, pick r′ ←R Z
d
p and compute

SK′ :=
(

gπL (B∗R)r′
2 , g

πL (B∗(An+1+y1A1+···+yℓ′Aℓ′ )⊤R)r′
2 , g

πL (B∗A⊤
ℓ′+1

R)r′

2 , . . . , g
πL (B∗A⊤

n R)r′

2

)
.

Finally, output

SKy′ := S̃Ky′ · SK′

where · denotes entry-wise multiplication.

108



Part VI

Tightly CCA-Secure Encryption without Pairings

Romain Gay and Dennis Hofheinz and Eike Kiltz and Hoeteck Wee
EUROCRYPT 2016, BEST PAPER AWARD

Abstract. We present the first CCA-secure public-key encryption scheme based on DDH where the
security loss is independent of the number of challenge ciphertexts and the number of decryption
queries. Our construction extends also to the standard k-Lin assumption in pairing-free groups, whereas
all prior constructions starting with Hofheinz and Jager (Crypto ’12) rely on the use of pairings. Moreover,
our construction improves upon the concrete efficiency of existing schemes, reducing the ciphertext
overhead by about half (to only 3 group elements under DDH), in addition to eliminating the use of
pairings.

We also show how to use our techniques in the NIZK setting. Specifically, we construct the first tightly
simulation-sound designated-verifier NIZK for linear languages without pairings. Using pairings, we can
turn our construction into a highly optimized publicly verifiable NIZK with tight simulation-soundness.

1 Introduction

The most basic security guarantee we require of a public key encryption scheme is that of semantic
security against chosen-plaintext attacks (CPA) [80]: it is infeasible to learn anything about the plaintext
from the ciphertext. On the other hand, there is a general consensus within the cryptographic research
community that in virtually every practical application, we require semantic security against adaptive
chosen-ciphertext attacks (CCA) [134, 61], wherein an adversary is given access to decryptions of
ciphertexts of her choice.

In this work, we focus on the issue of security reduction and security loss in the construction of CPA
and CCA-secure public-key encryption from the DDH assumption. Suppose we have such a scheme
along with a security reduction showing that attacking the scheme in time t with success probability
ϵ implies breaking the DDH assumption in time roughly t with success probability ϵ/L; we refer to L
as the security loss. In general, L would depend on the security parameter λ as well as the number of
challenge ciphertexts Qenc and the number decryption queries Qdec, and we say that we have a tight
security reduction if L depends only on the security parameter and is independent of both Qenc and Qdec.
Note that for typical settings of parameters (e.g., λ = 80 and Qenc,Qdec ≈ 220, or even Qenc,Qdec ≈ 230 in
truly large settings), λ is much smaller than Qenc and Qdec.

In the simpler setting of CPA-secure encryption, the ElGamal encryption scheme already has a tight
security reduction to the DDH assumption [124, 22], thanks to random self-reducibility of DDH with
a tight security reduction. In the case of CCA-secure encryption, the best result is still the seminal
Cramer-Shoup encryption scheme [59], which achieves security loss Qenc.9 This raises the following
open problem:

9We ignore contributions to the security loss that depend only on a statistical security parameter.
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Does there exist a CCA-secure encryption scheme with a tight security reduction to the DDH
assumption?

Hofheinz and Jager [96] gave an affirmative answer to this problem under stronger (and pairing-related)
assumptions, notably the 2-Lin assumptions in bilinear groups, albeit with large ciphertexts and secret
keys; a series of follow-up works [117, 119, 18, 83] leveraged techniques introduced in the context of
tightly-secure IBE [48, 25, 99] to reduce the size of ciphertext and secret keys to a relatively small constant.
However, all of these works rely crucially on the use of pairings, and seem to shed little insight on
constructions under the standard DDH assumption; in fact, a pessimist may interpret the recent works
as strong indication that the use of pairings is likely to be necessary for tightly CCA-secure encryption.

We may then restate the open problem as eliminating the use of pairings in these prior CCA-
secure encryption schemes while still preserving a tight security reduction. From a theoretical stand-
point, this is important because an affirmative answer would yield tightly CCA-secure encryption under
qualitatively weaker assumptions, and in addition, shed insight into the broader question of whether
tight security comes at the cost of qualitative stronger assumptions.

Eliminating the use of pairings is also important in practice as it allows us to instantiate the
underlying assumption over a much larger class of groups that admit more efficient group operations
and more compact representations, and also avoid the use of expensive pairing operations. Similarly,
tight reductions matter in practice because as L increases, we should increase the size of the underlying
groups in order to compensate for the security loss, which in turn increases the running time of the
implementation. Note that the impact on performance is quite substantial, as exponentiation in a r -bit
group takes time roughly O(r 3).

1.1 Our Results

We settle the main open problem affirmatively: we construct a tightly CCA-secure encryption scheme
from the DDH assumption without pairings. Moreover, our construction improves upon the concrete
efficiency of existing schemes, reducing the ciphertext overhead by about half, in addition to eliminating
the use of pairings. We refer to Figure 14 for a comparison with prior works.

Overview of our construction. Fix an additively written group G of order q . We rely on implicit
representation notation [62] for group elements: for a fixed generator P of G and for a matrix M ∈ Zn×t

q ,
we define [M] := MP ∈ Gn×t where multiplication is done component-wise. We rely on the Dk -MDDH

Assumption [62], which stipulates that given [M] drawn from a matrix distribution Dk over Z
(k+1)×k
q ,

[Mx] is computationally indistinguishable from a uniform vector in Gk ; this is a generalization of the
k-Lin Assumption.

We outline the construction under the k-Lin assumption over G, of which the DDH assumption is a
special case corresponding to k = 1.

In this overview, we will consider a weaker notion of security, namely tag-based KEM security against
plaintext check attacks (PCA) [126]. In the PCA security experiment, the adversary gets no decryption
oracle (as with CCA security), but a PCA oracle that takes as input a tag and a ciphertext/plaintext pair
and checks whether the ciphertext decrypts to the plaintext. Furthermore, we restrict the adversary to
only query the PCA oracle on tags different from those used in the challenge ciphertexts. PCA security
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is strictly weaker than the CCA security we actually strive for, but allows us to present our solution in a
clean and simple way. (We show how to obtain full CCA security separately.)

The starting point of our construction is the Cramer-Shoup KEM. The public key is given by pk :=
([M], [M⊤k0], [M⊤k1]) for M ←R Z

(k+1)×k
q . Here, M corresponds to the matrix used in the k-Lin assumption.

On input pk and a tag τ, the encryption algorithm outputs the ciphertext/plaintext pair

([y], [z]) = ([Mx], [x⊤M⊤kτ]), (4)

where kτ = k0 +τk1 and x ←R Zk
q . Decryption relies on the fact that y⊤kτ = x⊤M⊤kτ. The KEM is PCA-

secure under k-Lin, with a security loss that depends on the number of ciphertexts Q (via a hybrid
argument) but independent of the number of PCA queries [59, 3].

Following the “randomized Naor-Reingold” paradigm introduced by Chen and Wee on tightly secure
IBE [48], our starting point is (4), where we replace kτ = k0 +τk1 with

kτ =
λ∑

j=1
k j ,τ j

and pk := ([M], [M⊤k j ,b] j=1,...,λ,b=0,1), where (τ1, . . . ,τλ) denotes the binary representation of the tag τ ∈
{0,1}λ.

Following [48], we want to analyze this construction by a sequence of games in which we first replace
[y] in the challenge ciphertexts by uniformly random group elements via random self-reducibility of
MDDH (k-Lin), and then incrementally replace kτ in both the challenge ciphertexts and in the PCA oracle
by kτ+m⊥RF(τ), where RF is a truly random function and m⊥ is a random element from the kernel of
M, i.e., M⊤m⊥ = 0. Concretely, in Game i , we will replace kτ with kτ+m⊥RFi (τ) where RFi is a random
function on {0,1}i applied to the i -bit prefix of τ. We proceed to outline the two main ideas needed to
carry out this transition. Looking ahead, note that once we reach Game λ, we would have replaced kτ

with kτ+m⊥RF(τ), upon which security follows from a straight-forward information-theoretic argument
(and the fact that ciphertexts and decryption queries carry pairwise different τ).

First idea. First, we show how to transition from Game i to Game i +1, under the restriction that the
adversary is only allowed to query the encryption oracle on tags whose i +1-st bit is 0; we show how to
remove this unreasonable restriction later. Here, we rely on an information-theoretic argument similar
to that of Cramer and Shoup to increase the entropy from RFi to RFi+1. This is in contrast to prior works
which rely on a computational argument; note that the latter requires encoding secret keys as group
elements and thus a pairing to carry out decryption.

More precisely, we pick a random function RF′
i on {0,1}i , and implicitly define RFi+1 as follows:

RFi+1(τ) =
{
RFi (τ) if τi+1 = 0

RF′
i (τ) if τi+1 = 1

Observe all of the challenge ciphertexts leak no information about RF′
i or ki+1,1 since they all correspond

to tags whose i +1-st bit is 0. To handle a PCA query (τ, [y], [z]), we proceed via a case analysis:

• if τi+1 = 0, then kτ +RFi+1(τ) = kτ +RFi (τ) and the PCA oracle returns the same value in both
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Games i and i +1.

• if τi+1 = 1 and y lies in the span of M, we have

y⊤m⊥ = 0 =⇒ y⊤(kτ+m⊥RFi (τ)) = y⊤(kτ+m⊥RFi+1(τ)),

and again the PCA oracle returns the same value in both Games i and i +1.

• if τi+1 = 1 and y lies outside the span of M, then y⊤ki+1,1 is uniformly random given M,M⊤ki+1,1.
(Here, we crucially use that the adversary does not query encryptions with τi+1 = 1, which ensures
that the challenge ciphertexts do not leak additional information about ki+1,1.) This means that
y⊤kτ is uniformly random from the adversary’s view-point, and therefore the PCA oracle will reject
with high probability in both Games i and i +1. (At this point, we crucially rely on the fact that the
PCA oracle only outputs a single check bit and not all of kτ+RF(τ).)

Via a hybrid argument, we may deduce that the distinguishing advantage between Games i and i +1 is
at most Q/q where Q is the number of PCA queries.

Second idea. Next, we remove the restriction on the encryption queries using an idea of Hofheinz, Koch
and Striecks [99] for tightly-secure IBE in the multi-ciphertext setting, and its instantiation in prime-
order groups [83]. The idea is to create two “independent copies” of (m⊥,RFi ); we use one to handle
encryption queries on tags whose i +1-st bit is 0, and the other to handle those whose i +1-st bit is 1. We
call these two copies (M∗

0 ,RF(0)
i ) and (M∗

1 ,RF(1)
i ), where M⊤M∗

0 = M⊤M∗
1 = 0.

Concretely, we replace M ←R Z
(k+1)×k
q with M ←R Z3k×k

q . We decompose Z3k
q into the span of the

respective matrices M,M0,M1, and we will also decompose the span of M⊥ ∈Z3k×2k
q into that of M∗

0 ,M∗
1 .

Similarly, we decompose M⊥RFi (τ) into M∗
0RF

(0)
i (τ)+M∗

1RF
(1)
i (τ). We then refine the prior transition

basis for Z3k
q

basis for span(M⊥)

M M0 M1

M∗
0 M∗

1

Figure 13: Solid lines mean orthogonal, that is: M⊤M∗
0 = M⊤

1M∗
0 = 0 = M⊤M∗

1 = M⊤
0M∗

1 .

from Games i to i +1 as follows:

• Game i .0 (= Game i ): pick y ←Z3k
q for ciphertexts, and replace kτ with kτ+M∗

0RF
(0)
i (τ)+M∗

1RF
(1)
i (τ);

• Game i .1: replace y ←R Z
3k
q with y ←R span(M,Mτi+1 );

• Game i .2: replace RF(0)
i (τ) with RF(0)

i+1(τ);

• Game i .3: replace RF(1)
i (τ) with RF(1)

i+1(τ);

• Game i .4 (= Game i +1): replace y ←R span(M,Mτi+1 ) with y ←R Z
3k
q .
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For the transition from Game i .0 to Game i .1, we rely on the fact that the uniform distributions over Z3k
q

and span(M,Mτi+1 ) encoded in the group are computationally indistinguishable, even given a random
basis for span(M⊥) (in the clear). This extends to the setting with multiple samples, with a tight reduction
to the Dk -MDDH Assumption independent of the number of samples.

For the transition from Game i .1 to i .2, we rely on an information-theoretic argument like the one
we just outlined, replacing span(M) with span(M,M1) and M⊥ with M∗

0 in the case analysis. In particular,
we will exploit the fact that if y lies outside span(M,M1), then y⊤ki+1,1 is uniformly random even given
M,Mki+1,1,M1,M1ki+1,1. The transition from Game i .2 to i .3 is completely analogous.

From PCA to CCA. Using standard techniques from [59, 110, 107, 32, 4], we could transform our basic
tag-based PCA-secure scheme into a “full-fledged” CCA-secure encryption scheme by adding another
hash proof system (or an authenticated symmetric encryption scheme) and a one-time signature
scheme. However, this would incur an additional overhead of several group elements in the ciphertext.
Instead, we show how to directly modify our tag-based PCA-secure scheme to obtain a more efficient
CCA-secure scheme with the minimal additional overhead of a single symmetric-key authenticated
encryption. In particular, the overall ciphertext overhead in our tightly CCA-secure encryption scheme
is merely one group element more than that for the best known non-tight schemes [110, 97].

To encrypt a message M in the CCA-secure encryption scheme, we will (i) pick a random y as in
the tag-based PCA scheme, (ii) derive a tag τ from y, (iii) encrypt M using a one-time authenticated
encryption under the KEM key [y⊤kτ]. The naive approach is to derive the tag τ by hashing [y] ∈ G3k , as
in [110]. However, this creates a circularity in Game i .1 where the distribution of [y] depends on the tag.
Instead, we will derive the tag τ by hashing [y] ∈Gk , where y ∈Zk

q are the top k entries of y ∈Z3k
q . We then

modify M0,M1 so that the top k rows of both matrices are zero, which avoids the circularity issue. In the
proof of security, we will also rely on the fact that for any y0,y1 ∈ Z3k

q , if y0 = y1 and y0 ∈ span(M), then
either y0 = y1 or y1 ∉ span(M). This allows us to deduce that if the adversary queries the CCA oracle on a
ciphertext which shares the same tag as some challenge ciphertext, then the CCA oracle will reject with
overwhelming probability.

Alternative view-point. Our construction can also be viewed as applying the BCHK IBE→PKE trans-
form [32] to the scheme from [99], and then writing the exponents of the secret keys in the clear,
thereby avoiding the pairing. This means that we can no longer apply a computational assumption
and the randomized Naor-Reingold argument to the secret key space. Indeed, we replace this with an
information-theoretic Cramer-Shoup-like argument as outlined above.

Prior approaches. Several approaches to construct tightly CCA-secure PKE schemes exist: first, the
schemes of [96, 5, 6, 118, 117, 119] construct a tightly secure NIZK scheme from a tightly secure signature
scheme, and then use the tightly secure NIZK in a CCA-secure PKE scheme following the Naor-Yung
double encryption paradigm [125, 61]. Since these approaches build on the public verifiability of the
used NIZK scheme (in order to faithfully simulate a decryption oracle), their reliance on a pairing seems
inherent.

Next, the works of [48, 25, 99, 18, 83] used a (Naor-Reingold-based) MAC instead of a signature
scheme to design tightly secure IBE schemes. Those IBE schemes can then be converted (using the
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Reference |pk| |ct|− |m| security loss assumption pairing

CS98 [59] O(1) 3 O(Q) DDH no
KD04, HK07 [110, 97] O(1) 2 O(Q) DDH no
C:HofJag12 [96] O(1) O(λ) O(1) 2-Lin yes
LPJY15 [117, 119] O(λ) 47 O(λ) 2-Lin yes
AHY15 [18] O(λ) 12 O(λ) 2-Lin yes
GCDCT15 [83] O(λ) 10 (resp. 6k +4) O(λ) SXDH (resp. k-Lin) yes
Ours §4 O(λ) 3 (resp. 3k) O(λ) DDH (resp. k-Lin) no

Figure 14: Comparison amongst CCA-secure encryption schemes, where Q is the number of ciphertexts, |pk| denotes the size (i.e the
number of groups elements, or exponent of group elements) of the public key, and |ct|− |m| denotes the ciphertext overhead, ignoring smaller
contributions from symmetric-key encryption. We omit [99] from this table since we only focus on prime-order groups here.

BCHK transformation [32]) into tightly CCA-secure PKE schemes. However, the derived PKE schemes
still rely on pairings, since the original IBE schemes do (and the BCHK does not remove the reliance on
pairings).

In contrast, our approach directly fuses a Naor-Reingold-like randomization argument with the
encryption process. We are able to do so since we substitute a computational randomization argument
(as used in the latter line of works) with an information-theoretic one, as described above. Hence, we
can apply that argument to exponents rather than group elements. This enables us to trade pairing
operations for exponentiations in our scheme.

Efficiency comparison with non-tightly secure schemes. We finally mention that our DDH-based
scheme compares favorably even with the most efficient (non-tightly) CCA-secure DDH-based encryp-
tion schemes [110, 97]. To make things concrete, assume λ= 80 and a setting with Qenc =Qdec = 230. The
best known reductions for the schemes of [110, 97] lose a factor of Qenc = 230, whereas our scheme loses
a factor of about 4λ≤ 29. Hence, the group size for [110, 97] should be at least 22·(80+30) = 2220 compared
to 22·(80+9) = 2178 in our case. Thus, the ciphertext overhead (ignoring the symmetric encryption part) in
our scheme is 3 ·178 = 534 bits, which is close to 2 ·220 = 440 bits with [110, 97].10

Perhaps even more interestingly, we can compare computational efficiency of encryption in this
scenario. For simplicitly, we only count exponentiations and assume a naive square-and-multiply-
based exponentiation with no further multi-exponentiation optimizations.11 Encryption in [110, 97]
takes about 3.5 exponentiations (where we count an exponentiation with a (λ+ log2(Qenc +Qdec))-bit
hash value12 as 0.5 exponentiations). In our scheme, we have about 4.67 exponentiations, where we
count the computation of [M⊤kτ] – which consists of 2λ multiplications – as 0.67 exponentiations.) Since
exponentiation (under our assumptions) takes time cubic in the bitlength, we get that encryption with
our scheme is actually about 29% less expensive than with [110, 97].

However, of course we should also note that public and secret key in our scheme are significantly
larger (e.g., 4λ+3 = 323 group elements in pk) than with [110, 97] (4 group elements in pk).

10In this calculation, we do not consider the symmetric authenticated encryption of the actual plaintext (and a corresponding
MAC value), which is the same with [110, 97] and our scheme.

11Here, optimizations would improve the schemes of [110, 97] and ours similarly, since the schemes are very similar.
12It is possible to prove the security of [110, 97] using a target-collision-resistant hash function, such that |τ| =λ. However, in

the multi-user setting, a hybrid argument is required, such that the output size of the hash function will have to be increased to
at least |τ| =λ+ log2(Qenc+Qdec).
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Extension: NIZK arguments. We also obtain tightly simulation-sound non-interactive zero-knowledge
(NIZK) arguments from our encryption scheme in a semi-generic way.

Let us start with any designated-verifier quasi-adaptive NIZK
(short: DVQANIZK) argument system Π for a given language. Recall that in a designated-verifier NIZK,
proofs can only be verified with a secret verification key, and soundness only holds against adversaries
who do not know that key. Furthermore, quasi-adaptivity means that the language has to be fixed at
setup time of the scheme. Let ΠPKE be the variant of Π in which proofs are encrypted using a CCA-
secure PKE scheme PKE. Public and secret key of PKE are of course made part of CRS and verification
key, respectively. Observe that ΠPKE enjoys simulation-soundness, assuming that simulated proofs are
simply encryptions of random plaintexts. Indeed, the CCA security of PKE guarantees that authentic
ΠPKE-proofs can be substituted with simulated ones, while being able to verify (using a decryption
oracle) a purported ΠPKE-proof generated by an adversary. Furthermore, if PKE is tightly secure, then
so is ΠPKE.

When using a hash proof system for Π and our encryption scheme for PKE, this immediately yields
a tightly simulation-sound DVQANIZK for linear languages (i.e., languages of the form {[Mx] | x ∈Zt

q } for
some matrix M ∈Zn×t

q with t < n) that does not require pairings. We stress that our DVQANIZK is tightly
secure in a setting with many simulated proofs and many adversarial verification queries.

Using the semi-generic transformation of [108], we can then derive a tightly simulation-sound
QANIZK proof system (with public verification), that however relies on pairings. We note that the
transformation of [108] only requires a DVQANIZK that is secure against a single adversarial verification
query, since the pairing enables the public verifiability of proofs. Hence, we can first optimize and trim
down our DVQANIZK (such that only a single adversarial verification query is supported), and then
apply the transformation. This yields a QANIZK with particularly compact proofs. See Figure 15 for a
comparison with relevant existing proof systems.

Reference type |crs| |π| sec. loss assumption pairing

CCS09 [41] NIZK O(1) 2n +6t +52 O(Qsim) 2-Lin yes
C:HofJag12 [96] NIZK O(1) ≫ 500 O(1) 2-Lin yes
LPJY14 [118] QANIZK O(n +λ) 20 O(Qsim) 2-Lin yes
KW15 [108] QANIZK O(kn) 2k +2 O(Qsim) k-Lin yes
LPJY15 [119] QANIZK O(n +λ) 42 O(λ) 2-Lin yes
Ours (full version) DVQANIZK O(t +kλ) 3k +1 O(λ) k-Lin no
Ours (full version) QANIZK O(k2λ+kn) 2k +1 O(λ) k-Lin yes

Figure 15: (DV)QANIZK schemes for subspaces of Gn of dimension t < n. |crs| and |π| denote the size (in group elements) of the CRS and of
proofs. Qsim is the number of simulated proofs in the simulation-soundness experiment. The scheme from [108] (as well as our own schemes)
can also be generalized to matrix assumptions [62], at the cost of a larger CRS.

Roadmap. We recall some notation and basic definitions (including those concerning our algebraic
setting and for tightly secure encryption) in Section 2. Section 3 presents our basic PCA-secure
encryption scheme and represents the core of our results. In Section 4, we present our optimized CCA-
secure PKE scheme. Our NIZK-related applications are presented in the full version of this paper.
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2 Preliminaries

2.1 Notations

If x ∈Bn , then |x| denotes the length n of the vector. Further, x ←R B denotes the process of sampling an
element x from set B uniformly at random. For any bit string τ ∈ {0,1}∗, we denote by τi the i ’th bit of τ.
We denote by λ the security parameter, and by negl(·) any negligible function of λ. For all matrix A ∈Zℓ×k

q

with ℓ> k, A ∈Zk×k
q denotes the upper square matrix of A and A ∈Zℓ−k×k

q denotes the lower ℓ−k rows of
A. With span(A) := {Ar | r ∈Zk

q } ⊂Zℓ
q , we denote the span of A.

2.2 Collision resistant hashing

A hash function generator is a PPT algorithm H that, on input 1λ , outputs an efficiently computable
function H : {0,1}∗ → {0,1}λ.

Definition 2.1 (Collision Resistance). We say that a hash function generator H outputs collision-resistant
functions H if for all PPT adversaries A,

Advcr
H(A) := Pr

[
x ̸= x ′∧H(x) =H(x ′)

∣∣∣∣∣ H←R H(1λ),
(x, x ′) ←A(1λ,H)

]
= negl(λ).

2.3 Prime-order groups

Let GGen be a probabilistic polynomial time (PPT) algorithm that on input 1λ returns a description G=
(G, q,P ) of an additive cyclic group G of order q for a λ-bit prime q , whose generator is P .

We use implicit representation of group elements as introduced in [62]. For a ∈Zq , define [a] = aP ∈
G as the implicit representation of a in G. More generally, for a matrix A = (ai j ) ∈ Zn×m

q we define [A] as
the implicit representation of A in G:

[A] :=

a11P ... a1mP

an1P ... anmP

 ∈Gn×m

We will always use this implicit notation of elements in G, i.e., we let [a] ∈G be an element in G. Note
that from [a] ∈G it is generally hard to compute the value a (discrete logarithm problem in G). Obviously,
given [a], [b] ∈G and a scalar x ∈Zq , one can efficiently compute [ax] ∈G and [a +b] ∈G.

2.4 Matrix Diffie-Hellman Assumption

We recall the definitions of the Matrix Decision Diffie-Hellman (MDDH) Assumption [62].

Definition 2.2 (Matrix Distribution). Let k,ℓ ∈ N, with ℓ > k. We call Dℓ,k a matrix distribution if it
outputs matrices in Zℓ×k

q of full rank k in polynomial time. We write Dk :=Dk+1,k .
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Without loss of generality, we assume the first k rows of A ←R Dℓ,k form an invertible matrix. The
Dℓ,k -Matrix Diffie-Hellman problem is to distinguish the two distributions ([A], [Aw]) and ([A], [u]) where
A ←R Dℓ,k , w ←R Z

k
q and u ←R Z

ℓ
q .

Definition 2.3 (Dℓ,k -Matrix Diffie-Hellman Assumption Dℓ,k -MDDH). Let Dℓ,k be a matrix distribution.
We say that the Dℓ,k -Matrix Diffie-Hellman (Dℓ,k -MDDH) Assumption holds relative to GGen if for all
PPT adversaries A,

Advmddh
Dℓ,k ,GGen(A) :=
|Pr[A(G, [A], [Aw]) = 1]−Pr[A(G, [A], [u]) = 1]| = negl(λ),

where the probability is over G←R GGen(1λ), A ←R Dℓ,k ,w ←R Z
k
q ,u ←R Z

ℓ
q .

For each k ≥ 1, [62] specifies distributions Lk , SCk , Ck (and others) over Z
(k+1)×k
q such that the

corresponding Dk -MDDH assumptions are generically secure in bilinear groups and form a hierarchy
of increasingly weaker assumptions. Lk -MDDH is the well known k-Linear Assumption k-Lin with 1-Lin
= DDH. In this work we are mostly interested in the uniform matrix distribution Uℓ,k .

Definition 2.4 (Uniform distribution). Let ℓ,k ∈N, with ℓ> k. We denote byUℓ,k the uniform distribution
over all full-rank ℓ×k matrices over Zq . Let Uk :=Uk+1,k .

Lemma 2.1 (Uk -MDDH⇔Uℓ,k -MDDH). Let ℓ,k ∈ N, with ℓ > k. For any PPT adversary A, there exists
an adversary B (and vice versa) such that T(B) ≈ T(A) and Advmddh

Uℓ,k ,GGen(A) = Advmddh
Uk ,GGen(B) .

Proof. This follows from the simple fact that a Uℓ,k -MDDH instance ([A], [z]) can be transformed into
an Uk -MDDH instance ([A′] = [TA], [z′] = [Tz]) for a random (k + 1)× ℓ matrix T. If z = Aw, then z′ =
TAw = A′w; if z is uniform, so is z′. Similarly, a Uk -MDDH instance ([A′], [z′]) can be transformed into an
Uℓ,k -MDDH instance ([A] = [T′A′], [z] = [T′z′]) for a random ℓ× (k +1) matrix T′.

Among all possible matrix distributions Dℓ,k , the uniform matrix distribution Uk is the hardest
possible instance, so in particular k-Lin⇒Uk -MDDH.

Lemma 2.2 (Dℓ,k -MDDH⇒Uk -MDDH, [62]). Let Dℓ,k be a matrix distribution. For any PPT adversary
A, there exists an adversary B such that T(B) ≈ T(A) and Advmddh

Dℓ,k ,GGen(A) = Advmddh
Uk ,GGen(B).

Let Q ≥ 1. For W ←R Z
k×Q
q ,U ←R Z

ℓ×Q
q , we consider the Q-fold Dℓ,k -MDDH Assumption which

consists in distinguishing the distributions ([A], [AW]) from ([A], [U]). That is, a challenge for the Q-fold
Dℓ,k -MDDH Assumption consists of Q independent challenges of the Dℓ,k -MDDH Assumption (with
the same A but different randomness w). In [62] it is shown that the two problems are equivalent, where
(for Q ≥ ℓ−k) the reduction loses a factor ℓ−k. In combination with Lemma 2.1 we obtain the following
tighter version for the special case of Dℓ,k =Uℓ,k .

Lemma 2.3 (Random self-reducibility of Uℓ,k -MDDH, [62]). Let ℓ,k,Q ∈ N with ℓ > k. For any PPT
adversary A, there exists an adversary B such that T(B) ≈ T(A)+Q · poly(λ) with poly(λ) independent
of T(A), and

AdvQ-mddh
Uℓ,k ,GGen(A) ≤ Advmddh

Uℓ,k ,GGen(B)+ 1

q −1
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where AdvQ-mddh
Uℓ,k ,GGen(B) := |Pr[B(G, [A], [AW]) = 1]−Pr[B(G, [A], [U]) = 1]| and the probability is over G←R

GGen(1λ), A ←R Uℓ,k ,W ←R Z
k×Q
q ,U ←R Z

ℓ×Q
q .

2.5 Public-Key Encryption

Definition 2.5 (PKE). A Public-Key Encryption (PKE) consists of three PPT algorithmsPKE= (ParamPKE,GenPKE,
EncPKE,DecPKE):

• The probabilistic key generation algorithm GenPKE(1λ) generates a pair of public and secret keys
(pk,sk).

• The probabilistic encryption algorithm EncPKE(pk, M) returns a ciphertext ct.

• The deterministic decryption algorithm DecPKE(pk,sk,ct) returns a message M or ⊥, where ⊥ is a
special rejection symbol.

We define the following properties:

Perfect correctness. For all λ, we have

Pr

[
DecPKE(pk,sk,ct) = M

∣∣∣∣∣ (pk,sk) ←R GenPKE(1λ);
ct←R EncPKE(pk, M)

]
= 1.

Multi-ciphertext CCA security [22]. For any adversary A, we define

Advind-cca
PKE (A) :=

∣∣∣Pr
[

b = b′
∣∣∣b′ ←ASetup,DecO(·),EncO(·,·)(1λ)

]
−1/2

∣∣∣
where:

• Setup sets Cenc := ;, samples (pk,sk) ←R GenKEM(1λ) and b ←R {0,1}, and returns pk. Setup

must be called once at the beginning of the game.

• DecO(ct) returns DecPKE(pk,sk,ct) if ct ∉Cenc, ⊥ otherwise.

• If M0 and M1 are two messages of equal length, EncO(M0, M1) returns EncPKE(pk, Mb) and sets
Cenc :=Cenc∪ {ct}.

We say PKE is IND-CCA secure if for all PPT adversaries A, the advantage Advind-cca
PKE (A) is a

negligible function of λ.

2.6 Key-Encapsulation Mechanism

Definition 2.6 (Tag-based KEM). A tag-based Key-Encapsulation Mechanism (KEM) consists of three PPT
algorithms KEM= (GenKEM,EncKEM,DecKEM):

• The probabilistic key generation algorithm GenKEM(1λ) generates a pair of public and secret keys
(pk,sk).
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• The probabilistic encryption algorithm EncKEM(pk,τ) returns a pair (K ,C ) where K is a uniformly
distributed symmetric key in K and C is a ciphertext, with respect to the tag τ ∈T.

• The deterministic decryption algorithm DecKEM(pk,sk,τ,C ) returns a key K ∈K.

We define the following properties:

Perfect correctness. For all λ, for all tags τ ∈T, we have

Pr

[
DecKEM(pk,sk,τ,C ) = K

∣∣∣∣∣ (pk,sk) ←R GenKEM(1λ);
(K ,C ) ←R EncKEM(pk,τ)

]
= 1.

Multi-ciphertext PCA security [126]. For any adversary A, we define

Advind-pca
KEM

(A) :=
∣∣∣Pr

[
b = b′

∣∣∣b′ ←ASetup,DecO(·,·,·),EncO(·)(1λ)
]
−1/2

∣∣∣
where:

• Setup sets Tenc = Tdec :=;, samples (pk,sk) ←R GenKEM(1λ), picks b ←R {0,1}, and returns pk.
Setup is called once at the beginning of the game.

• The decryption oracle DecO(τ,C , K̂ ) computes K := DecKEM(pk,sk,τ,C ). It returns 1 if K̂ =
K ∧τ ∉Tenc, 0 otherwise. Then it sets Tdec :=Tdec∪ {τ}.

• EncO(τ) computes (K ,C ) ←R EncKEM(pk,τ), sets K0 := K and K1 ←R K. If τ ∉ Tdec ∪Tenc, it
returns (C ,Kb), and sets Tenc :=Tenc∪ {τ}; otherwise it returns ⊥.

We say KEM is IND-PCA secure if for all PPT adversaries A, the advantage Advind-pca
KEM (A) is a

negligible function of λ.

2.7 Authenticated Encryption

Definition 2.7 (AE [97]). An authenticated symmetric encryption (AE) with message-space M and key-
space K consists of two polynomial-time deterministic algorithms (EncAE,DecAE):

• The encryption algorithm EncAE(K , M) generates C , encryption of the message M with the secret key
K .

• The decryption algorithm DecAE(K ,C ), returns a message M or ⊥.

We require that the algorithms satisfy the following properties:

Perfect correctness. For all λ, for all K ∈K and M ∈M, we have

DecAE(K ,EncAE(K , M)) = M .
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One-time Privacy and Authenticity. For any PPT adversary A,

Advae-otAE (A)

:=
∣∣∣∣∣Pr

[
b′ = b

∣∣∣∣∣ K ←R K;b ←R {0,1}
b′ ←R A

ot-EncO(·,·),ot-DecO(·)(1λ,K)

]
−1/2

∣∣∣∣∣
is negligible, where ot-EncO(M0, M1), on input two messages M0 and M1 of the same length,
EncAE(K , Mb), and ot-DecO(ϕ) returns DecAE(K ,ϕ) if b = 0, ⊥ otherwise. A is allowed at most
one call to each oracle ot-EncO and ot-DecO, and the query to ot-DecO must be different from the
output of ot-EncO. A is also given the description of the key-space K as input.

3 Multi-ciphertext PCA-secure KEM

In this section we describe a tag-based Key Encapsulation Mechanism KEMPCA that is IND-PCA-secure
(see Definition 2.6).

For simplicity, we use the matrix distribution U3k,k in our scheme in Figure 16, and prove it secure
under the Uk -MDDH Assumption (⇔U3k,k -MDDH Assumption, by Lemma 2.1), which in turn admits a
tight reduction to the standard k-Lin Assumption. However, using a matrix distribution D3k,k with more
compact representation yields a more efficient scheme, secure under the D3k,k -MDDH Assumption (see
Remark 3.1).

3.1 Our construction

GenKEM(1λ):

G←R GGen(1λ); M ←R U3k,k

k1,0, . . . ,kλ,1 ←R Z
3k
q

pk :=
(
G, [M],

(
[M⊤k j ,β]

)
1≤ j≤λ,0≤β≤1

)
sk := (k j ,β)1≤ j≤λ,0≤β≤1

Return (pk,sk)

EncKEM(pk,τ):

r ←R Z
k
q ; C := [r⊤M⊤]

kτ :=∑λ
j=1 k j ,τ j

K := [r⊤ ·M⊤kτ]
Return (C ,K ) ∈G1×3k ×G

DecKEM(pk,sk,τ,C ):

kτ :=∑λ
j=1 k j ,τ j

Return K :=C ·kτ

Figure 16: KEMPCA, an IND-PCA-secure KEM under the Uk -MDDH Assumption, with tag-space T =
{0,1}λ. Here, GGen is a prime-order group generator (see Section 2.3).

Remark 3.1 (On the use of the Uk -MDDH Assumption). In our scheme, we use a matrix distribution
U3k,k for the matrix M, therefore proving security under the U3k,k -MDDH Assumption ⇔ Uk -MDDH

Assumption (see Lemma 2.2). This is for simplicity of presentation. However, for efficiency, one may want
to use an assumption with a more compact representation, such as the CI3k,k -MDDH Assumption [123]
with representation size 2k instead of 3k2 for U3k,k .
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3.2 Security proof

Theorem 3.1. The tag-based Key Encapsulation Mechanism KEMPCA defined in Figure 16 has perfect
correctness. Moreover, if the Uk -MDDH Assumption holds in G, KEMPCA is IND-PCA secure. Namely, for
any adversary A, there exists an adversary B such that T(B) ≈ T(A)+ (Qdec+Qenc) ·poly(λ) and

Advind-pca
KEMPCA

(A) ≤ (4λ+1) ·Advmddh
Uk ,GGen(B)+ (Qdec+Qenc) ·2−Ω(λ),

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ) is independent
of T(A).

Proof of Theorem 3.1. Perfect correctness follows readily from the fact that for all r ∈Zk
q and C = r⊤M⊤, for

all k ∈Z3k
q :

r⊤(M⊤k) =C ·k.

We now prove the IND-PCA security of KEMPCA. We proceed via a series of games described in
Figure 18 and 19 and we use Advi to denote the advantage of A in game Gi . We also give a high-level
picture of the proof in Figure 17, summarizing the sequence of games.

Lemma 3.2 (G0 to G1). There exists an adversary B0 such that T(B0) ≈ T(A)+ (Qenc+Qdec) ·poly(λ) and

|Adv0 −Adv1| ≤ Advmddh
Uk ,GGen(B0)+ 1

q −1
,

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ) is independent
of T(A).

Here, we use the MDDH assumption to “tightly” switch the distribution of all the challenge cipher-
texts.
Proof of Lemma 3.2. To go from G0 to G1, we switch the distribution of the vectors [y] sampled by EncO,
using the Qenc-fold U3k,k -MDDH Assumption on [M] (see Definition 2.4 and Lemma 2.3).

We build an adversary B′
0 against the Qenc-fold U3k,k -MDDH Assumption, such that T(B′

0) ≈ T(A)+
(Qenc+Qdec) ·poly(λ) with poly(λ) independent of T(A), and

|Adv0 −Adv1| ≤ AdvQenc-mddh
U3k,k ,GGen (B′

0).

This implies the lemma by Lemma 2.3 (self-reducibility of U3k,k -MDDH), and Lemma 2.1 (U3k,k -
MDDH⇔Uk -MDDH).

Upon receiving a challenge (G, [M] ∈ G3k×k , [H] := [h1| . . . |hQenc ] ∈ G3k×Qenc) for the Qenc-fold U3k,k -
MDDH Assumption, B′

0 picks b ←R {0,1}, k1,0, . . . ,kλ,1 ←R Z3k
q , and simulates Setup, DecO as described

in Figure 18. To simulate EncO on its j ’th query, for j = 1, . . . ,Qenc, B′
0 sets [y] := [h j ], and computes Kb

as described in Figure 18.

Lemma 3.3 (G1 to G2.0). |Adv1 −Adv2.0| = 0.

Proof of Lemma 3.3. We show that the two games are identically distributed. To go from G1 to G2.0, we
change the distribution of k1,β ←R Z

3k
q for β= 0,1, to k1,β+M⊥RF0(ε), where k1,β ←R Z

3k
q , RF0(ε) ←R Z

2k
q ,
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Setup: G0,G1, G2.i

Tenc =Tdec :=;; b ←R {0,1}
G←R GGen(1λ); M ←R U3k,k

M⊥ ←R U3k,2k s.t. M⊤M⊥ = 0
Pick random RFi : {0,1}i →Z2k

q

k1,0, . . . ,kλ,1 ←R Z
3k
q

For all τ ∈ {0,1}λ, kτ :=∑λ
j=1 k j ,τ j

k′
τ := kτ+ M⊥RFi (τ|i )

Return
pk :=

(
G, [M],

(
[M⊤k j ,β]

)
1≤ j≤λ,0≤β≤1

)

EncO(τ): G0, G1,G2.i

r ←R Z
k
q ; y := Mr; y ←R Z

3k
q

K0 := [y⊤ ·k′
τ]; K1 ←R G

If τ ∉ Tdec ∪ Tenc, return (C := [y],Kb), and set
Tenc :=Tenc∪ {τ}.
Otherwise, return ⊥.

DecO(τ,C := [y], K̂ ): G0,G1,G2.i

K := [y⊤ ·k′
τ]

Return

{
1 if K̂ = K ∧τ ∉Tenc
0 otherwise

Tdec :=Tdec∪ {τ}

Figure 18: Games G0,G1,G2.i (for 1 ≤ i ≤ λ) for the proof of multi-ciphertext PCA security of KEMPCA

in Figure 16. For all 0 ≤ i ≤ λ, RFi : {0,1}i → Z2k
q is a random function, and for all τ ∈ T, τ|i denotes the

i -bit prefix of τ. In each procedure, the components inside a solid (dotted) frame are only present in the
games marked by a solid (dotted) frame.

and M⊥ ←R U3k,2k such that M⊤M⊥ = 0. Note that the extra term M⊥RF0(ε) does not appear in pk, since
M⊤(k1,β+M⊥RF0(ε)) = M⊤k1,β.

Lemma 3.4 (G2.i to G2.i+1). For all 0 ≤ i ≤ λ−1, there exists an adversary B2.i such that T(B2.i ) ≈ T(A)+
(Qenc+Qdec) ·poly(λ) and

|Adv2.i −Adv2.i+1| ≤ 4 ·Advmddh
Uk ,GGen(B2.i )+ 4Qdec+2k

q
+ 4

q −1
,

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ) is independent
of T(A).

Proof of Lemma 3.4. To go from G2.i to G2.i+1, we introduce intermediate games G2.i .1, G2.i .2 and G2.i .3,
defined in Figure 19. We prove that these games are indistinguishable in Lemma 3.5, 3.6, 3.7, and 3.8.

Lemma 3.5 (G2.i to G2.i .1). For all 0 ≤ i ≤λ−1, there exists an adversary B2.i .0 such that T(B2.i .0) ≈ T(A)+
(Qenc+Qdec) ·poly(λ) and

|Adv2.i −Adv2.i .1| ≤ 2 ·Advmddh
Uk ,GGen(B2.i .0)+ 2

q −1
,

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ) is independent
of T(A).

Here, we use the MDDH Assumption to “tightly” switch the distribution of all the challenge
ciphertexts. We proceed in two steps, first, by changing the distribution of all the ciphertexts with a tag
τ such that τi+1 = 0, and then, for those with a tag τ such that τi+1 = 1. We use the MDDH Assumption
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Setup: G2.i , G2.i .1, G2.i .2 , G2.i .3

Tenc =Tdec :=;; b ←R {0,1}
G←R GGen(1λ); M ←R U3k,k

M⊥ ←R U3k,2k s.t. M⊤M⊥ = 0

M0,M1 ←R U3k,k

M∗
0 ,M∗

1 ←R U3k,k s.t.
span(M⊥) = span(M∗

0 ,M∗
1 )

M⊤M∗
0 = M⊤

1M∗
0 = 0

M⊤M∗
1 = M⊤

0M∗
1 = 0

Pick random RFi : {0,1}i →Z2k
q .

Pick RF(0)
i+1 : {0,1}i+1 →Zk

q

and RF(1)
i : {0,1}i →Zk

q

Pick RF(0)
i+1,RF(1)

i+1 : {0,1}i+1 →Zk
q .

k1,0, . . . ,kλ,1 ←R Z
3k
q

For all τ ∈ {0,1}λ, kτ :=∑λ
j=1 k j ,τ j

k′
τ := kτ+M⊥RFi (τi )

k′
τ := kτ+M∗

0RF
(0)
i+1(τ|i+1)

+M∗
1RF

(1)
i (τ|i )

k′
τ := kτ+M∗

0RF
(0)
i+1(τ|i+1)

+M∗
1RF

(1)
i+1(τ|i+1)

Return
pk :=

(
G, [M],

(
[M⊤k j ,β]

)
1≤ j≤λ,0≤β≤1

)

EncO(τ): G2.i , G2.i .1,G2.i .2,G2.i .3

y ←R Z
3k
q

If τi+1 = 0 :
r ←R Z

k
q ;r0 ←R Z

k
q ;y := Mr+M0r0

If τi+1 = 1 :
r ←R Z

k
q ;r1 ←R Z

k
q ;y := Mr+M1r1

K0 := [y⊤ ·k′
τ];

K1 ←R G

If τ ∉ Tdec ∪ Tenc, return ([y],Kb) and set
Tenc :=Tenc∪ {τ}.
Otherwise, return ⊥.

DecO(τ, [y], K̂ ): G2.i ,G2.i .1,G2.i .2,G2.i .3

K := [y⊤k′
τ]

Return

{
1 if K̂ = K ∧τ ∉Tenc
0 otherwise

Tdec :=Tdec∪ {τ}.

Figure 19: Games G2.i (for 0 ≤ i ≤ λ),G2.i .1, G2.i .2 and G2.i .3 (for 0 ≤ i ≤ λ−1) for the proof of Lemma 3.4.
For all 0 ≤ i ≤ λ, RFi : {0,1}i → Z2k

q , RF(0)
i , RF(1)

i : {0,1}i → Zk
q are random functions, and for all τ ∈ T, we

denote by τ|i the i -bit prefix of τ. In each procedure, the components inside a solid (dotted, gray) frame
are only present in the games marked by a solid (dotted, gray) frame.
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with respect to an independent matrix for each step.
Proof of Lemma 3.5. To go from G2.i to G2.i .1, we switch the distribution of the vectors [y] sampled by
EncO, using the Qenc-fold U3k,k -MDDH Assumption.

We introduce an intermediate game G2.i .0 where EncO(τ) is computed as in G2.i .1 if τi+1 = 0, and as
in G2.i if τi+1 = 1. Setup, DecO are as in G2.i .1. We build adversaries B′

2.i .0 and B′′
2.i .0 such that T(B′

2.i .0) ≈
T(B′′

2.i .0) ≈ T(A)+ (Qenc+Qdec) ·poly(λ) with poly(λ) independent of T(A), and

Claim 1: |Adv2.i −Adv2.i .0| ≤ AdvQenc-mddh
U3,k ,GGen (B′

2.i .0).

Claim 2: |Adv2.i .0 −Adv2.i .1| ≤ AdvQenc-mddh
U3k,k ,GGen (B′′

2.i .0).

This implies the lemma by Lemma 2.3 (self-reducibility of U3k,k -MDDH), and Lemma 2.1 (U3k,k -
MDDH⇔Uk -MDDH).

Let us prove Claim 1. Upon receiving a challenge (G, [M0] ∈ G3k×k , [H] := [h1| . . . |hQenc ] ∈ G3k×Qenc) for
the Qenc-fold U3k,k -MDDH Assumption with respect to M0 ←R U3k,k , B′

2.i .0 does as follows:

Setup: B′
2.i .0 picks M ←R U3k,k , k1,0, . . . ,kλ,1 ←R Z3k

q , and computes pk as described in Figure 19. For
each τ queried to EncO or DecO, it computes on the fly RFi (τ|i ) and k′

τ := kτ+M⊥RFi (τ|i ), where
kτ := ∑λ

j=1 k j ,τ j , RFi : {0,1}i → Z2k
q is a random function, and τ|i denotes the i -bit prefix of τ (see

Figure 19). Note that B′
2.i .0 can compute efficiently M⊥ from M.

EncO: To simulate the oracle EncO(τ) on its j ’th query, for j = 1, . . . ,Qenc, B′
2.i .0 computes [y] as follows:

if τi+1 = 0 : r ←R Z
k
q ; [y] := [Mr+h j ]

if τi+1 = 1 : [y] ←R G
3k

This way, B′
2.i .0 simulates EncO as in G2.i .0 when [h j ] := [M0r0] with r0 ←R Zk

q , and as in G2.i when
[h j ] ←R G

3k .

DecO: Finally, B′
2.i .0 simulates DecO as described in Figure 19.

Therefore, |Adv2.i −Adv2.i .0| ≤ AdvQenc-mddh
U3k,k ,GGen (B′

2.i .0).

To prove Claim 2, we build an adversary B′′
2.i .0 against the Qenc-fold U3k,k -MDDH Assumption with

respect to a matrix M1 ←R U3k,k , independent from M0, similarly than B′
2.i .0.

Lemma 3.6 (G2.i .1 to G2.i .2). For all 0 ≤ i ≤λ−1,

|Adv2.i .1 −Adv2.i .2| ≤ 2Qdec+2k

q
,

where Qdec is the number of times A queries DecO.

Here, we use a variant of the Cramer-Shoup information-theoretic argument to move from RFi to
RFi+1, thereby increasing the entropy of k′

τ computed by Setup. For the sake of readability, we proceed
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in two steps: in Lemma 3.6, we move from RFi to an hybrid between RFi and RFi+1, and in Lemma 3.7,
we move to RFi+1.
Proof of Lemma 3.6. In G2.i .2, we decompose span(M⊥) into two subspaces span(M∗

0 ) and span(M∗
1 ), and

we increase the entropy of the components of k′
τ which lie in span(M∗

0 ). To argue that G2.i .1 and G2.i .2 are
statistically close, we use a Cramer-Shoup argument [59].

Let us first explain how the matrices M∗
0 and M∗

1 are sampled. Note that with probability at least 1− 2k
q

over the random coins of Setup, (M∥M0∥M1) forms a basis of Z3k
q . Therefore, we have

span(M⊥) =Ker(M⊤) =Ker
(
(M∥M1)⊤

)⊕Ker
(
(M∥M0)⊤

)
.

We pick uniformly M∗
0 and M∗

1 in Z3k×k
q that generate Ker

(
(M∥M1)⊤

)
and Ker

(
(M∥M0)⊤

)
, respectively (see

Figure 1.1). This way, for all τ ∈ {0,1}λ, we can write

M⊥RFi (τ|i ) := M∗
0RF

(0)
i (τ|i )+M∗

1RF
(1)
i (τ|i ),

where RF(0)
i , RF(1)

i : {0,1}i →Zk
q are independent random functions.

We define RF(0)
i+1 : {0,1}i+1 →Zk

q as follows:

RF(0)
i+1(τ|i+1) :=

{
RF(0)

i (τ|i ) if τi+1 = 0

RF(0)
i (τ|i )+RF′(0)

i (τ|i ) if τi+1 = 1

where RF′(0)
i : {0,1}i → Zk

q is a random function independent from RF(0)
i . This way, RF(0)

i+1 is a random
function.

We show that the outputs of EncO and DecO are statistically close in G2.i .1 and G2.i .2. We decompose
the proof in two cases (delimited with ■): the queries with a tag τ ∈ {0,1}λ such that τi+1 = 0, and the
queries with a tag τ such that τi+1 = 1.

Queries with τi+1 = 0:
The only difference between G2.i .1 and G2.i .2 is that Setup computes k′

τ using the random function RF(0)
i

in G2.i .1, whereas it uses the random function RF(0)
i+1 in G2.i .2 (see Figure 19). Therefore, by definition of

RF(0)
i+1, for all τ ∈ {0,1}λ such that τi+1 = 0, k′

τ is the same in G2.i .1 and G2.i .2, and the outputs of EncO and
DecO are identically distributed. ■
Queries with τi+1 = 1:
Observe that for all y ∈ span(M,M1) and all τ ∈ {0,1}λ such that τi+1 = 1,

G2.i .2︷ ︸︸ ︷
y⊤

(
kτ+M∗

0RF
(0)
i (τ|i )+M∗

1RF
(1)
i (τ|i )+ M∗

0RF
′(0)
i (τ|i )

)
= y⊤

(
kτ+M∗

0RF
(0)
i (τ|i )+M∗

1RF
(1)
i (τ|i )

)
+ y⊤M∗

0RF
′(0)
i (τ|i )︸ ︷︷ ︸

=0

=
G2.i .1︷ ︸︸ ︷

y⊤ ·
(
kτ+M∗

0RF
(0)
i (τ|i )+M∗

1RF
(1)
i (τ|i )

)
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where the second equality uses the fact that M⊤M∗
0 = M⊤

1M∗
0 = 0 and thus y⊤M∗

0 = 0.

This means that:

• the output of EncO on any input τ such that τi+1 = 1 is identically distributed in G2.i .1 and G2.i .2;

• the output of DecO on any input (τ, [y], K̂ ) where τi+1 = 1, and y ∈ span(M,M1) is the same in G2.i .1

and G2.i .2.

Henceforth, we focus on the ill-formed queries to DecO, namely those corresponding to τi+1 = 1, and y ∉
span(M,M1). We introduce intermediate games G2.i .1. j , and G′

2.i .1. j for j = 0, . . . ,Qdec, defined as follows:

• G2.i .1. j : DecO is as in G2.i .1 except that for the first j times it is queried, it outputs 0 to any ill-formed
query. EncO is as in G2.i .2.

• G′
2.i .1. j : DecO as in G2.i .2 except that for the first j times it is queried, it outputs 0 to any ill-formed

query. EncO is as in G2.i .2.

We show that:

G2.i .1 ≡ G2.i .1.0 ≈s G2.i .1.1 ≈s . . . ≈s G2.i .1.Qdec ≡ G′
2.i .1.Qdec

G′
2.i .1.Qdec

≈s G′
2.i .1.Qdec−1 ≈s . . . ≈s G′

2.i .1.0 ≡ G2.i .2

where we denote statistical closeness with ≈s and statistical equality with ≡.

It suffices to show that for all j = 0, . . . ,Qdec−1:

Claim 1: in G2.i .1. j , if the j+1-st query is ill-formed, thenDecO outputs 0 with overwhelming probability
1−1/q (this implies G2.i .1. j ≈s G2.i .1. j+1, with statistical difference 1/q);

Claim 2: in G′
2.i .1. j , if the j+1-st query is ill-formed, thenDecO outputs 0 with overwhelming probability

1−1/q (this implies G′
2.i .1. j ≈s G′

2.i .1. j+1, with statistical difference 1/q)

where the probabilities are taken over the random coins of Setup.

Let us prove Claim 1. Recall that in G2.i .1. j , on its j +1-st query, DecO(τ, [y], K̂ ) computes K := [
y⊤k′

τ

]
,

where k′
τ := (

kτ+M∗
0RF

(0)
i (τ|i )+M∗

1RF
(1)
i (τ|i )

)
(see Figure 19). We prove that if (τ, [y], K̂ ) is ill-formed, then

K is completely hidden from A, up to its j +1-st query to DecO. The reason is that the vector ki+1,1 in sk

contains some entropy that is hidden from A. This entropy is “released" on the j +1-st query to DecO if
it is ill-formed. More formally, we use the fact that the vector ki+1,1 ←R Z3k

q is identically distributed as
ki+1,1 +M∗

0 w, where ki+1,1 ←R Z
3k
q , and w ←R Z

k
q . We show that w is completely hidden from A, up to its

j +1-st query to DecO.

• The public key pk does not leak any information about w, since

M⊤(ki+1,1 + M∗
0 w ) = M⊤ki+1,1.

This is because M⊤M∗
0 = 0.

• The outputs of EncO also hide w.
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– For τ such that τi+1 = 0, k′
τ is independent of ki+1,1, and therefore, so does EncO(τ).

– For τ such that τi+1 = 1, and for any y ∈ span(M,M1), we have:

y⊤(k′
τ+ M∗

0 w ) = y⊤k′
τ (5)

since M⊤M∗
0 = M⊤

1M∗
0 = 0, which implies y⊤M∗

0 = 0.

• The first j outputs of DecO also hide w.

– For τ such that τi+1 = 0, k′
τ is independent of ki+1,1, and therefore, so does DecO([y],τ, K̂ ).

– For τ such that τi+1 = 1 and y ∈ span(M,M1), the fact that DecO(τ, [y], K̂ ) is independent of w
follows readily from Equation (5).

– For τ such that τi+1 = 1 and y ∉ span(M,M1), that is, for an ill-formed query, DecO outputs 0,
independently of w, by definition of G2.i .1. j .

This proves that w is uniformly random from A’s viewpoint.

Finally, because the j+1-st query (τ, [y], K̂ ) is ill-formed, we have τi+1 = 1, and y ∉ span(M,M1), which
implies that y⊤M∗

0 ̸= 0. Therefore, the value

K = [y⊤(k′
τ+M∗

0 w)] = [y⊤k′
τ+y⊤M∗

0︸ ︷︷ ︸
̸=0

w]

computed by DecO is uniformly random over G from A’s viewpoint. Thus, with probability 1−1/q over
K ←R G, we have K̂ ̸= K , and DecO(τ, [y], K̂ ) = 0.

We prove Claim 2 similarly, arguing than in G′
2.i .1. j , the value K := [

y⊤k′
τ

]
, where k′

τ := (
kτ +

M∗
0RF

(0)
i+1(τ|i+1)+M∗

1RF
(1)
i (τ|i )

)
, computed by DecO(τ, [y], K̂ ) on its j +1-st query, is completely hidden

from A, up to its j + 1-st query to DecO, if (τ, [y], K̂ ) is ill-formed. The argument goes exactly as for
Claim 1. ■

Lemma 3.7 (G2.i .2 to G2.i .3). For all 0 ≤ i ≤λ−1,

|Adv2.i .2 −Adv2.i .3| ≤ 2Qdec

q
,

where Qdec is the number of times A queries DecO.

Proof of Lemma 3.7. In G2.i .3, we use the same decomposition span(M⊥) = span(M∗
0 ,M∗

1 ) as that in G2.i .2.
The entropy of the components of k′

τ that lie in span(M∗
1 ) increases from G2.i .2 to G2.i .3. To argue that

these two games are statistically close, we use a Cramer-Shoup argument [59], exactly as for Lemma 3.6.

We define RF(1)
i+1{0,1}i+1 →Zk

q as follows:

RF(1)
i+1(τ|i+1) :=

{
RF(1)

i (τ|i )+RF′(1)
i (τ|i ) if τi+1 = 0

RF(1)
i (τ|i ) if τi+1 = 1

where RF′(1)
i : {0,1}i → Zk

q is a random function independent from RF(1)
i . This way, RF(1)

i+1 is a random
function.
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We show that the outputs of EncO and DecO are statistically close in G2.i .1 and G2.i .2. We decompose
the proof in two cases (delimited with ■): the queries with a tag τ ∈ {0,1}λ such that τi+1 = 0, and the
queries with tag τ such that τi+1 = 1.

Queries with τi+1 = 1:
The only difference between G2.i .2 and G2.i .3 is that Setup computes k′

τ using the random function RF(1)
i

in G2.i .2, whereas it uses the random function RF(1)
i+1 in G2.i .3 (see Figure 19). Therefore, by definition of

RF(1)
i+1, for all τ ∈ {0,1}λ such that τi+1 = 1, k′

τ is the same in G2.i .2 and G2.i .3, and the outputs of EncO and
DecO are identically distributed. ■
Queries with τi+1 = 0:
Observe that for all y ∈ span(M,M0) and all τ ∈ {0,1}λ such that τi+1 = 0,

G2.i .3︷ ︸︸ ︷
y⊤

(
kτ+M∗

0RF
(0)
i+1(τ|i+1)+M∗

1RF
(1)
i (τ|i )+ M∗

1RF
′(1)
i (τ|i )

)
= y⊤

(
kτ+M∗

0RF
(0)
i+1(τ|i+1)+M∗

1RF
(1)
i (τ|i )

)
+ y⊤M∗

1RF
′(1)
i (τ|i )︸ ︷︷ ︸

=0

=
G2.i .2︷ ︸︸ ︷

y⊤ ·
(
kτ+M∗

0RF
(0)
i+1(τ|i+1)+M∗

1RF
(1)
i (τ|i )

)
where the second equality uses the fact M⊤M∗

1 = M⊤
0M∗

1 = 0, which implies y⊤M∗
1 = 0.

This means that:

• the output of EncO on any input τ such that τi+1 = 0 is identically distributed in G2.i .2 and G2.i .3;

• the output of DecO on any input (τ, [y], K̂ ) where τi+1 = 0, and y ∈ span(M,M0) is the same in G2.i .2

and G2.i .3.

Henceforth, we focus on the ill-formed queries to DecO, namely those corresponding to τi+1 = 0, and
y ∉ span(M,M0). The rest of the proof goes similarly than the proof of Lemma 3.6. See the latter for
further details. ■

Lemma 3.8 (G2.i .3 to G2.i+1). For all 0 ≤ i ≤ λ− 1, there exists an adversary B2.i .3 such that T(B2.i .3) ≈
T(A)+ (Qenc+Qdec) ·poly(λ) and

|Adv2.i .3 −Adv2.i+1| ≤ 2 ·Advmddh
Uk ,GGen(B2.i .3)+ 2

q −1

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ) is independent
of T(A).

Here, we use the MDDH Assumption to “tightly” switch the distribution of all the challenge
ciphertexts, as for Lemma 3.5. We proceed in two steps, first, by changing the distribution of all the
ciphertexts with a tag τ such that τi+1 = 0, and then, the distribution of those with a tag τ such that
τi+1 = 1, using the MDDH Assumption with respect to an independent matrix for each step.
Proof of Lemma 3.8. To go from G2.i .3 to G2.i+1, we switch the distribution of the vectors [y] sampled
by EncO, using the Qenc-fold U3k,k -MDDH Assumption. This transition is symmetric to the transition
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between G2.i and G2.i .1 (see the proof of Lemma 3.5 for further details). Finally, we use the fact that for
all τ ∈ {0,1}λ, M∗

0RF
(0)
i+1(τ|i )+M∗

1RF
(1)
i+1(τ|i+1) is identically distributed to M⊥RFi+1(τ|i+1), where RFi+1 :

{0,1}i+1 →Z2k
q is a random function. This is because (M∗

0 ,M∗
1 ) is a basis of span(M⊥).

The proof of Lemma 3.4 follows readily from Lemma 3.5, 3.6, 3.7, and 3.8.

Lemma 3.9 (G2.λ). Adv2.λ ≤ Qenc

q .

Proof of Lemma 3.9. We show that the joint distribution of all the values K0 computed by EncO is
statistically close to uniform over GQenc . Recall that on input τ, EncO(τ) computes

K0 := [y⊤(kτ+M⊥RFλ(τ))],

where RFλ : {0,1}λ →Z2k
q is a random function, and y ←R Z

3k
q (see Figure 18).

We make use of the following properties:

Property 1: all the tags τ queried to EncO, such that EncO(τ) ̸= ⊥, are distinct.

Property 2: the outputs of DecO are independent of {RF(τ) : τ ∈ Tenc}. This is because for all queries
(τ, [y], K̂ ) to DecO such that τ ∈ Tenc, DecO(τ, [y], K̂ ) = 0, independently of RFλ(τ), by definition of
G2.λ.

Property 3: with probability at least 1− Qenc

q over the random coins of EncO, all the vectors y sampled by

EncO are such that y⊤M⊥ ̸= 0.

We deduce that the joint distribution of all the valuesRFλ(τ) computed byEncO is uniformly random
over

(
Z2k

q

)Qenc (from Property 1), independent of the outputs of DecO (from Property 2). Finally, from
Property 3, we get that the joint distribution of all the values K0 computed by EncO is statistically close
to uniform over GQenc , since:

K0 := [y⊤(kτ+M⊥RFλ(τ)) = [y⊤kτ+ y⊤M⊥︸ ︷︷ ︸
̸=0 w.h.p.

RFλ(τ)].

This means that the values K0 and K1 are statistically close, and therefore, Adv3 ≤ Qenc

q .

Finally, Theorem 3.1 follows readily from Lemmas 3.2, 3.3, 3.4, and 3.9.

4 Multi-ciphertext CCA-secure Public Key Encryption scheme

4.1 Our construction

We now describe the optimized IND-CCA-secure PKE scheme. Compared to the PCA-secure KEM from
Section 3, we add an authenticated (symmetric) encryption scheme (EncAE,DecAE), and set the KEM tag
τ as the hash value of a suitable part of the KEM ciphertext (as explained in the introduction). A formal
definition with highlighted differences to our PCA-secure KEM appears in Figure 20.

We prove the security under the Uk -MDDH Assumption, which admits a tight reduction to the
standard k-Lin Assumption.
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GenPKE(1λ):

G←R GGen(1λ); H←R H(1λ); M ←R U3k,k

k1,0, . . . ,kλ,1 ←R Z
3k
q

pk :=
(
G, [M],H,

(
[M⊤k j ,β]

)
1≤ j≤λ,0≤β≤1

)
sk := (k j ,β)1≤ j≤λ,0≤β≤1

Return (pk,sk)

EncPKE(pk, M):

r ←R Z
k
q ; y := Mr

τ :=H([y])
kτ :=∑λ

j=1 k j ,τ j

K := [r⊤ ·M⊤kτ]
ϕ :=EncAE(K , M)
Return ([y],ϕ)

DecPKE(pk,sk, ([y],ϕ)):

τ :=H([y]); kτ :=∑λ
j=1 k j ,τ j ; K := [y⊤kτ]

Return DecAE(K ,ϕ).

Figure 20: PKECCA, an IND-CCA-secure PKE. We color in blue the differences with KEMPCA, the
IND-PCA-secure KEM in Figure 16. Here, GGen is a prime-order group generator (see Section 2.3) , and
AE := (EncAE,DecAE) is an Authenticated Encryption scheme with key-space K :=G (see Definition 2.7).

Theorem 4.1. The Public Key Encryption scheme PKECCA defined in Figure 20 has perfect correctness, if
the underlying Authenticated Encryption scheme AE has perfect correctness. Moreover, if the Uk -MDDH

Assumption holds inG,AEhas one-time privacy and authenticity, andH generates collision resistant hash
functions, then PKECCA is IND-CCA secure. Namely, for any adversary A, there exist adversaries B, B′, B′′

such that T(B) ≈ T(B′) ≈ T(B′′) ≈ T(A)+ (Qdec+Qenc) ·poly(λ) and

Advind-cca
PKECCA

(A) ≤ (4λ+1) ·Advmddh
Uk ,GGen(B)

+ ((4λ+2)Qdec+Qenc+QencQdec) ·Advae-otAE (B′)

+Advcr
H(B′′)+Qenc(Qenc+Qdec) ·2−Ω(λ),

(6)

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ) is independent
of T(A).

We note that the Qenc and Qdec factors in (6) are only related to AE. Hence, when using a
statistically secure (one-time) authenticated encryption scheme, the corresponding terms in (6) become
exponentially small.

Remark 4.1 (Extension to the multi-user CCA security). We only provide an analysis in the multi-
ciphertext (but single-user) setting. However, we remark (without proof) that our analysis generalizes
to the multi-user, multi-ciphertext scenario, similar to [22, 96, 99]. Indeed, all computational steps (not
counting the steps related to the AE scheme) modify all ciphertexts simultaneously, relying for this on the re-
randomizability of theUk -MDDHAssumption relative to a fixed matrix M. The same modifications can be
made to many PKECCA simultaneously by using that the Uk -MDDH Assumption is also re-randomizable
across many matrices Mi . (A similar property for the DDH, DLIN, and bilinear DDH assumptions is used
in [22], [96], and [99], respectively.)

We defer the proof of Theorem 4.1 to the full version of this paper.
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