2,174 research outputs found

    Algorithms for morphological profile filters and their comparison

    Get PDF
    Morphological filters, regarded as the complement of mean-line based filters, are useful in the analysis of surface texture and the prediction of functional performance. The paper first recalls two existing algorithms, the naive algorithm and the motif combination algorithm, originally developed for the traditional envelope filter. With minor extension, they could be used to compute morphological filters. A recent novel approach based on the relationship between the alpha shape and morphological closing and opening operations is presented as well. Afterwards two novel algorithms are developed. By correlating the convex hull and morphological operations, the Graham scan algorithm, original developed for the convex hull is modified to compute the morphological envelopes. The alpha shape method depending on the Delaunay triangulation is costly and redundant for the computation for the alpha shape for a given radius. A recursive algorithm is proposed to solve this problem. A series of observations are presented for searching the contact points. Based on the proposed observations, the algorithm partitions the profile data into small segments and searches the contact points in a recursive manner. The paper proceeds to compare the five distinct algorithms in five aspects: algorithm verification, algorithm analysis, performance evaluation, end effects correction, and areal extension. By looking into these aspects, the merits and shortcomings of these algorithms are evaluated and compared

    Unsupervised morphological segmentation for images

    Get PDF
    This paper deals with a morphological approach to unsupervised image segmentation. The proposed technique relies on a multiscale Top-Down approach allowing a hierarchical processing of the data ranging from the most global scale to the most detailed one. At each scale, the algorithm consists of four steps: image simplification, feature extraction, contour localization and quality estimation. The main emphasis of this paper is to discuss the selection of a simplification filter for segmentation. Morphological filters based on reconstruction proved to be very efficient for this purpose. The resulting unsupervised algorithm is very robust and can deal with very different type of images.Peer ReviewedPostprint (published version

    Logarithmic mathematical morphology: a new framework adaptive to illumination changes

    Full text link
    A new set of mathematical morphology (MM) operators adaptive to illumination changes caused by variation of exposure time or light intensity is defined thanks to the Logarithmic Image Processing (LIP) model. This model based on the physics of acquisition is consistent with human vision. The fundamental operators, the logarithmic-dilation and the logarithmic-erosion, are defined with the LIP-addition of a structuring function. The combination of these two adjunct operators gives morphological filters, namely the logarithmic-opening and closing, useful for pattern recognition. The mathematical relation existing between ``classical'' dilation and erosion and their logarithmic-versions is established facilitating their implementation. Results on simulated and real images show that logarithmic-MM is more efficient on low-contrasted information than ``classical'' MM

    Hierarchical morphological segmentation for image sequence coding

    Get PDF
    This paper deals with a hierarchical morphological segmentation algorithm for image sequence coding. Mathematical morphology is very attractive for this purpose because it efficiently deals with geometrical features such as size, shape, contrast, or connectivity that can be considered as segmentation-oriented features. The algorithm follows a top-down procedure. It first takes into account the global information and produces a coarse segmentation, that is, with a small number of regions. Then, the segmentation quality is improved by introducing regions corresponding to more local information. The algorithm, considering sequences as being functions on a 3-D space, directly segments 3-D regions. A 3-D approach is used to get a segmentation that is stable in time and to directly solve the region correspondence problem. Each segmentation stage relies on four basic steps: simplification, marker extraction, decision, and quality estimation. The simplification removes information from the sequence to make it easier to segment. Morphological filters based on partial reconstruction are proven to be very efficient for this purpose, especially in the case of sequences. The marker extraction identifies the presence of homogeneous 3-D regions. It is based on constrained flat region labeling and morphological contrast extraction. The goal of the decision is to precisely locate the contours of regions detected by the marker extraction. This decision is performed by a modified watershed algorithm. Finally, the quality estimation concentrates on the coding residue, all the information about the 3-D regions that have not been properly segmented and therefore coded. The procedure allows the introduction of the texture and contour coding schemes within the segmentation algorithm. The coding residue is transmitted to the next segmentation stage to improve the segmentation and coding quality. Finally, segmentation and coding examples are presented to show the validity and interest of the coding approach.Peer ReviewedPostprint (published version

    A graph-based mathematical morphology reader

    Full text link
    This survey paper aims at providing a "literary" anthology of mathematical morphology on graphs. It describes in the English language many ideas stemming from a large number of different papers, hence providing a unified view of an active and diverse field of research
    • …
    corecore