25 research outputs found

    A Novel Reseeding Mechanism for Improving Pseudo-Random Testing of VLSI Circuits

    Get PDF
    [[abstract]]During built-in self-test (BIST), the set of patterns generated by a pseudo-random pattern generator may not provide sufficiently high fault coverage and many patterns can't detect fault (called useless patterns). In order to reduce the test time, we can remove useless patterns or change them to useful patterns (fault dropping). In fact, a random test set includes many useless patterns. Therefore we present a technology, including both reseeding and bit modifying (a.k.a. pattern mapping) to remove useless patterns or change them to useful patterns. When patterns changed, we pick out number of different fewer bits, leading to very short test length. Then we use an additional bit counter to improve test length and achieve high fault coverage. The technique we present is applicable for single-stuck-at faults. Experimental results indicate that complete fault coverage-100% can be obtained with less test time.[[notice]]補正完畢[[journaltype]]國際[[incitationindex]]EI[[ispeerreviewed]]Y[[booktype]]紙本[[countrycodes]]TW

    A novel reseeding mechanism for pseudo-random testing of VLSI circuits

    Get PDF
    [[abstract]]During built-in self-test (BIST), the set of patterns generated by a pseudo-random pattern generator may not provide sufficiently high fault coverage and many patterns were undetected fault (useless patterns). In order to reduce the test time, we can remove useless patterns or change them to useful patterns (fault dropping). In this paper, we reseed, modify the pseudo-random, and use an additional bit counter to improve test length and achieve high fault coverage. The fact is that a random test set contains useless patterns, so we present a technique, including both reseeding and bit modifying to remove useless patterns or change them to useful patterns, and when the patterns change, we pick out the numbers with less bits, leading to very short test length. The technique we present is applicable for single-stuck-at faults. The seeds we use are deterministic so 100% fault coverage can be achieve.[[conferencetype]]國際[[conferencedate]]20050523~20050526[[booktype]]紙本[[conferencelocation]]Kobe, Japa

    Embedding deterministic patterns in partial pseudo-exhaustive test

    Get PDF
    The topic of this thesis is related to testing of very large scale integration circuits. The thesis presents the idea of optimizing mixed-mode built-in self-test (BIST) scheme. Mixed-mode BIST consists of two phases. The first phase is pseudo-random testing or partial pseudo-exhaustive testing (P-PET). For the faults not detected by the first phase, deterministic test patterns are generated and applied in the second phase. Hence, the defect coverage of the first phase influences the number of patterns to be generated and stored. The advantages of P-PET in comparison with usual pseudo-random test are in obtaining higher fault coverage and reducing the number of deterministic patterns in the second phase of mixed-mode BIST. Test pattern generation for P-PET is achieved by selecting characteristic polynomials of multiple-polynomial linear feedback shift register (MP-LFSR). In this thesis, the mixed-mode BIST scheme with P-PET in the first phase is further improved in terms of the fault coverage of the first phase. This is achieved by optimization of polynomial selection of P-PET. In usual mixed-mode BIST, the set of undetected by the first phase faults is handled in the second phase by generating deterministic test patterns for them. The method in the thesis is based on consideration of these patterns during polynomial selection. In other words, we are embedding deterministic test patterns in P-PET. In order to solve the problem, the algorithm for the selection of characteristic polynomials covering the pre-generated patterns is developed. The advantages of the proposed approach in terms of the defect coverage and the number of faults left after the first phase are presented using contemporary industrial circuits. A comparison with usual pseudo-random testing is also performed. The results prove the benefits of P-PET with embedded test patterns in terms of the fault coverage, while maintaining comparable test length and time

    BIST test pattern generator based on partitioning circuit inputs

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1995.Includes bibliographical references (leaves 33-35).by Clara Sánchez.M.Eng

    Efficient Test Compaction for Pseudo-Random Testing

    Get PDF
    Compact set of 3-valued test vectors for random pattern resistant faults are covered in multiple test passes. During a pass, its associated test cube specifies certain bits in the scan chain to be held fixed and others to change pseudo-randomly. We propose an algorithm to find a small number of cubes to cover all the test vectors, thus minimizing total test length. The test-cube finding algorithm repeatedly evaluates small perturbations of the current solution so as to maximize the expected test coverage of the cube. Experimental results show that our algorithm covers the test vectors by test cubes that are one to two orders of magnitude smaller in number with a much smaller increase in the percentage of specified bits. It outperforms comparable schemes reported in the literature

    Testing PUF-Based Secure Key Storage Circuits

    Get PDF
    Abstract-Design for test is an integral part of any VLSI chip. However, for secure systems extra precautions have to be taken to prevent that the test circuitry could reveal secret information. This paper addresses secure test for Physical Unclonable Function based systems. In particular it provides the testability analysis and a secure Built-In Self-Test (BIST) solution for Fuzzy Extractor (FE) which is the main component of PUF-based systems. The scheme targets high stuck-at-fault (SAF) coverage by performing scan-chain free functional testing, to prevent scan-chain abuse for attacks. The scheme reuses existing FE sub-blocks (for pattern generation and compression) to minimize the area overhead. The scheme is integrated in FE design and simulated; the results show that a SAF fault coverage of 95.1% can be realized with no more than 50k clock cycles at the cost of a negligible area overhead of only 2.2%. Higher fault coverage is possible to realize at extra cost

    Design of Low Power TPG for BIST Using Reconfigurable Johnson Counter

    Get PDF
    Worked in Self-Test assumes an essential job in testing of VLSI circuits. Test designs created utilizing design generator is utilized to test the Circuit under Test. Regular technique for test design age includes in Reconfigurable Johnson Counter and LFSR which needs in relationship between's progressive test vectors. A Modern Low Power test design is created utilizing Reconfigurable Johnson Counter and Accumulator. A Low Power utilization gadget is basic for battery worked gadgets. The system for delivering the test vectors for BIST is coded utilizing VHDL and reproductions were performed with ModelSim 10.0b

    A Modified Test Pattern Generation Architecture for Fault Detection in BIST

    Get PDF
    Multiple test patterns varying in a single bit position is generated for built-in-self-test (BIST). The test patterns generated using Johnson Counter and Seed Vector lacks in fault coverage. So Seed vector block is eliminated and patterns varying in single bit position is generated using 8 bit Johnson Counter has been proposed to have the required fault coverage with reduced test length. The generated test patterns have an advantage of minimum transition sequence. The methodology for producing the test vectors for BIST is coded using VHDL and simulations were performed with ModelSim 10.0b. The Area utilization and the power report were manipulated with the help of Xilinx ISE 9.1 software. The area reduction of 58% and power reduction of 9% is achieved while generating test patterns using Johnson counter
    corecore