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ABSTRACT 

 

The topic of this thesis is related to testing of very large scale integration circuits. 

The thesis presents the idea of optimizing mixed-mode built-in self-test (BIST) scheme. 

Mixed-mode BIST consists of two phases. The first phase is pseudo-random testing or 

partial pseudo-exhaustive testing (P-PET). For the faults not detected by the first phase, 

deterministic test patterns are generated and applied in the second phase. Hence, the 

defect coverage of the first phase influences the number of patterns to be generated and 

stored. The advantages of P-PET in comparison with usual pseudo-random test are in 

obtaining higher fault coverage and reducing the number of deterministic patterns in the 

second phase of mixed-mode BIST. Test pattern generation for P-PET is achieved by 

selecting characteristic polynomials of multiple-polynomial linear feedback shift 

register (MP-LFSR). 

 In this thesis, the mixed-mode BIST scheme with P-PET in the first phase is 

further improved in terms of the fault coverage of the first phase. This is achieved by 

optimization of polynomial selection of P-PET.  

In usual mixed-mode BIST, the set of undetected by the first phase faults is 

handled in the second phase by generating deterministic test patterns for them. The 

method in the thesis is based on consideration of these patterns during polynomial 

selection. In other words, we are embedding deterministic test patterns in P-PET. In 

order to solve the problem, the algorithm for the selection of characteristic polynomials 

covering the pre-generated patterns is developed.  

The advantages of the proposed approach in terms of the defect coverage and the 

number of faults left after the first phase are presented using contemporary industrial 

circuits. A comparison with usual pseudo-random testing is also performed. The results 

prove the benefits of P-PET with embedded test patterns in terms of the fault coverage, 

while maintaining comparable test length and time. 
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 1.1 Motivation and goals of the work 

 

Testing plays a crucial role in any kind of production. There is a certain risk of the 

product to be of low-quality when poorly examined. The meaning of the term testing 

varies depending on the device to be tested. In general sense, testing is a checking of the 

quality of the item. The results of the testing show whether the product meets all 

specifications and requirements.    

For very large scale integration (VLSI) circuits, testing is a necessity due to 

possible defect presence. These defects might be caused by material defects, 

malfunctions of equipment, design errors. On the stage of development, when the 

design is fabricated for the first time, testing is performed to ensure correctness of the 

design and meeting of specifications. In mass production, every chip is subjected to 

manufacturing testing where material defects are of concern. In testing, the 

representation of the material defect, fault, is used. There exist different fault models to 

capture the nature of the physical defect logically. The most spread fault model is the 

stuck-at fault model. In this model, it is assumed that the line is always connected to 

ground (stuck-at “0”) or power supply (stuck-at “1”). 

VLSI circuits are tested by applying the test patterns to the inputs of the circuit 

and comparing each of the output to the correct one. The test inputs, or patterns, need to 

be pre-computed and stored. They also can be generated during the test. Testing of 

VLSI circuits can be classified to online testing, which takes place during system 

operation, and offline; external testing and internal, or self-testing. External testing is 

performed by automatic test equipment (ATE). For the purpose of pattern generation, 

automatic test pattern generator (ATPG) is used. Internal testing takes advantages of 

design for testability (DFT) techniques to decrease the cost and the time of testing. DFT 

is a technique which increases the testability of the design. One well-known application 

of DFT is built-in self-test (BIST).  In BIST, the part of the circuit on a chip tests the 

circuitry by generating the test patterns and analyzing the output responses of the 

circuit. 
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Testing of VLSI circuits can be fault model dependent and fault model 

independent.  Generally speaking, the fault model dependent algorithm creates test for 

the faults of a pre-defined fault model. In the fault model independent testing, test 

patterns are generated without targeting specific fault models. The fault model 

dependent testing has a smaller set of the patterns to be applied, but it is more difficult 

to generate these patterns; whereas the fault model independent test set is easier to 

generate, but it ends up with larger number of the patterns to ensure specified fault 

coverage. Even so a fault model is helpful in the testing; it cannot completely accurately 

represent the real defect [18]. So, the significant advantage of the fault model 

independent testing is that it is not constrained to the specific fault model. 

As an example of the fault model dependent testing, pseudo-random testing can 

be named. In pseudo-random testing [10], the set of pseudo-random patterns are used to 

test the circuit. If we have a circuit with n inputs, then the subset of 2
n
 test patterns is 

applied.  Pseudo-random testing cannot give 100% fault coverage since the circuit 

contains random-pattern-resistant faults. In order to determine the quality of the test, a 

fault simulation is required. In addition to that, the number of patterns needed to ensure 

high fault coverage might be large. This makes the approach impractical.  

In order to increase the fault coverage of pseudo-random testing, it is often used 

as a part of mixed-mode BIST scheme. Mixed-mode BIST consists of two phases. The 

first phase is usually pseudo-random testing covering the most of the faults, and the 

second is the phase of generation of deterministic test patterns to cover all faults 

undetected in the first phase, so-called random-pattern resistant faults. The limitations 

of the fault model to represent a real defect lead us to the consideration of fault-model 

independent testing. 

We will start by introduction of exhaustive testing (ET). Exhaustive testing gives 

100% defect coverage, but it requires applying all possible 2
n
 test patterns to an n-input 

combinational circuit under test (CUT) and verifying the correctness of the output for 

each combination. If n is large, exhaustive testing requires too much time and certainly 

very large number of the test patterns to be applied. This makes the approach 

unrealizable.  

A way to decrease the test time is pseudo-exhaustive testing (PET). It uses 2
w
 test 

patterns, where w<n. Pseudo-exhaustive testing [11] exercises different kinds of circuit 

segmentation, and then it tests each segment exhaustively. The time for PET depends on 

the sizes of segments. The obvious advantage of PET is that it does not require fault 

simulation or fault modeling [15].  

In ET and PET one can obtain 100% defect coverage. However, the sizes of the 

circuits, as well as the number of primary inputs and outputs are increasing. Mentioned 

approaches are facing the challenge of generating long test length for today’s circuits, 

and that makes them infeasible. In order to solve this problem partial pseudo-exhaustive 

testing (P-PET) was proposed.  

P-PET [9] exercises cone segmentation where each cone is a subcircuit containing 
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all predecessors of the output of the circuit. In P-PET case, only cones up to a given size 

MAX are tested exhaustively (instead of all the circuit cones as in pseudo-exhaustive 

testing and instead of exhaustively enumerating of all inputs as in exhaustive testing). 

After applying P-PET, some faults from the larger than MAX cones are left undetected 

and the desired fault coverage might not be achieved. In order to increase the fault 

coverage, mixed-mode BIST scheme is needed. 

 In [9] it was proposed to use P-PET in the first phase of mixed-mode BIST. The 

benefit of the approach is in obtaining higher fault coverage than in pseudo-random 

testing while maintaining the handleable test length. After applying P-PET, fewer faults 

are left for the second phase of mixed-mode BIST in comparison with usage of pseudo-

random testing. 

 The number of the test patterns to be generated in the second phase might still be 

big to ensure required fault coverage. In BIST we need to store deterministic test 

patterns on a chip. So, the problem of violating the memory limitations might occur 

when storing deterministic patterns. Particularly this problem we want to solve in the 

thesis. We aim at obtainment of higher defect coverage of the first phase and significant 

decrease of the number of deterministic patterns in the second phase of mixed-mode 

BIST provided the use of P-PET in the scheme. Hence, less memory is needed to store 

the patterns. 

The goal of the thesis is to encode the deterministic test patterns during P-PET. To 

accomplish the goal, we need to foresee the faults which would not be detected in the 

first phase of mixed-mode BIST and to test maximized number of these faults already in 

P-PET. Thus, we may not need mixed-mode BIST, and P-PET is enough to attain 

certain level of the fault coverage. This will give a significant improvement in terms of 

the memory needed to store the test patterns. 

 

1.2 Thesis outline 

 

The introductory part is followed by background information and state of the art 

in chapter 2. Then the formulation of the problem and the proposed solution are 

discussed in chapter 3. The described solution flow determines the order of the 

proceeding chapters. Firstly, the fault classification and deterministic test pattern 

generation will be considered in chapter 4. Then, we will deal with the process of 

selection of characteristic polynomials for P-PET in chapter 5. The experimental results 

will be discussed in chapter 6.  Conclusions are made in chapter 7.  
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CHAPTER 2 

 PRELIMINARIES AND STATE OF THE ART  
 

Contents 

2.1 Basic Definitions .................................................................................................. 10 

2.2 Fault model dependent testing .............................................................................. 14 

2.2.1 Mixed-mode BIST ......................................................................................... 17 

2.3 Fault model independent testing ........................................................................... 20 

2.4 Partial Pseudo-Exhaustive Testing ....................................................................... 23 

 

 

In this chapter we will discuss preliminaries necessary for understanding of the 

problem stated in the thesis and the solution proposed. Firstly, we will introduce basic 

definitions regarding testing of VLSI circuits as defect, fault, fault model and pattern. 

We will introduce fault model dependent testing and discuss its advantages and 

disadvantages. Then we will consider fault model independent testing with its pros and 

cons. And finally, the problem to be solved will be presented.  

 

2.1 Basic Definitions 

 

A testing of VLSI circuits is an experiment to check the presence of errors. It 

provides with information about the quality of the chip. Testing procedure consists of 

applying the set of inputs to the circuit and observing the outputs with subsequent 

evaluation of the outputs. The concept of testing is depicted in Figure 2.1.  

 

 

 

 

 

 

Figure 2.1: The concept of testing 
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A defect is a flaw or physical imperfection that may lead to a fault [6]. The 

purpose of the testing is to identify the presence of the defects in the circuit. We 

understand that the circuit has defects if we observe incorrect behavior.  

The sources of defect are missing or extra material, wear-out, influence of 

environmental factors, such as temperature, humidity, vibrations causing the aging of 

components. Defects of interconnections among components can be subdivided to 

shorts and opens. Short happens when there is a connection which should not be, and 

open occurs as a result of breaking out of connection. 

A fault is a representation of a defect reflecting a physical condition that causes a 

circuit to fail to perform in a required manner [6]. Faults can be classified to permanent, 

intermittent and transient depending on their duration. Permanent faults once occurred 

do not vanish. Intermittent faults appear for some periods of time. Transient faults arise 

one time and often are caused by environmental factors. Later on we will talk about 

permanent faults only.  

A fault model is a logical representation of the fault. The fault model introduction 

makes analysis of the testing possible and also limits the scope of the faults to be 

considered. There exist different kinds of fault models. There are stuck-at fault model 

[34] (stuck-at “0” or stuck-at “1”) when there is a permanent short with ground or 

power; bridging fault model [12] in case of the short between two signal lines; CMOS 

transistor stuck-open [16] when transistor is stuck in the open state; and CMOS 

transistor stuck-short [20] when transistor is permanently shorted; memory faults [30] 

and delay faults [41].  

Stuck-at fault model is the most popular fault model. It can be used for modeling 

many defects, it is technology independent, and it is simple. There are single stuck-at 

faults and multiple stuck-at faults. In the single stuck-at fault model, one line is assumed 

to be stuck-at “0” or “1”. For example, in the circuit depicted in Figure 2.2, the line x3 is 

stuck-at “0”. In multiple stuck-at fault models, several lines are faulty at the same time. 

In order to identify the presence of the fault in a circuit, the test inputs which can detect 

the fault need to be applied. The set of inputs is composed of so-called patterns.  

A pattern is an assignment of the inputs of the circuit under test. One can 

distinguish between care bits (or specified bits) which are either logic “0” or “1”, and 

don’t care bits (or unspecified bits) represented by “X”. In the case of care bits, 

specific input must be set to the value of the care bit in order to detect particular fault. In 

the case of don’t care bit, the input can be set either to “0” or “1” without influencing on 

the detection of the fault.  

The pattern can detect the fault if the output of the faulty circuit is different from 

the output of the fault-free circuit when applying this pattern. In other words, if z is the 

output of the fault-free circuit and zf is the output of the faulty circuit, then particular 

pattern tests the fault if        . 

Consider the combinational circuit consisting of primitive logic gates such as 
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AND, OR and NOT depicted in Figure 2.2. The circuit output function is   

(     )    ̅̅ ̅  . Assume that there is stuck-at “0” on the input line x3. The faulty 

output function will be         .  Then, in order to detect this fault we need to have 

(2.1). 

         (     )    ̅̅ ̅   (     )     ̅̅ ̅      (2.1) 

 So, to assure that    ̅̅ ̅    , it is necessary to have at the same time x2=0 and 

x3=1. The value of x1 is not important, it can be either “0” or “1”. Consequently, the 

pattern detecting the fault will be X01. 

ATPG (Automatic test pattern generation/generator) is an electronic design 

automation technology to generate test patterns to be applied to the circuit in order to 

ascertain the presence or absence of the fault at some location of the circuit. In the 

process of ATPG, we can distinguish two main concepts. There are fault activation and 

fault propagation.  

Consider the same circuit in Figure 2.2. Assume there is stuck-at “0” on the line 

y2. We need to perform fault simulation, that is simulating of the circuit without this 

fault and with the presence of fault. Applying the test pattern 001, we get the output of 

the fault-free circuit z=1. The output of the faulty circuit is zf =0. The test pattern 001 

activates the fault stuck-at “0” on the line y2 if it generates the error by creating the 

value on the line y2 different from the value of assumed fault. And then the resulting 

signal value, or the fault effect, is propagated to the primary output. The propagation 

path in our example is y2, y3, z.  

 

 

 

 

 

 

Figure 2.2: Combinational circuit 

 

A fault coverage is a percentage of the faults detected after the test is performed. 

Fault coverage is determined by fault simulation. After performing the fault simulation, 

we have information regarding detected and undetected faults. Fault coverage is defined 

by equation (2.2). In order to calculate the fault coverage, we divide the number of 

detected faults to the total number of faults. 

 Fault coverage   
                

              
   (2.2) 
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The fault coverage evaluates the effectiveness and quality of the test. Fault 

coverage of 100% cannot be achieved if the circuit contains undetectable faults. For 

undetectable faults, it is not possible to find the pattern to differentiate the fault-free 

circuit from the faulty circuit. In this case, we will refer to effective fault coverage or 

test coverage calculated by formula (2.3).  The effective fault coverage is calculated by 

division of the number of detected faults into subtracted by the number of undetectable 

faults total number of faults. The number of undetectable faults is also determined by 

fault simulation.  

 Effective fault coverage  
                 

                                   
 (2.3) 

ATE (automatic test equipment) is equipment that performs testing using 

automation to perform measurements, obtain and evaluate the test results. ATE realizes 

the test by transporting and applying the test patterns and by evaluation of responses 

which are transported back to ATE.  ATE is very precise equipment, but it is also very 

expensive. ATE is used for external testing. In internal testing the techniques called 

design for testability (DFT) are exploited.  

DFT is a technique that ensures testability of the design. Testability of the design 

can be determined by controllability and observability. 

Controllability is an ability to set some internal circuit nodes to specific values.  

Observability is an ability to observe the values of internal nodes. 

By increasing the level of testability of the design, the decrease in the test time 

and the cost can be reached in internal testing. On the other hand, additional hardware is 

required that affects the area overhead and causes delays. So, the balance is needed 

between introducing DFT and the gain which can be achieved by DFT.  

Among DFT techniques should be mentioned ad hoc techniques [13] 

(initialization [13], test points insertion [6], partitioning of the circuit [13]), scan-based 

design [6] and boundary scan [34]. Scan design is widely used approach, method of 

distributing the test patterns to the internal circuit under test and responses to the 

outputs of the circuit by means of the scan chains.  

A scan chain is a chain of registers or flip-flops allowing easy to read and write 

the content. The test patterns are shifted in via the scan chain and results are shifted out 

to the chip output pins.  

One way of application of DFT is built-in self-test (BIST). In BIST, the part of the 

circuit tests itself. BIST scheme makes testing easier, faster and cheaper. In BIST, 

additional hardware and software are needed to enable self-checking. 

Having discussed the basic terms, we can introduce typical BIST scheme. The 

typical BIST application hardware includes test pattern generator (TPG), response 

analyzer (RA), circuit under test (CUT) and controller (Figure 2.3).  
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It should be noted that in BIST not only the test pattern generator is on the chip, 

but also the response analyzer. The whole process of testing is under regulation of 

controller. In this scheme, TPG generates the test patterns to be applied to CUT; the 

outputs of CUT are evaluated by RA by comparing them to the correct outputs. It is of 

great importance the way TPG generates the patterns since it affects the fault coverage, 

test time and test cost.  

 

 

 

 

 

 

 

 

Figure 2.3: General BIST hardware scheme 

 

Testing can be based on fault model or can be independent of fault model. In 

relation to that, testing is classified to fault model dependent testing and fault model 

independent testing. 

 

2.2 Fault model dependent testing 

 

Fault model dependent testing is entirely based on the assumed fault model. It 

often results in a shorter test length. Fault model dependent testing has limitations of 

fault model since fault model cannot precisely reflect the nature of the fault. In addition 

to that, in order to perform thorough test of the circuit, one need to consider several fault 

models that increases the test length and time. Another disadvantage of fault model 

dependent schemes is that they often require fault simulation to be performed which is 

expensive. Test pattern generation for fault model dependent testing can be performed 

by ATPG. In this case, ATPG generates patterns for the considered list of the faults of 

particular fault model. 

We will consider fault model dependent testing on the example of pseudo-random 

testing. In pseudo-random testing, patterns have many characteristics of random 

patterns, but they are generated deterministically, that is why the method is called 

pseudo-random. If we have the circuit with n inputs, pseudo-random TPG generates the 

TPG 

CUT 

RA 

Controller 
… 

scan chain 
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subset of 2
n
 input combinations.  

Pseudo-random patterns can be generated by cellular automata or linear feedback 

shift register (LFSR). Cellular automata have better randomness property. Cellular 

automata consist of the cells with forward and backward connections. If we denote by 

Ci the state of the current cell, then the next state of Ci will be determined by (Ci-1, Ci, 

Ci+1), where Ci-1 and Ci+1 are neighboring cells. More information regarding cellular 

automata can be found in [35]. 

We will concentrate on using LFSR as a pattern generator for pseudo-random 

testing. For that, we need basic knowledge of the LFSR. Mathematical background of 

LFSR is presented in [36]. There are two types of the LFSR depending on where XOR-

gates are placed. In Figure 2.4 the external type LFSR is presented, and in Figure 2.5 

the internal type LFSR is depicted. 

 

 

 

 

 

 

Figure 2.4: External type linear feedback shift register 

 

 

 

 

 

Figure 2.5: Internal type linear feedback shift register 

 

 A LFSR consists of the number of D-type flip-flops a0…an and exclusive OR 

(XOR) gates. The configuration of the LFSR is determined by the feedback or 

characteristic polynomial P(x) =1+c1x+c2x
2
+…+cnx

n
 where c1, c2,…,cn are feedback 

coefficients of the value ‘0’ or ‘1’signifying the presence or absence of connection. The 

degree of characteristic polynomial is equal to the number of flip-flops of the LFSR. 

The LFSR generates periodic sequences with maximal period of 2
n
-1 where n is the 

degree of characteristic polynomial. 

A primitive polynomial is a characteristic polynomial of the LFSR generating 

maximum-length sequence. Primitive polynomial p(x) has the property that if we 

an 

cn        

an-1 a0 

cn-1 cn-2 c1 

…. 

…. 

cn-1 

an 

cn         c1 c2 

a0 an-2 an-1 …. 
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compute the remainders of the polynomial division of increasing powers of x to p(x) 

(i.e., x modulo p(x), x
2
 modulo p(x), x

3
 modulo p(x) and so on), we will obtain all 

possible non-zero polynomials of degree less than p(x).  

A seed is an initial state of a LFSR. On the next cycle all seed elements are shifted 

by one position and new seed element is calculated by applying XOR operation on the 

seed elements from the previous cycle specified by the feedback polynomial. 

Consider the LFSR depicted in Figure 2.6. The feedback polynomial of this LFSR 

is P(x) = x
4
 +x

1
+1.  P(x) is a primitive polynomial. The degree of this primitive 

polynomial is equal to 4. We will run this LFSR for (2
4
-1) = 15 cycles and fill in Table 

2.1.  

 

 

 

 

 

 

Figure 2.6: Example of external linear feedback shift register 

 

Clock cycle      

0 x4 x3 x2 x1 

1 x2+ x1 x4 x3 x2 

2 x3+ x2 x2+ x1 x4 x3 

3 x4+ x3 x3+ x2 x2+ x1 x4 

4 x2+ x1+ x4 x4+ x3 x3+ x2 x2+ x1 

5 x3+ x1 x2+ x1+ x4 x4+ x3 x3+ x2 

6 x4+ x2 x3+ x1 x2+ x1+ x4 x4+ x3 

7 x2+ x1+ x3 x4+ x2 x3+ x1 x2+ x1+ x4 

8 x4+x3+ x2 x2+ x1+ x3 x4+ x2 x3+ x1 

9 x4+ x3+ x2+ x1 x4+x3+ x2 x2+ x1+ x3 x4+ x2 

10 x4+ x3+ x1 x4+ x3+ x2+ x1 x4+x3+ x2 x2+ x1+ x3 

11 x4+ x1 x4+ x3+ x1 x4+ x3+ x2+ x1 x4+x3+ x2 

12 x1 x4+ x1 x4+ x3+ x1 x4+ x3+ x2+ x1 

13 x2 x1 x4+ x1 x4+ x3+ x1 

14 x3 x2 x1 x4+ x1 

15 x4 x3 x2 x1 

 

Table 2.1: Sequences generated by LFSR 

 

The values from the last column fill in the scan chain. In Table 2.1 the shifting can 

x4 x1 x2 x3 
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be easily observed and calculation of new element by applying XOR operation on the 

forth and the third column. The values on the 15
th

 cycle are the same as initial. This 

proves that P(x) is indeed the primitive polynomial. 

LFSR tends to generate equal number of “0”s and “1”s. For some circuits the 

biased distribution of “0”s and “1”s is preferred. This is explained by the presence of 

random pattern resistant faults. Random pattern resistant faults have low detection 

probability; they are detected by only a few patterns. As a result, the presence of 

random pattern resistant faults negatively influences the fault coverage. 

There exist several ways to tackle this problem. Firstly, in order to reduce random 

pattern resistivity, weighted TPG can be applied. And, secondly, the fault coverage can 

be improved by mixed-mode BIST scheme. 

In weighted TPG ([34], [42]) the distribution of “0”s and “1” in the pattern 

depends on the weight. Different weights should be pre-computed for the circuitry since 

for each part of the circuit specific distribution has better results. As TPG, LFSR with 

combinational logic is used [29].  

 

2.2.1 Mixed-mode BIST 

 

Mixed-mode BIST scheme consists of two phases. The first phase is pseudo-

random testing during which the large part of the faults is tested, and the second is 

applying deterministic patterns for the random pattern resistant faults which were not 

detected in the first stage. 

For the purpose of deterministic pattern generation, automatic test pattern 

generator is used. All deterministic patterns need to be stored in a ROM (Read-only 

memory). The size of the pattern set directly influence the size of the memory. 

Sometimes the size of the pattern set to be stored violates the memory requirements. In 

order to reduce the memory needed to store the patterns, compression techniques are 

used. 

 As we already know, the pattern consist of care bits, which are important for 

particular fault detection, and don’t care bits, which can be either “0” or “1”. 

Compression technique takes advantage of don’t care bits assigning to them certain 

logic values which enables compression. Or, in other words, compression mechanism 

looks for the patterns which differ in a small number of bits and tries to combine them. 

Different approaches have been proposed for the test data compression. They can 

be classified to code-based schemes (e.g., Dictionary code [5], Huffman code [3]), 

linear-decomposition-based schemes (e.g., linear LFSR reseeding based schemes), 

broadcast-scan-based schemes [6]. In mixed-mode BIST, the deterministic test patterns 

can be encoded in the sequence of pseudo-random patterns by bit-flipping or bit-fixing 

approaches [37], [38], [1]. We will consider in more details LFSR reseeding as very 
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popular and elegant solution for compression. 

In LFSR reseeding [1], deterministic test patterns are encoded into seeds. After 

initializing the LFSR with pre-computed seed, LFSR generates deterministic test pattern 

and fills in the scan chain with the pattern after m cycles, where m is the length of the 

scan chain. A seed can be computed by solving the system of linear equations based on 

the feedback polynomial of LFSR, where each specified bit of the pattern is represented 

by an equation in terms of the seed variables [7].  

In Figure 2.7 the LFSR with feedback polynomial P(x) = x
4
 +x

1
+1 is depicted. 

We start with running the LFSR with seed elements as variables and filling in the scan 

chain. 

 

 

 

 

 

 

Figure 2.7: LFSR with scan chain 

 

Then we compose the system of linear equations according to the bits of the given 

pattern. The system of linear equations for the test pattern TP is represented by (2.4). 

 {

    
    

       
          

                                              (2.4)

   

In our example, the system of equations (2.4) has the solution: x1=1, x2=1, x3=0, 

x4=0 which is the seed needed to encode the pattern TP. The number of care bits in the 

pattern determines the number of equation. The less number of care bits in the pattern, 

the more probability to find the seed. 

In [1] Könemann showed that single-polynomial LFSR should have the length of 

(s+20) in order to find the seed for the pattern with s care bits with the probability less 

than 10
-6

. Then multiple-polynomial LFSRs [2] (MP-LFSR) were introduced. Using 

MP-LFSR, test pattern with s care bits can be encoded with (s+4) bits.  

MP-LFSR is an LFSR with reconfigurable feedback network, where AND-gates 

are used to control the feedback polynomial.   

Multiple-polynomial LFSR gives more freedom and flexibility during pattern 

x4 x3 x1 x2 

TP={X, 0, X, X, X, 0, X, X, X, X, 1, 1} 
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encoding in the sense that hardware is programmable with the seed, and polynomial 

information can be modified [7].  

 

 

 

 

 

 

Figure 2.8: Multiple-polynomial LFSR 

 

In Figure 2.8 the MP-LFSR is illustrated. There the sequence of bits s0, s1,…, sn 

are used to determine the resulting feedback polynomial. If the bit is “0”, the output 

from AND-gate is also “0”, and corresponding branch is not present. As we can see in 

Figure 2.8, the hardware overhead in comparison with the single-polynomial LFSR 

consists of only AND-gates. 

In Figure 2.9 the encoding scheme based on the reseeding of the LFSR is 

presented. The seeds and corresponding polynomial identifiers are stored in a ROM. 

Polynomial identifier is used to configure the feedback network of the LFSR.  

 

 

 

 

 

 

 

 

Figure 2.9: LFSR reseeding scheme 

 

The basic hardware scheme for BIST is Self-Test Using Multiple Input Signature 

Register (MISR) and Parallel Shift Register Sequence generator (PRSG) (STUMPS), 

and in the work presented we will also use this scheme.  

The general STUMPS scheme is illustrated in Figure 2.10. In STUMPS, PRSG 

… 

an an-1 an-2 
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[46] is used for the test pattern generation. Multiple scan chains are applied for the 

purpose of minimization of the test time. Scan chains may have different lengths. In this 

scheme, MISR is used to compact responses [33] since the outcome of CUT should be 

compacted, otherwise processing of huge amount of data becomes impossible. In this 

case, the circuit is tested by comparing the output signature with the correct pre-

computed signature. For this purpose the signature, that is the compressed form of the 

response, is calculated. Further information regarding response compaction can be 

found in [25], [26], [27]. 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: General STUMPS scheme 

 

PRPG loads the scan chains in parallel. The system clocks are triggered. Then the 

test responses are shifted to the MISR, at the same time new patterns are shifted in. To 

improve the randomness of the PRPG, linear phase shifter may be used [46].  

 

2.3 Fault model independent testing  

 

Fault model independent testing does not have the limitations of the fault models. 

This kind of testing may result in a long test length because it does not target specific 

faults. One example of fault model independent testing is exhaustive testing. 

In exhaustive testing, all possible 2
n
 input combinations are applied to the circuit 

with n inputs. Consider the circuit under test in Figure 2.11. This circuit has six inputs 

and three outputs. One should apply 2
6
 = 64 test patterns to test the circuit exhaustively. 

Test patterns for exhaustive testing can be generated by binary counters or LFSRs. 

Since the order of the patterns generated is not important, it is better to use LFSRs [39]. 

PRSG 

Linear Phase Shifter 

… 

MISR 

CUT 

… 

… 
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LFSRs require less hardware than binary counters. 

 

 

 

 

 

Figure 2.11: Circuit under test 

 

If the number of inputs is small, then exhaustive testing is very useful because 

100% of all combinational defects are guaranteed to be detected.  But in the case of the 

large number of inputs, exhaustive test ends up with long test length which is infeasible. 

In order to have the benefits of exhaustive testing and less number of the test patterns, 

pseudo-exhaustive testing was proposed. 

Pseudo-exhaustive testing (PET) [31], [43] exercises different kinds of circuit 

segmentation. Segment is a subcircuit. Each segment is tested exhaustively. In pseudo-

exhaustive testing, one can achieve complete detection of combinational defects. The 

advantage of pseudo-exhaustive testing is that it requires less number of the test patterns 

than exhaustive testing. Segmentation of the circuit can be logical (cone and sensitized 

path segmentation) and physical (hardware) [13].  

We will start with consideration of the cone segmentation. This approach is also 

called verification testing [15].  

An output cone is a sub-circuit containing all structural predecessors of one 

primary output.  

 

 

 

 

 

 

Figure 2.12: Cone segmentation 

 

In the case of the cone segmentation, each cone is tested exhaustively, and all 

cones are tested concurrently. If we have m-outputs circuit, than this technique defines 
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m cones. The cone segmentation example is shown in Figure 2.12.  

The size of the cone is determined by the number of the inputs in the cone. 

Consider the circuit in Figure 2.12; it has six inputs and three outputs. We divided the 

circuit into three cones (by the number of outputs). The size of each cone is equal to 

three. To test the circuit we will need 3*2
3
=24 patterns instead of 64 patterns as in 

exhaustive testing. 

Verification testing cannot be feasible if the circuit has outputs depending on too 

many circuit inputs [43]. If the circuit is too big and complex, three other techniques are 

used: sensitized path segmentation, hardware partitioning and partial hardware 

partitioning. 

To start off with, we will consider sensitized path segmentation [31]. A line in a 

circuit whose value in the test changes in the presence of fault is said to be sensitized to 

the fault by the test.  

 Sensitized path is a path composed of sensitized lines.  

In sensitized path segmentation, some inputs are set to the values, so that 

particular segments are triggered. Consider combinational circuit in Figure 2.13. C1 and 

C2 are sub-circuits. In order to test C1 exhaustively, one need to apply     test patterns 

to a. At the same time we need to set b to some value so that d=1. Sensitized path in 

this case is c-f.   C2 can be tested in a similar way. Totally, we will need         1 

patterns to test the circuit [13] instead of        patterns necessary for exhaustive 

testing.  

 

 

 

 

 

Figure 2.13: Testing via sensitized path segmentation [13] 

 

Sensitized path segmentation technique requires high computational time. It may 

result in incomplete defect coverage because of the possible defects presence between 

the segments [14].  

In hardware partitioning technique [31], [28], hardware is added to the circuit to 

control and observe the segment’s inputs and outputs. So, the circuit is divided into 

small sub-circuits. Each subcircuit is directly controllable and observable. One way is to 

use multiplexer partitioning. The disadvantage of adding extra hardware is in the speed 

decrease and the cost of implementation. 
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In partial hardware partitioning [44], circuit’s inputs indirectly control the 

segment’s input, and added hardware directly observes the segment output. Partial 

hardware partitioning has features of hardware partitioning and sensitized partitioning. 

Test patterns are applied to the primary inputs as in the sensitized partitioning. But 

instead of sensitizing the segment outputs to circuit outputs, extra hardware is added to 

allow the segments outputs to be observed directly as in the hardware partitioning. This 

approach results in lower hardware overhead and less test set generation complexity 

[44]. 

There are  number of ways to generate test patterns in PET: syndrome-driver 

counter [19], constant-weight counter [15], combined LFSR and shift register [21], 

combined LFSR and XOR gates, condensed LFSRs [22], cyclic LFSRs [23], [24].  

These methods in some cases may result in a long test length, which is not applicable 

for today’s circuits.  

Summing up, PET results in a less number of test patterns than exhaustive testing, 

and it is fault model independent. PET attains mentioned benefits by means of logical or 

hardware segmentation. If the circuit is very large, cone segmentation has infeasible test 

length. In order to tackle this problem, hardware segmentation was proposed. The 

disadvantages of hardware segmentation technique are in the additional delays and in 

the cost increase. In order to have the benefits of cone segmentation (no hardware 

overhead) and make it feasible for larger circuits, partial pseudo-exhaustive testing was 

proposed. 

 

2.4 Partial Pseudo-Exhaustive Testing 

 

Partial pseudo-exhaustive testing (P-PET) [9] is a technique that is based on the 

cone segmentation. In P-PET, only cones up to specified MAX size are tested 

exhaustively. So, the problem of long test length is tackled there. Cone segmentation 

technique becomes feasible.  

 

  

 

 

 

Figure 2.14: Cone segmentation for P-PET 

 

Consider the circuit in Figure 2.14. If we assume that MAX=6, then we start with 

exhaustive testing of the blue cones of the size 6. The red cone will not be tested 
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exhaustively since the size of it is larger than 6. 

After testing exhaustively the cones up to MAX size, some faults from the larger 

cones will not be detected. It should be noted that for the faults from the larger cones, P-

PET behaves like pseudo-random testing. In order to target the faults from the larger 

cones which were not detected by P-PET, deterministic patterns need to be generated. 

So, P-PET cannot be used alone but in a mixed-mode BIST scheme where in the first 

phase is P-PET instead of pseudo-random testing. Consequently, P-PET scheme is 

based by half on fault model independent testing (first phase of mixed-mode BIST) and 

by other half on fault model dependent testing (second phase of mixed-mode BIST).  

Consider STUMPS architecture depicted in Figure 2.15 for P-PET testing. Pattern 

generation for P-PET is implemented by MP-LFSR. The corresponding characteristic 

polynomials are stored in a ROM to update MP-LFSR. So, in the first stage of the 

mixed-mode BIST, MP-LFSR, configured by stored characteristic polynomials, 

generates test patterns to tests all cones up to MAX size exhaustively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15: STUMPS architecture for P-PET testing 

 

Then for the faults from the larger than MAX cones which were not detected by 

the first stage, deterministic test patterns are encoded by LFSR reseeding technique. 

Seeds and characteristic polynomials are also stored in a ROM. In the second phase of 

the mixed-mode BIST, the deterministic test patterns generated by MP-LFSR 

configured by corresponding characteristic polynomial and initialized with particular 
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seed are applied. 

Characteristic polynomials for MP-LFSR are pre-calculated from the circuit 

structure. The process of choosing feedback polynomials for P-PET is NP-complete 

problem, and set covering heuristics is applied to solve the problem efficiently. In [9] 

the goal was set to obtain the smallest possible number of feedback polynomials. In this 

case, the test application time will be minimal, and less memory is need to store the 

polynomials.  

Formulating the problem from [9] more formally, let Kc be the set of cones of the 

circuit up to the size MAX. Let P be the set of polynomials up to degree MAX. The aim 

is to find the smallest set of polynomials Ps, the subset of the set P, which will cover the 

set of the cones Kc (2.2).  

                        (2.2) 

We will use the following designation     to denote that the polynomial p tests, 

or covers, the cone k. It is said that the feedback polynomial of degree r tests the cone k 

which has s inputs when 2
r
-1 different patterns generated cover 2

s
-1 different 

assignments of the cone. On the other hand, this approach is very time consuming and 

not applicable for the large set of polynomials. 

 For this task Barzilai’s Theorem [32] is very helpful. 

Barzilai’s theorem: 

Let (aτ)τ≥0 be a shift register sequence generated by a primitive polynomial p of 

degree r. The set T=(a0,...,ar-1), (a1,…,ar), …,(a2
r
-2, a0,…,ar-2) is an exhaustive 

enumeration of the assignment of (i1,…, is), if the remainder classes (X
i1

 mod p), …,(X
is
 

mod p) over GF(2) are linearly independent. Consequently, to determine whether the 

polynomial covers the cone we need to check the linear independency of remainders 

(X
i1

 mod p), …,(X
is
 mod p) [32]. 

Figure 2.16 shows an example for checking whether particular feedback 

polynomial can cover the cone. 

 

 

 

 

Figure 2.16: LFSR and scan chain 

 

Depicted in Figure 2.16 LFSR, has feedback polynomial P(x) = x
3
+x

2
+1. In this 

example, we are considering the cone k = {0, 2, 4}. So, according to Barzilai’s 

Theorem, we need to calculate remainders (2.5). 
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(x
0
) mod (x

3
+x

2
+1) = (1) 

 (x
2
) mod (x

3
+x

2
+1) =(x

2
)  (2.5) 

(x
4
) mod (x

3
+x

2
+1) =(x

2
+x+1) 

The remainders (1), (x
2
), (x

2
+x+1) are linearly independent, consequently, the 

feedback polynomial P(x) = x
3
+x

2
+1 covers the cone k.  

If we consider the cone k1= {0, 2, 4, 5}, the corresponding remainders presented 

in (2.6) are linearly dependent. 

       (x
0
) mod (x

3
+x

2
+1) = (1) 

 (x
2
) mod (x

3
+x

2
+1) =(x

2
) (2.6) 

          (x
4
) mod (x

3
+x

2
+1) =(x

2
+x+1) 

        (x
5
) mod (x

3
+x

2
+1) =(x+1) 

Consequently, the polynomial P(x) = x
3
+x

2
+1 does not cover the cone k1. 

Having discussed the principles of P-PET, we continue with advantages of P-PET. 

Usually in the first phase of the mixed-mode BIST, pseudo-random test is used. 

Applying P-PET in the first phase of the mixed-mode BIST results in the increased 

defect coverage and lower number of deterministic patterns in the second phase of 

mixed-mode BIST.  

The problem with this realization may arise when in the second phase of mixed-

mode BIST, one need to encode large number of deterministic patterns and store them 

on a chip.  Memory requirements may limit the storage for deterministic patterns. That 

is the reason why we want to tackle this problem and try to target some part of the faults 

from the larger than MAX cones which cannot be covered by P-PET already during P-

PET stage. Or, in other words, we want to encode the deterministic patterns, which 

would be generated in the second phase of the mixed-mode BIST for the uncovered 

faults from the larger cones, in P-PET. So, the defect coverage of P-PET will be 

increased. This can be done by appropriate selection of the feedback polynomials for P-

PET pattern generation. In some cases, only P-PET would be enough to reach certain 

fault coverage, in others- less number of patterns need to be encoded and stored. 
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In this chapter we will provide detailed problem description and formulation of 

the goal to be reached in the thesis. We will also discuss the proposed solution flow to 

achieve the objective.  

 

3.1 Problem formulation 

 

In mixed-mode BIST scheme, two phases are distinguished. In the first phase, 

patterns generated on a chip are applied to the circuit. For the faults which were not 

detected in the first phase, deterministic test patterns are stored on a chip. In the second 

phase, these stored patterns are used to reach the certain fault coverage.  

P-PET in the first phase of mixed-mode BIST tests exhaustively cones up to some 

MAX size. In Figure 3.1 the cones of the circuit up to MAX size are shown with the blue 

color. For the faults from the larger than MAX cones, P-PET behaves like pseudo-

random test. In Figure 3.1 the possible locations of these faults are represented by 

yellow areas.  

 

  

 

 

 

 

Figure 3.1: Cone segmentation in P-PET 
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The majority of the faults are already covered by P-PET. For the faults not 

detected by P-PET, deterministic test patterns need to be generated. One possibility is to 

store deterministic test patterns on a chip. Another way is to encode these patterns in P-

PET. The degree of freedom to choose primitive polynomials to cover all cones up to 

MAX size can be exploited. So, our goal can be formulated as follows: we aim to select 

polynomials for P-PET pattern generation such that the set of undetected faults is 

minimized (or the number of detected faults from the larger than MAX cones is 

maximized). 

The goal formulation can be further concretized. We can either aim to have the 

same number of polynomials as in P-PET where only cones up to MAX size are 

targeted, or to obtain higher fault coverage by means of adding extra polynomials. So, 

we can distinguish two subgoals: 

1) Selection of minimal number of polynomials for P-PET so that the number 

of undetected faults is minimized. 

2) Selection of polynomials for P-PET so that the number of undetected 

faults is minimized (the number of polynomials can be more than 

minimal)  

We will define the problem more formally.  

Given the circuit to be tested, we denote KMAX the set of cones of the circuit up to 

the size MAX. The set of cones larger than MAX is denoted as KLMAX, and F stands for 

the set of the faults from KLMAX.  We also have the set of polynomials up to degree 

MAX, PMAX.  Let    {          } be the set of cones from KMAX tested by the 

polynomial p.  

The aim is to find the set of polynomials         such that      ⋃       , 

and the set of undetected faults Fud is minimized. 

 

3.2 Solution flow 

 

We aim to target the faults from the set Fud during the selection of polynomials for 

P-PET.  But the genuine set of the faults Fud can be obtained only after applying P-PET. 

We can exploit the fact that P-PET for the set of faults F from the larger than MAX 

cones behaves like pseudo-random test and classify the faults from the set F into hard-

to-detect faults (not detectable by applying pseudo-random patterns) and easy-to-detect 

faults (detectable by pseudo-random pattern sequence). This fault classification can be 

performed by fault simulation of the large number of pseudo-random patterns (for 

example, 10
6
 patterns). It is important to note that the set of hard-to-detect faults will be 

a superset of the set Fud since the number of patterns applied in the multiple-polynomial 

scheme of P-PET is larger than 10
6
. 
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Having obtained the list of hard-to-detect fault, it is necessary to encode these 

faults by test patterns so that we can take them into account while selecting the feedback 

polynomials for P-PET. In the step of checking whether some polynomial can cover the 

pattern, we will use the idea of MP-LFSR reseeding presented in the second chapter. 

The polynomial covers the pattern, if there is such a seed that LFSR will generate this 

particular pattern, given the configuration of the LFSR represented by certain feedback 

polynomial. It is necessary to emphasize that the less number of care bits the test pattern 

has, the bigger the probability to find the polynomial covering the pattern.  This was 

discussed in subsection 2.2 of chapter 2. So, for us it is important to generate test 

patterns with minimized number of care bits. 

Given the set of cones up to MAX size, the set of polynomials up to degree MAX, 

the pattern list with minimized number of care bits, we aim to select the polynomials, so 

that they cover all the cones up to the size MAX, and the number of deterministic test 

patterns covered is maximized. This is a set covering problem where heuristics is 

applied to solve it efficiently. 

To sum up, the following steps will be taken to accomplish the goal: 

1) Fault classification on hard-to-detect and easy-to-detect faults 

2) Generation of the test patterns for hard-to-detect faults with minimized number 

of the care bits 

3) Set covering heuristics to choose feedback polynomials for P-PET TPG 

In chapter 4 and 5, these steps are described in details. 
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In this chapter we will consider the first two steps necessary to achieve the 

formulated goal. In the first subsection, we will deal with fault classification and 

obtainment of the list of hard-to-detect faults. In the second subsection, we will discuss 

test pattern generation process with minimized number of care bits for the list of hard-

to-detect faults. 

 

4.1 Fault classification on hard-to-detect and easy-to-detect faults 

 

In this subsection, we will discuss in details the first step in the process of 

achieving the goal described in chapter 3. In general P-PET, all faults from the cones up 

to MAX size are detected. For the faults from the larger than MAX cones, P-PET acts 

like pseudo-random test. Hence, some faults from the larger than MAX cones are also 

detected, some of them are not detected. We need to obtain a safe approximation to the 

set of the faults Fud not detected by P-PET.  

We will approach the problem by classification of the faults from set F, the set of 

the faults from the larger than MAX cones, into detectable by pseudo-random test 

sequence (easy-to-detect faults) and not detectable by pseudo-random test (hard-to-

detect faults).  

This classification is achieved by performing the fault simulation when applying 

the large number of random patterns. Figure 4.1 illustrates the idea. Given the circuit 

netlist, the list of faults from the set F of stuck-at model, we simulate the circuit in the 

presence of a million of random patterns. The resulting list of undetected faults will be 

equivalent to the list of hard-to-detect faults. All detected by the fault simulation faults 

are identical to the easy-to-detect faults. 

The obtained set of hard-to-detect faults is a super set of the set of faults Fud. This 



                                                          Chapter 4. Fault classification and test pattern 

generation 

31 

 

is due to the fact that the number of patterns applied in multiple-polynomial scheme of 

P-PET is larger than a million, the number of random patterns we applied for the fault 

simulation. 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 4.1: Fault simulation 

 

The number of random patterns we applied in the fault simulation was a million. 

We will discuss now the relation between the number of random patterns applied and 

the fault coverage in pseudo-random testing. 

  

 

 

 

 

 

 

 

 

Figure 4.2: Fault coverage of pseudo-random testing 
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In Figure 4.2 the dependency of the fault coverage from the number of pseudo-

random patterns applied in pseudo-random testing is shown [40]. The fault coverage 

rises in logarithmic manner towards the saturation.  

According to Figure 4.2, in the beginning the slope of the curve is quite steep till 

it reaches its saturation. So, the fault coverage is growing rapidly until it saturates [40]. 

Hence, it does not matter how many patterns to apply n1 or n2 when we are close to the 

saturation of the fault coverage.  

The fault simulation was performed for industrial circuits of different sizes. The 

results of the fault simulation and discussions are presented in chapter 6. The percentage 

of hard-to-detect faults from the faults of the set F lies in the range from 0.6% to 50%. 

 

4.2 Generation of deterministic test patterns for hard-to-detect faults 

 

Having obtained the list of hard-to-detect faults, we aim now at encoding these 

faults into test patterns with minimized number of care bits. The requirement of 

minimized number of care bits is very essential. The patterns generated for hard-to-

detect faults will be used further in the process of selection of characteristic 

polynomials. And the less number of care bits the pattern has, the greater the probability 

for the polynomial to cover the pattern. 

 We will consider several methods for the test pattern generation: ATPG with 

minimum number of care bits and commercial ATPG. 

 

4.2.1 ATPG with minimum number of care bits 

 

The process of the test pattern generation with minimum number of care bits will 

be based on satisfiability (SAT) problem. To start off with, we will introduce basic 

definitions about SAT taken from [45]. 

A Boolean formula is a logic expression defined over variables that take value “True” 

or “False” which are identified with “0” or “1”. 

A truth assignment to a set V of Boolean variables is a map     {   }. 

A satisfying assignment for F is a truth assignment σ such that F evaluates to 1 under 

σ. 

Conjunctive normal form (CNF) of propositional formulas F is a conjunction (AND, 

˄) of clauses, where each clause is a disjunction (OR, ˅) of literals, and each literal is 
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either a variable or its negation (NOT, ¬). 

 F = (a ˅¬b) ˄ (¬a ˅c ˅d)  (4.1) 

Expression (4.1) shows the example of CNF. There CNF formula with four 

variables and two clauses is presented. 

The Boolean SAT problem can be formulated as follows: given a CNF formula F, 

does F have a satisfying assignment? And often the problem includes finding of an 

actual satisfiability assignment. 

We will consider first SAT-based two-valued ATPG. SAT formulas are based on 

two values: “0” and “1”. In Figure 4.3 AND-gate with two inputs (a and b) and one 

output (s) is depicted. The SAT clause in CNF for this AND-gate is represented by 

(4.2). Indeed, for all possible assignments of a, b, s from the truth table (Table 4.1)  f 

evaluates to ‘True’. 

 

 

   

 

Figure 4.3: AND-gate for 2-valued logic 

  

 f = (a+¬s)(b+¬s)( ¬a+¬ b + s) (4.2) 

 

a b s 

0 0 0 

0 1 0 

1 1 1 

1 0 0 

  

Table 4.1: Truth table for AND-gate 

 

Using SAT-based two-valued ATPG we will be able to generate patterns only 

with two values “0” and “1”. Whenever there is a freedom of assignment the value to 

the literal, the default value of “0” or “1” will be assigned. Since we aim at the least 

possible number of care bits in the pattern, we need to have patterns with a lot of don’t 

care bits “X”. Therefore, three-valued logic, “0”, “1” and “X”, is needed instead of two-

valued logic.    

For each of the primitive gates, the new SAT clauses were generated based on 

three-valued logic. To extend the logic, it was assumed that ‘X’ is represented by ‘00’, 

a 

b 

s 
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‘0’- by ‘01’, ‘1’- by ‘11’, and the last combination is forbidden. To get the clauses, the 

truth table for each primitive gate was composed. 

 

 

 

 

 Figure 4.4: AND-gate for 3-value logic 

 

Consider an AND-gate in Figure 4.4 with two inputs a1a2 and b1b2 and one output 

s1s2. The corresponding truth table is presented in Table 4.2. 

a1a2 b1b2 s1s2 

00 (‘X’) 00 (‘X’) 00 (‘X’) 

10 (‘0’) 00 (‘X’) 10 (‘0’) 

00 (‘X’) 10 (‘0’) 10 (‘0’) 

10 (‘0’) 11 (‘1’) 10 (‘0’) 

11 (‘1’) 10 (‘0’) 10 (‘0’) 

10 (‘0’) 10 (‘0’) 10 (‘0’) 

11 (‘1’) 11 (‘1’) 11 (‘1’) 

11 (‘1’) 00 (‘X’) 00 (‘X’) 

00 (‘X’) 11 (‘1’) 00 (‘X’) 

 

Table 4.2: Truth table for AND-gate for 3-value logic 

 

Then a tool for Boolean logic optimization, analysis and synthesis is used to 

generate the SAT clauses for all primitive gates with subsequent minimization of the 

number of the clauses in conjunctive normal form. For the AND-gate the expression 

(4.3) is obtained. 

(a2+¬s2)(b2+¬s2)( ¬a2+¬b2+s2)(a1+¬b2+¬s1)(b1+¬b2)(a1+¬a2)( ¬a2+b1+¬s1) 

(a1+b1+¬s1)( ¬a1+a2+s1)( ¬b1+b2+s1)(s1+¬s2) 

 (4.3) 

The SAT-based ATPG process starts with computing of SAT clause in CNF for 

the whole circuit. This SAT-clause is composed of the SAT clauses for all gates in the 

circuit. After obtaining the SAT-based representation of the circuit, the fault is injected, 

and fault propagation paths are determined. Then a fault cone, the set of gates affected 

by fault, is copied. Then the outputs of fault-free cone z and copied faulty cone zf are 

compared for the different inputs assignments. If       , or in other words, the 

compared outputs have different values, then the pattern tests the fault. General ATPG 

process was described in the subsection 2.1 of chapter 2 in more details.  

a1a2 

b1b2 

s1s2 
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SAT-based ATPG results in a set of patterns with minimum number of care bits. 

This is due to minimization algorithm applied in the process of pattern generation. The 

idea of finding the patterns with minimum number of care bits is based on the bisection 

search. This algorithm tries to decrease the number of care bits in the pattern till it is 

possible, and the valid pattern detecting the particular fault is found.  

The relation between the circuit size and the SAT representation of the circuit is 

linear. So, the more gates are in the circuit, the more clauses are in the SAT 

representation of the circuit. However, the runtime of SAT-based ATPG is not linear. In 

this subsection we have introduced two- and three-valued ATPGs.  For two-valued 

ATPG for AND-gate, three clauses are needed; in contrast, the three-valued ATPG has 

eleven clauses for AND-gate representation. Hence, three-valued SAT-based ATPG 

requires longer computational time and for some circuits it is infeasible.  

The decision was made to use commercial ATPG in order to generate test patterns 

for larger circuits. Commercial ATPG does not require much time. On the other hand, it 

should be noted that commercial ATPG is a black box tool, so we are not aware of the 

internal structure and solving methods.  

 

4.2.2 Commercial ATPG  

 

To start off with, we decided to generate test patterns for the whole list of hard-to-

detect faults. We aimed at minimization of the number of care bits by introducing “X” 

values in ATPG process. The commercial tool was very fast in the process of pattern 

generation. The results are presented in chapter 6.  

One of the basic features of commercial ATPG tools is a good compression 

mechanism. And this is clear since one usually wants to have the smallest set of test 

patterns generated to save memory. We presume that the commercial tool tends to 

compress the patterns internally, so it would take advantage of some “don’t care” bits in 

the case of giving the whole list of faults. Since we aim at the least possible number of 

care bits, the decision was made to use commercial tool for generation of the patterns 

for each fault in a fault list, so that commercial tool would not have the possibility to 

merge the patterns.  

This can be achieved by adding one fault at a time from the fault list, running 

ATPG, saving the current pattern and deleting the fault. This approach is depicted in 

Figure 4.5. The results are also presented in chapter 6. 

Trying to contrast the results obtained by commercial ATPG and SAT-based 

ATPG, we can take a look at Figure 4.6 and Figure 4.7. The comparison can be made by 

scrutinizing the number of care bits in the pattern obtained for a particular fault in a 

fault list. 

In Figure 4.6 and Figure 4.7, histograms for the circuit p45k and p100k are 
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depicted. Only the part of the fault list and corresponding patterns are shown. If there 

was no pattern generated for a particular fault, then there is a blank bar. On the x-axis 

we have the index of a fault in a fault list, and on the y-axis we have the number of care 

bits corresponding to the pattern which tests the particular fault designated by an index.  

  

 

             

      

 

 

 

 

 

 

Figure 4.5: Process of generating patterns with commercial ATPG  

 

 

Figure 4.6:  Commercial vs. SAT-based ATPG for p45k 

 

For the circuit p45k, SAT-based TPG has generated patterns with less number of 

care bits. Most of the times the difference in the number of care bits is one. Only in 

several cases this difference is five or fifteen bits. For the circuit p100k there is the same 
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number of care bits for both TPGs, but sometimes commercial ATPG generated patterns 

with more care bits. 

 

 

Figure 4.7:  Commercial vs. SAT-based ATPG for p100k 

 

Judging by previously shown figures, we conclude that SAT-based ATPG 

generates patterns with less number of care bits, but it is not applicable to the large 

circuits. In the next chapter, we are considering the set covering heuristics for choosing 

polynomials for P-PET taking into account obtained pattern lists. 
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CHAPTER 5 

SET COVERING HEURISTICS 
 

Contents 

5.1 Shifting of the cones and removing redundant cones ........................................... 39 

5.2 Iterative polynomial selection .............................................................................. 39 

5.2.1 General algorithm .......................................................................................... 40 

5.2.1.1 Essential cone handling .......................................................................... 42 

5.2.1.2 Realization with minimal number of polynomials ................................. 43 

5.2.1.3 Realization with more than minimal number of polynomials ................ 43 

5.3 User-defined introduction of extra polynomial .................................................... 45 

5.4. Summary of the algorithm for polynomial selection ........................................... 46 

 

 

In this chapter we will concentrate on the algorithm for the selection of feedback 

polynomials for the test pattern generation of P-PET. In the beginning of the chapter, 

we will refresh the task formulation and provide the steps required to solve the problem. 

Then each step will be considered in details. 

Let PMAX be the set of primitive polynomials up to degree MAX, and KMAX be the 

set of cones up to the size MAX. Let    {          } be the subset of KMAX 

tested by polynomial p. We also have the pattern list pl containing the patterns with 

minimized number of care bits. The goal for us is formulated as follows: we aim to find 

the set of primitive polynomials         such that      ⋃       , and the 

maximized number of covered patterns from pl. In other words, we want to encode 

maximized number of patterns from pl into characteristic polynomials which are used 

for P-PET pattern generation. This goal is subdivided into two sub-goals depending on 

the requirements. In the first sub-goal, we aim to have the minimum number of 

polynomials necessary to cover all the cones up to the size MAX. This formulation 

comes from the fact that additional polynomials will cause the test time to rise, and that 

polynomials need also to be stored on a chip. In this case, the degree of freedom of 

polynomials choice is exploited to select polynomials which are covering maximized 

number of patterns. In the second sub-goal, we aim to cover maximized number of 

patterns, and it is allowed to add extra polynomials. So, in the second stage, the 

resulting fault coverage is more important. 

The procedure of selecting of the primitive polynomials is divided into three 

steps: 
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1. Shifting of the cones to the beginning of the scan chain 

2. Reduction of the set KMAX by removing redundant cones 

3. Iterative selection of polynomials implemented as a set covering heuristics 

The first two steps are preparatory. Then in the third step, set covering heuristics is 

developed in order to solve the problem efficiently.  

 

5.1 Shifting of the cones and removing redundant cones 

 

LFSR with the characteristic polynomial  ( )  ∑     
  

    generates the bit 

sequence c which can be calculated by (5.1) [9].  

 ym+n=a0ym+a1ym+1+…+an-1ym+n-1, m≥0  (5.1) 

For each subsequence c=c0, c ,.., cn-1, there is a sequence c’=cn-1, c0,.., cn-2 where 

c’ is a cyclic shift of c. This means that the position of the cone is unimportant if the 

relative distances between the cone’s inputs are not changed. Consequently, we shift all 

the cones to the beginning of the scan chain, while keeping the relative distance 

between their inputs [9]. 

A cone is considered as redundant if all input positions of the cone are contained 

in other cone. Therefore, we remove all redundant cones. 

For example, suppose KMAX contains two cones: k1 = {3, 5, 10} and k2 = {2, 4, 9, 

14}. Firstly, we shift these cones to the beginning of the scan chain. After shifting, we 

will get:    k1 = {0, 2, 7} and k2 = {0, 2, 7, 10}. Cone k2 contains k1, or      . So, k1 is 

redundant cone, and we remove it from KMAX.  

 

5.2 Iterative polynomial selection 

 

In the first sub-goal formulated earlier in this chapter, we aim to maintain the 

minimum number of polynomials in the final set Ps necessary to cover all the cones up 

to the size MAX. So, the test time is not increased by addition of extra polynomials. In 

this task, we use the degree of freedom when selecting polynomials. For example, 

several polynomials cover the same number of cones from the set KMAX. Then the 

polynomial which covers the maximum number of care bits is selected.  

In the second sub-goal, we are more interested to have further maximized number 

of the patterns covered by selected polynomials. And we are allowed to increase the 

number of polynomials in the final set Ps.   

In order to control the number of polynomials in the set Ps and the resulting 

number of patterns covered, we will use a cost function which will assign priorities to 
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the cones and to the patterns. These priorities will be taken into account in the process 

of polynomials selection.  

We will start this subsection with consideration of the general algorithm proposed 

for the process of polynomial selection. Then we will concentrate on the application of 

the algorithm for solving both sub-goals. Further the user-defined extension of the 

algorithm will be provided. And we will conclude this chapter with a summary. 

 

5.2.1 General algorithm 

 

The algorithm proposed is used for achieving both sub-goals. It is flexible since it 

is configured by means of the coefficients of the cost function. The cost function 

influences the polynomial selection by considering cones and patterns. To accomplish 

the first sub-goal, the cost function will give the whole priority to the cones. To reach 

the second sub-goal, different priorities will be assigned to the cones and to the patterns 

depending on the user requirements. 

Assume that all cones of the circuit are shifted to the beginning of the scan chain, 

and all redundant cones are removed. So, we have the set of the cones K of the circuit. 

The algorithm for polynomial selection is presented in Figure 5.1. The first step is 

to form the set of the cones KMAX (5.2) consisting of the cones from the set K with the 

size up to MAX.  

      {            }   (5.2) 

Then we compose another set of the cones Kd which is comprised of the cones of 

the size equal to MAX. If there are no cones found of the size MAX, then we decrease 

the value of MAX by one and continue searching for the cones of decreased MAX size. 

This is reflected in (5.3). In the variable idx, we store the size of the cones in the set Kd. 

  )    {               }          (5.3) 

 )                               

Given the set of polynomials of degree idx, we construct the set of polynomial 

candidates Pcnd according to the cost function which takes into account cones from the 

set Kd and patterns from the pattern list pl. We choose some number of polynomials 

(num_polys) with the largest value of the cost function to be the elements of the set Pcnd. 

This is reflected in (5.4). 

                     { 

  )      {                               } (5.4) 

 )                             ) } 
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Figure 5.1: Algorithm for the selection of polynomials 
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The next step in the algorithm is to form the set of the cones Ks which contains the 

cones from KMAX which are not in Kd (Ks=KMAX-Kd). 

    {           } (5.5) 

Further on we are choosing from the set of polynomial candidates Pcnd those 

polynomials which have maximal value of the cost function. Cost function takes into 

account cones from the set Ks and patterns from the pattern list pl. In the case that set Ps 

contains several polynomials, we will choose the one with maximal number of the 

patterns covered (5.6). 

 

    {                               }  (5.6) 

 

                                                      

 

Then we add the chosen polynomial ps to the final set of selected polynomials PP.  

In the next step all covered by the chosen polynomial cones are removed from the sets 

Kd and KMAX, and all covered patterns are removed from the pattern list pl. We check if 

KMAX is empty. If so, we return the set of selected polynomials PP.  If not, we continue 

by returning to the step of forming the set of the cones Kd. 

 

The final set PP with primitive polynomials covers all the cones up to the size 

MAX and also the maximized number of the patterns from the pattern list pl. Each 

polynomial from the set PP will be used as a feedback polynomial for the LFSR. All 

possible patterns per polynomial will be applied to the circuit. 

 

In this algorithm, we try to cover the larger cones first when we are selecting 

polynomial candidates taking into account patterns. Then we target polynomials from 

the subset of smaller cones. So, the checking whether the polynomial covers the cone 

    is applied, firstly, for the cones of the size MAX and the set of polynomials of 

degree MAX when we are forming the set of polynomial candidates Pcnd. Secondly, the 

checking is performed for the cones smaller than MAX and polynomials from the set 

Pcnd. This approach requires much more less time than checking pairwise     for all 

cones of KMAX and the set of polynomials of degree MAX. 

  

5.2.1.1 Essential cone handling 

 

There might be a situation where some cones are covered only once by the set of 

the polynomials of a particular degree. We call that cone essential.  For instance, the set 

Kd consists of five cones which are k1, k2, k3, k4, k5. Suppose that the corresponding set 

of polynomials consists of seven polynomials designated by p1, p2, p3, p4, p5, p6, p7. 

 

In (5.7) the information regarding which cones each polynomial covers is 

presented. In this example, the cone k4 is covered only once, so k4 is an essential cone. 
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The other cones are covered more than once. 

 

 p1: {k1, k3}  p2: {k1, k2, k5}  

 p3: {k1, k3, k5}   p4: {k1} (5.7) 

 p5: {k2, k5}  p6: {k1, k5} 

 p7: {k4} 

 

The polynomial covering this essential cone is added to the resulting set of 

polynomials PP anyway. Hence, we extend described algorithm by consideration of the 

essential cone and adding the polynomial earlier, in the beginning of the heuristics. 

After forming of the set Kd, we check whether Kd contains the essential cone. If so, we 

add the polynomial covering this essential cone to the set PP. We also remove from the 

set of the cones Kd and Ks all covered by the polynomial cones. The covered patterns are 

eliminated from the pattern list pl as well. 

 

5.2.1.2 Realization with minimal number of polynomials  

 

For the first sub-goal, we are selecting the minimal number of polynomials for the 

set PP. The task is accomplished by using of an appropriate cost function. In the step of 

selecting the set of polynomial candidates Pcnd, the cost function f1 as in (5.8) is applied. 

This cost function targeting the number of the cones from the set Kd.  

                          (5.8) 

The cost function f2 (5.9) is used to choose the polynomial from the set Pcnd with a 

maximal number of the cones from the set Ks. If there are several polynomials with 

maximal value of the cost function f2, we choose the one with a maximal number of the 

patterns covered according to the cost function f3 (5.10). 

                         (5.9) 

                      (5.10) 

This approach ensures that the number of the polynomial in the final set PP is 

minimal since we are concentrating only on the cones. The number of the patterns 

covered is considered when we have several polynomials targeting equal maximal 

number of the cones. 

 

5.2.1.3 Realization with more than minimal number of polynomials  

 

In the second sub-goal, the larger number of the patterns covered is achieved by 

allowing more than minimal number of polynomials in the final set PP. In this case, 

during the process of polynomial selection, we consider the cones and the patterns till 

all cones up to MAX size are covered. 
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The cost function for this realization looks as in (5.11).  

 

f =  (5.11) 

                                                        

                   

   

In the cost function (5.11), we have coefficients which influence the outcome in 

terms of the number of the cones and the patterns covered. These coefficients determine 

the priorities. When the coefficient for the cones is large than the coefficient for the 

patterns, the cost function will target more cones than patterns and vice versa. In our 

algorithm, we use the cost function in two steps: when we are selecting the set of 

polynomial candidates (f1) and in the step of the final selection of the polynomial (f2). In 

the first case, we are considering the set of the cones Kd and in the second- Ks (5.12).  

 

                                                             

                   

  (5.12) 

                                                             

                   

 

In the cost function, we can also consider the “weight” or “significance” of the 

cone. Some cones are covered by the set of polynomials of particular degree more 

frequently than the other. The more frequently particular cone is covered by the set of 

polynomials, the less its weight. So, the new cost function looks as in (5.13). 

 

                     ∑        
 
                                  , (5.13) 

      

 where n is the number of the cones covered. 

 

The similar weights calculation can be applied for the patterns as well (5.14). 

 

                     ∑        
 
                         ∑        

 
   ,(5.14) 

 

where m is the number of patterns covered. 

 

There are several methods of calculating the weight. One way is to have an 

inverse of the number of the cones (or patterns) covered by the set of polynomials. So, 

assume we have in Kd  three cones: k1, k2, k3.  We start with calculation of the number of 

the times each cone is covered by the set of polynomials. Suppose, k1 is covered 2 times, 

k2 is covered 10 times and k3 is covered 5 times. If we invert the number of occurrence, 

we will get the following weights: 0.5, 0.1 and 0.2 for k1, k2 and k3 respectively. 

 

Another way of calculating the weights will be considered on the following 

example. Suppose, k1 is covered 10 times, k2 is covered 15 times and k3 is covered 30 
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times. Firstly, we will assign the weight equal to 1 to the cone with minimal number of 

occurrences. For the other cones we will use the formula (5.15). 

 

          
              

          
  , (5.15) 

 

where min is the minimal number of occurrences. 

 

In our example, min is equal to 10. The weights of the cones k2 and k3 calculated 

by formula (5.15) are equal to 0.6 and 0.3 respectively. The weights for the patterns are 

calculated analogously.  

 

While choosing the polynomials, we also will take into account that the cones 

from the set Kd are more important than the cones from the set Ks. Imagine the situation 

when all the cones from Ks are already covered, and we have one cone from Kd not 

covered. Then we add one more polynomial to cover this cone. Concentrating more on 

the cones from Kd safes us from introducing extra polynomials. This idea is captured in 

the cost functions f1 and f2 presented in (5.16). There f1 takes into account the number of 

the covered cones of the set Kd and the number of the covered patterns. In f2 we are 

targeting the cones from the set Kd and Ks as well as the patterns, but for the cones from 

Ks we have additional multiplication by 0.5 to lower the priority of the cones from the 

set Ks in comparison to the cones from Kd. 

 

                                                              

                    (5.16) 

 

                                                               

                                                            

 

5.3 User-defined introduction of extra polynomial  

 

By means of the cost function we influence the total number of the patterns 

covered. The increase of the coefficient will induce the increase of the number of the 

patterns covered, and at the same time more polynomials will be in the final set PP. All 

polynomials from the set PP are stored on a chip. And the more polynomials are in the 

set PP, the larger the test time. After covering all the cones in the set KMAX, introduction 

of additional polynomial should be justified by the number of the patterns it covers. 

Hence, the algorithm can be extended. The user will define the number of the patterns 

additional polynomial should cover. This idea is depicted in Figure 5.2.  

We have the pattern list pl consisting of the patterns not covered by PP and the set 

of polynomials of the certain degree. From this set of polynomials we are choosing the 

one with maximal number of the patterns covered from pl. If the chosen polynomial 

covers more than the user-defined number z, we add the polynomial to the final set of 
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additional polynomials PP’. Then we remove from the pattern list pl all covered 

patterns. And continue by searching the polynomial covering the maximal number of 

the patterns. If the chosen polynomial covers less than z patterns, we do not add it to 

PP’ and return PP’.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Algorithm for adding extra patterns 

 

5.4. Summary of the algorithm for polynomial selection 

 

In this subsection we will discuss the algorithm proposed for the polynomial 

selection. We will concentrate on how to use this algorithm to solve two sub-goals.  

In order to show the flexibility of the algorithm, we consider one cost function 

which is used for achieving both sub-goals. For this purpose, the cost function as in 

(5.12) or (5.16) is used. 

To reach the first sub-goal, we need to apply the cost function with coefficient for 

the cones equal to 1.0 and coefficient for the patterns equal to 0.0. So, the number of the 

patterns covered by particular polynomial is not taken into account when forming the 

set of polynomial candidates Pcnd. In the step of choosing the final polynomial ps, we are 

Set of polynomials Patterns from pl not covered by 

PP 

Return PP‘ 

Add ps to PP‘ 

Remove covered patterns from pl 

If # pats ps covers ≥ z 

Find polynomial ps covering 

max # patterns 
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not considering the patterns covered, but if there are several candidates with the same 

number of cones covered, we choose the one with maximal number of patterns covered.  

To achieve the second sub-goal, we will use the same algorithm but with different 

coefficients for the cost function. Both coefficients are not equal to zero. Depending on 

the coefficients we can prioritize either cones or the patterns covered. The pattern and 

the fault coverage can be further increased by the extension described in 5.3. There we 

are adding extra polynomials if they cover at least user-defined number of patterns.  

The results of the application of the algorithm for polynomial selection for both 

sub-goals are presented in chapter 6. 
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EXPERIMENTAL RESULTS 
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In this chapter we will present all experimental results obtained within the thesis. 

We will start with consideration of the industrial circuits which will be used in further 

experiments. The results of the fault simulation for obtainment of the list of hard-to-

detect faults and test pattern generation will be presented in the subsequent subsections. 

Then the results of the set covering heuristics for polynomial selection will be 

discussed. And in the end of the chapter, we will provide the comparison of the 

proposed approach with usual pseudo-random testing as the first phase of the mixed-

mode BIST.   

 

6.1 Circuit characteristics 

 

In this thesis we will use twelve industrial circuits of different sizes. Firstly, we 

will provide some information about these circuits.  

In [9], the distribution of the cones was analyzed to understand which portion of 

the circuit to test exhaustively. This information helps in the process of choosing the 

value of MAX, the maximum cone size to be applied in P-PET. In [9] it was shown that 

the majority of the cones are relatively small. There it was proposed to test cones up to 

the size 24. This gives an optimal trade-off between gate coverage and test time. So, we 

will further use the value of MAX equal to 24. Table 8.1 shows the characteristics of the 

circuits considered taken from [9]. The first column shows the circuit name; the second 

reports the number of logic gates; the third column presents the number of primary and 

pseudo-primary inputs; and in the fourth column we have the number of primary and 

pseudo-primary outputs.  
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Primary inputs (PIs) refer to the external inputs to the circuit. Pseudo-primary 

inputs (PPIs) are scan cell inputs. PIs and PPIs can be set to any logic values. The 

difference between them is that PIs are set directly from the external inputs, whereas 

PPIs are set through the scan chain inputs. Primary outputs (POs) are external outputs of 

the circuit. Pseudo-primary outputs (PPOs) refer to the scan cell outputs. Both POs and 

PPOs can be observed. The difference is that POs are observed directly from the 

external outputs, whereas PPOs are observed through the scan chain outputs [46]. 

The fifth column shows the percentage of the cones up to the size 24, whereas the 

sixth column presents the percentage of the gates covered by these cones. 

 

Circuit #gates #(PI+PPI) #(PO+PPO) Cones, % Gates, % 

p35k 46584 2912 2229 74.07 38.54 

p45k 45100 3739 2550 57.28 55.26 

p89k 90152 4632 4557 64.18 30.54 

p100k 96087 5902 5829 82.75 49.76 

p141k 174600 11290 10502 45.05 34.54 

p239k 261784 18692 18495 83.91 62.41 

p259k 336004 18713 18495 83.25 65.84 

p279k 293637 18047 17827 58.98 52.16 

p378k 374467 15732 17420 68.65 82.54 

p418k 442872 30430 29809 58.42 48.04 

p483k 510538 33264 32610 85.48 60.08 

p533k 652802 33373 32610 83.68 66.66 

Table 6.1: Circuits’ characteristics [9] 

 

According to the Table 6.1, for the majority of the circuits, more than 60% of the 

cones are of the size 24 or smaller. For some circuits, this value is more than 80%.  The 

corresponding percentage of the gates covered is in the range from 30% to 82%. 

 

6.2 Fault simulation results 

 

Table 6.2 shows the results of the fault simulation for the circuits: p35k, p45k, 

p89k, p100k, p141k, p239k, p259k, p279k, p378k, p418k, p483k, p533k. The second 

column of the Table 6.2 corresponds to the number of the faults from the cones larger 

than MAX. The third column is the number of the faults which were detected by 

applying one million of pseudo-random patterns. These faults are easy-to-detect. They 

will be detected by P-PET. The fourth column is the number of faults which were not 

detected by applying one million of pseudo-random patterns. These faults are hard-to-

detect faults which are of interest. They would not be detected by P-PET. We will target 

these hard-to-detect faults by choosing appropriate feedback polynomials for the P-PET. 

The last column corresponds to the fault coverage. In this case, the fault coverage shows 
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the percentage of hard-to-detect faults from all faults considered, or faults from the 

larger than MAX cones. 

 

Circuit # faults 

considered 

# easy-to-

detect faults 

# hard-to-

detect faults 

Fault 

coverage,% 

p35k 146838 73259 73579 49.891 

p45k 106301 105503 798 99.2493  

p89k 327086 264586 62500 80.891 

p100k 166960 165931 1029 99.38 

p141k 287552 276761 10791 96.24 

p239k 557946 537714 20232 96.373 

p259k 653520 629124 24396 96.266 

p279k 723254 659740 63514 91.218 

p378k 414050 414050 0 100 

p418k 1139182 1045919 93263 91.813 

p483k 1115568 1089318 26250 97.6469 

p533k 1270612 1242006 28606 97.748 

 

Table 6.2: Results of fault simulation 

 

The column with hard-to-detected faults is of more importance to us. The more 

faults in this column, the more corresponding patterns would need to be generated in the 

second phase of the mixed-mode BIST. The percentage of hard-to-detect faults varies 

from 50% to 99.2%. 

For the circuit p378k, we got complete fault coverage of 100%. It means that all 

the faults from the larger than MAX cones of p378k are tested during P-PET. For the 

other circuits, we need to generate deterministic patterns for obtained list of hard-to-

detect faults and further use them in the process of selection of feedback polynomials 

for P-PET.  

 

6.3 Results of test pattern generation  

 

The results of test pattern generation for hard-to-detect faults are presented in 

Table 6.3. In this table, we combined the results of three approaches for ATPG 

discussed in chapter 4. The first column is the circuit name. The second column (“# htd. 

faults”) shows the number of hard-to-detect faults. The three following group the results 

for SAT-based ATPG, commercial ATPG for the whole list of faults (“Commercial(1)”) 

and commercial ATPG for each fault in a fault list (“Commercial(2)”).  

Consider SAT-based ATPG results. According to the table, test patterns were 

generated only for three circuits (p45k, p100k, p141k) since the other circuits were too 
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large or had too many hard-to-detect faults. Table 6.3 shows for each ATPG approach 

the number of patterns generated (# pats), number of the faults detectable by these 

patterns (#det. faults) and corresponding fault coverage. Since the circuit contains the 

faults for which it is not possible to generate patterns, we have not complete fault 

coverage. These faults are untestable; they manifest redundancy in the circuit. Table 6.3 

can also demonstrate the quality of TPG process. We can compare the fault coverage for 

a SAT-based ATPG and a commercial tool. For p45k, p100k the fault coverage is 

almost the same, whereas for p141k the fault coverage of SAT ATPG is higher. Fault 

coverage of two applications of commercial tool is the same, since one ATPG tool was 

used. Fault coverage varies for different circuits from 29% till 88%. The value of fault 

coverage and corresponding number of detectable faults is the upper bound for us. We 

will not be able to cover more faults than the number of faults detectable by the patterns 

generated. 

 

circuit # htd. 

faults 

SAT ATPG Commercial 

(1) 

Commercial(2) 

# 

pats 

#det.  

faults  

FC, 

% 

# pats #det.  

faults 

# pats #det.  

faults 

FC, 

% 

p35k 73579 not performed 6586 56944 15325 56944 77.4 

p45k 798 544 597 74.8 67 597 129 597 74.8 

p89k 62500 not performed 7049 45563 13100 45563 72.9 

p100k 1029 465 501 48.6 206 500 344 500 48.6 

p141k 10791 7580 8448 78.2 4677 7496 5996 7496 69.46 

p239k 20232 not performed 2237 14144 2653 14144 69.9 

p259k 24396 not performed 2952 17597 3537 17597 72.13 

p279k 63514 not performed 5844 40177 8672 40177 63.25 

p418k 93263 not performed 13242 82661 18379 82661 88.63 

p483k 26250 not performed 1460 7702 1944 7702 29.34 

p533k 28606 not performed 1911 9474 2570 9474 33.12 

 

Table 6.3: ATPG results 

 

Not only the fault coverage is of interest for us, but also the number of care bits 

each pattern contains. The less number of care bits the pattern has, the greater the 

probability to cover the pattern. Table 6.4 shows the number of patterns generated with 

particular number of care bits for each circuit. There the results for three ATPG 

approaches are presented. There are several ranges of numbers of care bits: less than 30, 

from 30 to 40, from 40 to 50, and the last range contains the patterns with more than 50 

care bits.  We are interested in the range up to 40 care bits, because of the greater 

possibility to find the feedback polynomial of maximal degree 24 covering the pattern. 

Talking about SAT-based ATPG, for p45k we have 43% of the patterns with up to 40 

care bits, it is equal to 233 patterns; for p100k we have 68% of patterns up to 40 care 

bits, that is 316 patterns; and for p141k we have 30% of patterns with up to 40 care bits, 

it is equal to 2274 patterns. The results of running commercial ATPG for each fault are 
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comparable with the results obtained by running commercial ATPG for the whole list of 

faults. For p35k, there was no pattern generated with less than 40 care bits. So, it is not 

possible to cover any pattern for p35k. For the other circuits, the results are more 

optimistic. Summing up, the percentage of patterns with the number of care bits up to 

40 varies from 26% to 76%. 

 

circuit SAT ATPG 

#pats with #cb 

Commercial (1) 

#pats with #cb 

Commercial (2) 

#pats with #cb 

< 

30 

30-

40 

40-

50 

> 

50 

< 

30 

30-

40 

40-

50 

> 

50 

< 

30 

30-

40 

40-

50 

> 

50 

p35k not performed 0 0 0 100 0 0 0 100 

p45k 5 38 40 17 14 13 22 51 12 30 16 42 

p89k not performed 32 13 14 41 19 14 11 56 

p100k 29 39 20 12 36 17 23 24 33 17 24 26 

p141k 22 8 3 67 40 20 5 35 35 18 5 42 

p239k not performed 23 37 31 9 25 35 31 9 

p259k not performed 32 23 37 8 33 21 36 10 

p279k not performed 14 18 12 16 10 16 12 62 

p418k not performed 37 23 15 25 33 23 15 29 

p483k not performed 31 36 10 23 36 35 10 19 

p533k not performed 33 39 9 19 38 38 8 16 

 

Table 6.4: Distribution of the patterns with different number of care bits  

 

6.4 Set covering heuristics results 

 

The results of the set covering heuristics will be considered in terms of the 

number of polynomials in the final set PP, the number of patterns covered and 

corresponding number of faults covered. According to the algorithm presented in 

chapter 5, the number of resulting polynomials and covered patterns depends on the 

values assigned to the coefficients of the cost function.  

To start off with, we will consider the heuristics with coefficient_cones equal to 

1.0 and coefficient_patterns equal to 0.0. This realization is to reach the first sub-goal. 

In this case, the number of resulting polynomials is minimal. So, this is a lower bound 

for us in terms of the number of polynomials and number of patterns and faults covered.  

In Table 6.5 the results for the described realization are presented. The first 

column is the circuit name. The asterisk symbol (*) in the circuit name means that the 

pattern list generated by SAT-based ATPG is used, other realizations are for the pattern 

lists generated by commercial ATPG (for each fault in a fault list). The second column 

shows the number of detectable hard-to-detect faults. The third column is the resulting 

number of polynomials of the set PP with corresponding degree of polynomial. For 
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example, for p35k we have 1*2
16

+2*2
11

. This means that in the set PP there are two 

polynomials: one of degree 16 and another of degree 11. The forth column is the 

number of covered by the polynomials from the set PP patterns. The fifth column is the 

corresponding number of covered by the patterns hard-to-detect faults. And the last 

column shows the percentage of faults covered from detectable hard-to-detect faults. 

 According to the Table 6.5, the percentage of covered faults varies from 5% to 

29.5%. So, for some circuits a good percentage of the faults covered is achieved without 

introducing extra polynomials. The results obtained for the pattern lists of commercial 

and SAT-based ATPGs are comparable.  

 

circuit #detectable 

hard-to-detect 

faults 

Req. polys #patterns 

covered 

#faults 

covered 

%of 

faults 

covered 

p35k 56944 1*2
16

+2*2
11 

0 0 0 

p45k 597 1*2
24 

6 32 5.36 

p45k* 597 1*2
24 

6 30 5.02 

p89k 45563 1*2
24

+1*2
23

 2106 7397 16.23 

p100k 500 2*2
24

 91 136 27.2 

p100k* 501 2*2
24

 112 148 29.54 

p141k 7496 2*2
24

+2*2
23

 819 1087 14.5 

p141k* 8448 2*2
24

+1*2
23

 861 1100 13.02 

p239k 14144 3*2
24

+1*2
23

 547 2726 19.27 

p259k 17597 4*2
24

 886 4270 24.26 

p279k 40177 3*2
24

 587 3418 8.5 

p418k 82661 5*2
24

 3322 15298 18.5 

p483k 7702 5*2
24

+1*2
23

 435 1217 15.8 

p533k 9474 8*2
24

 718 2132 22.5 

Table 6.5: Heuristics results for coefficient_cones=1.0, coefficient_patterns=0.0 

 

There is a possibility to further improve the percentage of covered hard-to-detect 

faults as it was requested in the second sub-goal by means of introducing 

coefficient_patterns larger than 0.0. In this case, the number of polynomials required 

might be increased depending on the coefficients. Table 6.6 demonstrates the results of 

running the heuristics for different pairs of coefficients. The cost function here is based 

on the number of cones and patterns covered (5.12). The first column of the Table 6.6 

shows the circuit name. As in the Table 6.5, the asterisk symbol (*) corresponds to the 

realization with exact solution for the test pattern generation. The second column is the 

number of detectable hard-to-detect faults. The third and the forth columns are values 

for coefficient_cones and coefficient_patterns. The fifth column shows the number of 

polynomials in the set PP. These polynomials are all of degree 24. The sixth and the 

seventh columns are the number of patterns and faults covered. And the last column is 

the percentage of the faults covered from detectable hard-to-detect faults. We will refer 

to this percentage further as to the fault coverage. The percentage of covered faults 
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varies from 5% to 45%. For some circuits introducing of additional polynomials causes 

the dramatic increase in the number of the faults covered. We will consider results for 

some circuits in details. 

For the circuit p45k, the minimum number of polynomials to cover all the cones 

up to MAX size is one.  And according to the Table 6.5, the percentage of covered faults 

is 5.36%. In Table 6.6 the same results are presented for two pairs of coefficients. If we 

increase the value of coefficient_patterns up to 0.5 or 0.7, we can reach the fault 

coverage of 25.79% and 26.80% correspondingly by adding two extra polynomials to 

the final set PP. The results for the pattern list generated by exact solution ATPG are 

comparable with the results obtained for the pattern list of obtained by commercial 

ATPG. Interestingly, for the circuit p89k any pair of coefficients results in the same 

outcome. Three extra polynomials give increase in the fault coverage of 6.02%.  

 

circuit #detectable 

htd. faults 

coeff_

con 

coeff_

patt 

#polys #pat. 

covered 

#faults 

covered 

%of 

faults 

covered 

p45k 597 0.1 0.9 5 32 187 31.32 

0.3 0.7 3 23 160 26.80 

0.5 0.5 3 24 154 25.79 

0.7 0.3 1 6 32 5.36 

0.9 0.1 1 6 32 5.36 

p45k* 597 0.1 0.9 4 33 153 25.63 

0.3 0.7 4 31 153 25.63 

0.5 0.5 3 18 137 22.95 

0.7 0.3 3 18 137 22.95 

0.9 0.1 1 6 30 5.02 

p89k 45563 0.1 0.9 5 2582 10139 22.25 

0.3 0.7 5 2582 10139 22.25 

0.5 0.5 5 2582 10139 22.25 

0.7 0.3 5 2582 10139 22.25 

0.9 0.1 5 2582 10139 22.25 

p100k 500 0.1 0.9 7 139 229 45.80 

0.3 0.7 4 125 204 40.80 

0.5 0.5 4 125 204 40.80 

0.7 0.3 3 112 166 33.20 

0.9 0.1 3 110 163 32.60 

p100k* 501 0.1 0.9 6 146 185 36.93 

0.3 0.7 4 139 175 34.93 

0.5 0.5 3 135 176 35.13 

0.7 0.3 3 135 176 35.13 

0.9 0.1 2 115 142 28.34 

p141k 7496 0.1 0.9 11 2073 2570 34.28 

0.3 0.7 9 1930 2413 32.19 

0.5 0.5 9 1933 2437 32.51 

0.7 0.3 7 1778 2246 29.96 

0.9 0.1 7 1754 2221 29.63 
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circuit #detectable 

htd. faults 

coeff_

con 

coeff_

patt 

#polys #pat. 

covered 

#faults 

covered 

%of 

faults 

covered 

p141k* 8448 0.1 0.9 10 1549 1908 22.58 

0.3 0.7 8 1451 1835 21.72 

0.5 0.5 8 1450 1835 21.72 

0.7 0.3 8 1454 1808 21.40 

0.9 0.1 5 1187 1504 17.80 

p239k 14144 0.1 0.9 9 691 3396 24.01 

0.3 0.7 10 700 3365 23.79 

0.5 0.5 7 656 3098 21.90 

0.7 0.3 5 613 3105 21.95 

0.9 0.1 4 577 2788 19.71 

p259k 17597 0.1 0.9 10 1163 5475 31.11 

0.3 0.7 10 1163 5475 31.11 

0.5 0.5 9 1132 5407 30.73 

0.7 0.3 6 1030 4799 27.27 

0.9 0.1 4 911 4716 26.80 

p279k 40177 0.1 0.9 11 1061 5554 13.82 

0.3 0.7 10 1034 5051 12.57 

0.5 0.5 10 1036 5215 12.98 

0.7 0.3 7 926 4741 11.80 

0.9 0.1 4 744 3997 9.94 

p418k 82661 0.1 0.9 15 6554 27591 33.37 

0.3 0.7 15 6554 27591 33.37 

0.5 0.5 15 6530 27043 32.71 

0.7 0.3 14 6398 26581 32.15 

0.9 0.1 10 5734 24743 29.93 

p483k 7702 0.1 0.9 13 798 2287 29.69 

0.3 0.7 11 753 2282 29.62 

0.5 0.5 10 719 2480 32.19 

0.7 0.3 8 651 1888 24.5 

0.9 0.1 7 591 1780 23.12 

p533k 9474 0.1 0.9 18 1097 3383 35.71 

0.3 0.7 15 1056 3223 34.1 

0.5 0.5 13 988 3008 31.75 

0.7 0.3 10 882 2682 28.3 

0.9 0.1 8 754 2190 23.11 

Table 6.6: Heuristics results for different coefficients 

 

For p100k, adding one extra polynomial causes the rise in the fault coverage of 

6%. If we add two more polynomials, we will receive the fault coverage of 40.80%. 

Applying seven polynomials results in covering 45.8% of detectable hard-to-detect 

faults. 

For the circuit p483k, introducing of one additional polynomial causes the 

increase of fault coverage of 7.32%. To reach the fault coverage of 30% extra seven 

polynomials are added. For the circuit p279k, one additional polynomial causes the fault 



                                                                                                Chapter 6. Experimental 

results 

56 

 

coverage to rise up to 1.5%. The fault coverage of 12.57% is reached by means of 

introducing seven more polynomials. Overall, we conclude that the coefficients regulate 

the resulting number of patterns covered and the number of polynomials. On the 

example of p279k, we note that sometimes change in the coefficients results in a not 

completely predicted outcome. If coefficient_cones is equal to 0.3 and 

coefficient_patterns is equal to 0.7, then we have totally 1034 patterns covered. If the 

corresponding coefficients are 0.5 and 0.5, then 1036 patterns covered even so in the 

first case we gave more priority to the patterns than in the second case. 

For p533k, we obtained the fault coverage of 23.11% without adding extra 

polynomial. If we add two polynomials, we can reach the fault coverage of 28.3%. 

Adding of extra eight polynomials gives us the fault coverage of 35.71%. 

The number of faults each patterns covers is not always the same, some patterns 

cover more faults than the other. There are cases when we are covering less number of 

patterns but the total fault coverage is higher. Consider the results of heuristics for the 

circuit p483k. Assigning the coefficient for the cones to 0.3 and coefficient for the 

patterns to 0.7, we covered 753 patterns and 2282 faults. When both coefficients are 0.5, 

we got 719 patterns covered and 2480 faults. This is a good example showing that less 

number of patterns can cover more faults. 

According to the Table 6.6, the maximum percentage of the faults covered is 

around 45%. It is worth noting that for each circuit there are number of patterns which 

can be covered by the polynomials of maximal degree 24. This depends on the number 

of care bits each pattern has. The distribution of the patterns with different numbers of 

care bits in the Table 6.4 gives a hint on the number of patterns which can be covered 

for each circuit. For example, for the circuit p483k, the percentage of the patterns with 

up to 40 care bits is 71%. By applying 13 polynomials, we are covering 41% of the 

patterns. So, 30% more of the patterns can be covered by means of adding extra 

polynomials. 

As discussed in chapter 5, we can use a more complex cost function taking into 

account the weights of the cones as in (5.8). We will present the results of the heuristics 

with new cost function in Table 6.7.  In this realization, weights are calculated by the 

formula (5.15). 

According to the Table 6.7, the results of heuristics are comparable to the results 

of heuristics without weights consideration. For p483k, the maximum percentage of the 

faults covered is 30.58% and for p533k - 38.72%.  

Up to now, we were discussing results of the heuristics based on the cost 

functions for polynomial selection. In this algorithm, we stop the iterative polynomial 

selection as soon as all cones up to the size MAX are covered. 

The next realization extends the heuristics. After covering all cones we target only 

patterns in the cost function. We add the polynomial to the final set PP if the number of 

patterns it covers is more or equal than the user-defined number of patterns num_pat 
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(Figure 5.2).  

 

circuit #detectable 

hdt. faults 

coeff_

con 

coeff_

patt 

#polys #pat. 

covered 

#faults 

covered 

%of 

faults 

covered 

p483k 7702 0.1 0.9 14 816 2356 30.58 

0.3 0.7 13 795 2267 29.43 

0.5 0.5 10 734 2314 30.04 

0.7 0.3 8 657 2073 26.91 

0.9 0.1 7 591 1780 23.11 

p533k 9474 0.1 0.9 22 1167 3408 35.97 

0.3 0.7 21 1148 3669 38.72 

0.5 0.5 19 1112 3485 36.78 

0.7 0.3 14 998 2975 31.4 

0.9 0.1 9 808 2433 25.68 

Table 6.7: Results of heuristics with weights consideration  

 

The Table 6.8 shows the results of this extension of the heuristics.  

 

 circuit #det. 

htd. 

faults 

coeff_ 

con 

coeff_ 

patt 

num_ 

pat 

#polys #pat #faults  %of 

faults  

w
it

h
o
u
t 

w
ei

g
h
ts

  

p418k 

 

82661 0.9 0.1 50 29 7632 31816 38.48 

p418k 

 

82661 0.7 0.3 50 28 7561 31359 37.93 

p418k 

 

82661 0.5 0.5 50 28 7568 31426 38.02 

p483k  

 

7702 0.9 0.1 10 25 913 3208 41.65 

p533k 

 

9474 0.9 0.1 10 31 1223 3508 37.02 

w
it

h
 w

ei
g
h
ts

 

p483k 

 

7702 0.9 0.1 10 25 913 3208 41.65 

p483k 

 

7702 0.7 0.3 10 25 932 3277 42.54 

p533k 

 

9474 0.9 0.1 10 33 1238 3685 38.89 

 

Table 6.8: Results of heuristics with user-defined polynomial introduction 

 

The first column differentiates between two realizations: without weights 

consideration (as in Table 6.6) and with weights calculation (as in Table 6.7). The 
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second column is the circuit name. The next column is the number of detectable hard-

to-detect faults (“#det. htd. faults”). The following two columns are the coefficient for 

the cones and the coefficient for the patterns. The sixth column is the least number of 

patterns which every additional polynomial should cover. The last four columns are the 

number of polynomials in the final set, the number of patterns covered, the number of 

faults covered and the percentage of the faults covered from detectable hard-to-detect 

faults.  

For the circuit p418k, addition of extra 19 polynomials of degree 24 gives 

increase in the fault coverage of 8.55%. For p483k, extra 18 polynomials result in 

19.42% increase of fault coverage. And for p533k, additional 23 polynomials cause the 

rise of fault coverage in 12.71%. 

Certainly, given different values for num_pat, the resulting number of faults 

covered and polynomials in the final set will be different, but still introduction of every 

additional polynomial is determined by the user. 

 

6.5 Comparison of P-PET and pseudo-random testing 

 

In this subsection, we compare the optimized P-PET with usual pseudo-random 

testing (PRT). We perform fault simulation, and for both approaches we apply the same 

number of the test patterns. For P-PET we use the realization with minimal number of 

polynomials in the final set (Table 6.5). We perform fault simulation for the following 

circuits: p35k, p45k, p89k and p100k.  

 

circuit #patterns #faults #undetected 

faults by PRT 

#undetected 

faults by P-PET 

Difference, 

% 

p35k 72544 54434 16430 15604 5.02 

p45k 16780956 60509 159 112 29.55 

p89k 25170442 134478 8798 8138 7.5 

p100k 33560335 144159 443 355 19.86 

p100k 50337551 144149 439 340 22.55 

Table 6.9: Single stuck-at fault coverage 

 

In Table 6.9 the results of the fault simulation for pseudo-random testing and P-

PET are presented. The fault model used in the fault simulation is single stuck-at fault. 

The first column is the circuit’s name. The next column shows the number of patterns 

applied in the fault simulation. The column “#faults” shows the total number of stuck-

at-faults considered. The forth and the fifth columns present the number of faults 

undetected by pseudo-random testing and by the P-PET correspondingly. And the last 

column shows the difference between the two approaches in percentage, or the 
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percentage of faults P-PET covers more compared to PRT. This difference is calculated 

by the formula (6.1). 

 
                                             

                      
  (6.1) 

For all the circuits, P-PET has higher fault coverage than pseudo-random testing.  

For the circuit p100k, we performed fault simulation twice. For the first time, we 

generated patterns for the fault simulation using two polynomials. This was the 

realization with minimal number of polynomials. As a result, P-PET has not covered 

355 faults, and PRT has not detected 443 faults. The advantage of the P-PET in 

percentage of the faults covered more is 19.86%. For the second time, we used the 

polynomial set for the circuit p100k with one extra polynomial. This set was generated 

as a solution for the second sub-goal. To be more precise, this is the realization for 

p100k with coefficient _cones equal to 0.7 and coefficient_patterns equal to 0.3. This 

time P-PET covered 15 faults more. And the difference with PRT rose up to 22.55%. 

According to the Table 6.5 and the Table 6.6, the difference between two considered 

realizations of P-PET for p100k is in 18 faults. In these tables, we were considering the 

percentage of the faults covered from hard-to-detect faults. And in subsection 4.1 we 

noted that the set of hard-to-detect faults is a superset of the real faults not detected by 

P-PET. This explains why we the actual difference in the number of the faults detected 

is less. 

Table 6.9 shows that P-PET with embedded deterministic patterns behaves better 

than pseudo-random test. The realization of P-PET when we are targeting more faults 

by means of adding extra polynomials results in increasing of the percentage of the 

faults covered. In the case of pseudo-random testing, the increase in the number of the 

patterns does not give a remarkable benefit since fault coverage is eventually saturating. 

The random-pattern resistant faults cannot be detected by pseudo-random patterns. 

From this perspective, P-PET with embedded deterministic patterns is a more attractive 

solution. 

 

6.6 Summary and discussions 

 

The algorithm proposed in this chapter for the selection of characteristic 

polynomials is very flexible and it can be adjusted depending on the needs of the user. It 

is used to reach both the sub-goals formulated in the chapter 3. The flexibility is 

achieved by changing the coefficients of the cost function. In addition, the user can 

define the minimal number of patterns each additional polynomial should cover.  

The results presented in this chapter show that a good percentage of the faults can 

be covered in a P-PET. If the user is interested in the minimal number of polynomials in 

the final set, then the percentage of the faults covered from hard-to-detect faults varies 
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from 5% to 30%. This percentage can rise up to 45%, when the possibility is given to 

increase the number of polynomials in the final set. The percentage is further increased 

by introducing additional polynomials targeting only patterns.  

There is a limit of possible number of the patterns which can be covered for each 

circuit. This limit comes from the care bit distributions of the patterns. Patterns with 

more than 40 care bits are unlikely to be covered by the polynomials of degree 24.  

Consider the circuit p533k. The care bit distribution diagram is shown in Figure 

6.1. According to the Figure 6.1, the percentage of patterns with up to 40 care bits is 76. 

Since the total number of patterns is 2570, the number of patterns with up to 40 care bits 

is 1954. So, we can cover maximum 1954 number of patterns for p533k, but the 

polynomial count will be very high. According to the Table 6.8, we are covering 1238 

patterns by 33 polynomials, and each extra polynomial should cover at least 10 patterns. 

If we would like to continue adding polynomials to increase the coverage, we should 

consider polynomials which are covering less than 10 patterns.  

 

 

Figure 6.1: Care bit distribution diagram for p533k 

 

In this chapter we also conducted the comparison of optimized P-PET and 

pseudo-random testing by means of the fault simulation. The results show the 

advantages of P-PET in terms of the fault coverage. 
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CHAPTER 7 

CONCLUSIONS 
 

In this thesis, several state-of-the-art approaches for mixed-mode BIST scheme 

were researched and evaluated. As the basis, contemporary P-PET in the first phase of 

mixed-mode BIST was considered. The second phase is generation of deterministic test 

patterns for the faults not detected by the first phase. P-PET gives higher defect 

coverage in comparison with usual pseudo-random testing, but the number of the faults 

not detected may still be large to encode and store them as deterministic patterns.  

The need and the possibility for an improvement of the scheme were observed. 

And the idea of optimizing P-PET with respect to the fault coverage was introduced. 

This idea is based on embedding deterministic test patterns from the second phase of 

mixed-mode BIST into P-PET by appropriate selection of characteristic polynomials 

used for P-PET pattern generation. 

The algorithm which selects the set of characteristic polynomials for P-PET test 

pattern generation was extended to consider and encode deterministic test patterns. The 

developed algorithm is very flexible in terms of the resulting number of the pattern 

count, covered faults as well as in terms of the amount of chosen polynomials.   

 The proposed algorithm was applied to state-of-the-art industrial circuits, and 

positive results were obtained. Using the same number of polynomials as in P-PET, the 

amount of undetected faults could be reduced by 5% to 29.5% compared to P-PET. If 

more polynomials are allowed, this reduction can be further improved. The upper bound 

for the percentage of the additional faults covered is determined by the care bits 

distribution of the patterns to be encoded in P-PET. 

Overall, the use of the approach results in an enhanced defect coverage and a 

lower number of deterministic patterns needed in the second phase to reach a certain 

fault coverage. The test costs and test application time are comparable with other 

techniques for mixed-mode BIST. Optimized P-PET is especially appealing when the 

size of the pattern set needed for the second stage of a mixed-mode BIST scheme is of 

concern.  

The comparison of the proposed technique to pseudo-random testing proves the 

advantage in terms of fault coverage.  

In the thesis, it was pointed out that the resulting fault coverage can be improved 

by considering the number of faults each deterministic test pattern covers in the process 

of encoding. This way, not only patterns, but faults are targeted. It is also worth to use 

another fault models when selecting the set of the faults of interest. In the thesis, only 

faults of stuck-at model were considered.  

The proposed extension of P-PET can be applied in the following manner. Firstly, 
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P-PET with minimum number of polynomials is applied. Secondly, for undetected 

faults the test patterns are generated. Then the implemented algorithm selects 

polynomials for P-PET taking into account these patterns. And, lastly, the P-PET with 

chosen polynomials is performed. In this way, the defect coverage will be higher since 

we are targeting genuine set of the patterns during P-PET.  

In conclusion, a significant improvement in terms of defect coverage was reached. 

The results show the effectiveness of P-PET when deterministic test patterns are 

considered during the polynomial selection. 
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