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Abstract

During built-in self-test (BIST), the set of patterns generated by a pseudo-random pattern

generator may not provide sufficiently high fault coverage and many patterns can’t detect fault (called

useless patterns). In order to reduce the test time, we can remove useless patterns or change them to

useful patterns (fault dropping). In fact, a random test set includes many useless patterns. Therefore we

present a technology, including both reseeding and bit modifying (a.k.a. pattern mapping) to remove

useless patterns or change them to useful patterns. When patterns changed, we pick out number of

different fewer bits, leading to very short test length. Then we use an additional bit counter to improve

test length and achieve high fault coverage. The technique we present is applicable for single-stuck-at

faults. Experimental results indicate that complete fault coverage-100% can be obtained with less test

time.
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1. Introduction

As the IC design trends are migrating rapidly into the

so called Systems-on-a-Chip (SoC) approach and various

pre-designed and pre-validated cores are integrated in a

chip, the complex designs are creating serious challenges

for external Automated Test Equipment (ATE) and the

built-in self-test (BIST) has emerged as a promising solu-

tion to the VLSI testing problem. BIST is a design for

testability methodology aimed at detecting faulty com-

ponents in a system by incorporating test logic on-chip.

The main components of a BIST scheme are the test pat-

tern generator (TPG), the response compactor, and the

signature analyzer. The test generator applies a sequence

of patterns to the circuit under test (CUT), the responses

are compacted into a signature by the response compactor,

and the signature is compared to a fault-free reference

value. The Figure 1 shows architecture of the BIST.

Many digital circuits contain random-pattern-resis-

tant (r.p.r.) faults that limit the coverage of pseudo-ran-

dom testing [1], that is, circuits with such r.p.r. faults will

have low detectability (few random patterns detect them).

Several techniques have been suggested for enhancing

the fault coverage achieved with BIST. These techniques

can be classified as: (1) Modifying the circuit under test

(CUT) by test point insertion [1,2], or by redesigning the

CUT [3,4], to improve the fault detection probabilities.

(2)Weighted pseudo-random patterns, where the ran-
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dom patterns are biased using extra logic to increase the

probability of detecting r.p.r. fault [5]. (3) Mixed-mode

testing where the circuit is tested in two phases. In the

first phase, pseudo-random patterns are applied. In the

second phase, deterministic patterns are applied to target

the undetected faults [6,7].

This paper uses an additional bit counter and modi-

fying circuit in which deterministic test cubes are em-

bedded in the pseudo-random sequence of bits. A proce-

dure is described for designing the modifying-bit se-

quence generator and using an additional bit counter in a

way that to decrease both test length and area overhead

with obtaining high fault coverage. Our approach was

due to addition modifying circuit and additional bit

counter. It guarantees that certain test cube will be ap-

plied to the circuit-under-test during a specified test

length. The Figure 2 shows the global operations.

In the proposed scheme of this paper, we just use a lit-

tle storage for additional bit counter and that use less num-

ber of test length and seed are used to achieve the desire

high fault coverage. The paper is organized as follows.

Section II introduces the related literature. Section III de-

scribes the modifying-bit architecture, additional bit

counter and the procedure for obtaining useful patterns

which use fewer number of test length. Section IV shows

the simulation results and Section V concludes the paper.

2. Related Work

In serial BIST, deterministic patterns are applied af-

ter a random testing to reduce number of the pattern. The

deterministic pattern are loaded into the LFSR and then

expended into the desired patterns in the scan chain.

The work [8] presented a reseeding-based tech-

nique that improves the encoding efficiency by using

variable-length seeds together with a multiple polyno-

mial LFSR. The technique reuses part of the scan chain

flip-flop in expanding the seeds.

In [9], random patterns that don’t detect r.p.r. faults

are mapped to ATPG generated cubes through combina-

tional logic. The mapping is performed in two phases,

the pseudo-random patterns are identified in the first

step, and the ATPG cubes are loaded in the second step.

Several iterative minimization heuristics are applied to

reduce the area overhead of the mapping logic.

In [10], they loaded new seed by putting the LFSR in

the state that precedes the seed value, so that at the next

clock pulse, the new seed is in the LFSR, and their tech-

nique is based on deterministic seeds which expand into

ATPG patterns so 100% fault coverage can be achieved.

The algorithm they present is based on the following

strategies: (1) generate ATPG patterns for faults that

were not detected with pseudo-random patterns and cal-

culate seeds for these patterns, (2) when a seed is loaded

into the LFSR, let the LFSR run in autonomous mode for

sometime because there is a chance that some of the

ATPG patterns will drop more faults so that some of the

ATPG patterns are not needed, (3) as long as pseudo-ran-

dom patterns don’t detect faults, the LFSR should be

loaded with a new pattern.

The above schemes use seeds that don’t particularly

target undetected faults, so the test length would be in-

creased. Our technique is based on deterministic seeds

which expand into ATPG patterns so high fault coverage

can be achieved and with smaller test length.

In [10], Reseeding refers to loading the LFSR with a

seed that expands into a pre computed test pattern. The op-

eration of the reseeding circuit is as follows: the LFSR

starts running in autonomous mode for sometime according

to the reseeding algorithm. Once it is time for reseeding, a

seed is loaded into the LFSR, which then goes back to the

autonomous mode and so on and so forth until the desired

coverage is achieved. The new seed is in the LFSR. Their

technique uses MUX between flip-flops as shown in Figure

6. By activating the select line of a given MUX, the logic

value in the corresponding LFSR stage is inverted.

Figure 3 shows an example for a 4-stage LFSR con-

nected to one scan chain with 10 flip-flops. This Figure
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Figure 2. Block diagram for generation of useful patterns.



will be used as an example for illustrating the equation

generation technique.

For every flip-flop in the scan chain, there is a corre-

sponding equation in terms of the bits of the LFSR. Let’s

label the scan flip-flops by S0 to Sm-1 where m is the size of

the scan chain. Also, let’s label the stages of the LFSR by

L0 to Ln-1 where n is the size of the LFSR. In the example

above, the equations for the n most significant flip-flops

of the scan chain are: S9 = L3, S8 = L2, S7 = L1, and S6 = L0

because after n clock cycles the bits of the seed end up in

the most significant bits of the scan chain. The reader is

invited to verify the remaining equations as Figure 4.

We can represent the above equations by an m � n

matrix as Figure 5. In which the rows correspond to the

LFSR stages and the columns correspond to the scan

chain flip-flops. An entry (i,j) is 1 if and only if Lj ap-

pears in the equation of Si. According to this system, the

following matrix shows the equations for all the flip-

flops in the scan chain of the example above:

3. Our Embedding Algorithm

3.1 Modifying-Bit Architecture

In our technique, we are way of utilizing reseeding

technique, and added to our method (i.e. modifying pse-

udo-random bit). The built-in reseeding [10] (encoding

the seeds in hardware) refers to loading the pseudo-ran-

dom pattern generator (PRPG) with a seed that expands

into a pre-computed test pattern. The Figure 6 shows the

architecture of the reseeding with modifying-bit circuit.

In order to reduce hardware of the modifying-bit logic

(MBL), it is the most important to choose a pseudo-random

sequence (i.e. some of the bits altered to specifying bits)

from the pseudo-random pattern. The operation of the

MBL was in the control of pattern counter and bit counter.

The Figure 7 shows the circuit of modifying-bit logic.

When constructing the bit counter, the states of the

bit counter can be decoded by simply using on n-input

condition logic. The n is equal to the number of bits in

the bit counter as shown in Figure 8, where the number of

bit counter depends on length of the test cube. As for

number of the bit counter, if the number of one test cube

is equal to 100 bits so the number of bit counter equal to

7 bits.
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Figure 3. A 4-stage LFSR connected to a chain.

Figure 4. The remaining equations of the scan flip-flops.

Figure 5. The matrix which represents the equations. Figure 6. Stage reseeding with modifying circuit.

Figure 7. Circuit of modifying-bit logic.



In new BIST architecture, a bit-counter function is

used to choose when to bit value of LFSR is to be shifted

into the scan chain; meanwhile, check on the position of

the different bits values the correlation between useless

pattern and test cube. Figure 8 shows the example will be

used to illustrate the procedure described in our method.

For example, the value of the 8th and the 9th bits of c2

want inversion to “1” while the pattern-counter equals c2

(pattern-counter = 0010) and the Bit-counter equals

eight and nine. That is because other of test cube bits po-

sitions are the same as pseudo-random pattern c2 (unde-

tected fault pattern) and so inversion 8th and 9th bit posi-

tion of c2 at pseudo-random sequence, and that shifted

into the scan chain in order to embed deterministic test

cube in the sequence.

In the architecture, a bit counter used to choose when

to change the bit value of the useless patterns (the dif-

ferent bits values the correlation between useless pat-

tern and test cub). Our technique is based on modifying

some bits on useless patterns of pseudorandom mode to

shorten the test length and further the number of seeds.

The Figure 9 shows Modifying-Bit Logic. We use n-in-

put AND gates where n is equal to the number of bits in

the bit counter, and the max number of bit counter de-

pend on length of the test cube. We pay the price in hard-

ware overhead. If the total amount of Modifying-bits is

k, we just need k Modifying-Bit Logic.

The example of the Figure 10 obtaining test cubes

shows as follows, the 3rd, 5th and 6th bit of useless pattern
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Figure 8. Modifying-bit example. Figure 10. Obtaining the useful pattern.

Figure 9. Architecture of modifying-bit.



must be changed into “1” and so can generation ATPG

test cubes when the condition established the pattern

counter and the bit counter both. The other bits positions

of the useless pattern are the same as ATPG test cubes

and so only inversion position of the 3rd, 5th and 6th bit of

the pattern at pseudorandom sequence of bits that is

shifted into the scan chain in order to embed determinis-

tic test cube in the sequence.

3.2 Additional Bit Counter

In the common logic BIST architecture, if we want

to disable the “Scan Enable” signal for capturing, we can

use a bit counter. Generally speaking, the bit counter

loaded with the value that corresponds to the length of

the scan chain for every pattern. The bit counter is de-

creased by 1 at each clock cycle. When the bit counter

counts to zero, it means that the test pattern is loaded into

the scan chains, and “Scan Enable“ signal is disabled for

one clock cycle, than we can capture in this time.

We need to load the bit counter register with differ-

ent values corresponding to the number of cycles before

the next capture, if we want to reach the desired seed in

the pseudo-random pattern generator (PRPG). The value

corresponds to the length of the scan chains plus the dis-

tance of the two useful patterns in the LFSR sequence.

As an example in Figure 11, assume that the patterns

1000 and 1110 are useful and the first useful pattern is in

the LFSR, so we load the bit counter register with 6. Af-

ter 4 clock cycles, the first pattern are loaded into the

scan chain, and at clock cycle 6 (the length of the scan

chains plus the distance of the two useful patterns), the

second pattern are loaded into scan chain as shown in

Figure 11. For another example as Figure 11, assume that

the ATPG tool generate the following two patterns:
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(X1XX1X1XX0, X10XXXX1XX). We can generate

two seeds (1000, 1110) for the two patterns [11], so we

load the bit counter register with 12. Assume the starting

state of LFSR is 1000. After 10 clock cycles, the first pat-

tern are loaded into the scan chain, and at clock cycle 12,

the second pattern are loaded into scan, so the test length

can be reduced (as long as the distance of the two useful

patterns less than the length of the scan chain).

3.3 The Proposed Embedding Algorithm

In [10], Reseeding refers to loading the LFSR with a

seed that expands into a pre computed test pattern. The

operation of the reseeding circuit is as follows: the LFSR

starts running in autonomous mode for sometime ac-

cording to the reseeding algorithm. Once it is time for

reseeding, a seed is loaded into the LFSR, which then

goes back to the autonomous mode and so on and so

forth until the desired coverage is achieved. The new

seed is in the LFSR. Their technique use multiplexer

(MUX) between flip-flops as shown in Figure 6. By acti-

vating the select line of a given MUX, the logic value in

the corresponding LFSR stage is inverted.

In this paper, the design process is based on the fol-

lowing steps:

Step 1: ATPG tool is used to generate the test cubes and

find the position (clock cycle) of the test cube

run in pseudorandom mode.

Step 2: We must consider the waste of cycle (position of

useless patterns) between the useful patterns at

run pseudorandom mode. That is because posi-

tion of useless patterns will be overwritten by

test cube (change some bits). As long as pse-

udo-random patterns don’t drop faults, the seed

loaded into the LFSR that could be skipping

some useful patterns, and therefore must be re-

generate those patterns.

Step 3: If the distance of the two useful patterns is less

than the length of the scan chain, we can use an

additional bit counter to reduce the test length.

Step 4: The useless patterns of LFSR run in autonomous

mode as compare with ATPG test cubes, and

count number of different bits position and pick

out number of different less bit from all test

cubes by using C language in order to minimize

hardware overhead.

Step 5: In Step 4, we can find the pattern that need to be

changed, so we start to modify the position of the

different bits at pseudorandom sequence of bits

that is shifted into the scan chain.

Step 6: Lastly, if all ATPG test cubes whole appeared on

pseudorandom mode, it means that all test cubes

are embedded. Otherwise, loops back to step 4.

For a start, the step is to simulate the n-state LFSR for

the given test length L to determine the set of pse-

udorandom patterns that are applied to the circuit-under-

test. For each of the L patterns that are generated. Fault

simulation is then performed on the CUT for the pse-

udorandom patterns to see which faults are detected and

which are not. The faults that are not detected are the faults

that require modifying of pseudorandom bit sequence.

Here, we must find out ATPG patterns was centered

on the Nth cycle of pseudorandom mode, so that can

choose suitable for the seed and then embedded into the

LFSR (overwrite the original pseudorandom patterns).

Generate ATPG patterns for faults that were not detected

with pseudo-random patterns and calculate the seeds for

these patterns.

When a seed is loaded into the LFSR, let the LFSR

run in autonomous mode for sometime because there is a

chance that some pseudo-random patterns will drop

more faults so that some of the ATPG patterns are not

needed (i.e. the pseudo-random pattern is able to detect

faults in the pseudo-random mode, and therefore some of

the ATPG patterns are not needed).

As long as pseudo-random patterns don’t drop faults,

the seed should loaded into the LFSR, yet the seed

loaded into the LFSR and run in pseudo-random mode

that maybe skipping some useful patterns, and therefore

must be regenerate those patterns (i.e. the useful patterns

was skipped from running the pseudo-random mode). If

the useful patterns were skipped, we will be use modify-

ing-bit techniques to regenerating for those patterns of

skipping. The Table 1 shows the example will be used to

illustrate the means.

The output of the reseeding circuit activates the se-

lect lines of the MUX to invert certain stages of the

LFSR such that the desired seed is loaded in the next

clock. As seen as Figure 12, the only modification the

LFSR compared to a regular LFSR is that the LFSR

flip-flops are replaced by multiplexed flip-flops just like

the scan chain.
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Let’s turn our attention to the reseeding circuit by

looking at the following example. The Figure 12 is an ex-

ample using a 4-stage self-reseeding LFSR (LFSR with

reseeding logic) with a primitive polynomial. The Table 1

shows the full sequence of the regular LFSR. Assume that

we want to reseed after the 6th cycle (c6). The reseeding

circuit needs to be a condition logic that takes as inputs the

contents of the LFSR at c6. So in the example the input to

the reseeding & (condition logic, the & as Figure 13) is

Q Q Q Q1 2 3 4. All the cycles that are not part of the desired

sequence can be used to minimize the reseeding circuit.

As an example, let the seed be 0100 (c12); we can

easily calculate c11 given the polynomial of the LFSR

(c11 = 1001). The reason we calculate c11 and not c12 is

because we want the seed to be loaded into the LFSR in

the next clock cycle. XORing c6 with c11 yields 1100

which means that the output of the reseeding & should

activated the select lines of the MUX of Q1 and Q2.

If the seeds are required, every select line will acti-

vate it to complement the contents of its corresponding

flip-flops, and then run pseudo-random mode.

The next step is to simulate the n-stage LFSR for the

given test length L to determine the set of pseudo-ran-

dom patterns that are applied to the CUT. For each of the

L patterns that are generated, the starting n-bit state of

the LFSR is recorded (i.e., the contents of the LFSR right

before shifting the patterns into the scan chain). Fault

simulation is then performed on the CUT for the pse-

udo-random patterns to seed which faults are detected

and which are not. The pattern that drops each fault from

the fault list is recorded. The faults that are not detected

are the faults that require altering of pseudo-random bit

sequence. The pseudo-random bit sequence must be al-

tered to generate test cubes that detect the undetected

faults. An automatic test pattern generation (ATPG) tool

is used to obtain test cubes for the detected faults.

As show in Figure 13, there is an added MUX in the

output side of the LFSR (i.e. gray MUX). The operation

of the MUX was chosen by output value of the MBL.

The output of the MBL equals 1, the output value of the

LFSR will invert. If output of the MBL equals 0, the out-

put value of the LFSR don’t change it, and that the se-

quence shift into the scan chain.

Lastly, if all ATPG test cubes appeared on scan

chain, no other than, all test cubes that are embedded,

otherwise, loop back to the last step.
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The modifying-bit generator is designed so that when

the pseudo-random patterns undetected faults that are al-

tered to embed test cube are added to the set of patterns

that drop faults.

The Figure 14 shows the circuit of Modifying-Bit

design flow. In our technique deterministic test cubes

were generated using the ATPG tool of the SIS and the

synthesis tool used the Synopsys® Design Analyzer and

simulator of the Verilog-XL. Also, we have used Verilog

Hardware Description Language (Verilog HDL) for st-

ructure of the LFSR.

4. Simulation Result

In this section we present the results of some simula-

tion experiments. We performed our experiments on

some of the ISCAS 89 benchmarks. The characteristics

of the benchmarks we used are shown in Table 2. The Ta-

ble 3 shows the number of primary inputs, number of

faults, total amount of modify-bits and flip-flop in the

scan chain. The BC column lists the sizes of the bit coun-

ters and the ABC column lists the sizes of the additional

bit counter. The number of changing bits determines the

area of the modifying circuit. In our technique, determin-

istic test cubes were generated using the ATPG tool of

the SIS.

We performed some simulation experiments to com-

pare our technique with [12]. The reseeding with modi-

fying-bit generators were designed to provide 100%

fault coverage of all detectable single stuck-at faults for a

test length of fewer patterns. The experiment was de-

signed such that pseudorandom patterns are applied first.

Then, test patterns are generated and the seeds are calcu-

lated, and that the technique includes modifying-bit from

the test patterns. Table 3 shows the test length, fault cov-

erage and number of seed when our technique is used.

The number of seed decrease ranged from 26.7% to

57.1%. The test length column reports the chosen length

of the generated test sequence (Length).

5. Conclusion

We presented a built-in modifying-bit scheme based

on change some bits of pseudorandom patterns in an
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Figure 14. Modifying-bit design flow.



on-chip. We are using not many hardware for the com-

plete fault coverage and decrease test length without any

external tester. Our structure of the MBL allows the de-

signer to tradeoff between the number of seeds and the

amount of modifying-bit logic.

Our technique uses reseeding the LFSR with just a

few choose fit seed to generate some of the least corre-

lated test cubes that require modifying-bit to embed. Our

algorithm is very particular about what seed choose and

compare test cube with patterns of modified bits selec-

tion. The simulation result shows that the numbers of

seeds and test length have to be decreased when we pay

the price in hardware overhead.

We presented a scheme include built-in modifying-

bit and additional bit counter. High fault coverage (sin-

gle-stuck-at fault) can be achieved with our technique

without any external testing. We pay the price in hard-

ware overhead in order to decrease test length. Our

scheme allows the designer to trade off between the

number of seeds and the amount of modifying-bit logic.
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