3 research outputs found

    Comparative Studies of Disordered Proteins with Similar Sequences: Application to Aβ40 and Aβ42

    Get PDF
    Quantitative comparisons of intrinsically disordered proteins (IDPs) with similar sequences, such as mutant forms of the same protein, may provide insights into IDP aggregation—a process that plays a role in several neurodegenerative disorders. Here we describe an approach for modeling IDPs with similar sequences that simplifies the comparison of the ensembles by utilizing a single library of structures. The relative population weights of the structures are estimated using a Bayesian formalism, which provides measures of uncertainty in the resulting ensembles. We applied this approach to the comparison of ensembles for Aβ40 and Aβ42. Bayesian hypothesis testing finds that although both Aβ species sample β-rich conformations in solution that may represent prefibrillar intermediates, the probability that Aβ42 samples these prefibrillar states is roughly an order of magnitude larger than the frequency in which Aβ40 samples such structures. Moreover, the structure of the soluble prefibrillar state in our ensembles is similar to the experimentally determined structure of Aβ that has been implicated as an intermediate in the aggregation pathway. Overall, our approach for comparative studies of IDPs with similar sequences provides a platform for future studies on the effect of mutations on the structure and function of disordered proteins

    Intrinsically Disordered Proteins: Where Computation Meets Experiment

    Get PDF
    Proteins are heteropolymers that play important roles in virtually every biological reaction. While many proteins have well-defined three-dimensional structures that are inextricably coupled to their function, intrinsically disordered proteins (IDPs) do not have a well-defined structure, and it is this lack of structure that facilitates their function. As many IDPs are involved in essential cellular processes, various diseases have been linked to their malfunction, thereby making them important drug targets. In this review we discuss methods for studying IDPs and provide examples of how computational methods can improve our understanding of IDPs. We focus on two intensely studied IDPs that have been implicated in very different pathologic pathways. The first, p53, has been linked to over 50% of human cancers, and the second, Amyloid-β (Aβ), forms neurotoxic aggregates in the brains of patients with Alzheimer’s disease. We use these representative proteins to illustrate some of the challenges associated with studying IDPs and demonstrate how computational tools can be fruitfully applied to arrive at a more comprehensive understanding of these fascinating heteropolymers.National Science Foundation (U.S.). Directorate for Biological Sciences. Postdoctoral Research Fellowship (Grant 1309247

    EFFICIENT CONSTRUCTION OF DISORDERED PROTEIN ENSEMBLES IN A BAYESIAN FRAMEWORK WITH OPTIMAL SELECTION OF CONFORMATIONS

    No full text
    Constructing an accurate model for the thermally accessible states of an Intrinsically Disordered Protein (IDP) is a fundamental problem in structural biology. This problem requires one to consider a large number of conformations in order to ensure that the model adequately represents the range of structures that the protein can adopt. Typically, one samples a wide range of structures in an attempt to obtain an ensemble that agrees with some pre-specified set of experimental data. However, models that contain more structures than the available experimental restraints are problematic as the large number of degrees of freedom in the ensemble leads to considerable uncertainty in the final model. We introduce a computationally efficient algorithm called Variational Bayesian Weighting with Structure Selection (VBWSS) for constructing a model for the ensemble of an IDP that contains a minimal number of conformations and, simultaneously, provides estimates for the uncertainty in properties calculated from the model. The algorithm is validated using reference ensembles and applied to construct an ensemble for the 140-residue IDP, monomeric α- synuclein.National Institutes of Health (U.S.) (Grant 5R21NS063185-02
    corecore