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Abstract: Proteins are heteropolymers that play important roles in virtually every 

biological reaction. While many proteins have well-defined three-dimensional structures 

that are inextricably coupled to their function, intrinsically disordered proteins (IDPs) do 

not have a well-defined structure, and it is this lack of structure that facilitates their 

function. As many IDPs are involved in essential cellular processes, various diseases have 

been linked to their malfunction, thereby making them important drug targets. In this 

review we discuss methods for studying IDPs and provide examples of how computational 

methods can improve our understanding of IDPs. We focus on two intensely studied IDPs 

that have been implicated in very different pathologic pathways. The first, p53, has been 

linked to over 50% of human cancers, and the second, Amyloid-β (Aβ), forms neurotoxic 

aggregates in the brains of patients with Alzheimer’s disease. We use these representative 

proteins to illustrate some of the challenges associated with studying IDPs and demonstrate 

how computational tools can be fruitfully applied to arrive at a more comprehensive 

understanding of these fascinating heteropolymers. 

OPEN ACCESS



Polymers 2014, 6 2685 

 

 

Keywords: intrinsically disordered proteins; molecular dynamics; p53; Amyloid-β (Aβ) 

 

1. Introduction 

Proteins are heteropolymers that play essential roles in virtually all biological processes. Their vast 

importance in biochemistry and medicine explains why a great deal of effort has been directed at 

understanding their properties and function. Traditionally, proteins have been understood to have a 

well-defined three-dimensional structure that is inextricably linked to their function. Indeed, knowledge 

of the structure of a protein provides a great deal of information about that protein’s function  

(Figure 1) [1,2]. The importance of protein structure is underscored by the fact that amino acid mutations 

in a protein’s primary sequence which destabilize its tertiary structure often result in disease [3]. 

Figure 1. Examples of the relationship between protein structure and function. (a) Crystal 

structure of the Lambda-phage repressor (Protein Data Bank (PDB) ID: 3bdn), which binds 

to its target DNA sequence (red) by making sequence-specific contacts through the 

grooves in the DNA double-helix [4]; (b) Crystal structure of Tsx (PDB ID: 1tlz [5]),  

a nucleoside transporter protein, that transports nucleosides (red) by creating pores in the 

membrane through a β-barrel motif (shown here in blue); and (c) Crystal structure of 

keratin (PDB ID: 3tnu), a fibrous structural protein whose toughness can be attributed to 

the helical coiled-coil structure it adopts in its fibers [6]. 

 

Although proteins are often depicted as having static three-dimensional structures, thermal 

fluctuations at body temperature enable them to sample different conformations throughout their 

biological lifetime [7]. Protein motions range from fast (~picoseconds) small amplitude (~Angstroms) 

fluctuations, to relatively slow (microseconds to seconds or longer), large scale motions that involve 

domain shifting and/or folding [8]. In general, all of these motions enable proteins to perform their 

prescribed functions. Given the essential role that protein motion plays in biology, discussions about 

protein structure should ideally revolve around the structural ensemble of thermally accessible states 

that a given protein can adopt [9]. 

For a number of proteins, the structural ensemble consisting of thermally accessible states contains 

structures that have relatively small deviations from the ensemble average structure. In general, such 

proteins are categorized as being “folded”. Structures of folded proteins, determined by experimental 

methods such as X-ray crystallography, correspond to the ensemble-averaged structures. Since the 
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folded ensemble contains structures that have only small deviations from the ensemble average structure, 

the ensemble average itself captures many important features of the protein’s structure, and many 

insights into a protein’s function can be garnered from this ensemble average structure (Figure 1).  

By contrast, proteins within the class of intrinsically disordered proteins (IDPs) sample dissimilar 

conformations during their biological lifetime, and therefore the corresponding structural ensembles are 

heterogeneous. Given the vast number of structural states that are accessible to a disordered protein, 

the ensemble averaged structure for an IDP is typically not representative of any structure in the 

ensemble itself and therefore has little utility for understanding that protein’s function. Consequently, 

alternative methods are needed to understand the “structure” of these proteins. 

Studying IDPs is important for a number reasons. First, they are quite prevalent in biology. It has 

been estimated that 25% of proteins encoded in the human genome are completely disordered and that 

40% contain an intrinsically disordered region (IDR) of at least 30 amino acids in length [10–12]. 

These proteins have been found to play essential roles in many pathological processes. For example, 

aggregates of the IDP α-synuclein can be found in the brains of patients with Parkinson’s disease, and 

these aggregates have been linked to synaptic dysfunction in dopaminergic neurons [13]. Huntington’s 

disease, another IDP-associated neurodegenerative disease, is traceable to aggregation of the IDP 

Huntingtin protein [14–17]. Similarly, aggregation of the IDPs Amyloid-Beta peptide (Aβ) and tau 

protein are pathological hallmarks of Alzheimer’s disease [18–22]. In addition to diseases related  

to IDP aggregation, IDP malfunction can also cause pathogenic errors in signaling pathways.  

For example, mutations in IDPs involved in regulation of the cell cycle can disrupt gene regulation and 

cell signaling, mechanisms that are implicated in oncogenesis [23]. Tumor suppressor p53 is a largely 

disordered protein, which functions in cell cycle regulation [24]. Deactivating mutations of p53 can 

facilitate uncontrolled cell division and oncogenesis; e.g., mutations in the p53 are found in over 50% 

of cancers [25], including tumors of the colon, lung, ovaries, breast, liver, and brain [26,27]. 

While the importance of IDPs in human biology and pathology is unquestioned, their inherent 

structural heterogeneity makes them particularly challenging to study. In what follows, we first review 

protein structure in general, focusing on important differences between folded proteins and disordered 

proteins. We then introduce experimental and computational methods for studying intrinsically disordered 

proteins. Finally, we discuss examples of where these methods have been and could be applied to 

increase understanding of two IDPS, p53 and Aβ. While many IDPs have important functional roles in 

biology and are implicated in human diseases, we chose to focus on these two proteins because they 

typify two very different types of disordered proteins. P53 is a large (393 residues), intracellular, 

multi-domain protein that has a folded DNA binding domain in addition to several long intrinsically 

disordered regions (IDRs). These IDRs facilitate its role as a hub in cellular stress networks.  

By contrast, Aβ is a small (around 40 residues) fully disordered extracellular protein that may play a 

role in memory and learning [28] and does not contain any folded subdomains in its monomeric state. 

Although these proteins have very different structural properties, computational methods have been 

used to improve our understanding of both of these systems. 
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2. Folded Proteins versus Disordered Proteins—A Comparison 

Proteins are heteropolymers consisting of covalent linkages between consecutive amino acid 

monomers. The amino acid sequence of a protein, termed its primary structure, confers chemical 

properties to the protein through the characteristic properties of the 20 amino acids. For traditional 

“folded” proteins, this chain folds into a unique structure. A central dogma of biochemistry is that a 

protein’s amino acid sequence determines its structure, which in turn determines its function [1,29]. 

While this paradigm has been often quoted in the literature, it is now recognized that conformational 

fluctuations in proteins play an essential role in protein function [30]. The inaccuracy of this paradigm 

is even more poignant for disordered proteins, which sample a variety of structurally dissimilar states 

during their biological lifetime [31]. 

The difference between folded proteins and disordered proteins can be understood based on an 

analysis of their potential energy landscapes (Figure 2). Folded proteins have a “funnel-shaped” global 

energy minimum, where the lowest energy state corresponds to the native structure [32,33], and the 

width of the unique global energy minimum determines the conformational entropy of the native state 

(Figure 2a). By contrast, disordered proteins have multiple local energy minima separated by small 

barriers (Figure 2b). Transitions between the different local energy minima occur quickly and often, 

leading to an ensemble consisting of a vast number of structurally dissimilar states, which have 

approximately equal energies. Thus, a comprehensive characterization of an IDP consists of an ensemble 

of states and the transition rates between them [34]. In practice, knowledge of the transition rates 

between conformers in an IDP ensemble is quite difficult to capture experimentally (or computationally). 

Consequently, in practice, studies of IDPs have focused on modeling the thermodynamically accessible 

states alone. As we outline below, while this represents an incomplete picture of these proteins, a great 

deal of information and insight has arisen from such studies. 

While the above distinction between folded and disordered protein landscapes is instructive,  

it misses many of the nuances associated with discussions of protein structure. As we have alluded to 

above, thermal fluctuations cause both folded and disordered proteins to sample a variety of states 

during their lifetime. In this regard, we note that even proteins considered to be folded (and whose 

structures have been solved via X-ray crystallography), often contain both ordered regions and 

intrinsically disordered regions lacking a stable tertiary structure [35]. This means that the energy 

minimum of a folded protein with an IDR is actually not smooth, but is actually a rough surface with 

many smaller minima corresponding to different states sampled by the IDR within the native state 

(Figure 2c). Typical representations of folded and disordered proteins attempt to capture these inherent 

differences between the ensemble of states in a minimalist, yet informative manner. Folded proteins 

are often depicted as a single ensemble average structure (Figure 3a), while disordered proteins/regions 

are represented by an alignment (or overlay) of energetically favorable, yet structurally dissimilar 

states (Figure 3b). 

Disorder imparts a number of properties to IDPs that would be difficult for folded proteins to 

realize. For example, the structural heterogeneity of IDPs (and IDRs) confers proteins the ability to be 

promiscuous in their choice of binding partners [36–38]. This property explains why IDPs are 

frequently found to be hubs in protein interaction networks and are specifically associated with 

signaling networks [37,39]. In fact, almost 70% of signaling proteins are predicted to contain an IDR 
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of at least 30 consecutive residues [23]. The largely disordered tumor suppressor p53 (which we 

discuss further below), for example, is an important signaling hub, binding hundreds of proteins [39]. 

An additional strength of IDPs in signaling networks is their rapid turnover facilitated through an 

increased sensitivity to proteolytic degradation over folded proteins, allowing them to be quickly 

deactivated in response to changing cellular environments [40–42]. Outside of signaling, some 

structural features are enabled directly through the flexibility of IDPs, such as elasticity in elastin or 

enhanced flexibility in proteins that must pass through narrow tubes [43,44]. 

Figure 2. Schematic of energy landscapes for (a) a folded protein (human nucleoside 

diphosphate kinase (NDPK), PDB ID: 1nsk) [45] and (b) an intrinsically disordered peptide 

(CcdA C-terminal, PDB ID: 3tcj) [46]; (c) close-up of the minimal free energy well in (a), 

where IDRs are shown in red and ordered regions are shown in white. The example NDPK 

conformations are shown again enlarged to the right for better visualization. In (a–c) lower 

free energy (dark blue) represents more probable conformations. Representative protein 

conformations were generated with molecular dynamics simulations in CHARMM using 

coordinates from the 1nsk and 3tcj PDB structures as initial states [47,48]. 

 

IDPs may obtain a folded structure upon binding their partners. Whether folding occurs before, 

during, or after contacting the partner is an oft-studied question, due to its implication in the design of 

molecules to potentially inhibit or stabilize IDP states. The conformational selection hypothesis 

proposes that unbound IDPs fluctuate through their bound conformations, and their partners selectively 

bind when the IDP is in the appropriate binding conformation [49]. Alternatively, the induced fit 

hypothesis proposes that IDPs first make low-affinity, non-specific contacts with their partners,  
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and then fold as they bind [50,51]. Fly-casting, a related supposition that expands on this principle, 

states that extended IDP conformations result in IDPs possessing a relatively large capture radius 

which leads to fast association rates [52,53]. While this increased capture radius has not been shown to 

significantly increase the binding rate of IDPs over folded proteins, it has been shown for an IDP and 

its binding partner that weak encounter complexes initiated from an extended conformation of the IDP 

are more likely to evolve to the native complex than weak encounter complexes initiated from a folded 

form of the IDP [54]. This indicates that some IDPs may be more likely to have productive encounters 

with their partners than folded proteins, as they can more easily fold into their bound state after an 

initial non-native interaction with their partner. The conformational selection and induced fit 

hypotheses are not mutually exclusive, and may be used in different combinations by each IDP with 

each of its binding partners. Additionally, many IDPs remain disordered upon binding their partners, 

and this disorder may also have functional roles [55]. 

Figure 3. Varied degree of order in proteins (a) Crystal structure of the protein H-Ras, 

solved in complex with GTPase-Activating Protein (not shown, PDB ID: 2x1v) [56].  

H-Ras is a folded protein containing a number of loops (purple) that have well-defined  

B-factors. These loops have no regular secondary structure yet they are ordered in the 

sense that they have well defined three-dimensional coordinates. Ordered regions of the 

protein that have regular secondary structure are shown in orange (helices) and blue 

(sheets); (b) NMR ensemble of the CcdA dimer (PDB ID: 2h3a), a protein with both an 

ordered region and an IDR [57]. The intrinsically disordered C-terminal tail (shown in 

green) populates a large number of structurally dissimilar states. Each of the potential  

C-terminal conformations is depicted as a distinct backbone trace (green), and the ordered 

regions are shown in orange/blue/purple according to secondary structure. 

 

3. Experimental Studies of IDP “Structure” 

The ensemble average structure of a folded protein is usually determined using X-ray crystallography 

or nuclear magnetic resonance (NMR) spectroscopy (via the measurement of distance constraints 

between heavy atoms) [58]. These methods, however, cannot be used to obtain a comprehensive 

picture of the structural ensemble of IDPs, for the reasons mentioned in Section 2. Instead, experimental 
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methods more appropriate for heterogeneous data can be used to find boundaries and distributions of 

measurable variables across the ensemble of conformational states sampled by the IDP. 

Insights into aspects of an IDP ensemble are typically obtained using a number of experimental 

techniques. Two useful measurements are secondary chemical shifts and paramagnetic relaxation 

enhancement (PRE). Secondary chemical shifts, measured with NMR, quantify the deviation between 

measured chemical shifts and random coil chemical shifts for each residue, providing local information 

about secondary structure propensities in IDPs [59]. It is important to note that since IDPs typically 

fluctuate between dissimilar conformations on a time scale that is fast relative to the experimental time 

scale, the measured chemical shifts at each residue are ensemble averages [60]. 

While the ensemble average for chemical shifts is computed as a simple average, many measurements 

on protein structure scale exponentially (r−6) with the distance r. This has the particular consequence 

that measurements which scale exponentially with distance will be biased towards small distances.  

For example, NMR PREs measure long-range (up to 25 Angstrom) residual contacts within a protein 

by tagging a specific amino acid with a paramagnetic probe, thereby affecting the relaxation properties 

of nearby nuclei [60,61]. The distance dependency of PREs ensures that closer distances will have 

more weight, and thus these measurements are more sensitive to states with short inter-residue distances. 

NMR measurements of the Nuclear Overhauser Effect (NOE) can also provide short-range distance 

constraints between different nuclei in a structure [58,60]. For example, NOEs are typically observed 

between nuclei separated by less than ~8 angstroms, and therefore provide valuable information about 

residues that are distant in the primary sequence but that are nearby in three-dimensional space [62]. 

Similar to PREs, observed NOE intensities depends exponentially on distance, and thus ensemble 

averages are biased toward a small subset of conformations that have close contacts. Moreover, rapid 

conformational fluctuations of IDPs lowers the intensities of observed NOEs in comparison to folded 

proteins. In short, NOEs are usually not observed between residues in an IDP that are far apart in the 

primary sequence [58,60,63]. Thus, while NOEs can be used to form distance constraints between 

residues for determining structure of folded proteins, they have not proven as useful for studying IDPs [64]. 

Residual dipolar coupling (RDC) measurements provide information about the relative orientation 

of two nuclei, which typically share a covalent bond, with respect to an external magnetic field. Prior 

to measuring residual dipolar couplings, the protein of interest is typically embedded in an alignment 

medium that reduces the effects of molecular tumbling, thereby maximizing the measured magnitude 

of the dipolar couplings. RDCs encode ensemble-averaged information about structured elements in 

IDPs where the average is complicated by the dependence on orientation angles [60,65,66]. 

Small angle X-ray scattering (SAXs) experiments provide information about the overall shape and 

size of molecules [67]. Although these data, again, correspond to ensemble average information, when 

combined with structural models, SAXs profiles can provide needed information that can be used to 

validate and refine models describing the thermodynamically accessible states of the IDP of interest. 

Recently, high speed atomic force microscopy (HS-AFM) has allowed visualization of the topography 

of proteins at nanometer resolution through a time-series of topographic images with a frame rate of 

more than ten frames per second [68]. HS-AFM does not require labeling or staining of the molecule, 

but forms a topographic image of an entire system residing on a surface in a solution with minimal 

perturbation to the molecule in near physiological conditions [69]. In studies of the 1767 residue 

heterodimeric protein FACT (facilitates chromatin transcription), which contains two major IDRs 
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consisting of approximately 200 residues each, a frame-rate of 5–12.5 frames per second was sufficient 

to visualize changes in the IDRs’ surface over time [70]. These data can be used as bounds on models 

of IDPs, for example, in the form of distributions of radii of gyration. 

In sum, existing experimental techniques for studying protein structure can provide boundary 

conditions that can be quite useful for ensemble construction. Combining experimental measurements 

from different sources with computational studies has shown promise in generating conformational 

ensembles of IDPs [71–73]. In the following section, we discuss how computation can be used to gain 

further insight into the conformational ensemble of IDPs from experimentally garnered data. 

4. Computational Methods for Describing IDP Ensembles 

Molecular simulations can complement experimental methods, yielding structural models for the 

dominant thermodynamically accessible states of IDPs [74]. While experiment usually provides 

ensemble-averaged information, molecular simulations provide atomistic information that can clarify 

experimental observations and that can provide fodder for future experiments [31]. 

Molecular dynamics (MD) simulations, in particular, can generate trajectories for proteins using an 

underlying potential energy function, which is used to calculate the forces on each atom (and consequently 

the motion of each atom) in a protein [75,76]. The potential energy function includes terms describing 

the energy associated with bond lengths, bond angles, and torsion angles, as well as long range forces 

arising from the Coulombic energy and van der Waals interactions. The parameters defining each of 

these terms are learned either empirically or from ab Initio calculations [75,77]. Several issues arise 

when applying these methods to IDPs. First, most parameterized force fields were developed for 

folded proteins, and it is an open question as to whether all of the available energy functions are 

generally applicable to IDPs. While some more specific force fields have been developed with IDPs in 

mind (and fruitfully applied), it is not clear how generally applicable these methods are [78–82].  

More importantly, the conformational heterogeneity of IDPs calls for extensive simulations to ensure 

that the relevant regions of conformational space have been adequately sampled. In general, this 

process is quite demanding from a computational standpoint. 

Another method for conformational sampling, attractive due to its relative computational efficiency, 

is the statistical coil model approach where one samples from empirical potentials to quickly generate 

an ensemble of states [83]. The computational advantage of this approach stems from the fact that 

structures are typically constructed by independently sampling individual residue phi-psi conformations 

for each residue in the protein. In this regard the potentials used are much simpler than molecular 

dynamics potentials and usually seek to reproduce coarse-grained behaviors, such as empirical 

backbone dihedral angle distributions for each residue from the Protein Data Bank (PDB) [83–85]. 

Like molecular dynamics potentials, however, the empirical potentials used in statistical coil-based 

approaches are usually trained on conformational propensities of natively folded proteins; e.g., the  

phi–psi angles of residues designated as coil (e.g., regions not in strand or helical conformations) in the 

PDB. User-defined restraints can be included, such as done with the Flexible Mecanno tool [84],  

to adapt the potential to the particular protein in question. 

While there is much merit in these approaches, generating an accurate structural ensemble using 

these methods alone is not tractable for systems of even modest size. Computational tools may therefore 
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have their greatest utility when used in conjunction with experimental data. For example, experimental 

observables can be used to restrain molecular simulations to obtain ensembles that have calculated 

observables that agree with the corresponding experimental values [71,86]. Such ensemble-restrained 

simulations have been used to obtain conformational ensembles of alpha-synuclein by restraining 

molecular dynamics simulations with paramagnetic relaxation enhancement (PRE) measurements, 

which provide information about the long-range interatomic distances in the protein [63]. These studies 

find that alpha-synuclein populates an ensemble of states that have smaller hydrodynamic radii than 

random coils, suggesting some degree of residual structure driven by interactions between the charged 

C-terminus and the hydrophobic central region of the protein [63]. Other approaches first generate 

candidates for the thermally accessible states of the protein using an empirical potential energy 

function and then compare calculated ensemble averages from the molecular models to corresponding 

experimentally determined ensemble averages [87]. Correct models have calculated averages that 

agree with experiment [88]. One example of such an approach is ENSEMBLE, which takes as input a 

set of conformations and experimental data and prunes this large set of conformations to a smaller set. 

Each structure is assigned a weight such that their ensemble average measurements agree with the 

data, and structures that do not contribute to fitting the experimental data are discarded [89]. Another 

approach for creating an ensemble that agrees with experimental measurements involves generating 

structures using a statistical coil-like model (Flexible-Meccano), a subset of which are selected for the 

agreement between their backbone dihedral angles and NMR chemical shifts. The process is then 

iterated until no further improvement in the agreement between chemical shifts and backbone dihedral 

angles can be obtained [90]. These models and their associated experimental data can be deposited in 

an openly accessible database termed pE-DB [91]. 

It is important to note that since experimental observables typically correspond to ensemble averages, 

it is not clear how to combine experiment with the results of computational models to arrive at an 

unfolded ensemble. While the problem of generating an ensemble that agrees with experiment is 

mathematically well defined, it is inherently under-determined. More specifically, the number of 

experimental restraints one can obtain from any given experiment pales in comparison to the number 

of degrees of freedom associated with even the smallest IDP. In other words, one can generate many 

mutually exclusive structural ensembles that have ensemble averages that agree with any given set of 

experimental data [88,92–94]. 

Several methods have been developed to deal with the degeneracy issue. In the most straightforward 

approach, one generates a number of different ensembles for an IDP that all agree with experiment. 

Structural features that are in common to all of the ensembles are interpreted as being those that are 

most likely to be “true”; i.e., while one cannot unambiguously determine which ensemble is correct, 

features that are common to all of the ensembles are likely to be legitimate [93,95]. A second method 

bases the choice of ensemble on a maximum entropy or, equivalently, a minimal information  

approach [96–98]. The general principle ensures that the ensemble (1) yields calculated observables 

that agree with experiment; and (2) is as similar as possible to some pre-defined “prior” probability 

distribution. For example, if the prior distribution is given by the potential energy of the potential 

conformers, then the method yields an ensemble that agrees with experiment and that minimally differs 

from what the potential energy surface says are favorable conformations. 
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Another method that explicitly tackles the issue of degeneracy is Bayesian Weighting (BW) [92,99]. 

The BW method consists of constructing coarse-grained conformational ensembles, defined as a finite 

set of representative structures s


 and an associated set of weights, w


, which specifies the relative 

stabilities of each structure in the ensemble. The method begins by first generating a set of structures, 

either through a statistical coil model or by sampling from a molecular dynamics potential energy 

function. In general, it is helpful to construct libraries that cover a wide range of structural parameters 

(e.g., secondary structure content, radius of gyration, etc.) [88,100]. Predicted experimental measurements 

for each of these structures are then obtained using a variety of available algorithms (e.g., SHIFTX for 

NMR chemical shifts [101]). Using a Bayesian formalism, a posterior distribution over all possible 

weights for each structure is then computed by maximizing the agreement between the conformational 

ensemble and the experimental data. The strength of this approach lies in the fact that it accounts for 

both uncertainty associated with the experimental measurements (i.e., measurement error), and 

uncertainty in the algorithms used to predict experimental data from a given structure (i.e., prediction 

error), when generating the posterior distribution. Furthermore, it provides a quantitative estimate of 

the uncertainty in the underlying ensemble in the form of an uncertainty parameter, which takes a 

value between 0 and 1 and represents the extent to which one can assign weights to the structures in s


 

differently to agree with the data [92]. This uncertainty parameter was found to correlate well with 

model correctness in a computational study [92]. Thus, the BW formalism allows the user to use 

quantitative experimental measurements, such as NMR or SAXS data, to construct conformational 

ensembles, and produces a measure of the model’s statistical uncertainty. Cross-validating an ensemble 

with independent experimental data provides an additional method for justifying an ensemble [72,73]. 

To illustrate how computational tools can be used to study IDPs, in the remaining sections we focus 

on two IDPs that have been implicated in human disease. For p53, mutations causing abnormal signaling 

lead to cancer, whereas for Aβ, aggregation of monomers is linked to Alzheimer’s disease. As the 

pathology of these diseases is dissimilar, different questions have guided research into the proper and 

improper functioning of these two IDPs. We discuss how the computational tools mentioned above can 

aid in the process of garnering detailed structural insights into their disease processes, which can in 

turn be applied to the rational design of novel compounds aimed at combating disease. Moreover, 

studying the mutations and malfunctions of IDPs that lead to disease will improve understanding of the 

structural and mechanistic properties of IDPs that are essential for their correct function. 

5. p53 

Tumor suppressor p53 has been dubbed the “guardian of the genome” due to its central role in cell 

cycle regulation in response to stress [102,103]. Once p53 is activated by cellular stress signals,  

it binds DNA to regulate transcription of genes involved in stress response pathways, including cell 

cycle arrest, senescence, apoptosis, and metabolism [104]. Depending on the type of stress, p53 can 

arrest cell division while initiating transcription of genes for DNA repair in order to prevent 

duplication of a cell with damaged DNA, or initiate apoptosis to destroy cells with irreparably 

damaged DNA. Thus, alterations in the function of p53 can disrupt its ability to respond to DNA 

damage, allowing damaged cells to multiply. Like many other IDPs functioning as transcription 

factors, p53 is a hub protein, regulating over 150 genes [39,105] and binding hundreds of partner 
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proteins [106,107] in a complex regulatory network. Its involvement in so many cellular processes 

ensures that mutations in p53 have widespread effects. In fact, 50% of cancers involve an inactivating 

mutation of p53 [108], and the apoptotic pathways controlled by p53 are impaired in the remaining 

cancers [25,108]. 

p53 functions as a homo-tetramer where each monomer contains six major domains (Figure 4a). 

The N-terminal region of p53 contains the largely disordered transcription activation domain (TAD, 

residues 1–67) and the short proline rich domain (PRD, residues 67–98) [109]. This is followed by the 

structured DNA binding domain (DBD, residues 98–303). The C-terminal region contains the 

intrinsically disordered nuclear localization signaling domain (NLS, residues 303–323), the tetramerization 

domain (residues 323–363) [109,110], and the intrinsically disordered C-terminal negative regulatory 

domain (NRD, residues 364–393) [111]. The intrinsic disorder of the TAD and NRD enable binding of 

multiple partners with varied strengths. Moreover, the flexible nature of the entire p53 molecule and 

the intrinsic disorder of TAD and NRD domains assist p53’s binding partners in forming multi-point 

interactions with p53 in both the TAD and the NRD [25]. However, the disorder of these domains also 

limits the ability of traditional experimental methods to investigate the structure of p53 or its 

disordered domains, particularly when not bound to partners. Instead, structural data on individual 

domains has been obtained, often in the presence of different stabilizing binding partners. 

In the following sections, we will describe how computational methods have been used to investigate 

the mechanisms of regulation of p53 activity through its binding partners. Specifically, we discuss how 

computational methods have been used to understand the mechanisms by which the TAD and NRD 

domains are able to bind multiple partners in different conformations. The mechanism of partner 

recognition and folding upon binding used by each of these IDRs is interesting for both design of 

potential drugs to inhibit or re-stabilize p53 in tumors, as well as to better understand the engineering 

of IDPs. 

5.1. p53 Transcription Activation Domain (TAD) 

The IDR p53 TAD interacts with proteins forming transcriptional machinery as well as inhibitor 

proteins (Figure 4b). For example: 

1. In the absence of cellular stress, p53 TAD is bound by its inhibitor MDM2 (mouse double 

minute 2 homolog), which both tags p53 for degradation and inhibits the binding site of p53 to 

transcriptional co-activator proteins (Figure 4b) [112,113]. The TAD region is phosphorylated 

in response to cellular stress; phosphorylation of the TAD disrupts the interaction between p53 

and MDM2, thereby allowing p53 to act as a transcriptional regulator [114]. 

2. In response to cellular stress signals, the TAD domain binds to the transcriptional co-activators 

CBP (CREB-binding protein; CREB is the cAMP-response element-binding protein) and p300, 

which function as scaffolds for assembling transcription factors on DNA that regulate genes for 

stress response pathways (Figure 4b). CBP and p53 additionally bind the NRD and perform  

post-translational modifications of NRD residues, leading to increased stabilization of the  

p53-DNA complex [113]. 

3. P53 is also activated as a transcription factor through its interaction with High Mobility Group 

Protein B1 (HGMB1)), which forms part of the transcription machinery on DNA (Figure 4b). 
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HGMB1 has two binding domains: one domain binds to p53 and the other domain binds and 

bends DNA, most likely into a more suitable conformation for binding of the p53 DBD [115]. 

4. p53 TAD also interacts with its inhibitor Replication Protein A (RPA), which preferentially 

binds single-stranded DNA (ssDNA) (Figure 4b) [116]. If damaged DNA results in an increase 

in ssDNA, RPA will instead bind ssDNA, freeing p53 to activate transcription of stress  

response genes [116]. Hyperphosphorylation of RPA through UV radiation also disrupts the  

interaction between p53 and RPA, allowing p53 to initiate repair of DNA damaged by the  

UV radiation [116]. 

Figure 4. p53 domains and interactions. (a) Primary sequence of p53, colored according to 

domains. Black lines are drawn over domains that are intrinsically disordered in the 

monomer; and (b) Schematic of interactions between p53 and the binding partners 

discussed in this review. A full p53 tetramer is shown bound to DNA. Interactions are 

shown along a single monomer; the remaining monomers are faded. Green and pointed 

arrows indicate interactions that promote transcription activity by p53; red and blocked 

arrows indicate interactions that repress transcription activity by p53. 

 

The intrinsic disorder of p53 TAD provides it with flexibility to bind multiple partners using 

different residue subsets in different motifs (Figure 5b–f). The TAD domain has two subdomains; 

TAD1 is formed from residues 1–40 and TAD2 is formed from residues 41–67 [109,110,117].  

The flexible nature of p53 TAD enables enhanced binding through the use of one or two subdomains, 

increasing the complexity of TAD’s interactions with its binding partners. For example, TAD mimics 
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ssDNA when forming contacts with the DNA-binding protein RPA, as well as HGMB1, as part of a 

mechanism for detecting damaged DNA (Figure 5f,e) [115,116]. 

Figure 5. p53 domains and interactions. (a) The primary sequence of p53, colored 

according to domains. Horizontal lines above sequence indicate disordered domains in the 

monomer; (b–k) A PDB structure/model for each p53 region discussed in the paper is 

shown beneath its corresponding domain in (a). Ordered regions of p53 are shown in 

orange (helices), blue (sheets), and purple (loops); IDRs are shown in green; DNA/regions 

of binding partners within 15 Å of p53 are shown in yellow. Multiple potential structures 

are shown superimposed for NMR ensembles, whereas a single structure is shown for 

crystal structures. Indices of first and last p53 residues included in each structure are 

provided. In order (b–k), the PDB IDs of the models shown are: 1ycr, 2k8f, 2l14, 2ly4, 

2b3g, 4hje, 1jsp, 1dt7, 2h2f, and 1h26 [113,115,116,118–124]. 

 

Understanding how IDPs, which fold upon binding, obtain well-defined tertiary structures, in the 

presence of their binding partners, is central to understanding how these proteins function. Several 

hypotheses exist for how IDP folding and binding occurs. Molecular simulations, such as those 

described in the remainder of this section, have been used to model the conformational ensemble of  

the unbound p53 TAD to differentiate the roles played by conformational selection and induced fit in 

interactions between p53 TAD and its binding partners. 
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To investigate the structural details underlying the mechanism of MDM2 binding to p53 TAD, 

Xiong et al. performed ten one-microsecond long all-atom molecular dynamics simulations in explicit 

water of p53 residues 17–29, which are known to form a helical conformation when bound to MDM2 

(Figure 5b) [125]. They observed that this helix is also sampled in the unbound state, suggesting that 

conformational selection may play a role in MDM2 binding. These MD simulations are in agreement 

with NMR results suggesting that p53 residues 18–26 sample alpha helical conformations [126],  

as well as with their UV resonance Raman spectroscopy results summarizing the distribution of 

backbone psi angles in the peptide [125]. Xiong et al. also examined the conformational preferences of 

a P27S mutation in TAD, which is associated with increased binding affinity to MDM2 [127], using 

MD simulations. They found that the unbound mutant peptide more heavily populates conformations 

similar to the MDM2-bound conformation of p53, due to increased alpha-helical content. The increased 

propensity for helicity in a mutant that has increased MDM2-affinity further supports the hypothesis 

that conformational selection guides the TAD–MDM2 interaction. 

Much effort is being devoted to detecting pre-structured motifs in IDPs and in establishing their role 

in IDP binding, especially with respect to conformational selection [126,128]. For example, three  

pre-structured motifs have been detected in p53 TAD with NMR spectroscopy: a helix located in 

residues 18–26 and predicted to be present in 20% of the unbound population; a turn located in 

residues 40–44 that is predicted to be present in 5% of the population; and a turn in residues 48–53 that 

is predicted to be present in 15% of the population [126,129,130]. Each of these regions is flanked by a 

proline residue at the N-terminus and the C-terminus [130]. Prolines are known to terminate or cause 

kinks in helices, in part due to the phi/psi angles that they preferentially adopt in solution. Lee et al. 

observed that prolines are enhanced in regions flanking pre-structured motifs in IDPS, and used 

molecular dynamics simulations to investigate the role of prolines in these regions [130]. They 

generated short (10 ns) MD simulations of the wild-type peptides and mutants in which the flanking 

prolines were substituted with aspartic acid, histidine, alanine, or lysine [130]. Their simulations 

revealed that substitution of N-terminal prolines for other amino acids decreases the amount of helicity 

within the pre-structured motifs, and substitution of C-terminal prolines for other amino acids 

increases the amount of helicity within the pre-structured motifs. Based on these findings, Lee et al. 

argued that the location of prolines in regions flanking pre-structured motifs may have evolved to 

control the degree of pre-formed helicity within disordered regions, thereby regulating the degree of 

conformational selection by IDP partners [130]. Recently, Szöllősi et al. used molecular simulations to 

predict a number of pre-formed regions across a large set of IDPs [131], including the MDM2-binding 

region in p53. While the existence of pre-structured motifs in many IDPs is established, future studies 

should go past detection of folded conformations in the fully unbound state to explore the 

conformations sampled by IDPs when in the vicinity of or non-specifically bound to their partners, in 

order to further understand the role these motifs play in binding through induced fit. 

Specific “anchor” residues within the binding regions may also drive the folding and binding 

process. Here, anchor residues in IDPs are defined as residues that are fully exposed to solvent when 

unbound, and become fully buried after binding [132]. Huang and Liu et al. investigated the role of 

anchor residues in IDP binding using short molecular dynamics simulations of the TAD peptide, which 

adopts distinct helices upon binding two of its receptors, MDM2 and p300 (Figure 5b,c) [132].  

By simulating many complexes between the TAD peptide and its receptors, they concluded that 
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binding by IDPs to targets is initiated by conformational selection, and completed by induced fit.  

For example, they observe through MD simulations of TAD peptides containing partial helical 

structure that the anchor residues will predominantly sample their bound-like configurations.  

In simulations of the encounter complex between TAD and MDM2, where the initial TAD conformation 

contained pre-formed partial helical structure and bound-like orientation of the anchor residues, it was 

observed that TAD will first insert its anchor residues into the receptor to stabilize the interaction,  

and then, through back-bone re-arrangements and induced fit, obtain its stable, bound structure within  

1 ns simulation time. By contrast, in simulations of p53 TAD peptides in an encounter complex with 

MDM2, where the TAD peptides either had pre-formed partial helical structure, but with non-bound-like 

positioning of the anchor residues, or did not have pre-formed helical structure, p53 TAD did not form 

the bound state within the 10ns simulation time. The relatively short time frame of these simulations 

makes it difficult to exclude the possibility that the p53 TAD peptide eventually rearranges to form its 

bound state. Nevertheless, they suggest that bound-like anchor residue positions within partially  

pre-formed helices promote receptor binding. This study highlights the potential importance of anchor 

residues for IDP binding and demonstrates that specific residues within partially pre-formed motifs 

may control the folding upon binding process, as opposed to the entire pre-formed helix. That is, 

although the helix is accessible in the unbound state, only anchor residues may need to be fully  

pre-formed during the initial encounter to promote receptor binding. The exact role of anchor residues 

and pre-structured motifs is important to elucidate for design of specific inhibitors for interactions 

between IDPs and their partners [132]. If anchor residues could be identified that were unique to 

interactions between TAD and its different receptors, then therapeutic mechanisms could be designed 

to temper specific interactions by TAD, as opposed to all interactions. This would allow promotion or 

repression of specific pathways involving p53. The interplay between conformational sampling,  

pre-structured motifs and anchor residues should be further explored through molecular dynamics 

simulations of the protein in the presence of its binding partners. 

The studies discussed above for p53 TAD [125,130–132] investigate the role of conformational 

selection in p53 IDRs using truncated p53 peptides. While the computational expense of these 

calculations often necessitate the use of short constructs and relatively short simulations times, it is 

important to recognize that the system of interest is the full-length protein. In this regard, it is always 

important to compare insights arising from these simulations to data obtained on the complete protein 

sequence. For example, previous work suggests that stability of the full MDM2-p53 complex is similar 

to that of the complex formed by a truncated TAD (residues 17–29) peptide [127]. Additionally, the  

N-terminal domain within the full p53 molecule behaves similarly to the isolated N-terminal residue 1–93 

peptide and is not stabilized by contacts with folded regions of p53 [24,133]. The use of shorter 

peptides is not without its shortcomings however. Schon et al. show that the binding affinity of p53 to 

MDM2 is greatly affected by truncation of the p53 residue 15–29 peptide to shorter truncates [134]. 

This indicates that the shorter truncates sample conformations that bind MDM2 more readily than the 

full p53 molecule, and thus results for these peptides may not fully represent the physiological behavior 

of p53. Overall, while computational expense often restricts simulations to truncates or short time-scales, 

whenever possible, simulations of the biologically-active state should be used and questions should be 

pursued that can be addressed in affordable time periods and supported by experimental data. 
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5.2. p53 Negative Regulatory Domain (NRD) 

The intrinsically disordered negative regulation domain of p53 binds many proteins that either 

hinder or promote the transcriptional regulatory activity of p53. Cellular signals received by the NRD 

in the form of post-translational modifications alter its conformation and binding, which in turn 

regulate the transcription activity of p53 [113,135]. Some of the NRD’s interactions include: 

1. Acetylation of p53NRD at Lysine 382 facilitates binding by the bromodomain of CBP  

(Figure 4b). This leads to recruitment of transcriptional co-activators essential for p53 to 

activate transcription of genes involved in cell cycle arrest [121]. Cell cycle arrest prevents 

division of the damaged cell, providing time for p53-initiated damage control pathways to 

repair the cell’s DNA before cell division is reinitiated. 

2. The protein s100B(ββ) binds NRD to both sterically block post-translational modification sites 

and disrupt p53 tetramerization (Figure 4b) [122]. 

3. SirT2 binds NRD to de-acetylate its Lysine side-chains (Figure 4b) [136]. As NRD lysine 

acetylation is required for activation of p53 as a transcription factor [121], SirT2 deactivates p53. 

4. Cyclin A-CDk2 binds p53 NRD and phosphorylates Serine 315 after irradiation damage  

(Figure 4b), leading to activation of p53 [135]. Interestingly, both SirT2 and Cyclin A can 

regulate p53 in more roles than described here, alternately inhibiting or promoting p53’s 

transcriptional activation functions [137,138]. 

An eleven residue region (residues 376–386) contained in the NRD binding sites of each of the four 

interaction partners described above has been shown experimentally to adopt unique secondary structures 

upon binding each of its partners [37,39]. Residues 376–386 form a short bend within a mostly 

disordered region culminating in a turn when bound to the bromodomain of CBP (Figure 5h); a helix 

followed by a turn when bound to s100B(ββ) (Figure 5i); a turn followed by two short beta-bridges 

within a mostly disordered region when bound to SirT2 (Figure 5j); and a short turn followed by a 

mostly disordered region when bound to Cyclin A-Cdk2 (Figure 5k). As two of these proteins are 

known to promote p53’s tumor suppression activity, and two of these proteins are known to repress 

p53’s tumor suppression activity, the mechanism that p53 uses to obtain its unique bound structure for 

each partner is interesting for the design of therapeutic measures aiming to regulate p53’s activity. 

Chen et al. investigated the role of conformational selection versus induced fit in binding of the 

NRD to its partner proteins [139]. While the presence of each of the bound structures in their MD 

simulations of the unbound p53 peptide could indicate that conformational selection enables binding, 

Chen proposed that a fly-casting mechanism [52] might be more favorable, in which non-specific 

binding of p53 to its partner occurs before folding. To investigate this hypothesis, Chen et al. 

computed a 2D potential of mean force for the 14-residue p53 peptide along reaction coordinates 

describing folding and binding of p53 to s100B(ββ), a partner protein with which it adopts a helical 

structure (Figure 5i). Specifically, Chen et al. used the center-of-mass distance between p53 and 

s100B(ββ) to represent binding. They generated eighteen 20ns implicit solvent replica exchange 

molecular dynamics production simulations of the p53 peptide and its binding site on s100B(ββ), 

where the center-of-mass distance between the two proteins was restrained to a distance varying from 

11 Angstroms to 28 Angstroms across the simulations. Folding of the p53 peptide to a helical 
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conformation was not explicitly biased, but was represented by the number of helical residues and the 

end-to-end distance. The s100B(ββ) atoms were held rigid except those in charged interface side-chains. 

The resulting PMF indicates that the peptide becomes less helical as it approaches s100B(ββ), before 

becoming more like its s100B(ββ)-bound structure, indicating that the peptide preferentially samples 

extended conformations when first contacting s100B(ββ), and initiates folding after it is in close 

proximity to s100B(ββ), in agreement with the fly-casting hypothesis [139]. 

Molecular dynamics simulations of the intrinsically disordered p53 NRD domain show that the 

isolated p53 peptides sample receptor bound conformations in their unbound states. For the NRD 

peptide [139], the conformational ensemble of an IDP may be different when it is searching for a 

receptor than when it is in close proximity to a receptor. To substantiate this hypothesis, longer or 

biased simulations, coupled with experimental data, and with an accurate measure of binding, would 

be necessary to sample a greater subset of the conformational space of p53 TAD as it contacts its 

partners. The atomistic resolution of MD enables questions such as these to be addressed in a 

straightforward manner. 

6. Aβ 

Common to many neurodegenerative disease-related proteins is not only the disordered nature of 

the monomeric state, but also a tendency to self-associate and form a diverse range of aggregate states. 

The most conspicuous of these aggregates comes in the form of amyloid fibrils that can be isolated 

from brain tissue of patients who have died from one of these diseases, either as intra-neuronal 

depositions or tangles (in the case of α-synuclein, polyglutamine and tau) or as extra-cellular inclusions 

(in the case of Aβ) [140]. An increasing body of evidence suggests that these fibrillar, amyloid structures 

are not the primary mediators of toxicity, but rather play secondary roles in the disease process,  

as either inert protein depositions at the end of the aggregation pathway or as secondary nucleation 

sites for the formation of smaller soluble aggregates [141]. While the mechanism of neurodegenerative 

disorders is likely multifactorial, a growing body of evidence suggests that lower molecular weight 

soluble oligomeric aggregates are the primary mediators of toxicity in Alzheimer’s and Parkinson’s 

diseases [13,20,142–145]. Whatever the precise disease causing species may be, it is clear that the 

aggregation process itself plays a pivotal role in the pathogenesis of these neurodegenerative disorders. 

A comprehensive understanding of the transition from a disordered state (an unfolded monomer) to an 

ordered, multimeric state (an oligomer or amyloid fibril), is therefore critical if one is to design novel 

therapeutics aimed at preventing or reversing this aggregation process (Figure 6). 
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Figure 6. Schematic of the different “structures” of the Aβ peptide. Monomers can form 

fibrils, which are highly stable and rarely dissociate back into monomers, but can also form 

meta-stable, soluble oligomers. A hypothetical structure of a soluble oligomer is shown on 

the right and a NMR model of Aβ fibrils (PDB ID: 2lmo) is shown on the right [146].  

A double-headed arrow between oligomers and fibrils is shown to illustrate a potential,  

but relatively unknown, interplay between the two species. 

 

6.1. Aβ Mutations and Aggregates 

Post-mortem examinations of the brains of patients suffering from Alzheimer’s disease (AD) have 

led to the identification of extracellular plaques in the cerebral cortex that test positive for the presence 

of a small, 4 kDa peptide called amyloid β-protein (Aβ). Aβ was first purified from amyloid fibrils 

isolated from brain meninges in 1984 [147]. It is the product of targeted proteolysis of the β-amyloid 

precursor protein (APP), a large single-transmembrane glycoprotein that is widely expressed in both 

neural and non-neural cells [148]. APP is first cleaved in the extra-cellular lumen by β-secretase to 

produce a membrane-bound C-terminal fragment, along with an extra-cellular N-terminal fragment 

that is secreted. The membrane-bound APP portion is then cleaved by γ-secretase to release the final 

Aβ peptide, which in APP is partially buried within the membrane [149]. γ-secretase can cleave APP at 

multiple positions, resulting in Aβ peptides of different lengths. These peptides vary in the number of 

hydrophobic residues in their C-terminus, and as such have different aggregation propensities [150]. 

Several mutations have been identified as being related to AD pathology. A number of these mutations 

are found at, or directly flanking, the cleavage sites for the secretase enzymes, resulting in different 

distributions of cleavage products from the wild-type [151], and others are located within the  

central hydrophobic region of the cleaved Aβ sequence [152]. For example, comparison of the  

carboxyl-terminal peptides produced from cleavage of wild-type versus mutant APP, the particular 

mutations of which have been linked to familial AD, showed an increase in the fraction of “long” Aβ 
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(particularly Aβ residues 1–42, or Aβ42 for short) relative to Aβ40 in the mutants [153]. Studies of 

various lengths of Aβ show that longer Aβ fragments (Aβ42 in particular) have an increased tendency 

to aggregate and form fibrils than the dominant form (Aβ40) in wild-type cells [150]. 

NMR studies suggest that Aβ exists predominantly as a disordered monomer [21,154]. However, as 

previously mentioned for aggregating IDPs in general, the disease process in Aβ is associated with a 

transition from this disordered monomeric state to more ordered multimeric states. Aβ has been 

observed, in vitro, to form aggregates of varying molecular weight, spanning the range from small,  

low molecular weight soluble oligomers, through protofibrils (small assemblies of Aβ that nucleate the 

formation of larger amyloid fibrils), all the way to insoluble amyloid fibrils consisting of thousands of 

monomers in a highly repetitive configuration. 

In the remainder of this section, we first outline current knowledge of each aggregate state of Aβ,  

as well as open questions about each state and transitions between states. We then discuss how 

computation has addressed some of these questions. 

6.2. Aβ Oligomers 

It is proposed that the pathogenesis stems from a toxic gain of function when these multimeric 

states are formed [143,155,156]. Aβ appears to exist in a range of different oligomeric forms, 

presumably originating from disordered monomeric pools. Characterization of oligomeric species of 

Aβ is particularly nebulous, compared to other Aβ species, due to their polymorphic nature.  

Aβ oligomers have been known to adopt a variety of molecular weights, morphologies, and secondary 

structure content [143,145,148,157]. Central questions surrounding the different oligomeric species are 

whether or not they constitute toxic entities, and whether their formation is on the pathway towards 

amyloid fibril formation, or occurs through independent pathways. Answering these questions is 

central to understanding the mechanistic basis behind the disease, and in addition might provide clues 

as to how these pathways could be manipulated to prevent or reverse the disease process. 

The mechanistic basis for the neurotoxicity of oligomeric structures remains unclear [148]. Early 

studies of Aβ suggest that it can form cylindrical, β-barrel type oligomers which resemble bacterial 

porins in electron micrographs [158]. It is thought that such oligomers can create channels in the cell 

membrane, leading to Ca2+ dysregulation and disruption of the membrane’s partitioning function [159]. 

An analysis of HypF-N oligomers, which have similar properties to their Aβ counterparts, found that 

toxic oligomers produced an influx of extracellular Ca2+ into the cytosol, in contrast to non-toxic 

oligomers produced under different conditions, despite having the same morphological and tinctorial 

features [160]. The same study found that the toxic forms differed in the packing of the hydrophobic 

interactions between adjacent monomers, suggesting that structural flexibility and hydrophobic 

exposure are critical determinants of an oligomer’s toxicity [160]. 

There are very little data pertaining to the conformation of individual monomers in the toxic 

oligomers. The formation of soluble oligomers was not disrupted by stabilizing monomeric Aβ in a  

β-hairpin state through the introduction of cysteine mutations in pairs of residues found to be in close 

contact in a solution NMR structure of the hairpin in complex with an Affibody, suggesting that these 

oligomeric species are composed of monomers in a similar hairpin state [161,162]. Amide-proton 

exchange NMR experiments have identified regions of the sequence that have the highest accessibility 
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to the surrounding solvent when in a toxic oligomeric state. These regions are likely to correspond to 

turn conformations, and propose a configuration of strands arranged according to these turn regions [163]. 

These findings are all consistent with the formation of cylindrical oligomers composed of individual  

β-hairpins or sheets, much like the crystallographic structure of cylindrin, an oligomeric form of  

alpha-crystallin fragments [164]. Indeed, extrapolating from the structure of cylindrin, Laganowsky et al. 

propose a similar model of a trimeric Aβ oligomer [164]. Such a structural arrangement differs 

fundamentally from a pre-fibrillar oligomer (e.g., a small protofibril) in that it cannot be extended 

naturally to include more monomers. This is because many of the hydrogen bond donors and acceptors 

of the polypeptide backbone that are involved in fibrillar, inter-molecular hydrogen bonds are bonded 

to each other in an intra-molecular fashion in the hairpin state [162]. Thus, it is unlikely that these 

structures would form the basis for further aggregation without undergoing some structural changes to 

adopt the cross-β arrangement of a prototypical amyloid structure. 

6.3. Aβ Fibrils 

Histopathologic analyses of brain tissue derived from post-mortem examinations of patients that 

suffered from Alzheimer’s disease reveal large inclusions in the neural tissue that are composed of 

large quantities of amyloid fibrils [165,166]. It has been suggested that a propensity to form stable 

amyloid structures under the right conditions is wide-spread across the proteome [167]. These fibrillar 

structures are held together through intermolecular hydrogen bonds between the backbones of adjacent 

monomers arranged in β-strands perpendicular to the fibril axis, termed a cross-β structure [146,167,168]. 

They are ordered and highly structured, insoluble in nature, and have well-defined and highly repetitive 

structural cores. Amyloids thus have proved to be somewhat more yielding to structure determination 

techniques [146,169]. Structural models of Aβ fibrils derived from solid-state NMR restraints suggest 

a high degree of polymorphism in the different fibrillar structures. These models suggest that fibrils 

frequently contain more than one filament, such as the twofold and threefold symmetric fibrils of  

Aβ [146,168,170] which can be observed through scanning electron microscopy to be arranged in 

helical superstructures termed β-helices [171,172]. The solid-state NMR restraints used to create the 

twofold and threefold symmetric fibrils of Aβ were compatible with two mutually exclusive models 

for the relative height of anti-parallel β-strands within monomers in the fibril for both, termed positive 

and negative stagger [168]. Extensive molecular simulations conducted on fibrils containing the two 

types of stagger found that only negative stagger fibrils formed the left-handed helical suprastructures 

observed by electron microscopy [171,172]. Initially, two competing quaternary structure contacts 

between the C-terminal strands of the two filaments were proposed based on molecular simulations: 

parallel and anti-parallel [173]. Further solid-state NMR data indicated anti-parallel contacts between 

C-terminal strands [146]. When simulated using coarse-grained molecular simulations, Fawzi et al. 

found that both models for the quaternary contacts were stable, but the anti-parallel model was more 

likely to elongate [174]. 

The N-terminal region of Aβ appears disordered even in the fibrillar state, with the remaining 

residues adopting the fibril core cross-β structure [146,168,169]. This fibrillar conformation therefore 

suggests that, given the appropriate binding partner, there is a strong propensity for the formation of  

β-strands in the Aβ sequence. 
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6.4. Insight into Aβ Structure and Its Aggregation Mechanism through Computation 

Several studies have applied brute-force, unbiased molecular dynamics simulations of the Aβ peptide 

to explore the conformational preferences of the disordered monomer. One study, which totaled over 

200 μs of simulation time for each peptide, found that Aβ40 and Aβ42 have crudely similar characteristics, 

in that they can both adopt strand-based conformations, but that Aβ42 has an increased propensity to 

form hairpins in its C-terminus when compared to Aβ40 [175]. In another study, the conformational 

ensembles of the Aβ40 and Aβ42 monomers were constructed using BW with NMR data to learn the 

states sampled by each monomer [176]. A set of structures s


, generated through replica exchange 

molecular dynamics simulations of both full-length Aβ42 and overlapping Aβ42 peptide segments, was 

used to construct both ensembles (with the last two residues of Aβ42 truncated to form the Aβ40 

structure set). Weights w


 were computed for both ensembles using their respective NMR data [176]. 

Comparison of these two ensembles suggested a statistically significant, tenfold increase in the relative 

stability of a hairpin conformation in the Aβ42 isoform versus its shorter counterpart and correlates 

well with findings from unbiased molecular dynamics simulations of these two peptides [175]. 

While the strand segments within each hairpin correspond to segments that are also in a strand 

conformation in the fibrillar state, the tertiary structural arrangement of these strands is different since 

they are involved in intramolecular hydrogen bonds with each other [162], in contrast to the fibrillar 

conformations which contain intermolecular hydrogen bonds [146,168–170]. Hairpin-type structures 

containing intramolecular hydrogen bonds would therefore have to undergo structural rearrangements 

to form amyloid protofibrils. Nevertheless, a number of observations are consistent with the notion that 

hairpin structures are intermediate states in the fibrillization process. Indeed, sequestration of a β-hairpin 

conformation of Aβ40 slows aggregation [162], and stabilizing the bend between the two beta strands 

leads to a significant increase in the rate of fibrillogenesis [177]. Additional computational and 

experimental studies suggest that hairpin states are sparsely populated in the absence of fibril cores, 

and that stabilization of these states leads to an increase in the rate of fibril formation [177–179]. 

A number of computational studies have attempted to identify key molecular features involved  

in fibril or oligomer growth of Aβ40 or smaller amyloidogenic peptides derived from the Aβ40 

sequence [180–182]. A common theme that arises from these simulations is that addition of monomer 

to a β-rich template representing either a soluble oligomer or a protofibril, occurs via a “dock-lock” 

mechanism that is similar to the scheme originally proposed by Esler et al. [183]. Docking consists of 

an incoming monomer loosely associating to the template in a manner such that it can readily 

dissociate. Locking involves the formation of hydrogen bonds to the template, yielding a structure 

where monomer dissociation is unlikely. 

The relationship between soluble oligomers and fibril growth has also been explored using both 

experiment and simulation. Monitoring the aggregation of a di-cysteine mutant of Aβ40 in vitro by the 

selective binding of the latent fluorophore FlAsH to oligomers and fibrils showed that Aβ40 forms 

spherical oligomers that can slowly convert to amyloid fibrils through a nucleated conformational 

conversion mechanism [184]. Furthermore, discrete molecular dynamics simulations of both Aβ40 and 

Aβ42 showed assembly of elongated protofibrils from spherical oligomers [185]. These results are 

consistent with a number of studies having provided evidence for the formation of oligomers prior to 

the appearance of fibrils [145,186–188]. 
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Computational studies have also complemented experiment, yielding additional insights into our 

understanding of oligomeric states in Aβ. Experimentally, an application of the technique of photo-induced 

cross-linking of unmodified proteins (PICUP) found that aggregate-free samples of Aβ40 contained 

monomers, dimers, trimers and tetramers in rapid equilibrium. In contrast, Aβ42 preferentially forms 

pentameric and hexameric “paranuclei” which assembled further into bead-like structures resembling 

protofibrils, arguing that the Aβ42 assembly pathway involves the formation of distinct intermediates 

that gradually rearrange into protofibrils [187,189]. This observation was also noted in a minimal  

self-assembly model for aggregation, which is in principle applicable to self-assembly processes in 

general, suggesting that the phenomenon may extend to other amyloidogenic proteins and beyond [190]. 

Further studies combining mutational experiments with PICUP suggest that the side-chain of residue 

41 is important for paranucleus formation and further self-association into larger oligomers, while the 

side-chain of residue 42 primarily impacts paranucleus self-association [188]. A different study introducing 

the technique of ion mobility coupled with mass spectrometry analyzed the in vitro oligomer size 

distributions for both Aβ40 and Aβ42 and found that they differed considerably, lending further 

evidence to the notion that Aβ40 and Aβ42 self-assemble along different pathways [145]. In silico, 

coarse-grained simulations using a four-bead model that includes backbone hydrogen bonding,  

and residue-specific interactions due to effective hydropathy and charge, found that Aβ40 forms 

significantly more dimers than Aβ42, while Aβ42 forms more pentamers. Stable dimers were observed 

by X-ray crystallography for residues 17–41 [191]. Furthermore, they found that a turn centered 

around Gly-37-Gly-38 is formed in Aβ42 and not in Aβ40, and was found to be associated with initial 

contacts formed during monomer folding [192]. A later study using the same simulation technique on 

Arctic mutants of Aβ40 and Aβ42 was used to derive size-distributions in agreement with prior 

experimental data, and showed that the Aβ40 mutant was able to form paranuclei much like Aβ42, 

although the mutations prevented aggregation into higher order oligomers in both isoforms [185]. 

Using discrete molecular dynamics simulations of wild-type Aβ40 and, Urbanc et al. found that the 

region D1–R5 is more disordered and exposed to solvent in Aβ42 than Aβ40, suggesting that the  

N-terminal region is involved in mediating toxicity [193]. These results were subsequently found to be 

in agreement with all-atom simulations in explicit solvent [194]. 

While these studies illustrate that a synergistic relationship between experiment and computation 

can yield important insights into the structure and aggregation mechanism of Aβ, there are many 

unanswered questions that are ripe for the application of new techniques. Recently, kinetic studies of 

Aβ42 showed that the formation of toxic, soluble oligomers occurs as a secondary nucleation process, 

in which oligomers are formed in two phases: the first is in the absence of any amyloid aggregates, and 

the second in their presence [141]. The second phase results in an increased rate of oligomer 

formation, and radiolabeling experiments confirmed that oligomers formed were derived from the 

monomeric pool of Aβ42 rather than by breaking off fibrils directly. Thus, amyloid fibrils and toxic 

oligomers may sample distinct folding pathways under the right conditions, and the kinetics of 

oligomer formation is enhanced in the presence of fibrils. These data highlight the complex interplay 

between the monomeric, oligomeric and fibrillar pools of Aβ that is likely to underlie the disease  

state (Figure 6). 

Further studies probing the conformational landscape of Aβ in the presence of additional Aβ 

molecules could provide insight to the role of induced-fit in the formation of oligomers or protofibrils. 
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Furthermore, computational studies could be employed to investigate the role of flexibility in toxic 

oligomers, as well as the different pathways to oligomer and fibril formation. 

7. Conclusions 

IDPs play a central role in many cellular processes, as their disordered nature provides them with 

the ability to bind many partners, thereby regulating many biochemical processes. Because of this 

central role, the malfunction of IDPs can disrupt proper cellular function and lead to disease. 

Unfortunately, their disordered nature, which makes them so relevant in cellular networks, also makes 

them difficult to study with traditional experimental methods that were initially designed to study 

folded proteins. In this review, we discussed recent studies that have employed computational methods 

to analyze the conformational preferences and mechanisms of IDPs. We focused on two IDPs: p53, 

which is mutated in 50% of cancers, and Aβ, which is found in a toxic, aggregated state in the brains of 

patients with Alzheimer’s disease. While both of these proteins are commonly implicated in human 

disease, their mutated and/or aggregated states affect normal cell processes in different ways, and we 

chose these two proteins to highlight markedly different pathogenic pathways ascribed to IDP 

malfunction. Understanding the structural and functional preferences of these, and all, IDPs in their 

normal and pathologic states will allow for better understanding of disease pathways, and enable the 

intelligent design of therapeutics targeting IDPs. 

The tumor suppressor p53 is a hub protein involved in hundreds of interactions, the majority of 

which occur within its disordered N- and C-termini. Computational studies of this protein have focused 

on the mechanism by which it forms a stable structure upon binding each of its partners, probing the 

roles that conformational selection and induced fit play in this process. Simulations of the unbound 

IDRs have established the presence of bound states in the unbound ensemble, supporting the hypothesis 

that binding is enabled through conformational selection, as the IDR is physically able to access its 

bound state in the absence of its partner. However, the preference for bound states may increase in the 

presence of a binding partner, in line with the induced fit hypotheses. Furthermore, the role that  

pre-structured motifs and anchor residues play in regulating binding have been probed for the  

N-terminal TAD region upon binding MDM2. These studies indicate that the placement of certain 

residues, such as prolines, within the IDR increase the stability of pre-formed structural motifs, and 

that pre-structured anchor residues may promote binding by initializing bound contacts with MDM2, 

while the remaining residues can fold after binding. The hybrid binding mechanism seen here of 

conformational selection of anchor residues followed by induced fit binding for the remaining IDR 

should be further demonstrated for other binding partners of p53 TAD to analyze how anchor residues 

may promote binding of IDPs to various partners. In general, additional simulations of the IDR in the 

presence of its binding partner would increase understanding of the cooperation between conformational 

selection, induced fit, and pre-structured motifs in IDP-binding. These analyses could be coupled with 

experiments to quantify the binding affinity of both wild-type IDPs and stabilized mutants to receptors. 

Hybrid experimental and computational studies would provide atomistic detail to the changes in 

binding mechanism that result in a change in binding affinity. Understanding the mechanism by which 

IDPs bind their partners could enable intelligent drug design for disease-causing mutations in IDPs. 

For instance, mutations, e.g., near anchor residues, or small molecule binders could alter the distribution 
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of states across the unbound ensemble, thus altering the binding rate to particular partners as a 

therapeutic mechanism. 

Understanding how Aβ transitions between disordered monomers and the different species 

mentioned in this review is a pre-requisite to controlling the early events of the Alzheimer’s disease 

processes. We have shown that computational tools can provide some measure of leverage when 

analyzing quantitative, experimental structural data about the disordered state. This can be achieved by 

using empirical molecular mechanics force fields to understand the unfolded state of these polymers, 

as well as by computing a distribution for the ways in which one can weight a given set of structures 

with experimental data to generate a conformational ensemble, as in the BW approach. Computational 

data are helpful in understanding the properties of the monomeric state and the mechanism of aggregation 

or abnormal signaling. We have discussed how current data suggest that hairpin-type conformations 

are present within the toxic oligomeric states of Aβ, thus distinguishing them from amyloid pathways 

due to the structural dissimilarity between hairpins and monomers in fibrillar conformations. Despite 

all of this, high-resolution information about the transition from a flexible monomer to a folded, 

relatively rigid oligomer or fibril has proved elusive so far. Part of the difficulty may stem from the 

fact that monomers and oligomers are in fast exchange with one-another, as suggested by data collected 

from multimeric alpha-synuclein, and computational studies could be targeted towards overcoming 

this obstacle. 

One difficulty in characterizing IDPs stems from a lack of experimental and computational tools for 

studying folding events that occur on a timescale that is too fast to be probed with traditional 

experimental methods, and too slow to be tractable by traditional molecular simulations. A comprehensive 

understanding of this transition will therefore require improvements in the experimental methods 

available for structural characterization of short-lived intermediate states, coupled with a creative use 

of computational methods to obtain mechanistic insights into the transitions between these states. 
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