551 research outputs found

    A Survey: Hierarchal Routing Protocol in Wireless Sensor Networks

    Get PDF
    The wireless sensor networks (WSNs) has been grown immensely in the past few decades. Researcher had proposed a number of routing protocols for WSN. WSN has two type of architecture layered and cluster architecture. We classify various clustering approaches based on different criterion in section [3]. Hierarchical Clustering protocols discussed in section [4] have extensively been used to achieve network scalability, energy efficiency and network lifetime. In this paper we discuss the challenges in design of WSN, advantages and objectives of clustering, various clustering approaches. We present a detailed survey on proposed clustering routing protocol in WSN literature

    FPOA Implementation for WSN Energy Efficient Routing

    Get PDF
    In this paper,a soft computing technique Flower Pollination optimization Algorithm(FPOA) for WSN is proposed.The Sensor Network is heterogeneous in nature. Proposed algorithm is designed and implemented in MATLAB.In this technique some nodes send data directly to base station as local pollination and some by Multihop Routing as global pollination. A routing scheme is process which helps in minimizing the energy consumption. We implemented FPOA and compared the results with techniques that are already developed.(Low Energy adaptive clustering hierarchy (LEACH), Stable Election Protocol (SEP) and Zonal-Stable Election Protocol (Z-SEP) Simulation results show that FPOA enhance first node dead time, throughput and overall energy consumes less than existing protocols like LEACH, SEP and Z-SE

    Energy-Efficient Self-Organization Protocols for Sensor Networks

    Get PDF
    A Wireless Sensor Network (WSN, for short) consists of a large number of very small sensor devices deployed in an area of interest for gathering and delivery information. The fundamental goal of a WSN is to produce, over an extended period of time, global information from local data obtained by individual sensors. The WSN technology will have a significant impact on a wide array of applications on the efficiency of many civilian and military applications including combat field surveillance, intrusion detection, disaster management among many others. The basic management problem in the WSN is to balance the utility of the activity in the network against the cost incurred by the network resources to perform this activity. Since the sensors are battery powered and it is impossible to change or recharge batteries after the sensors are deployed, promoting system longevity becomes one of the most important design goals instead of QoS provisioning and bandwidth efficiency. On the other hand the self-organization ability is essential for the WSN due to the fact that the sensors are randomly deployed and they work unattended. We developed a self-organization protocol, which creates a multi-hop communication infrastructure capable of utilizing the limited resources of sensors in an adaptive and efficient way. The resulting general-purpose infrastructure is robust, easy to maintain and adapts well to various application needs. Important by-products of our infrastructure include: (1) Energy efficiency: in order to save energy and to extend the longevity of the WSN sensors, which are in sleep mode most of the time. (2) Adaptivity: the infrastructure is adaptive to network size, network topology, network density and application requirement. (3) Robustness: the degree to which the infrastructure is robust and resilient. Analytical results and simulation confirmed that our self-organization protocol has a number of desirable properties and compared favorably with the leading protocols in the literature

    Dynamic Interface to Enhance Network Efficiency Using Channel Allocation

    Get PDF
    Abstract--Wireless Sensor Networks (WSN) is a group of spatially dispersed and dedicated sensors for monitoring and recording the physical conditions of the environment and organizing the collected data at a central location. The sensor nodes are extraordinarily limited in resources, so the important aim of designing routing protocol of WSN is to improve the routing efficiency and maximize the lifetime of networks. In the recent past, the routing efficiency and its issues can be solved by various protocols. In this paper we enhanced many to one transmission with AODV protocol and efficient channel allocation. We have implemented flat multi-hop routing algorithms which enable routing of data in a fashion that minimizes the power consumption of the WSN they fail to exploit the data aggregation opportunities by virtue of data collected from the WSN. In many WSN applications with the relatively high node density, the data collected by individual nodes are highly redundant, thus making data aggregation a very attractive scheme in WSNs. Hybrid multi-hop routing algorithms aim to capitalize on the highly correlated nature of WSN's collected data. It can improve the routing efficiency and channel allocation in cluster networks. The cluster head selection is obtained based on energy level and routing efficiency of the network

    Energy Efficient Designs for Collaborative Signal and Information Processing inWireless Sensor Networks

    Get PDF
    Collaborative signal and information processing (CSIP) plays an important role in the deployment of wireless sensor networks. Since each sensor has limited computing capability, constrained power usage, and limited sensing range, collaboration among sensor nodes is important in order to compensate for each other’s limitation as well as to improve the degree of fault tolerance. In order to support the execution of CSIP algorithms, distributed computing paradigm and clustering protocols, are needed, which are the major concentrations of this dissertation. In order to facilitate collaboration among sensor nodes, we present a mobile-agent computing paradigm, where instead of each sensor node sending local information to a processing center, as is typical in the client/server-based computing, the processing code is moved to the sensor nodes through mobile agents. We further conduct extensive performance evaluation versus the traditional client/server-based computing. Experimental results show that the mobile agent paradigm performs much better when the number of nodes is large while the client/server paradigm is advantageous when the number of nodes is small. Based on this result, we propose a hybrid computing paradigm that adopts different computing models within different clusters of sensor nodes. Either the client/server or the mobile agent paradigm can be employed within clusters or between clusters according to the different cluster configurations. This new computing paradigm can take full advantages of both client/server and mobile agent computing paradigms. Simulations show that the hybrid computing paradigm performs better than either the client/server or the mobile agent computing. The mobile agent itinerary has a significant impact on the overall performance of the sensor network. We thus formulate both the static mobile agent planning and the dynamic mobile agent planning as optimization problems. Based on the models, we present three itinerary planning algorithms. We have showed, through simulation, that the predictive dynamic itinerary performs the best under a wide range of conditions, thus making it particularly suitable for CSIP in wireless sensor networks. In order to facilitate the deployment of hybrid computing paradigm, we proposed a decentralized reactive clustering (DRC) protocol to cluster the sensor network in an energy-efficient way. The clustering process is only invoked by events occur in the sensor network. Nodes that do not detect the events are put into the sleep state to save energy. In addition, power control technique is used to minimize the transmission power needed. The advantages of DRC protocol are demonstrated through simulations

    Overview on Wireless Sensor Networks

    Get PDF
    ABSTRACT Recent advancement in wireless communications and electronics has enabled the development of low-cost sensor networks Here we describe the three major aspect of wireless sensor network.WSN Applications, Routing and clustering. In the field of a wide variety in WSN applications we specifically introduce Environmental applications, Military Applications and SHM systems in health monitoring scope. The introduction of the routing protocols with the head topics of Flooding, Gossiping, EAGR, GEAR and REAR take place in routing section

    Optimization and Communication in UAV Networks

    Get PDF
    UAVs are becoming a reality and attract increasing attention. They can be remotely controlled or completely autonomous and be used alone or as a fleet and in a large set of applications. They are constrained by hardware since they cannot be too heavy and rely on batteries. Their use still raises a large set of exciting new challenges in terms of trajectory optimization and positioning when they are used alone or in cooperation, and communication when they evolve in swarm, to name but a few examples. This book presents some new original contributions regarding UAV or UAV swarm optimization and communication aspects
    • …
    corecore