7,241 research outputs found

    A survey of real-time crowd rendering

    Get PDF
    In this survey we review, classify and compare existing approaches for real-time crowd rendering. We first overview character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the state of the art in crowd rendering. We discuss different representations for level-of-detail (LoD) rendering of animated characters, including polygon-based, point-based, and image-based techniques, and review different criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as frustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated characters. We also discuss specific acceleration techniques for crowd rendering, such as primitive pseudo-instancing, palette skinning, and dynamic key-pose caching, which benefit from current graphics hardware. We also address other factors affecting performance and realism of crowds such as lighting, shadowing, clothing and variability. Finally we provide an exhaustive comparison of the most relevant approaches in the field.Peer ReviewedPostprint (author's final draft

    A Generative Model of People in Clothing

    Full text link
    We present the first image-based generative model of people in clothing for the full body. We sidestep the commonly used complex graphics rendering pipeline and the need for high-quality 3D scans of dressed people. Instead, we learn generative models from a large image database. The main challenge is to cope with the high variance in human pose, shape and appearance. For this reason, pure image-based approaches have not been considered so far. We show that this challenge can be overcome by splitting the generating process in two parts. First, we learn to generate a semantic segmentation of the body and clothing. Second, we learn a conditional model on the resulting segments that creates realistic images. The full model is differentiable and can be conditioned on pose, shape or color. The result are samples of people in different clothing items and styles. The proposed model can generate entirely new people with realistic clothing. In several experiments we present encouraging results that suggest an entirely data-driven approach to people generation is possible

    Learning to Navigate Cloth using Haptics

    Full text link
    We present a controller that allows an arm-like manipulator to navigate deformable cloth garments in simulation through the use of haptic information. The main challenge of such a controller is to avoid getting tangled in, tearing or punching through the deforming cloth. Our controller aggregates force information from a number of haptic-sensing spheres all along the manipulator for guidance. Based on haptic forces, each individual sphere updates its target location, and the conflicts that arise between this set of desired positions is resolved by solving an inverse kinematic problem with constraints. Reinforcement learning is used to train the controller for a single haptic-sensing sphere, where a training run is terminated (and thus penalized) when large forces are detected due to contact between the sphere and a simplified model of the cloth. In simulation, we demonstrate successful navigation of a robotic arm through a variety of garments, including an isolated sleeve, a jacket, a shirt, and shorts. Our controller out-performs two baseline controllers: one without haptics and another that was trained based on large forces between the sphere and cloth, but without early termination.Comment: Supplementary video available at https://youtu.be/iHqwZPKVd4A. Related publications http://www.cc.gatech.edu/~karenliu/Robotic_dressing.htm

    Efficient light scattering through thin semi-transparent objects

    Get PDF
    This paper concerns real-time rendering of thin semi-transparent objects. An object in this category could be a piece of cloth, eg. a curtain. Semi-transparent objects are visualized most correctly using volume rendering techniques. In general such techniques are, however, intractable for real-time applications. Surface rendering is more efficient, but also inadequate since semi-transparent objects should have a different appearance depending on whether they are front-lit or back-lit. The back-lit side of a curtain, for example, often seems quite transparent while the front-lit side seems brighter and almost opaque. To capture such visual effects in the standard rendering pipeline, Blinn [1982] proposed an efficient local illumination model based on radiative transfer theory. He assumed media of low density, hence, his equations can render media such as clouds, smoke, and dusty surfaces. Our observation is that Chandrasekhar [1960] has derived the same equations from a different set of assumptions. This alternative derivation makes the theory useful for realistic real-time rendering of dense, but thin, semitransparent objects such as cloth. We demonstrate that application of the theory in this new area gives far better results than what is obtainable with a traditional real-time rendering scheme using a constant factor for alpha blending

    Reflectance Hashing for Material Recognition

    Full text link
    We introduce a novel method for using reflectance to identify materials. Reflectance offers a unique signature of the material but is challenging to measure and use for recognizing materials due to its high-dimensionality. In this work, one-shot reflectance is captured using a unique optical camera measuring {\it reflectance disks} where the pixel coordinates correspond to surface viewing angles. The reflectance has class-specific stucture and angular gradients computed in this reflectance space reveal the material class. These reflectance disks encode discriminative information for efficient and accurate material recognition. We introduce a framework called reflectance hashing that models the reflectance disks with dictionary learning and binary hashing. We demonstrate the effectiveness of reflectance hashing for material recognition with a number of real-world materials

    From measured physical parameters to the haptic feeling of fabric

    Get PDF
    Abstract real-time cloth simulation involves the solution of many computational challenges, particularly in the context of haptic applications, where high frame rates are necessary for obtaining a satisfactory tactile experience. In this paper, we present a real-time cloth simulation system that offers a compromise between a realistic physically-based simulation of fabrics and a haptic application with high requirements in terms of computation speed. We place emphasis on architecture and algorithmic choices for obtaining the best compromise in the context of haptic applications. A first implementation using a haptic device demonstrates the features of the proposed system and leads to the development of new approaches for haptic rendering using the proposed approac
    • …
    corecore