2,427 research outputs found

    Taming Numbers and Durations in the Model Checking Integrated Planning System

    Full text link
    The Model Checking Integrated Planning System (MIPS) is a temporal least commitment heuristic search planner based on a flexible object-oriented workbench architecture. Its design clearly separates explicit and symbolic directed exploration algorithms from the set of on-line and off-line computed estimates and associated data structures. MIPS has shown distinguished performance in the last two international planning competitions. In the last event the description language was extended from pure propositional planning to include numerical state variables, action durations, and plan quality objective functions. Plans were no longer sequences of actions but time-stamped schedules. As a participant of the fully automated track of the competition, MIPS has proven to be a general system; in each track and every benchmark domain it efficiently computed plans of remarkable quality. This article introduces and analyzes the most important algorithmic novelties that were necessary to tackle the new layers of expressiveness in the benchmark problems and to achieve a high level of performance. The extensions include critical path analysis of sequentially generated plans to generate corresponding optimal parallel plans. The linear time algorithm to compute the parallel plan bypasses known NP hardness results for partial ordering by scheduling plans with respect to the set of actions and the imposed precedence relations. The efficiency of this algorithm also allows us to improve the exploration guidance: for each encountered planning state the corresponding approximate sequential plan is scheduled. One major strength of MIPS is its static analysis phase that grounds and simplifies parameterized predicates, functions and operators, that infers knowledge to minimize the state description length, and that detects domain object symmetries. The latter aspect is analyzed in detail. MIPS has been developed to serve as a complete and optimal state space planner, with admissible estimates, exploration engines and branching cuts. In the competition version, however, certain performance compromises had to be made, including floating point arithmetic, weighted heuristic search exploration according to an inadmissible estimate and parameterized optimization

    Proceedings of the First NASA Formal Methods Symposium

    Get PDF
    Topics covered include: Model Checking - My 27-Year Quest to Overcome the State Explosion Problem; Applying Formal Methods to NASA Projects: Transition from Research to Practice; TLA+: Whence, Wherefore, and Whither; Formal Methods Applications in Air Transportation; Theorem Proving in Intel Hardware Design; Building a Formal Model of a Human-Interactive System: Insights into the Integration of Formal Methods and Human Factors Engineering; Model Checking for Autonomic Systems Specified with ASSL; A Game-Theoretic Approach to Branching Time Abstract-Check-Refine Process; Software Model Checking Without Source Code; Generalized Abstract Symbolic Summaries; A Comparative Study of Randomized Constraint Solvers for Random-Symbolic Testing; Component-Oriented Behavior Extraction for Autonomic System Design; Automated Verification of Design Patterns with LePUS3; A Module Language for Typing by Contracts; From Goal-Oriented Requirements to Event-B Specifications; Introduction of Virtualization Technology to Multi-Process Model Checking; Comparing Techniques for Certified Static Analysis; Towards a Framework for Generating Tests to Satisfy Complex Code Coverage in Java Pathfinder; jFuzz: A Concolic Whitebox Fuzzer for Java; Machine-Checkable Timed CSP; Stochastic Formal Correctness of Numerical Algorithms; Deductive Verification of Cryptographic Software; Coloured Petri Net Refinement Specification and Correctness Proof with Coq; Modeling Guidelines for Code Generation in the Railway Signaling Context; Tactical Synthesis Of Efficient Global Search Algorithms; Towards Co-Engineering Communicating Autonomous Cyber-Physical Systems; and Formal Methods for Automated Diagnosis of Autosub 6000

    Modeling and verifying the FlexRay physical layer protocol with reachability checking of timed automata

    Get PDF
    In this thesis, I report on the verification of the resilience of the FlexRay automotive bus protocol's physical layer protocol against glitches during message transmission and drifting clocks. This entailed modeling a significant part of this industrially used communictation protocol and the underlying hardware as well as the possible error scenarios in fine detail. Verifying such a complex model with model-checking led me to the development of data-structures and algorithms able to handle the associated complexity using only reasonable resources. This thesis presents such data-structures and algorithms for reachability checking of timed automata. It also present modeling principles enabling the construction of timed automata models that can be efficiently checked, as well as the models arrived at. Finally, it reports on the verified resilience of FlexRay's physical layer protocol against specific patterns of glitches under varying assumptions about the underlying hardware, like clock drift.In dieser Dissertation berichte ich über den Nachweis der Resilienz des Bitübertragungsprotokolls für die physikalische Schicht des FlexRay-Fahrzeugbusprotokolls gegenüber Übertragungsfehlern und Uhrenverschiebung. Dafür wurde es notwendig, einen signifikanten Teil dieses industriell genutzten Kommunikationsprotokolls mit seiner Hardwareumgebung und die möglichen Fehlerszenarien detailliert zu modellieren. Ein so komplexes Modell mittels Modellprüfung zu überprüfen führte mich zur Entwicklung von Datenstrukturen und Algorithmen, die die damit verbundene Komplexität mit vernünftigen Ressourcenanforderungen bewältigen können. Diese Dissertation stellt solche Datenstrukturen und Algorithmen zur Erreichbarkeitsprüfung gezeiteter Automaten vor. Sie stellt auch Modellierungsprinzipien vor, die es ermöglichen, Modelle in Form gezeiteter Automaten zu konstruieren, die effizient überprüft werden können, sowie die erstellten Modelle. Schließlich berichtet sie über die überprüfte Resilienz des FlexRay-Bitübertragungsprotokolls gegenüber spezifischen Übertragungsfehlermustern unter verschiedenen Annahmen über die Hardwareumgebung, wie etwa die Uhrenverschiebung.DFG: SFB/TRR 14 "AVACS - Automatische Verifikation und Analyse komplexer Systeme

    Modelling and Analysis for Cyber-Physical Systems: An SMT-based approach

    Get PDF

    Model-Based Scenario Testing and Model Checking with Applications in the Railway Domain

    Get PDF
    This thesis introduces Timed Moore Automata, a specification formalism, which extends the classical Moore Automata by adding the concept of abstract timers without concrete delay time values, which can be started and reset, and which can change their state from running to elapsed. The formalism is used in real-world railway domain applications, and algorithms for the automated test data generation and explicit model checking of Timed Moore Automata models are presented. In addition, this thesis deals with test data generation for larger scale test models using standardized modeling formalisms. An existing framework for the automated test data generation is presented, and its underlying work-flow is extended and modified in order to allow user interaction and guidance within the generation process. As opposed to specifying generation constraints for entire test scenarios, the modified work flow then allows for an iterative approach to elaborating and formalizing test generation goals
    corecore