
Universität Bremen
Fachbereich 3: Mathematik und Informatik

Arbeitsgruppe Betriebssysteme und Verteilte Systeme
Leiter: Prof. Dr. Jan Peleska

Model-Based Scenario Testing and Model
Checking with Applications in the Railway

Domain

Dissertation
zur Erlangung des Doktorgrades

Doktor der Ingenieurwissenschaften
— Dr.-Ing. —

Helge Löding
Bremen im September 2014

1. Gutachter: Prof. Dr. Jan Peleska
2. Gutachter: Prof. Dr.-Ing. Görschwin Fey

Datum des Promotionskolloquiums: 5. Februar 2015

Abstract

This thesis introduces Timed Moore Automata, a specification formalism,
which extends the classical Moore Automata by adding the concept of ab-
stract timers without concrete delay time values, which can be started and
reset, and which can change their state from running to elapsed. The for-
malism is used in real-world railway domain applications, and algorithms for
the automated test data generation and explicit model checking of Timed
Moore Automata models are presented.

In addition, this thesis deals with test data generation for larger scale test
models using standardized modeling formalisms such as UML. An existing
framework for the automated test data generation is presented, and its un-
derlying work-flow is extended and modified in order to allow user interaction
and guidance within the generation process. As opposed to specifying gener-
ation constraints for entire test scenarios, the modified work flow then allows
for an iterative approach to elaborating and formalizing test generation goals.

i

Acknowledgment

I would like to thank my supervisor Jan Peleska for his guidance as well
as for his patience. His unique brand of directing overall content, of giving
creative leeway and of petitioning me for palpable results has ensured, that
this thesis would eventually come to be. As it stands, this thesis is the
latest milestone in my professional career, which Jan Peleska has influenced
as teacher, mentor and employer in its entirety.

Within this same vein, I owe thanks to the GESy graduate college for em-
bedded systems, the Siemens railway automation graduate school and its
respective members for constructive and insightful discussions during their
combined workshops.

I would also like to thank the Siemens AG for their financial support. Their
doctoral candidate scholarship has started me and this thesis on the right
foot.

At Verified Systems Intl. GmbH, my work assignments and my colleagues in
particular have helped me to gain valuable experience in the testing of real-
world applications, software engineering best-practices and software quality
in general.

Huge gratitude is owed to my family and friends, who have supported me
throughout.

ii

Contents

1 Introduction 4

1.1 Overview . 4

1.2 Motivation . 5

1.3 Main Contribution . 8

1.4 Related Work . 9

1.4.1 Model-Based Testing 9

1.4.2 Model Checking . 11

1.4.3 Constraint Solving . 12

1.4.4 Other Test Generation Techniques 13

2 Timed Moore Automata 14

2.1 Classical Moore Automata . 14

2.1.1 Abstract Syntax . 15

2.1.2 Concrete Syntax . 16

2.1.3 Static Semantics . 18

2.1.4 Operational Semantics 18

2.1.5 Determinism . 21

2.2 Abstract Timing for Moore Automata 23

1

2.2.1 Informal Introduction to Timed Moore Automata . . . 23

2.2.2 Abstract Syntax Extensions 26

2.2.3 Concrete Syntax Extensions 27

2.2.4 Static Semantics Extensions 29

2.2.5 Operational Semantics Extensions 30

2.2.6 Determinism . 38

2.3 Model Checking for Timed Moore Automata 38

2.3.1 Construction of Kripke structures 38

2.3.2 Computation Tree Logic 47

2.3.3 Model Checking CTL Properties 50

2.3.4 Checking for Live-Locks 56

2.4 Test Data Generation for Timed Moore Automata 58

2.4.1 Test Data Generation for Single Traces 58

2.4.2 Trace Selection . 65

2.5 Benchmarks . 68

3 Interactive Model-Based Testing 70

3.1 Model-Based Testing Framework 70

3.1.1 Intermediate Model Representation 71

3.1.2 Operational Semantics 72

3.1.3 Generation Goals . 73

3.1.4 Bounded Model Checking 75

3.1.5 Computation Tree . 76

3.1.6 Concrete Interpreter 77

2

3.1.7 Generation Control Flow 77

3.2 Interactive Generation Paradigm 79

3.2.1 Critique of the Fully Automated Paradigm 80

3.2.2 Modifications to the Generation Control Flow 81

3.2.3 Model Checking for Computation Trees 83

3.2.4 Manual Computation Tree Extension 84

3.2.5 Generation Goal driven Computation Tree Extension . 85

3.3 User Interface . 85

3.3.1 Goal Editor . 86

3.3.2 Model Explorer . 88

3.4 Case Study - Turn Indication 91

3.4.1 Test Model . 91

3.4.2 Example Scenarios . 96

3.5 Evaluation . 103

4 Conclusion 106

4.1 Timed Moore Automata . 106

4.2 Interactive Model-Based Testing 108

List of Figures 111

List of Tables 112

Bibliography 129

3

Chapter 1

Introduction

This thesis elaborates and discusses different aspects and real-world chal-
lenges of model-based software testing on different scales and test integration
levels. A domain-specific specification formalism used in the railway domain
is introduced and defined. Algorithms for test data generation and explicit
model checking are presented.

Additionally, an existing framework for fully automated model-based test
data generation is introduced and analyzed. Thereupon the framework is
extended to accommodate a more interactive approach to scenario testing.

1.1 Overview

This chapter introduces the scope and context of the thesis. Specifically,
section 1.2 explains the motivation for this work. In section 1.3, the main
contribution of this thesis is discussed. Section 1.4 gives an overview over
related research being done by others.

Chapter 2 introduces a real-world domain-specific formalism used for mod-
eling safety-critical control systems in the railway domain. Algorithms used
for test data generation and model checking of specifications using this for-
malism are presented.

Chapter 3 initially introduces a framework used for the automated generation
of test data on the basis of test models specified using standardized speci-
fication formalisms. The framework is then extended to allow interactive

4

user-guidance of the generation process.

Finally, chapter 4 summarizes results and gives an outlook over possible
future research topics and tool expansions.

1.2 Motivation

Safety-critical systems are systems, which – upon failure –may cause human
injury or death, loss of or catastrophic damage to equipment, or severe harm
to the environment. As such, they are usually subject to rigid norms and
regulations regarding their development and deployment.

Norms such as the RTCA DO-178C ([oR11]) for the aviation domain and the
CENELEC EN-50128 ([Cen11]) for the railway domain prescribe software de-
velopment processes, which are specifically tailored to ensure high software
quality. While software quality attributes like functionality, availability, re-
liability, maintainability and efficiency certainly benefit from a well-defined
development process, safety will usually be the main characteristic under
consideration during the certification phase of a system for real-world de-
ployment.

Within the domain of regulated safety-critical systems, all utilized software
development processes, may they be of the waterfall-, V-, W- or iteration-
based categories, will mandate some verification and validation activities for
their development artifacts. Within this context, validation ensures, that
each refinement step of a given development artifact into a more concrete
form is a valid specialization. For example, given a system architecture
document, all sub-system architecture documents must adhere to the overall
architecture set forth in the source system architecture document. As such,
validation is meant to ensure, that we are building the right system.

Conversely, verification is the process of showing, that we are building the
system right. This entails providing sufficient proof to show, that the system
under development is a correct implementation conforming to all specifica-
tions identified in all validated system specification documents.

Typically, each refinement of a system design into a more concrete speci-
fication will give rise to validation activities to ensure conformance of the
specialization to the source abstraction. Additionally, each layer of abstrac-
tion will usually give rise to verification activities to ensure conformance

5

between specification and implementation. System-, sub-system and module
implementations will have to be evaluated against their respective system-,
sub-system and module-specifications.

Verification methodology can roughly be split into static analysis and dy-
namic testing techniques, which evaluate system source code and system
instances being executed respectively. While static approaches generally at-
tempt to construct mathematical proofs of relevant properties on the basis
of source code (or the respective development process artifacts of the ab-
straction layer under consideration), dynamic testing (which will simply be
called testing from here on) will systematically stimulate a running instance
of a system under test and evaluate the observed system responses against
expected (specified) behavior.

It is not surprising, that the precision of all development, verification and val-
idation activities heavily depend on the level of formalization of referenced or
evaluated documents. However, a high level of formalization may be detri-
mental to maintainability, especially when using specification formalisms,
which themselves lack readability. As a resulting trade-off, graphical spec-
ification formalisms with an underlying formal semantics have become the
de-facto standard for specification purposes, and a range of computer-aided
software engineering (CASE) tools, which support various graphical spec-
ification formalisms for modeling architecture and behavior on all system
abstraction levels, exist.

The usefulness of formal models in the context of system verification is man-
ifold. Within static analysis, models may be used as inputs for theorem
provers, model checkers or other static analysis tools. For testing purposes,
test models can typically serve two separate functions: They can be used to
systematically generate stimulations to be applied to the system under test,
and they can be used to assess the correctness of the observable system under
test reactions to those stimulations.

Note, however, that care needs to be taken when selecting reference system
models. Whenever, for example, the same model is used as a basis for gener-
ating source code and generating tests for that source code, the redundancy
between system under test and tests for that system is lost. In such a sce-
nario, not the system under test, but only the source code and test generation
process is being evaluated.

Another trade-off to be considered is between standardized modeling for-
malisms and domain- or even application specific (graphical) languages. On

6

the one hand, standardized formalisms such as the OMG UML ([OMG11a],
[OMG11b]) provide common specification grounds for developers as well as
verification and validation specialists, and a wide array of tools are available.

On the other hand, since standardized formalisms need to be broad and
feature-rich enough for a multitude of applications and domains, their formal
semantics are - if even available - usually very complex and difficult to deal
with for model checkers and test data generators. In contrast, domain-specific
languages allow practitioners to tailor specification formalisms specifically to
their needs. As a result, the corresponding formal semantics will contain
only the complexity needed by its application.

Note, that efforts such as UML2 Profiles are made to bridge this gap by
providing facilities to restrict, customize and constrain features of generic
specification formalisms. However, just as with domain-specific languages,
practitioners still need to annotate profiles with formal semantics suitable for
their application domain. As such, profiles are in large parts simply a more
standardized way to create domain-specific languages.

This thesis elaborates two separate and very different model-based verifica-
tion approaches, one dealing with a domain-specific specification formalism
used in the railway domain, the other dealing with extensions made to a
model-based testing framework used in conjunction with standardized spec-
ification formalisms.

Within the first part of the thesis, railway level crossing system component
specifications using a domain-specific graphical notation and the correspond-
ing system component implementations are given. Since all components are
implemented separately, the graphical system component specifications can
serve as test models.

It is assumed, that conformance of the specifications to functional require-
ments have already been validated in earlier phases. As such, the verification
task at hand is to ensure conformance of the implementations to their respec-
tive specifications. The system components are considered to be white boxes,
and structural coverage criteria are used to determine test end conditions.

Additionally, the domain-specific specification formalism used here lends it-
self to performing explicit model checking. The corresponding algorithms are
elaborated and used to ensure some basic liveness properties.

In contrast, the second part of this thesis is concerned with test data gener-
ation for test models using standardized specification formalisms. Here, the

7

scope lies on a higher test integration level. Entire (sub-)systems are consid-
ered in a black-box testing context. The focus lies on how larger test models
may be utilized to generate test data for scenarios reflecting functional re-
quirements.

1.3 Main Contribution

Within the first part of this thesis, a new graphical specification formalism
used for modeling embedded controllers in the railway domain is introduced
and elaborated. While this specification formalism called Timed Moore Au-
tomata has already been heavily used to specify expected behavior of real-
world applications, verification of systems built from Timed Moore Automata
specifications has previously been based on manually deriving test cases for
the resulting source code. The thesis presents approaches and algorithms
for performing model-checking and test data generation directly from test
models specified using Timed Moore Automata.

Moreover, the presented specification formalism may be of general scientific
interest. Timed Moore Automata introduce the concept of abstract timers.
Abstract timers are not associated with concrete time durations, after which
they must elapse. Rather, they provide the abstract notions of timer sta-
tuses timer running and timer elapsed as well as timer actions timer start
and timer stop and the general semantic rules, under which timer actions and
timer statuses may influence each other. As such, Timed Moore Automata
may be useful as a further abstraction level between entirely timeless speci-
fication formalisms such as classical Moore Automata ([Moo56]) and timed
formalisms based on concrete timer durations, such as the region graphs
derived from Timed Automata ([AD94]).

In order to facilitate model-based scenario testing, the second part of this
thesis builds upon an existing framework used for model-based test genera-
tion from larger scale test models. The framework can accommodate multiple
standardized modeling formalisms, and for any test model, the test data gen-
eration process follows a generic and completely automated work-flow. The
thesis discusses some weaknesses inherent in this paradigm and introduces a
new interactive generation work-flow, which allows the user to visualize and
influence each step of the generation process.

As such, the interactive test generation paradigm realized in this thesis may

8

serve as an exemplary prototype, which allows a user to inject application
expertise into the model-based test generation process while still harvesting
the power of fully automated test generation approaches. As a result, au-
tomated model-based test generation approaches can become valuable tools
for developing test cases as well as test data intended for scenario testing.

1.4 Related Work

Within this section, research related to the topics of this thesis being done
by other researchers and groups is presented.

The following subsections list a number publications, which give overviews
of different scope and detailing over the field of model-based testing. The
most common tools and frameworks – including the framework used within
this thesis – are enumerated and briefly summarized.

Furthermore, publications introducing the fundamental concepts of model
checking and the model checking tools considered to be state of the art are
given. Papers on various approaches regarding the interaction and inter-
dependence between model checking and model-based testing are layed out
additionally.

In a later subsection, the research landscape concerning constraint solving
algorithms and corresponding solver implementations is sketched. Notably,
this includes the constraint solver used at the heart of the model-based test
generation framework used in the thesis.

Finally, notable papers from other sub-domains of model-based testing not
immediately related to this thesis and the used model-based testing approach
are briefly enumerated.

1.4.1 Model-Based Testing

As a position paper on model-based testing, [Utt08] gives a comprehensive
summary over the field of model-based testing.

[Tre11] expands on this and gives a more formal overview for model-based
testing in general, and for testing labeled transition systems in particular.

9

Another introduction into model-based testing with emphasis on the pro-
cesses and characteristics of different approaches to model-based testing can
be found in [UPL12].

In [Bel10], the author introduces JTorX, a testing tool for model-based test
generation and execution. The tool compares a given labeled transition sys-
tem specification to an implementation using the “ioco” implementation re-
lation. The corresponding testing theory is set forth in [Tre08].

The MOTES tool [EKRV06] generates test date for extended finite state
machines using the model checker UPPAAL Cora ([BLR05]) and various
structural coverage criteria.

[DBI12] proposes another extension of finite state machine called “Stream
X-machine” (SXM), where state machines can be annotated with data struc-
tures and functions to operate on that data. [DBI12] presents a testing theory
and a corresponding testing tool JSXM for testing Stream X-machines.

The MaTeLo tool [DZ03] derives test cases in the TTCN-3 notation ([Din04])
from Markov chain usage models (MCUM) [Pro05] to perform model-based
statistical testing. While MaTeLo automatically derives its MCUMs from
different formal model descriptions, the JUMBL tool [Pro03] can be used to
directly model MCUMs and generate test cases from it.

UPPAAL Cover/TRON [HLM+08] utilizes test models formulated as timed
automata ([AD94]) and coverage criteria formulated in an observer language
to generate test cases in the form of timed input sequences.

Using the UML2 Testing Profile ([BJ07]), the TTmodeler tool [PSK08] gen-
erates test cases in the TTCN-3 notation. Generation goals are modeled
directly into the test model.

The Conformiq Qtronic tool [Hui07] accepts UML test models and yields
TTCN-3 test cases as well. Additionally, Qtronic introduces the proprietary
Qtronic Modeling Language (QML).

The Smartesting CertifyIt tool [BGLP08] is yet another test generator based
upon UML. It allows usage of OCL constraints ([Obj10]) within the test
model to guide the generation process.

The RT-Tester Model-Based Testing Extension [Pel13] utilizes an (internal)
intermediate modeling language to incorporate multiple test model specifi-
cation formalisms and their respective front-ends. Using the semantics of

10

Harel’s state charts ([HN96]), test data can be generated for multiple test
notations using corresponding back-ends. As a major prerequisite of this
thesis, it is described in more detail in section 3.1.

Case studies for testing embedded systems using the above framework are
given in [EP11] and [PHL+11] for the avionics and automotive domain re-
spectively. The usage of the framework as part of model-driven software
verification of synchronous components is published in [MGP+12].

Handling of aliasing problems within automated test generation based on
control flow graphs is introduced in [LP08], and the further combination of
these code-based test generation algorithms with static analysis methods is
presented in [PLK07].

A model-based equivalence class testing strategy for test models using SysML
semantics ([Hau06]) is presented in [HP13].

Transformations based on case grammar theory ([Coo89]) of controlled nat-
ural language requirements initially into an intermediate test model, and
eventually into executable test cases is shown in [CBL+14].

A multitude of considerations and aspects of combining model-based testing
with scenario testing, and of interactively injecting domain expertise into au-
tomated test generation processes can be found in [RK11], [AQ13], [DKT08],
[DCT12], [CDJ11], [MLL09], [LK01], [CDKM11], [BW05], [GKP00] and
[MFT12]. The evaluation section 3.5 of chapter 3 on interactive model-based
testing summarizes these publications in more detail.

1.4.2 Model Checking

Foundations of model checking are comprehensively presented in [CGP99].
It introduces Kripke structures as basic data structures, temporal logics to
express properties to be checked as well as the algorithms used.

Notable model checking tools are SPIN ([Hol03]), SMV and NuSMV
([CCGR00]), UPPAAL ([BDL+06]) and the Java Pathfinder ([HP00]).

An adaption of Tarjan’s algorithm [Tar71] for the computation of strongly
connected components - an algorithm at the heart of model checking - is used
in [JM99] to perform test data generation.

Automatic test case generation for state charts using the CTL temporal

11

logic to formalize coverage criteria and the SMV model checker to construct
reachability (counter-)witnesses is described in [HLSC01].

[CSE96] describes the use of counter-witness extracted from model checking
to generate test cases for requirements specified in the LTL temporal logic.

As opposed to finding witnesses for reachability properties and transforming
these into test cases, [ABM98] performs model mutations and uses model
checking to construct witnesses, which distinguish the mutation from the
original model.

[AB00] assess utilizing model checking for test generation using the MC/DC
([CM94]) coverage criterion. Additionally, they argue for the use of model
checking for test set recognition.

In [AADO00], the authors elaborate, how model checking might be used to
achieve specification-mutation coverage, full predicate coverage and transition-
pair coverage.

In [FW08], a notion of property relevance of test cases is introduced in order
to evaluate test suites against their ability to detect requirements violations.

In [Eng05], the authors evaluate trade-offs between model checking and static
analysis when finding errors, particularly in file system code.

1.4.3 Constraint Solving

In constraint solving, the values of a set of variables are restricted using a set
of constraints (equality, inequality, affiliation with a certain value domain,
etc.). [RBW06] gives an overview over the field of constraint programming.

Integer programming and solving approaches such as the well-known simplex
algorithm to solve problem instances initially known from operations research
are presented in [Rav07].

Boolean satisfiability (SAT) solvers “have become the key enabling technol-
ogy in automated verification”([BHvMW09]). Biere et al. present a collection
of papers on the theoretical and practical impact of SAT solving specifically
on (bounded) model checking and program verification. In [DEFT09], this
is expanded on to show, how SAT solvers can be utilized for automatic test
pattern generation for hardware circuit verification.

12

Combining multiple solvers capable of handling different theories (e.g. integer
programming, arithmetic, bit-vectors, etc.) with a SAT solver used to co-
ordinate the (sub-)theory-solvers yields Satisfiability-Modulo-Theory (SMT)
solvers, which are capable of solving sets of mixed constraints. [BSST09]
takes a look at how to construct such SMT solvers.

The Satisfiability Modulo Theory Library (SMT-LIB) [BRST08] maintains
a list of state-of the art SMT solvers and their references. These currently
include: Alt-Ergo, Boolector, CVC4, MathSAT 5, MiniSmt, Mistral, SMT-
Interpol, SONOLAR, UCLID, veriT, Yices 2, Z3.

The SONOLAR solver ([PVL11]) in particular is used as an integral part of
the model-based testing framework [Pel13] expanded on within this thesis.

In addition to [Pel13], [AS05], [CIvdPS05] and [GMS98] all utilize constraint
solving for model bases test generation, albeit with different intentions.

1.4.4 Other Test Generation Techniques

Search-based test generation utilizes meta-heuristic search approaches such
as genetic algorithms, simulated annealing or other probabilistic algorithms
to solve the test generation problem. A selection of such approaches can be
found in [ATF09], [HHL+07], [LHM08], [MS04] or [McM04].

In random testing, large numbers of test cases are created with little effort
and little regard for the quality of single test cases. Rather, the sheer amount
of test cases and their statistical distribution is assumed to detect a majority
of faults. Among other considerations, [Pre06], ,[ODC06], [CLOM06] and
[CLOM07] discuss the efficiency of random testing with regard to strength
of resulting test suites and their cost-effectiveness.

Evolutionary testing – possibly as an extension of random testing – refines
given test input data using mutations and fitness functions. Several ap-
proaches to evolutionary test generation can be found in [KG04], [HM07],
[WS07], [Weg03], [WL05] or [WB04].

13

Chapter 2

Timed Moore Automata

This chapter introduces Timed Moore Automata, a real-world formalism
used for modeling safety-critical control systems in the railway domain. In
order to provide software verification and validation tool support for control
systems modeled as Timed Moore Automata, algorithms for the automated
generation of test data and the validation of required application properties
were developed. While some results are already known from [LP10], this
thesis greatly expands on and illuminates the material presented there.

Section 2.1 reviews the classical Moore Automata as introduced in [Moo56]
with a special focus on applying the formalism to the specification of control
systems. Section 2.2 extends classical Moore Automata to introduce Timed
Moore Automata, a formalism, which introduces the notion of timers to
Moore Automata.

In section 2.3 we describe a model checking approach used in checking in-
stances of Timed Moore Automata specifically for live-locks. Section 2.4 in-
troduces specialized algorithms used to generate test data for Timed Moore
Automata. Section 2.5 presents achieved results for a real-world railway
application.

2.1 Classical Moore Automata

This section re-introduces the classical Moore Automata as invented in [Moo56].
While they are usually considered to be a computation model for recogniz-

14

ing regular expression languages, they can be viewed as a simple modeling
formalism for specifying control systems.

Moore automata are simple finite-state machines (deterministic or not). Their
defining characteristic is, that all outputs are determined only by the state
they are in.

Within this thesis, we will ignore the notion of final (or accepting) states as
introduced by Moore. Final states are significant when recognizing a word as
belonging to a language. However, as this thesis has a bias towards controller
specifications, we will ignore this since controllers are usually (conceptually)
meant to run infinitely long and never terminate.

This section will first introduce the abstract and concrete syntax of classi-
cal Moore Automata. The subsection on static semantics will then intro-
duce some additional constraints on well-defined automata. The following
subsections will then introduce the operational semantics of classical Moore
Automata and consider the notion of determinism for them.

2.1.1 Abstract Syntax

In order to formally model the syntax of a given Moore Automaton, we need
to define a mathematical structure, which can then contain all information
from within the concrete (graphical) representation of an automaton.

Here, we define a tuple, which will contain locations, variable symbols, loca-
tion transitions, guard conditions and entry actions. An instance of such a
tuple will serve as a basis for defining the behavior of automata later.

Definition 1. The abstract syntax of any given classical Moore Automata
consists of the 6-tuple:

(LOC, loc0, V ARin, V ARout, L,R)

The elements of this tuple are given as:

(1) LOC indicates the set of locations within the automaton.

(2) loc0 ∈ LOC denotes the initial location, which will be assumed upon
start-up of the automaton.

15

(3) V ARin defines the input alphabet of the automaton. As such, it is
formalized as a set of input variable symbols.

(4) V ARout denotes the output alphabet of the automaton. It is again de-
fined as a set of output variable symbols.

(5) L : LOC −→ V ARout is a total labeling function, which assigns one
output variable symbol to each location.

(6) R : LOC×V ARin×LOC is a location transition relation, which relates
predecessor locations and input variable symbols to successor locations.

Note, that in contrast to the description of classical Moore Automata from
[Moo56], we do not reference or define final/accepting locations. This is again
due to the fact, that this study is focused mainly on controller implementa-
tions, which are – in concept – executed indefinitely.

2.1.2 Concrete Syntax

In order to illuminate the abstract syntax of classical Moore Automata, con-
sider the graph representation of a Moore Automata from figure 2.1.

The set of locations LOC can be found simply by collecting the names of
locations drawn in the graph. It is hence defined as the set:

LOC = {S1, S2, S3}

The initial location loc0 is designated by the arrow without successor state.
In the given automaton, this means:

loc0 = S1

The sets of input- and output variable symbols V ARin and V ARout can be
found by collecting location entry actions and transition labels respectively:

V ARin = {a, b, c}
V ARout = {X, Y, Z}

16

a

a, c

b

c

X

S 1

S 2

Y

S 3

Z

Figure 2.1: Moore Automaton Example

The labeling of locations with output variable symbols L can be constructed
by collecting all location entry actions individually. For the given automaton,
the result is:

L = {S1 7→ X,S2 7→ Y, S3 7→ Z}

The location transition relation R can be inferred from each arrow within the
graph. Each arrow specifies a predecessor and a successor location as well
as an input variable symbol associated with the respective arrow’s location
transition.

Note, that multiple input variable symbols associated with a single arrow are
merely used as a shorthand for multiple arrows with identical predecessor and
successor locations. Within the given automaton, the arrow labeled a, c thus
stands for two separate location transitions.

The location transition relation from the given example looks as follows:

17

R = { (S1, a, S2),
(S2, a, S1), (S2, b, S3), (S2, c, S1),
(S3, c, S1) }

2.1.3 Static Semantics

In order for a given Moore Automaton (LOC, loc0, V ARin, V ARout, L,R) to
be well defined, some constraints must hold for the 6-tuple:

Firstly, only a finite number of locations are allowed. Secondly, all symbolic
sets must be pairwise disjoint, i.e. no symbol may appear in more than one
of the sets LOC, V ARin and V ARout.

Definition 2. A classical Moore Automaton

(LOC, loc0, V ARin, V ARout, L,R)

is well defined, iff the following holds:

| LOC | < ∞ ∧
LOC ∩ V ARin = ∅ ∧
LOC ∩ V ARout = ∅ ∧
V ARin ∩ V ARout = ∅

2.1.4 Operational Semantics

In order to define the behavior of an implementation of any given classical
Moore Automaton, we consider the state-space S of an execution of the
automaton. This state space is the conceptual set of execution states, which
an automaton implementation must differentiate in order to provide a specific
behavior.

Furthermore, for each predecessor execution state s ∈ S an automaton imple-
mentation must consider, which states s′ ∈ S are possible successor execution
states. An automaton implementation is then characterized by providing a

18

definite state transition relation T , which relates all predecessor and successor
states for any given automaton.

The intended behavior of Moore Automata is then specified as a triple:

(S, s0, T)

Within this triple, S is the state space, s0 is the initial execution state and
T is the state transition relation.

Classical Moore Automata derive their importance in computer science pre-
cisely from the fact, that they are a class of automata, for which only the set
of locations needs to be considered as state space. This is more commonly
described as the property, that outputs of Moore Automata only depend on
the location the automaton is in. The state space S is therefore defined as:

S = LOC

For each execution state s ∈ S, the visible output of the automaton is imme-
diately defined as L(s) using the location labeling function L from definition
1.

The initial execution state s0 is trivial and can be taken directly from the
syntax of a given automaton:

s0 = l0

The state transition relation T for classical Moore Automata must relate
pairs of states and variable input symbols to successor states. As such, it is
of the form:

T : S × V ARin × S

The state transition relation T needs to contain all triples (s, vin, s
′) ∈ S ×

V ARin × S, which are already part of location transition labeling relation
R from definition 1. Additionally, if for a given input a location has no
matching emanating transition in R, the corresponding execution state must
transition to itself.

19

We can now define the operational semantics for a classical Moore Automa-
ton:

Definition 3. The operational semantics of a classical Moore Automaton
(LOC, loc0, V ARin, V ARout, L,R) is defined as triple:

(S, s0, T)

The state space S is defined as:

S = LOC

The initial execution state s0 is defined as:

s0 = l0

The state transition relation T is defined as:

T : S × V ARin × S

T = { (s, vin, s
′) ∈ S × V ARin × S |

((s, vin, s
′) ∈ R) ∨

((6 ∃(s, vin, s′) ∈ R : (s = s) ∧ (vin = vin)) ∧
(s = s′)) }

For any system state s ∈ S, the output can be calculated simply as L(s).

This definition is well formed in the sense, that each execution state will
always have at least one successor state. In other words, the transition
relation T is total.

Proof. Let (LOC, loc0, V ARin, V ARout, L,R) be any well defined classical
Moore Automaton.

Suppose, there exists an execution state s ∈ S, such that s has no successor
state. Formally, suppose:

20

∃s ∈ S :6 ∃(s, vin, s′) ∈ T : s = s

Consider s and any input variable symbol v ∈ Vin.

Case 1 – Existing location transition label:

Suppose:
∃(s, vin, s′) ∈ R : (s = s) ∧ (v = vin)

Then:
(s, v, s′) ∈ R

And by definition of T :
(s, v, s′) ∈ T

This is a counter-example, since apparently:

∃(s, vin, s′) ∈ T : s = s

Case 2 – Non-existing location transition label:

Suppose:
6 ∃(s, vin, s′) ∈ R : (s = s) ∧ (v = vin)

We can augment this:

(6 ∃(s, vin, s′) ∈ R : (s = s) ∧ (v = vin)) ∧
(s = s)

Then, by definition of T :
(s, v, s) ∈ T

This is a counter-example, since apparently:

∃(s, vin, s′) ∈ T : s = s

2.1.5 Determinism

In 2.1.4 it was proven, that the operational semantics for classical Moore
Automata is well formed, i.e. does not cause any automaton execution to

21

fail due to a dead-lock. This was done by showing, that each execution state
of any automaton always has at least one successor state.

Additionally a classical Moore Automaton is considered to be deterministic,
if each execution state has exactly one successor state. This can be achieved
by restricting the location transition labeling relation R from definition 1.

Definition 4. A classical Moore Automaton

(LOC, loc0, V ARin, V ARout, L,R)

is deterministic, if the following constraint holds for location transition label-
ing function R:

6 ∃(s1, v1, s
′
1), (s2, v2, s

′
2) ∈ R : (s1 = s2) ∧ (v1 = v2) ∧ (s′1 6= s′2)

This restriction means, that R is now in fact a partial function:

R : LOC × V ARin 6−→ LOC

Accordingly, the state transition relation T then becomes a total function:

T : S × V ARin −→ S

Proof. In order to show, that state transition relation T for deterministic
Moore Automata is a total state transition function, it needs to be shown,
that:

∀s ∈ S, v ∈ Vin : | {(s, vin, s′) ∈ T | (s = s) ∧ (v = vin)} | = 1

Case 1 – Existing location transition label:

Suppose:
∃(s, vin, s′) ∈ R : (s = s) ∧ (v = vin)

Since R is now a partial function, this means:

∃s′ ∈ S : R(s, v) = s′

22

The successor state s′ must be unique, again because R is a partial function.

Case 2 – Non-existing location transition label:

Suppose:
6 ∃(s, vin, s′) ∈ R : (s = s) ∧ (v = vin)

Since R is now a partial function, this means:

6 ∃s′ ∈ S : R(s, v) = s′

As seen in the proof from 2.1.4, the state transition (s, v, s) is an element
of T . Additionally, the state transition relation T from definition 3 ensures
this to be the only element of the form (s, v, s′), since T explicitly enforces
(s = s′).

2.2 Abstract Timing for Moore Automata

This section introduces Timed Moore Automata. After an informal intro-
duction, we discuss the extensions to classical Moore Automata needed to
introduce the abstract notion of timers.

As such, this section is organized largely in analogy to the previous discus-
sion of classical Moore Automata. Again, we consider abstract and concrete
semantics, static and operational semantics and determinism.

2.2.1 Informal Introduction to Timed Moore Automata

Timed Moore Automata are an extension of the classical Moore Automata
in the sense, that they preserve the fundamental Moore Automata property:
Outputs of an automaton are still only dependent on the current location
of the automaton. Apart from this, several modifications and enhancements
have been introduces in the Timed Moore Automata formalism in order to
get closer to a practical embedded controller specification formalism.

While real-world controllers may internally defer computations to some syn-
chronous processing mechanisms, it is uncommon for external controller input

23

interfaces to queue inputs as events to be processed since this might impede
reaction time requirements.

Consequently, outputs are commonly published collectively at the external
output interface of a controller for all who might be concerned. Again, pro-
ducing outputs as a sequence of events is uncommon for external controller
output interfaces since this might place too many restrictions on receivers as
well as senders.

Classical Moore Automata processed their inputs and outputs in a syn-
chronous fashion as queues of events. In contrast, Timed Moore Automata
view inputs and outputs as vectors of signals with Boolean values to be
processed in an asynchronous fashion. As such, they execute in a run-to-
completion mode before accepting new inputs. As compared to the classical
Moore Automata, which would accept a new input after each discrete tran-
sition, Timed Moore Automata perform discrete Transitions for as long as
they are enabled and only accept new inputs when no more transitions are
enabled.

The Timed Moore Automaton formalism is designed for modeling controllers
as collections of automata running in parallel. As such, they could well have
been designed to employ a synchronous execution semantics. However, the
application domain necessitates, that collections of interacting automata can
run in different processes or even on different computation nodes. As such,
an asynchronous approach is more suited.

Safety-critical controllers are regularly required to behave deterministically
with respect to any reproducible sequence of inputs. This can pose a model-
ing hazard when formulating guard conditions for a multitude of transitions
leaving a specific location. In such a situation, it is not always trivial to
see, whether all transition guards are pairwise preclusive. As a concession to
model developers, Timed Moore Automata introduce the notion of unique
transition priorities.

As the name might suggest, Timed Moore Automata introduce an abstract
concept of timers. These timers are abstract in the sense, that no specific
timer elapse time spans are ever specified. Instead, Timed Moore Automata
only employ notions of timer actions and timer statuses. Timers may be
(re)started or stopped, and they may be in a running or elapsed state. While
timer actions start and stop are unremarkable when compared to other mod-
eling formalisms, the notion of a timer elapse as a non-deterministic input
free of any concept of time span makes this formalism special.

24

OFF

UNSTABLE ON

ON

UNSTABLE OFF

OUT = 0;
T = 0;

(1)[in = 1]

(1)[in = 0]

OUT = 1;
T = 0;

(1)[in = 1]

(1)[in = 0]

OUT = 0;
T = 1;

OUT = 1;
T = 1;

(2)[in = 1, t = 0]

(2)[in = 0, t = 0]

Figure 2.2: Timed Moore automaton for input debouncing

Timer actions are specified as entry action assignments to timer action vari-
ables. Starting a timer is done by assigning a value of 1 to its variable, an
assignment of 0 stops the timer. Conversely, timer statuses can be evaluated
using timer status variables. Here, a value of 1 denotes a running timer,
while a value of 0 denotes an elapsed timer.

Consider the Timed Moore Automaton from figure 2.2, which specifies a
simple input signal debouncing automaton. In locations ON and OFF , the
input in is stably true or false, respectively. The output OUT reflects this
in each location.

Whenever the input changes value, the automaton transitions to location
UNSTABLE OFF or UNSTABLE ON respectively. Here, the timer T is
started. Should the input revert back to its original value, the automaton
transitions back to its previous location ON or OFF . However, should timer
T elapse while the input remains different from the output, the automaton
transitions to new stable output location OFF or ON respectively.

Note, that no timer elapse time span is specified for timer T and timer elapse
variable t. Rather, t is a special (non-deterministic) input to the automaton.

25

2.2.2 Abstract Syntax Extensions

As with classical Moore Automata, we need to define a mathematical struc-
ture to contain all relevant syntactical information for a given Timed Moore
Automaton. This definition will largely resemble the earlier definition for the
abstract syntax of classical Moore Automata from section 2.1.1 in the sense,
that again locations, variable symbols, location transitions, guard conditions
and entry actions are considered.

However, the definition of the abstract syntax for Timed Moore Automata
will be extended to incorporate timer symbols and their appearance within
guard conditions and entry actions.

Definition 5. The abstract syntax of a Timed Moore Automaton consists of
the 10-tuple:

(LOC, loc0, V ARin, V ARout, V ARta, V ARts, β, Lout, Lta, R)

The elements of this tuple are now given as:

(1) LOC indicates the set of locations within the automaton.

(2) loc0 ∈ LOC denotes the initial location, which will be assumed upon
start-up of the automaton.

(3) V ARin defines the input alphabet of the automaton. As such, it is
formalized as a set of input variable symbols.

(4) V ARout denotes the output alphabet of the automaton. It is again de-
fined as a set of output variable symbols.

(5) V ARta defines the set of timer activation symbols.

(6) V ARts denotes the corresponding set of timer status symbols.

(7) β : V ARta ←→ V ARts is a bijection mapping timer activation variables
and timer status variables to each other.

(8) Lout : LOC −→ (V ARout −→ B) is a labeling function, which for each
location assigns Boolean valuations to each output variable.

26

(9) Lta : LOC −→ (V ARta 6−→ B) is a labeling function, which for each
location may assign Boolean valuations to some timer activation vari-
ables.

(10) R : LOC −→ (N 6−→ ((V ARin∪V ARts) 6−→ B)×LOC) is the location
transition relation, which relates predecessor and successor locations.
More precisely, each predecessor location is mapped to a partial func-
tion, which maps transition priorities to pairs of corresponding guard
conditions and successor locations. The guard conditions themselves
are partial functions, which map input- and timer status variables to
their required transition guard values.

2.2.3 Concrete Syntax Extensions

The concrete syntax of Timed Moore Automata shows some key differences
when compared to the concrete syntax of classical Moore Automata. Again
consider the Timed Moore Automaton from figure 2.2.

As compared to classical Moore Automata, Timed Moore Automata loca-
tions do not merely list output symbols (and timer activation symbols), but
assign them Boolean values. Consequently, transitions are guarded not only
by input symbols (and timer status symbols), but are guarded by specific
Boolean valuations.

This is due to the fact, that inputs and outputs are now processed as vectors
of Boolean values rather than as input and output events. Another manifes-
tation of this is the artificial initial location , which each Timed Automaton
must furnish in order to provide a defined output state prior to automaton
execution.

It is worth noting, that since Timed Moore Automata are extensions of the
classical Moore Automata, each location must correspond to an entire output
vector. It is therefore assumed, that all output variables not explicitly listed
within a location shall have their values set to false. Note, that this is
explicitly not true for timer activation variables, as timers may retain their
status across multiple location transitions.

Timed Moore Automata provide transition priorities for all location transi-
tions. For transitions emanating from a specific location, these are unique
(usually consecutive) natural numbers intended to enforce deterministic mod-
eling. Here, lower numbers mean higher transition priorities.

27

Finally, a subtle naming convention distinguishes input, output, timer acti-
vation and timer status variables. Input variables and timer status variables
are always given in lower case. Output variables and timer activation vari-
ables are always given in upper case. Furthermore, timer activation variables
will always begin with the letter ’T’. Their associated timer status variables
will share the respective variable name, but be in lower case.

For the given automaton, the resulting abstract syntax instance looks as
follows:

The set of locations is given as:

LOC = {loc0, ON,OFF,UNSTABLE ON,UNSTABLE OFF}

Not surprisingly, the initial location of the automaton is the artificial initial
location loc0.

The variable symbol sets are:

V ARin = {in}
V ARout = {OUT}
V ARta = {T}
V ARts = {t}

The mapping between timer variables is then:

β = {T 7→ t}

The location labeling functions look as follows:

Lout = { loc0 7→ {OUT 7→ 0},
ON 7→ {OUT 7→ 1},
OFF 7→ {OUT 7→ 0},
UNSTABLE ON 7→ {OUT 7→ 0},
UNSTABLE OFF 7→ {OUT 7→ 1} }

Lta = { loc0 7→ {T 7→ 0},
ON 7→ {T 7→ 0},
OFF 7→ {T 7→ 0},
UNSTABLE ON 7→ {T 7→ 1},
UNSTABLE OFF 7→ {T 7→ 1} }

28

Finally, the location transition relation is given as:

R = { loc0 7→ { 1 7→ (∅, OFF)}
ON 7→ { 1 7→ ({in 7→ 0}, UNSTABLE OFF)}
OFF 7→ { 1 7→ ({in 7→ 1}, UNSTABLE ON)}
UNSTABLE ON 7→ { 1 7→ ({in 7→ 0}, OFF),

2 7→ ({in 7→ 1, t 7→ 0}, ON)}
UNSTABLE OFF 7→ { 1 7→ ({in 7→ 1}, ON),

2 7→ ({in 7→ 0, t 7→ 0}, OFF)} }

2.2.4 Static Semantics Extensions

As with classical Moore Automata, some constraints must hold in order for
a given Timed Moore Automaton to be well defined.

In accordance to classical Moore Automata, the number of locations must
be finite. Again, all symbolic variable sets must be pairwise disjoint.

As we now have an artificial initial location, some additional constraints must
hold for it. The initial location must have a single emanating transition,
which must be unguarded. No transitions may have the initial location as
their target.

Finally, for each location all emanating transitions must be attributed with
unique priorities.

Definition 6. A Timed Moore Automaton

(LOC, loc0, V ARin, V ARout, V ARta, V ARts, β, Lout, Lta, R)

is well defined, iff the following holds:

(1) The number of locations is finite:

| LOC | < ∞

29

(2) All symbolic sets are pairwise disjoint:

LOC ∩ V ARin = ∅ ∧
LOC ∩ V ARout = ∅ ∧
LOC ∩ V ARta = ∅ ∧
LOC ∩ V ARts = ∅ ∧
V ARin ∩ V ARout = ∅ ∧
V ARin ∩ V ARta = ∅ ∧
V ARin ∩ V ARts = ∅ ∧
V ARout ∩ V ARta = ∅ ∧
V ARout ∩ V ARts = ∅ ∧
V ARta ∩ V ARts = ∅

(3) Only a single unguarded transition emanates from the initial location. It
leads to another location.

∃loc ∈ LOC : loc 6= loc0 ∧R(loc0) = {1 7→ (∅, loc)}

(4) No transition has the initial location as target

6 ∃loc ∈ LOC, p ∈ N, γ ∈ (V ARin ∪ V ARts) 6−→ B :
(loc 7→ (p 7→ (γ, loc0))) ∈ R

Side note: For a given location the uniqueness of all emanating transition
priorities is implicitly given, since prioritized transition labels are modeled as
a (partial) function with priorities N as its domain.

2.2.5 Operational Semantics Extensions

As before, we need to consider the state space S of Timed Moore Automata in
order to define their behavior. Using a suitable definition for the state space,
we can then specify, which predecessor execution states transition into which
successor execution states.

As with classical Moore Automata, the current location of an automaton is
sufficient to determine its output values, and we do not need to encapsu-
late output valuations within the state space. The set of locations LOC is
therefore again part of the system state.

30

Additionally, since Timed Moore Automata perform their calculations in a
run-to-completion mode, we need to keep track of input valuations. We
employ valuation functions Σin : V ARin −→ B for this purpose.

Timer actions do not need to be kept within the state space, since they can be
immediately inferred from the current location of a Timed Moore Automaton.
However, timer statuses need to be considered, and we use Boolean valuation
functions Σts : V ARts −→ B for this.

In order to determine whether an automaton is performing discrete transi-
tions, or whether it is in a stable state, in which it can accept new inputs,
an artificial variable stable ∈ B is introduced into the state space.

As opposed to the classical Moore Automaton semantics, we need to consider
multiple initial execution states S0 ⊂ S. This is due to the fact, that all
possible input valuations are valid prior to automaton execution. In contrast
to this, no timers are running initially. As the automaton may have arbitrary
input valuations, it is initially considered to be unstable (¬stable).

The state transition relation T : S × S for Timed Moore Automata must
consider three separate cases. Firstly, an automaton may perform a delay
transition. Whenever an automaton is stable its location remains unchanged.
New inputs may be assigned arbitrarily. Timers may elapse, but elapsed
timers must remain so. All resulting execution states then become unstable
in order to trigger a subsequent run to completion.

Secondly, an unstable state may perform a discrete transition. An automaton
may change its current location if input- and timer status valuations enable
a location transition. If multiple transitions are enabled, the automaton will
perform the transition with the best priority. As a result, a successor exe-
cution state will be associated with the location transition’s target location.
While input valuations remain unchanged, the results of the target location’s
timer actions are reflected in successor state’s timer status valuations. The
successor execution state remains unstable, since additional location transi-
tions may be possible.

Thirdly, an unstable automaton may become stable. This final discrete tran-
sition of a run to completion can only happen, if the automaton cannot
perform any location transitions. The resulting execution state is identical
to the predecessor state, except that it is stable.

Definition 7. The operational semantics of a Timed Moore Automaton

31

(LOC, loc0, V ARin, V ARout, V ARta, V ARts, β, Lout, Lta, R)

is defined as the triple:
(S, S0, T)

The state space S is defined as:

S = LOC × (V ARin −→ B)× (V ARts −→ B)× B

The set of initial states is given as:

S0 = { (loc, σin, σts, stable) ∈ S |
loc = loc0∧
∀v ∈ V ARts : ¬σts(v)∧
¬stable }

For notation purposes we say, that a system state s ∈ S models a location
loc′ ∈ LOC, if loc′ is the current location of s. Let s = (loc, σin, σts, stable).
We define:

∀loc′ ∈ LOC : s |= loc′ ⇔ loc′ = loc

In analogy for variable valuations σin and σts:

∀v ∈ V ARin : s |= v ⇔ σin(v)
∀v ∈ V ARts : s |= v ⇔ σts(v)
∀stable′ ∈ B : s |= stable′ ⇔ stable′ = stable

An execution state s models a location transition guard γ under the following
conditions:

∀γ ∈ (V ARin ∪ V ARts) 6−→ B :
(s |= γ ⇔

(∀v ∈ V ARin : v 6∈ dom(γ) ∨ s |= γ(v))∧
(∀v ∈ V ARts : v 6∈ dom(γ) ∨ s |= γ(v)))

The state transition relation T can now be defined as:

T : S × S

32

T = {(s, s′) ∈ S × S | DISCTRANS1(s, s′)∧
DISCTRANS2(s, s′)∧
DELAY TRANS(s, s′)}

The predicates DISCTRANS1, DISCTRANS2 and DELAY TRANS are
defined below.

Note, that Πn is meant to denote the n-th element of a tuple.

(1) DISCTRANS1: An unstable execution state with enabled location tran-
sitions performs a discrete transition to a new unstable successor state. For
multiple enabled location transitions, the transition with best priority is taken.
The new execution state contains the transition target location as well as the
results of all timer entry actions. Inputs remain unchanged.

DISCTRANS1((loc, σin, σts, stable),
(loc′, σ′in, σ

′
ts, stable

′))
=def

(∃p ∈ N : (p ∈ dom(R(loc))∧
(loc, σin, σts, stable) |= Π1(R(loc)(p))∧
(6 ∃p′ ∈ N : (p′ ∈ dom(R(loc))∧

(loc, σin, σts, stable) |= Π1(R(loc)(p′))∧
p′ < p)))∧

¬stable)
=⇒

(loc′ = Π2(R(loc)(p))∧
σ′in = σin∧
(∀v ∈ V ARta :

(v 6∈ dom(Lta(Π2(R(loc)(p)))) ∧ σ′ts(β(v)) = σts(β(v)))∨
(v ∈ dom(Lta(Π2(R(loc)(p)))) ∧ σ′ts(β(v)) = Lta(Π2(R(loc)(p)))(v)))∧

¬stable′)

(2) DISCTRANS2: An unstable execution state with no enabled location
transitions performs a discrete transition to a new stable successor state.
The new execution state is identical to the predecessor state, except that it is

33

stable.
DISCTRANS2((loc, σin, σts, stable),

(loc′, σ′in, σ
′
ts, stable

′))
=def

(6 ∃p ∈ N : (p ∈ dom(R(loc))∧
(loc, σin, σts, stable) |= Π1(R(loc)(p)))∧

¬stable)
=⇒

(loc′ = loc∧
σ′in = σin∧
σ′ts = σts∧
stable′)

(3) DELAY TRANS: A stable state performs a delay transition into an
unstable state with unchanged location, free inputs and possible timer elapses:

DELAY TRANS((loc, σin, σts, stable),
(loc′, σ′in, σ

′
ts, stable

′))
=def

stable
=⇒

(loc′ = loc∧
∀v ∈ V ARts : ¬σts(v)⇒ ¬σ′ts(v)∧
¬stable′)

For any system state (loc, σin, σts, stable), the outputs of an automaton can
be calculated simply as Lout(loc).

It is important to observe, that the above transition relation T : S×S again
constitutes a well formed semantics definition. There are (1) no spurious
execution state transitions within the state transition relation, for which
no constraints on the successor state exist. Additionally, (2) the definition
ensures, that each execution state has at least one successor state.

To rephrase condition (1) in other words, every execution state s ∈ S fulfills
at least one of the premises of predicates DISCTRANS1, DISCTRANS2

and DELAY TRANS, and its successor states are therefore liable to be
constrained by at least one predicate conclusion. Moreover, each state s
fulfills the premise of precisely one of the predicates.

Proof. Let s = (loc, σin, σts, stable).

34

Case 1 – Stable state:

Suppose stable. Then neither premise of predicates DISCTRANS1 and
DISCTRANS2 can hold, since they mandate ¬stable. However, the premise
of predicate DELAY TRANS is precisely stable. DELAY TRANS is the
one and only predicate, whose premise is fulfilled.

Case 2 – Unstable state:

Suppose ¬stable. The premise of predicate DELAY TRANS can then never
be fulfilled, since it is precisely stable.

Case 2.1 – Unstable state / enabled transitions

Suppose furthermore, that at least one location transitions emanating from
loc is enabled. Then there exists at least one priority p ∈ N, which is as-
signed to an enabled transition. Moreover, there must be a smallest priority
p, which is assigned to an enabled transition. The premise of predicate
DISCTRANS1 holds:

∃p ∈ N : (p ∈ dom(R(loc))∧
(loc, σin, σts, stable) |= Π1(R(loc)(p))∧
(6 ∃p′ ∈ N : (p′ ∈ dom(R(loc))∧

(loc, σin, σts, stable) |= Π1(R(loc)(p′))∧
p′ < p)))∧

¬stable

The premise of predicate DISCTRANS2 does not hold, since it demands
the non-existence of any priority p with enabled transition. In this case,
DISCTRANS1 is the one and only predicate, whose premise is fulfilled.

Case 2.2 – Unstable state / no enabled transitions

Suppose now, that no location transitions emanating from loc are enabled.
Then there exists no priority p ∈ N, which is assigned to an enabled transi-
tion. The premise of predicate DISCTRANS2 holds:

6 ∃p ∈ N : (p ∈ dom(R(loc))∧
(loc, σin, σts, stable) |= Π1(R(loc)(p)))∧

¬stable

The premise of predicate DISCTRANS1 does not hold, since – among

35

other things – it demands the existence of such a priority p. In this case,
DISCTRANS2 is the one and only predicate, whose premise is fulfilled.

Condition (2) from above necessitated, that transition relation T : S × S be
total. each execution state s ∈ S must have a successor state s′ ∈ S. Taking
condition (1) into account, this is now easy to see.

Proof. Consider the definition of transition relation T : S × S:

T = {(s, s′) ∈ S × S | DISCTRANS1(s, s′)∧
DISCTRANS2(s, s′)∧
DELAY TRANS(s, s′)}

Since each predicate is an implication with a premise formulated over s, and
since any state s always fulfills precisely one premise, it remains to be shown,
that for each predecessor state s there exists a successor state s′, which fulfills
the respective implication conclusion.

Case 1 – Stable state:

Stable states s fulfill the premise of predicate DELAY TRANS. A successor
state s′, which fulfills the predicate conclusion can always be constructed.
Consider the relevant constraints for s′ = (loc′, σ′in, σ

′
ts, stable

′):

loc′ = loc∧
∀v ∈ V ARts : ¬σts(v)⇒ ¬σ′ts(v)∧
¬stable′

As compared to the predecessor state, the successor location remains un-
changed. No constraints are placed on the successor input valuation function,
so such a function can exist. The only constraints placed on the successor
timer status valuation function are, that no elapsed timers may start by
themselves, and even predecessor σts might be used as successor σ′ts. Finally,
the successor state must be unstable.

Case 2.1 – Unstable state / enabled transitions

Unstable states s with enabled transitions fulfill the premise of predicate
DISCTRANS1. A successor state s′, which fulfills the predicate conclu-

36

sion can always be constructed. Consider the relevant constraints for s′ =
(loc′, σ′in, σ

′
ts, stable

′):

loc′ = Π2(R(loc)(p))∧
σ′in = σin∧
(∀v ∈ V ARta :

(v 6∈ dom(Lta(Π2(R(loc)(p)))) ∧ σ′ts(β(v)) = σts(β(v)))∨
(v ∈ dom(Lta(Π2(R(loc)(p)))) ∧ σ′ts(β(v)) = Lta(Π2(R(loc)(p)))(v)))∧

¬stable′

As there must be an enabled transition with best priority p, p must be within
the domain of R(loc). As such, loc′ is simply the second element of tuple
R(loc)(p). As compared to the predecessor state, the successor input valua-
tions remain unchanged, and the only constraints placed on the timer status
valuations are the effects of target location entry timer actions. As such,
the successor timer status valuation function σ′ts can be constructed directly
from σts and location labeling function Lta(loc

′). The successor state remains
unstable.

Case 2.2 – Unstable state / no enabled transitions

Unstable states s with no enabled transitions fulfill the premise of predi-
cate DISCTRANS2. A successor state s′, which fulfills the predicate con-
clusion can always be constructed. Consider the relevant constraints for
s′ = (loc′, σ′in, σ

′
ts, stable

′):

loc′ = loc∧
σ′in = σin∧
σ′ts = σts∧
stable′

The successor state s′ is identical to the predecessor state s with the excep-
tion, that s′ is stable.

37

2.2.6 Determinism

All Timed Moore Automata show deterministic behavior with respect to any
given sequence of inputs. While stable execution states may have multiple
valid successor states due to new input and timer elapse valuations, any
unstable predecessor state s can only have a single successor state s′.

Proof. In the case of an unstable predecessor state s without enabled transi-
tions, the conclusion of predicate DISCTRANS1 immediately specifies the
one and only successor state s′, which is identical to s except for its stability.

In the case of an unstable predecessor state s with enabled transitions, the
conclusion of predicate DISCTRANS2 immediately specifies the one and
only successor state s′, which is identical to s except for its timer status
valuation function σ′ts. However, since σ′ts is directly constructed from σts,
and since Lta is a function, σ′ts is also unique.

2.3 Model Checking for Timed Moore Au-

tomata

This section deals with explicit model checking for Timed Moore Automata.
Particularly, we consider the means necessary to detect the (non-)existence
of live-lock situations within Timed Moore Automata.

This section firstly describes the algorithms necessary in order to explicitly
construct Kripke structures over Timed Moore Automata. It then recites the
needed prerequisites regarding Computation Tree Logic as well as our take
on the well-established Computation Tree Logic model checking algorithms
presented in [JGP99]. Finally, some consideration is given to optimizing
model checking for live-lock situations in Timed Moore Automata.

2.3.1 Construction of Kripke structures

Model checking for Timed Moore Automata involves the explicit enumera-
tion of all system states an automaton execution may adopt. Each system

38

state must contain all information regarding current automaton location,
input-, output-, timer activation- and timer status valuation as well as the
automaton’s current stability.

As such, the state space for explicit model checking is rather larger than
the state space used in section 2.2.5 when defining the operational seman-
tics. In an effort to somewhat combat the effects of the resulting state space
explosion, we employ don’t-care input- and timer status valuations for situ-
ations, where the evolution of states into successor states is independent of
concrete valuations. These mechanisms are inspired by the notion of delayed
non-determinism from [NS08].

The explicit state space STMA considered during model checking of Timed
Moore Automata is defined as follows.

Definition 8. Given a Timed Moore Automaton

(LOC, loc0, V ARin, V ARout, V ARta, V ARts, β, Lout, Lta, R)

the explicit state space STMA is defined as:

STMA = LOC×
(V ARin −→ L(B))×
(V ARout −→ B)×
(V ARts −→ L(B))×
(V ARta −→ B)×
B

It consists of 6-tuples (loc, σin, σout, σts, σta, stable) with the following ele-
ments:

(1) loc ∈ LOC indicates the automaton’s current location

(2) σin ∈ (V ARin −→ L(B)) is an input variable valuation function

(3) σout ∈ (V ARout −→ B) is an output variable valuation function

(4) σts ∈ (V ARts −→ L(B)) is a timer status variable valuation function

(5) σta ∈ (V ARta −→ B) is a timer action variable valuation function

39

(6) stable ∈ B indicates, whether the automaton is currently stable and
accepts new inputs

The set L(B) used above is a lattice to reflect don’t-care-conditions for input-
and timer status variable valuations. The element > denotes a don’t-care-
valuation, i.e. a possible valuation of either true or false. The element ⊥ is
required for L(B) to be a lattice. Finally, v is the partial order relation for
L(B).

We define (L(B),v) as:

L(B) = {>, true, false,⊥}
v: L(B)× L(B)
⊥ v true∧
⊥ v false∧
⊥ v >∧
true v >∧
false v >

The atomic propositions used for model checking of Timed Moore Automata
involve an automaton’s current location, input-, output-, timer activation-
and timer status valuation as well as the automaton’s stability. Variable
symbols are already mapped to Boolean values, so they can immediately
be considered to be atomic propositions. Locations can either be currently
active or not, so again their symbols may immediately be used as atomic
propositions. In order to capture the stability of a given system state, we
introduce artificial atomic proposition idle.

Definition 9. Given a Timed Moore Automaton

(LOC, loc0, V ARin, V ARout, V ARta, V ARts, β, Lout, Lta, R)

the set of atomic propositions AP is defined as:

AP = LOC ∪ V ARin ∪ V ARout ∪ V ARta ∪ V ARts ∪ {idle}

Using the above definitions, we may now introduce a labeling function Lap.
Its purpose is to enumerate all atomic propositions, which hold in a given
system state s. Its definition is given below.

40

Definition 10. The atomic proposition labeling function Lap is defined as:

Lap : STMA −→ P(AP)
Lap((loc, σin, σout, σts, σta, stable)) =
{loc}∪
{v ∈ V ARin | true v σin(v)}∪
{v ∈ V ARout | true = σout(v)}∪
{v ∈ V ARts | true v σts(v)}∪
{v ∈ V ARta | true = σin(v)}∪
{idle | true = stable}

Using the above definitions of explicit state space, atomic propositions and
atomic proposition labeling function, we can finally define the Kripke struc-
tures employed to perform model checking for Timed Moore Automata.

Definition 11. Given a Timed Moore Automaton

(LOC, loc0, V ARin, V ARout, V ARta, V ARts, β, Lout, Lta, R)

the Kripke structure K(M) is defined as a 4-tuple:

K = (SK , sK0 , TK , Lap)

Its elements are:

(1) The set of all reachable system states SK ⊆ STMA

(2) The initial system state sK0 ∈ SK

(3) The state transition relation TK : SK × SK

(4) The atomic labeling function Lap : SK −→ P(AP)

The explicit construction of such Kripke structures is the focus of the remain-
der of this section. It involves (1) the creation of the initial system state,
(2) the iterative expansion of all known system states to their respective suc-
cessor states and (3) the collection of all predecessor-successor relationships
of system states. The procedure createKripkeStructure() from figure 2.3
formalizes the process.

41

procedure createKripkeStructure()
sK0 := createInitialState()
SK := {sK0}
TK := ∅
Snew := SK
while Snew 6= ∅

let sK ∈ Snew
Snew := Snew\{sK}
Ssucc := createSuccStates(sK)
Snew := Snew ∪ (Ssucc\(SK ∩ Ssucc))
SK := SK ∪ Ssucc
forall s′K ∈ Ssucc do
TK := TK ∪ {(sK , s′K)}

end forall
end while

end procedure

Figure 2.3: Procedure for creating Kripke structure

Initially, sK0 is created using the function createInitialState(). It constitutes
the initial member of SK . Additionally, it is initially the only element of the
set Snew ⊆ SK of states, which still need to be evolved to their successor
states. The transition relation TK is initially empty.

The construction of a Kripke structure is performed within a loop, which
terminates as soon as there are no more system states to be evolved. Within
the loop, a single system state to be evolved is selected, and its successor
states Ssucc ⊆ SK are calculated using function createSuccStates(). Using
these newly calculated system states, SK , TK and Snew are updated.

The function createInitialState() from figure 2.4 initialized the valuation
functions σin, σout, σts and σta of the initial state arbitrarily. As designated by
the operational semantics from section 2.2.5, all input valuations are initially
undefined and are therefore set to >. All other valuations are set to false.
The initial location is given by loc0. The system state is considered unstable
since it must still perform its initial run to completion.

The function createSuccStates() from figure 2.5 merely delegates the cal-
culation of successor states in accordance to the stability of the predecessor
state. The function createSuccStatesStable() calculates the effects of delay
transitions, the function createSuccStatesRunning() calculates the effects

42

function createInitialState() : STMA

let σin ∈ (V ARin −→ L(B))
let σout ∈ (V ARout −→ B)
let σts ∈ (V ARts −→ L(B))
let σta ∈ (V ARta −→ B)
forall v ∈ V ARin do
σin := σin ⊕ {v 7→ >}

end forall
forall v ∈ V ARout do
σout := σout ⊕ {v 7→ false}

end forall
forall v ∈ V ARta do
σta := σta ⊕ {v 7→ false}
σts := σts ⊕ {β(v) 7→ false}

end forall
sK0 := (loc0, σin, σout, σts, σta, false)
createInitialState := sK0

end function

Figure 2.4: Function for creating initial Kripke state

of discrete transitions.

The function createSuccStatesStable() from figure 2.6 captures the transi-
tion from a stable system state to its successor unstable state with indetermi-
nate inputs. As compared to a predecessor state sK , the lone successor state
s′K contains an input valuation function σ′in, which maps all input variables
to indeterminate valuation >. The new timer status valuation function σ′ts
allows for running timers to either be still running or be elapsed. The suc-
cessor state is set to be unstable, since another run to completion is required
whenever modifying inputs or timer statuses.

Given an unstable system state sK , the function createSuccStatesRunning()
from figure 2.7 calculates unstable successor states. Since the current loca-
tion of sK may have emanating transitions with guard conditions, which
reference variable symbols with indeterminate valuations >, the function
unfoldDontCareInputs() is employed to resolve the delayed non-determinism
of state sK into a set of states Sunf . The states in Sunf will then provide con-
crete valuations for all variable symbols appearing in emanating transition
guards.

43

function createSuccStates(in sK ∈ STMA) : P(STMA)
let sK = (loc, σin, σout, σts, σta, stable)
if stable
createSuccStates := createSuccStatesStable(sK)

else
createSuccStates := createSuccStatesRunning(sK)

end if
end function

Figure 2.5: Function for creating successor Kripke states

function createSuccStatesStable(in sK ∈ STMA) : P(STMA)
let sK = (loc, σin, σout, σts, σta, stable)
σ′in := σin
forall v ∈ V ARin do σ′in := σ′in ⊕ {v 7→ >}
σ′ts := σts
forall v ∈ V ARts do

if σ′ts(v) = true then σ′ts := σ′ts ⊕ {v 7→ >}
end forall
s′K := (loc, σ′in, σout, σ

′
ts, σta,¬stable)

createSuccStatesStable := {s′K}
end function

Figure 2.6: Function for creating successors for stable Kripke states

44

function createSuccStatesRunning(in sK ∈ STMA) : P(STMA)
let sK = (loc, σin, σout, σts, σta,¬stable)
Sunf := unfoldDontCareInputs(sK)
Ssucc := ∅
while Sunf 6= ∅

let s′K ∈ Sunf
Sunf := Sunf\{s′K}
s′′K := performTransition(s′K)
Ssucc := Ssucc ∪ {s′′K}

end while
createSuccStatesRunning := Ssucc

end function

Figure 2.7: Function for creating successors for running Kripke states

After resolving indeterminate input valuations, the set Sunf is then iteratively
processed to calculate the successor state for each element. This is done by
function performTransition().

The function unfoldDontCareInputs() from figure 2.8 is used to resolve
delayed non-determinism for all variables appearing in any guard condition of
an emanating transition. The function therefore collects all input- and timer
status variables with valuation > and appearing in emanating transition
guards in the sets V ARcare in and V ARcare ts respectively. The resulting set
of system states Sunf is then calculated by producing all combinations of
true and false valuations for all variables in V ARcare in and V ARcare ts.

The function performTransitions() from figure 2.9 evaluates all transitions
leaving the current location loc in order of their priorities. Each transition’s
guard condition is evaluated using valuation functions σin and σts. Note,
that while a valuation of > fulfills a guard constraint of either true or false,
such valuations should never appear due to prior applications of function
unfoldDontCareInputs().

If an enabled transition could be found, the successor state contains the
target location of the transition as new current location. The entry actions
of that location are applied to valuation functions σout, σta and σts. The
successor state remains unstable since successive discrete transitions may be
possible.

If no enabled transition could be found, the successor state is identical to

45

function unfoldDontCareInputs(in sK ∈ STMA) : P(STMA)
let sK = (loc, σin, σout, σts, σta,¬stable)
Sunf := ∅
V ARcare in := ∅
V ARcare ts := ∅
forall p ∈ dom(R(loc)) do

forall v ∈ V ARin do
if (v ∈ dom(Π1(R(loc)(p)))) ∧ (σin(v) = >)
V ARcare in := V ARcare in ∪ v

end if
end forall
forall v ∈ V ARts do

if (v ∈ dom(Π1(R(loc)(p)))) ∧ (σts(v) = >)
V ARcare ts := V ARcare ts ∪ v

end if
end forall

end forall
Σcomb := B(V ARcare in∪V ARcare ts)

forall σcomb ∈ Σcomb do
σ′in := σin
σ′ts := σts
forall v inV ARin do
σ′in := σ′in ⊕ {v 7→ σcomb(v)}

end forall
forall v inV ARts do
σ′ts := σ′ts ⊕ {v 7→ σcomb(v)}

end forall
s′K := (loc, σ′in, σout, σ

′
ts, σta,¬stable)

Sunf := Sunf ∪ {s′K}
end forall
unfoldDontCareInputs := Sunf

end function

Figure 2.8: Function for unfolding states with Don’t-Care inputs

46

the predecessor state, except that it becomes stable to support a successive
delay transition.

2.3.2 Computation Tree Logic

The model checking algorithms for Timed Moore Automata presented here
enable checking against properties formulated in Computation Tree Logic
CTL. As the name suggests, CTL was originally conceived to specify prop-
erties for generic (and possibly infinite) trees of computation states. While
the mentioned computation states correspond perfectly to the system states
sK ∈ SK discussed so far, this chapter deals with Kripke structures (i.e.
directed graphs) of system states rather than with trees. However, this is
mediated by the facts, that (1) the concept of paths as sequences of states
is identical when dealing with trees and directed graphs, and that (2) algo-
rithms exist (and are presented later in this chapter) to evaluate CTL on
directed graphs.

CTL differentiates state formulas, which argue over the properties of a single
system state, from path formulas, which argue over properties of entire paths
through the tree.

For a given path as a sequence of states, path formulas may contain unary
operators X, F and G to specify, that a certain property must hold in the
next state, that it must finally hold in some state along the path, or that
it must globally hold in all states within the path. Furthermore, a path
formula may contain binary operators U and R to specify, that one prop-
erty must hold until another property holds, or that the occurrence of one
property releases another property from having to hold.

For a given state, state formulas may contain conjunctions, disjunctions or
negations of atomic propositions, which hold in that state. Additionally,
they may argue over all possible paths emanating from the state. For this
purpose, unary operators E and A may be employed to specify, that there
exists an emanating path fulfilling a specific path constraint, or that all
emanating paths fulfill a specific path constraint.

The formal syntax of all valid CTL formulas is defined below.

Definition 12. Consider the set of atomic propositions AP . The syntax of
state- and path formulas is then defined:

47

function performTransition(in sK ∈ STMA) : STMA

let sK = (loc, σin, σout, σts, σta,¬stable)
forall p ∈ dom(R(loc)) from min(dom(R(loc))) to max(dom(R(loc))) do
γ := Π1(R(loc)(p))
loc′ := Π2(R(loc)(p))
guard := true
forall v ∈ V ARin do

if v ∈ dom(γ)
guard := guard ∧ (γ(v) v σin(v))

end if
end forall
forall v ∈ V ARts do

if v ∈ dom(γ)
guard := guard ∧ (γ(v) v σts(v))

end if
end forall
if guard then break

end forall
if guard
σ′out := σout
σ′ts := σts
σ′ta := σta
forall v ∈ V ARout do
σ′out := σ′out ⊕ {v 7→ Lout(loc

′)(v)}
end forall
forall v ∈ V ARta do

if v ∈ dom(Lta(loc
′))

σ′ta := σ′ta ⊕ {v 7→ Lta(loc
′)(v)}

σ′ts := σ′ts ⊕ {β(v) 7→ Lta(loc
′)(v)}

end if
end forall
s′K := (loc′, σin, σ

′
out, σ

′
ts, σ

′
ta,¬stable)

else
s′K := (loc, σin, σout, σts, σta, stable)

end if
performTransition := s′K

end function

Figure 2.9: Function for transforming discrete states transitions

48

• If p ∈ AP , then p is a state formula.

• If f and g are state formulas, then ¬f , f ∨ g and f ∧ g are state
formulas.

• If f and g are state formulas, then X f , F f , G f , f U g and f R g
are path formulas.

• If f is a path formula, then E f and A f are state formulas.

The criteria, under which a given CTL formula is considered to hold are
defined below.

Definition 13. The ’models’ relation |=: (K × SK) × CTL defines, which
CTL state formulas hold within specific states s of a given Kripke structure.
In analogy, the relation |=: (K×S∗K)×CTL defines, which CTL path formulas
hold within specific paths π of a given Kripke structures. They are defined
according to the structure of the formula in question:

• M, s |= p ⇔ p ∈ L(s)

• M, s |= ¬f ⇔ M, s 6|= f

• M, s |= f1 ∨ f2 ⇔ M, s |= f1 or M, s |= f2

• M, s |= f1 ∧ f2 ⇔ M, s |= f1 and M, s |= f2

• M, s |= E g ⇔ there exists a path π from s such that M,π |= g

• M, s |= A g ⇔ M,π |= g for every path π from s

• M,π |= f ⇔ M, s |= f where s is first state of π

• M,π |= X f ⇔ M,π1 |= f

• M,π |= F f ⇔ ∃k ≥ 0 : M,πk |= f

• M,π |= G f ⇔ ∀k ≥ 0 : M,πk |= f

• M,π |= f1 U f2 ⇔ ∃k ≥ 0 : M,πk |= f2 ∧ ∀0 ≤ j < k : M,πj |= f1

• M,π |= f1 R f2 ⇔ ∀j ≥ 0 : ((∀i < j : M,πi 6|= f1)⇒M,πj |= f2)

49

2.3.3 Model Checking CTL Properties

In order to perform model checking of CTL formulas against Timed Moore
Automata Kripke structures, we use adaptations of the algorithms presented
in [JGP99]. To begin with, CTL formulas are transformed into a standard-
ized form, which contains only a limited number of CTL operator combina-
tions. After that, the algorithms used in model checking of Timed Moore
Automata for each operator combination are given.

When carefully analyzing the syntax of CTL as given in section 2.3.2 it
becomes clear, that path quantifiers arguing over a state A and E are always
paired with path operators X, F, G, U or R. Since – except when using the
predicate logic operators ¬, ∨ or ∧ – state formulas are always defined with
respect to subordinate path formulas and vice versa, each state formula CTL
operator must always be followed by a path formula operator. It is therefore
sufficient to consider only state formulas and the following combinations of
applicable operators:

• ¬

• ∨

• ∧

• AX

• EX

• AF

• EF

• AG

• EG

• AU

• EU

• AR

• ER

50

This list can further be restricted to only contain state formula operators ¬,
∨, EX, EG and EU using the following tautologies:

• f ∧ g = ¬(¬f ∨ ¬g)

• AX f = ¬EX(¬f)

• EF f = E(true U f)

• AG f = ¬EF(¬f)

• AF f = ¬EG(¬f)

• A(f U g) = ¬E(¬g U (¬f ∧ ¬g)) ∧ ¬EG(¬g)

• A(f R g) = ¬E(¬f U ¬g)

• E(f R g) = ¬A(¬f U ¬g)

It remains to be shown, how model checking can be performed for state for-
mulas containing these state formula operators ¬, ∨, EX, EG and EU. This
is accomplished by enhancing our labeling function Lap from section 2.3.1.
Rather than just labeling Kripke system states with atomic propositions, we
now want to label states with CTL properties. Note, that we do not want
to label each system state with all fulfilled CTL properties, but are rather
interested in a labeling, which is guided by a single CTL property to be
checked.

The labeling function LCTL : SK −→ P(CTL) is therefore introduced to
label system states with sets of CTL formulas. It is iteratively defined using
algorithms given later. In its initial form, it corresponds to LAP in the
sense, that all states are labeled with the primitive atomic proposition CTL
formulas as already established by LAP .

Definition 14. Let K = (SK , sK0 , TK , Lap) be a Timed Moore Automaton
Kripke structure and f ∈ CTL be a formula to be checked. We define the
initial CTL labeling function LCTL as:

LCTL : SK −→ P(CTL)
∀sK ∈ SK : LCTL(sK) = LAP (sK) ∩ AP (f)

Here, AP (f) ⊆ AP is the set of atomic propositions, which appear within
formula f .

51

procedure labelCTL(in f ∈ CTL)
switch f

case ¬f1 :
labelCTL(f1)
labelNot(f1)
break

case f1 ∨ f2 :
labelCTL(f1)
labelCTL(f2)
labelOr(f1, f2)
break

case EX f1 :
labelCTL(f1)
labelEX(f1)
break

case E(f1 U f2) :
labelCTL(f1)
labelCTL(f2)
labelEU(f1, f2)
break

case EG f1 :
labelCTL(f1)
labelEG(f1)
break

end switch
end procedure

Figure 2.10: Procedure for labeling generic CTL state formula f

For a given formula f , the labeling LCTL is now extended recursively in
accordance to the outermost operator combination encountered in formula
f . Procedure labelCTL() from figure 2.10 discriminates between all combi-
nations, then (1) recursively performs labeling for all subordinate operand
formulas and (2) delegates labeling to suitable specialized procedures.

Procedure labelNot() from figure 2.11 performs the labeling for formulas of
the form ¬f . It simply labels all states with ¬f if they are not already
labeled with f .

Procedure labelOr() from figure 2.12 performs the labeling for formulas of

52

procedure labelNot(in f ∈ CTL)
P := SK
while P 6= ∅

let s ∈ P
P := P\{s}
if f 6∈ LCTL(s)
LCTL(s) := LCTL(s) ∪ {¬f}

end if
end while

end procedure

Figure 2.11: Procedure for labeling ¬f

procedure labelOr(in f1 ∈ CTL, f2 ∈ CTL)
P := SK
while P 6= ∅

let s ∈ P
P := P\{s}
if (f1 ∈ LCTL(s)) ∨ (f2 ∈ LCTL(s))
LCTL(s) := LCTL(s) ∪ {f1 ∨ f2}

end if
end while

end procedure

Figure 2.12: Procedure for labeling f1 ∨ f2

the form f1 ∨ f2. It labels all states, which are labeled with f1 or f2, with
formula f1 ∨ f2.

Procedure labelEX() from figure 2.13 performs the labeling for formulas of
the form EX f . It loops over all states s′ ∈ SK , which are already labeled
with formula f . For each s′, it then collects all predecessor states s according
to TK and labels each predecessor state with formula EX f .

Procedure labelEU() from figure 2.14 performs the labeling for formulas of
the form E(f1 U f2). Firstly, it labels all states, which are already labeled
with f2 with E(f1 U f2) also. It then loops over all states s′, which are
already labeled with E(f1 U f2). Each predecessor state s of s′ is then
labeled with E(f1 U f2), if it is also already labeled with f1. The process
continues until no more suitable predecessor states s can be found.

53

procedure labelEX(in f ∈ CTL)
P := {s ∈ SK | f ∈ LCTL(s)}
while P 6= ∅

let s′ ∈ P
P := P\{s′}
Q := {s ∈ SK | (s, s′) ∈ TK}
while Q 6= ∅

let s ∈ Q
Q := Q\{s}
LCTL(s) := LCTL(s) ∪ {EX f}

end while
end while

end procedure

Figure 2.13: Procedure for labeling EX f

procedure labelEU(in f1 ∈ CTL, f2 ∈ CTL)
P := {s ∈ SK | f2 ∈ LCTL(s)}
forall s ∈ P do LCTL(s) := LCTL(s) ∪ {E(f1 Uf2)}
while P 6= ∅

let s′ ∈ P
P := P\{s′}
Q := {s ∈ SK | (s, s′) ∈ TK}
while Q 6= ∅

let s ∈ Q
Q := Q\{s}
if (E(f1 U f2) 6∈ LCTL(s)) ∧ (f1 ∈ LCTL(s))
LCTL(s) := LCTL(s) ∪ {E(f1 U f2)}
P := P ∪ {s}

end if
end while

end while
end procedure

Figure 2.14: Procedure for labeling E(f1 U f2)

54

procedure labelEG(in f ∈ CTL)
O := {s ∈ SK | f ∈ LCTL(s)}
SCC := {C ⊆ SK | C is a nontrivial SCC of O}
P :=

⋃
C∈SCC{s ∈ SK | s ∈ C}

forall s ∈ P do LCTL(s) := LCTL(s) ∪ {EG f}
while P 6= ∅

let s′ ∈ P
P := P\{s′}
Q := {s ∈ SK | (s, s′) ∈ TK}
while Q 6= ∅

let s ∈ Q
Q := Q\{s}
if EG f 6∈ LCTL(s)
LCTL(s) := LCTL(s) ∪ {EG f}
P := P ∪ {s}

end if
end while

end while
end procedure

Figure 2.15: Procedure for labeling EG f

Finally, procedure labelEG() from figure 2.15 performs the labeling for for-
mulas of the form EG f . This involves calculation using the algorithm
presented in [Tar71] of all nontrivial strongly connected components of SK ,
for which the component members are labeled with f . All states within these
components are labeled with formula EG f . The procedure then loops over
all states s′, which are already labeled with EG f . Each predecessor state
s of s′ is then labeled with EG f , if it is also already labeled with f . The
process continues until no more suitable predecessor states s can be found.

The building blocks for model checking a Timed Moore AutomatonM against
a given CTL formula f can now be combined to specify the entire process:

1. From Timed Moore Automaton M , create Kripke structure K(M) us-
ing procedure createKripkeStructure(M) from figure 2.3.

2. Using f and definition 14, create the initial CTL labeling function
LCTL.

3. Expand the labeling function LCTL using procedure labelCTL(f) from

55

figure 2.10.

4. Check, if the initial Kripke state sK0 is labeled with f , i.e. return
f ∈ LCTL(sK0).

2.3.4 Checking for Live-Locks

Within a Timed Moore Automaton a live-lock situation is characterized by
an execution, which at some point remains eternally unstable. In such a
situation an automaton will continually execute discrete location transitions
and never accept new inputs again. Within an automaton implementation a
live-lock generally corresponds to an infinite loop without any timer delays,
and it is therefore useful to preclude such faulty behavior on the specification
level.

From a model checking standpoint, an automaton must always be able to
become idle eventually, so that it may accept new inputs. The following
CTL constraint expresses this situation:

AF idle

However, it is not sufficient to say, that starting from an automaton’s initial
state, the automaton will always become stable. Rather, the same must
be true for all subsequent runs to completion as well. In other words, the
formula stated above must not only hold for the initial execution state of
an automaton, but must rather be fulfilled by all execution states, that are
reachable from the automaton’s initial state. Live-lock freedom is therefore
expressed as:

AG (AF idle)

Application of the transformation tautologies from section 2.3.3 yield the
following form:

AG (AF idle) ⇔
¬EF (¬AF idle) ⇔
¬EF (EG ¬idle)

56

In essence, this form re-expresses live-lock freedom as the following natural
language statement: There is no execution, which ever reaches a state, from
which onward the automaton will never be idle again.

The above representation of live-lock freedom illustrates, that model checking
for live-lock freedom involves the costly calculation of nontrivial strongly
connected components due to the occurrence of the operator combination
EG. However, a special handling for this situation allows us to avoid this.

Consider the part of the source formula AF idle, which gave rise to the
occurrence of the EG operator combination. States, which are already stable,
trivially fulfill this requirement. For unstable states, this formula requires all
possible subsequent computations to eventually reach a stable state.

However, recall that unstable Timed Moore Automaton execution states al-
ways have precisely one successor state. This was shown in proof 2.2.6. It
follows, that within the corresponding Kripke structure an unstable system
state can only have a single emanating path of states, which can only begin
to branch off again once it has reached a stable state. The following CTL
expressions are therefore equivalent within Timed Moore Automata:

AF idle ⇔ EF idle

Applying this special equivalence, live-lock freedom for Timed Moore Au-
tomata can then be expressed as:

AG (EF idle)

Again transforming this into the form used for model checking, we see, that
only the cheaper operators ¬ and EU need to be checked:

AG (EF idle) ⇔
¬EF (¬EF idle) ⇔
¬E(true U (¬E(true U idle)))

Another consideration further helps reduce the cost of checking for live-locks:
from a debugging point of view a witness for a possible live-lock situation is
far more valuable than the history of how that situation was reached from
the initial automaton execution state. It is sufficiently worrying to know,
that such a situation is reachable.

57

In model checking terms, this means, that it is sufficient to label a Kripke
structure with the CTL formula:

¬EF idle

Any state within a Kripke structure, which can be labeled with this formula
is then a suitable witness to analyze and debug a live-lock situation.

2.4 Test Data Generation for Timed Moore

Automata

This section introduces algorithms used in the test data generation for Timed
Moore Automata. While in theory the generation of test data for any given
test goal can be reduced to a model checking reachability problem, it is
impractical to do so for real-world testing campaigns.

This section defines the notion of (symbolic) target traces through a Timed
Automaton, for which test data should be generated. Subsequently, the
algorithms used to generate test data for a given target trace are presented.
Finally, some consideration is given to the selection of (sets of) target traces
and the implications on test object code coverage criteria.

2.4.1 Test Data Generation for Single Traces

In order to generate test data for Timed Moore Automata, we begin by
defining the notion of target traces through automata, for which we intend to
generate test data. Conceptually, a target trace can be viewed as a sequence
of location transitions to be taken by an execution. The goal of test data
generation for such a trace is then to produce a sequence of input assignments,
which will enforce the selected trace to be executed and to produce a sequence
of output valuations to be expected from the automaton. Additionally, the
execution of the automaton along a selected target trace should become stable
as often as possible, so that the test environment may assert as many output
valuations as possible.

In order to formalize target traces, we consider sequences of pairs of location
symbols and natural numbers. Each pair (loc, p) ∈ (LOC × N) denotes a

58

start location and the priority of an emanating transition to be taken. A
sequence of pairs hence formalizes a sequence of location transitions to be
enforced by input assignments.

Definition 15. The set of test data generation target traces is defined as:

TT = (LOC × N)∗

Given a trace π ∈ TT , two predicates become relevant for test data genera-
tion. The predicate Ctrace(π) will collect all conditions over input- and timer
status variable valuations, which have to hold in order for a subsequent run
to completion to take the given trace π.

The predicate Cstable(π) is even stronger. In addition to enforcing the speci-
fied trace it collects necessary constraints, which have to hold in order for a
computation to become stable in the location immediately following the last
transition of π.

The predicates Ctrace(π) and Cstable(π) are defined below.

Definition 16. Given a single target location transition (loc, p) ∈ (LOC×N)
the predicate Ctrans(loc, p) encapsulates constraints, that have to hold for a
transition emanating from loc with priority p to be enabled:

Ctrans(loc ∈ LOC, p ∈ dom(R(loc))) :=∧
{v∈dom(Π1(R(loc)(p)))}(v = Π1(R(loc)(p))(v))

Given a location loc ∈ LOC, the predicate Ctimer(loc) encapsulates the effects
of timer activation entry actions when entering location loc:

Ctimer(loc ∈ LOC) :=
∧

{v∈dom(Lta(loc))}

(β(v) = Lta(loc)(v)))

Given a location loc ∈ LOC, the predicate Cstop(loc) contains all constraints,
which disable all transitions emanating from loc, i.e. enforce loc to remain
stable:

Cstop(loc ∈ LOC) := Ctimer(loc)∧∧
{p∈dom(R(loc))}(¬Ctrans(loc, p))

59

Given a single target location transition (loc, p) ∈ (LOC × N) the predicate
Cforce(loc, p) encapsulates constraints, that enforce the given target transition
to be taken:

Cforce(loc ∈ LOC, p ∈ dom(R(loc))) := Ctimer(loc)∧
Ctrans(loc, p)∧∧
{p′∈dom(R(loc))|p′<p}(¬Ctrans(loc, p′))

Given a trace π ∈ TT , the predicate Ctrace(π) contains all constraints, which
have to hold in order for an execution to take all transitions specified in trace
π:

Ctrace(π ∈ (LOC × N)∗) :=
∧

{(loc,p)∈π}

(Cforce(loc, p))

Finally, given a trace π ∈ TT , the predicate Cstable(π) contains all con-
straints, which have to hold in order for an execution to take the trace π and
become stable after the last transition was taken:

Cstable(π ∈ (LOC × N)∗) := Ctrace(π)∧
Cstop(last(π))

Before assembling the algorithms for test data generation, we need to consider
another building block. In analogy to the model checking approach discussed
in the previous section, we need some notion of concrete system states. We
utilize the state space STMA as defined below:

Definition 17. The state space STMA used for test data generation for Timed
Moore Automata is defined as:

STMA = LOC×
(V ARin −→ B)×
(V ARout −→ B)×
(V ARts −→ B)×
(V ARta −→ B)

Note, that STMA closely resembles the state space STMA from model checking,
except that (1) we do not require a Boolean valuation for the stability of a

60

state since we will only consider stable states, and that (2) we need not
consider don’t-care valuations any more. We can now introduce following
state transition system:

Definition 18. The state transition system used for test data generation is
defined as a 3-tuple:

(ST , sT0 , TT)

Its elements are:

(1) The set of states ST ⊆ STMA

(2) The initial state sT0 ∈ ST

(3) The state transition relation TT : ST × ST

Note, that as opposed to the model checking approach presented previously,
we will not explicitly enumerate all elements of ST and TT . Instead, we
will only need to explicitly construct the initial state sT0 and use a concrete
interpreter to calculate successor states.

Using the predicates Ctrace, Cstable and the initial state sT0 , we can now specify
the algorithms used to generate test data for a given trace π.

Function generateTestCase() from figure 2.16 starts by calculating the initial
state of an execution using function createInitialTestState() and assigns it
as the current stable state. It then performs a loop, which partitions the
target trace π into partial traces.

Each partial trace must start in the current stable state, so that new inputs
can be assigned. These inputs must then force the execution to travel along
the target trace π. Function generateTestStep() calculates input- and timer
status assignments, which enforce the shortest such partial trace possible
starting from the current stable state. Function interpret() is then used to
calculate the next current stable state (along target trace π) as indicated by
the calculated inputs.

An entire trace π is considered feasible, if all invocations of function
generateTestStep() were successful. As outputs, the function
generateTestCase() collects all input assignments mandated by
generateTestStep() as well as all expected output valuations as predicted
by interpret().

61

function generateTestCase(in π ∈ (LOC × N),
out datain ∈ ((V ARin −→ B)× (V ARts −→ B))∗),
out dataout ∈ ((V ARout −→ B)× (V ARts −→ B))∗) : B

datain :=<>
dataout :=<>
sT := createInitialTestState()
let sT = (loc, σin, σout, σts, σta)
while | π |> 0
σ′in := σin
σ′ts := σts
sat := generateTestStep(π, σ′in, σ

′
ts)

if sat
push back(datain, (σ

′
in, σ

′
ts))

sT := (loc, σ′in, σout, σ
′
ts, σta)

s′T := interpret(sT)
let s′T = (loc′, σ′′in, σ

′
out, σ

′′
ts, σ

′
ta)

push back(dataout, (σ
′
out, σ

′′
ts))

else
break

end if
end while
generateTestCase := sat

end function

Figure 2.16: Function for generating test case data

62

function createInitialTestState() : STMA

let σin ∈ (V ARin −→ B)
let σout ∈ (V ARout −→ B)
let σts ∈ (V ARts −→ B)
let σta ∈ (V ARta −→ B)
forall v ∈ V ARin do
σin := σin ⊕ {v 7→ false}

end forall
forall v ∈ V ARout do
σout := σout ⊕ {v 7→ false}

end forall
forall v ∈ V ARta do
σta := σta ⊕ {v 7→ false}
σts := σts ⊕ {β(v) 7→ false}

end forall
sT0 := (loc0, σin, σout, σts, σta)
createInitialTestState := sT0

end function

Figure 2.17: Function for creating initial test data generation state

The function createInitialTestState() from figure 2.17 is used to calculate an
initial system state, which can then be used by function generateTestCase()
as a basis. Note, that the initial assignments of of input- and timer status
valuations are arbitrary, since they may be overwritten by a subsequent in-
vocation of generateTestStep().

Function generateTestStep() from figure 2.18 performs the trace partitioning
for a given trace π, which is at the heart of the test data generation process.
Starting with a prefix trace containing only the first transition from π, it
iteratively attempts to find the shortest feasible prefix trace of π, which ends
in a stable state. For each prefix trace candidate πstep, it calculates the
predicate Cstable(π) containing all constraints over input- and timer status
valuations, which have to hold in order for an execution to take the trace
πstep and become stable after the last transition is taken. The predicate
is then passed to MINISat ([SE02]), a SAT-Solver well suited for solving
Boolean satisfiability problem instances.

Should function generateTestStep() be unable to find a feasible stable prefix
trace for π, the function attempts as a last resort to find suitable input- and

63

function generateTestStep(inout π ∈ (LOC × N)∗,
out σin ∈ (V ARin −→ B),
out σts ∈ (V ARts −→ B)) : B

πstep :=<>
πremain := π
sat := false
while | πremain |> 0
push back(πstep, head(πremain))
pop front(πremain)
if solve(Cstable(πstep))
sat := true
(σin, σts) := solution()
π := πremain
break

end if
end while
if ¬sat

if solve(Ctrace(π))
sat := true
(σin, σts) := solution()
π :=<>

end if
end if
generateTestStep := sat

end function

Figure 2.18: Function for generating test step data

64

timer status valuations to enforce the entire trace π. Note, that in this case
predicate Ctrace is utilized since it is unclear which subsequent state might
become stable.

Function generateTestStep() returns the feasibility of finding inputs enforc-
ing a (partial) trace π ending in a stable state. If suitable input- and timer
status valuations could be found, then the function returns the remainder of
trace π as well as the input- and timer status valuations themselves.

Function interpret() from figure 2.19 performs concrete interpretation for
a given input state sT . It is used to calculate a stable successor state
for a given input state sT . As such, it is a close cousin to the function
performTransition() (figure 2.9) from subsection 2.3.1. It evaluates all
transitions leaving the current location loc in order of their priorities.

If an enabled transition could be found, the successor state contains the
target location of the transition as new current location. The entry actions
of that location are applied to valuation functions σout, σta and σts. The
successor state is then subjected to another invocation of interpret() since
it is still unstable.

If no enabled transition could be found, the successor state is identical to the
predecessor state, except that it now becomes stable.

2.4.2 Trace Selection

Up to this point, this section on test data generation was focused on gener-
ating data for single target traces. However, in order to test entire Timed
Moore Automata, multiple traces need to be considered.

Using the nomenclature from [SLS05], we consider a test procedure to contain
a sequence of test cases, which in turn may contain a sequence of test steps.
In mapping these notions to our discussion up to this point, each partial
target trace constructed by function generateTestStep() constitutes a test
step, since for each partial trace we have:

(1) Test pre-conditions — the inputs to be assigned

(2) A test event — a run to completion of the automaton

(3) Test post-conditions – the expected outputs of the automaton

65

function interpret(in sT ∈ STMA) : STMA

let sT = (loc, σin, σout, σts, σta)
forall p ∈ dom(R(loc)) from min(dom(R(loc))) to max(dom(R(loc))) do
γ := Π1(R(loc)(p))
loc′ := Π2(R(loc)(p))
guard := true
forall v ∈ V ARin do

if v ∈ dom(γ)
guard := guard ∧ (γ(v) = σin(v))

end if
end forall
forall v ∈ V ARts do

if v ∈ dom(γ)
guard := guard ∧ (γ(v) = σts(v))

end if
end forall
if guard then break

end forall
if guard
σ′out := σout
σ′ts := σts
σ′ta := σta
forall v ∈ V ARout do
σ′out := σ′out ⊕ {v 7→ Lout(loc

′)(v)}
end forall
forall v ∈ V ARta do

if v ∈ dom(Lta(loc
′))

σ′ta := σ′ta ⊕ {v 7→ Lta(loc
′)(v)}

σ′ts := σ′ts ⊕ {β(v) 7→ Lta(loc
′)(v)}

end if
end forall
s′T := interpret((loc′, σin, σ

′
out, σ

′
ts, σ

′
ta))

else
s′T := (loc, σin, σout, σts, σta)

end if
interpret := s′T

end function

Figure 2.19: Concrete interpretation function

66

Each target trace, for which function generateTestCase() has constructed
test data, then gives rise to a test case, since the function returns sequences
of input- and output assignments, i.e. a sequence of test steps. It remains
to group multiple test cases into test procedures. While this grouping is
arbitrary, it is important to consider the set of test cases in terms of test
coverage criteria.

Given a standard implementation for Timed Moore Automata, where current
locations are handled within a top-level switch-statement, and transitions
are handled within each location case, generated test data for a set of feasible
target traces, which exercises each location transition of an automaton, will
only fulfill the statement coverage test end criterion.

Given a set of feasible target traces, which – in addition to exercising all
location transitions – ensures, that for each location there is at least one
target trace, where the respective location becomes stable, it is possible to
amend the given test case data generation algorithm to include robustness
test cases. Given a stable state, such robustness test cases might calculate
(using the SAT-solver) all input combinations, which cause the state to re-
main stable. Such a test strategy would then yield test cases, which fulfill
the condition coverage criterion, since for each location each transition has
evaluated to true as well as to false. Additionally, the robustness test cases
might even lead to complete condition decision coverage.

Within this thesis, we consider the set of test cases, which enforce all location
transitions and a maximum of stable states. And while some robustness test
cases are added to each stable state situation, this still only yields partial
condition coverage. A more concise coverage criterion is impractical, since (1)
it is rarely possible to force all locations in an automaton to become stable,
and (2) the pertinent safety standards for the railway domain only require
branch coverage.

The pragmatic selection of target trace candidates is inspired by the calcula-
tion of the transition cover set from Chow’s influential paper [Cho78] on the
W-Method. However, while the W-method assumes all target traces to be
feasible, this is not true for Timed Moore Automata, and we need to enable
dynamic expansion of the unrolled transition graph in order to be able to
produce multiple trace candidates for any given target transition.

67

2.5 Benchmarks

Model checking for live-locks and generation of test cases for Timed Moore
Automata was performed for a real world railway level crossing application
consisting of a collection of 27 automata using a 2.0 GHz Intel Core 2 Duo
processor with 2 GB of RAM. Table 2.1 shows the results. Columns are
labeled as follows:

1. #L — Number of locations in the automaton

2. #T — Number of transitions in the automaton

3. #IN — Number of inputs in the automaton

4. #TM — Number of timers in the automaton

5. #S — Number of states in the Kripke structure

6. tKS — Time in milliseconds to construct the Kripke structure

7. tMC — Time in milliseconds to check for live-locks

8. #TC — Number of test cases generated to cover the automaton

9. tTC — Time to construct test cases

Checking automata for live-locks was always possible on the given hardware
and never took more than 430 milliseconds in total. Since all live-locks were
removed in earlier software iterations, this constitutes a worst-case execution
time, since all Kripke states need to be considered during model checking.

The construction of test cases yielded complete condition coverage for all
locations, which could be made stable, and complete statement coverage
otherwise. The generation of test cases never took more than 60 milliseconds.

Both model checking for live-locks and test case generation could be per-
formed instantaneously for smaller automata with approximately less loca-
tions than 10.

68

#L #T #IN #TM #S tKS tMC #TC tTC

2 2 1 0 6 < 1 < 1 2 < 1

3 5 2 0 18 < 1 < 1 5 < 1

5 6 4 0 62 < 1 < 1 6 < 1

5 12 4 1 91 < 1 < 1 11 < 1

7 14 4 0 111 < 1 < 1 14 < 1

7 19 5 0 270 < 1 10 17 < 1

8 10 4 1 91 < 1 < 1 10 < 1

8 12 3 0 66 < 1 < 1 12 < 1

9 13 7 0 226 < 1 < 1 11 < 1

8 15 6 0 346 < 1 < 1 15 < 1

10 15 4 1 165 < 1 < 1 15 < 1

10 19 5 2 358 < 1 10 16 10

10 19 7 2 289 < 1 < 1 19 10

12 34 5 0 310 < 1 < 1 28 < 1

12 37 7 0 501 10 < 1 29 20

12 38 7 0 442 10 < 1 28 60

13 35 8 0 1071 20 20 35 20

16 28 8 1 756 10 10 27 20

18 29 6 2 574 10 10 27 10

18 41 10 0 1485 40 20 38 50

19 28 4 4 306 < 1 < 1 24 10

19 34 7 0 291 < 1 10 33 20

22 38 10 3 513 10 10 37 10

22 40 5 0 455 < 1 < 1 31 10

24 54 14 2 1613 30 30 43 30

25 73 8 3 5095 120 310 63 40

33 48 9 5 3090 50 110 43 20

Table 2.1: Performance results for Timed Moore Automata benchmark

69

Chapter 3

Interactive Model-Based
Testing

This chapter discusses an existing framework for model-based test data and
test procedure generation. The chapter in turn describes extensions to the
framework, which allow interactive interventions into the generation process
to fine-tune results according to user application domain expertise.

Section 3.1 gives an overview over the framework under consideration in its
current form.

Section 3.2 describes modifications to the control flow, which allow for more
user guided influence on the generation process. Subsequently, section 3.3
outlines the user interface used to control the presented interactive test gen-
eration paradigm.

Section 3.4 gives an application example for the interactive generation pa-
radigm in the form of a small case study. Finally, section 3.5 evaluates the
interactive generation paradigm in comparison to existing tools.

3.1 Model-Based Testing Framework

Within this thesis, we consider the framework for model-based test data gen-
eration as presented in [Pel13] and [PHL+11]. In this framework, test models
may be specified using several different modeling formalisms. Using an inter-

70

mediate model representation – an abstract syntax suitable to represent test
models of different modeling formalisms – concrete instances of test models
are represented in memory for further use.

As such, the intermediate model representation of a given test model specifies,
which valuations must be considered within each system state of a test model
execution. Furthermore, the intermediate model representation is used to
manufacture the transition relation, which explicitly correlates predecessor
and successor system states. The operational semantics of a test model is
then implicitly given as a state transition system over all system states, which
are reachable from the test model’s initial state.

Test generation goals are specified as Linear Temporal Logic (LTL) expres-
sions over test model elements. Combined with the transition relation of
a test model, this yields bounded model checking problem instances, which
are passed to a Satisfiability-Modulo-Theory solver. Resulting test model
computations are then stored within a tree of system states. Finally, each
trace through such a computation tree is then refined into an executable test
procedure.

3.1.1 Intermediate Model Representation

Test models for the framework under consideration are most commonly given
as collections of UML2 composite structure and state chart diagrams. Start-
ing with a root component, composite structure diagrams are employed to
partition the model into a hierarchy of components. Each leaf component is
then associated with a state chart diagram in order to assign it it’s behavior.

Variables and timers needed to specify behavior may be declared as attributes
of components within the component hierarchy. This implies the scope of
each variable and timer, all child components of a declaring component may
read and write the variable or timer in question.

Note, that assignable inputs and observable outputs of a system under test
are modeled in the same way. They are characterized as part of the system
input/output interface using stereotypes designated for that purpose. While
inputs and outputs may be declared on any level of the component hierar-
chy, common modeling practice usually places them on the top level of the
component hierarchy.

The abstract syntax – referred to as intermediate model representation within

71

the framework – consists of data structures to reflect hierarchies of compo-
nents with associated variables, timers and hierarchic state charts in memory.

While the intermediate model representation primarily caters to UML2 mod-
els, it is suitable to represent test models specified in a variety of modeling for-
malisms. Currently, front-end parser components exist for subsets of UML2,
SysML, MatLab Simulink as well as some other domain-specific modeling
formalisms.

3.1.2 Operational Semantics

The behavior of a given test model is specified as a state transition system
(S, s0, R) with system state space S, such that each system State s ∈ S is
comprised of a valuation function S ∈ V 7→ D.

Here, V = I∪O∪V ∪T ∪L denotes the set of variables necessary to describe
the behavior of the test model. It contains the model’s input variables I, its
output variables O, internal variables V , timers T as well as variables L to
encode the state chart locations, which are active within a given system state.
The set D denotes the corresponding valuation domain for each variable.

The initial system state s0 ∈ S can immediately be constructed using just
the abstract syntax of a given test model, since this specifies start locations
for all state charts as well as initial valuations for all variables and timers.

In order to define the state transition relation R ∈ S × S, we construct the
state transition predicate Φ(s, s′), which argues over all variable valuations
from any two system states s, s′ ∈ S. For any system states s the predicate
Φ(s, s′) becomes true if and only if s′ is a possible successor state for s. Using
Φ, the system state transition R is then defined as:

R := {(s, s′) ∈ S × S | (s, s′) |= Φ(s, s′)}

As described in [PHL+11], the state transition predicate is generated to
closely reflect the semantics of state charts as posed by Harel in [HN96].

All state charts posses urgency, they must perform transitions between their
respective locations immediately whenever these transitions are enabled. All
state charts execute these discrete transitions in parallel and in zero time.
State charts may assign new variable valuations, however, input variable

72

valuations must remain unchanged. Conflicting valuation assignments of
more than one state chart to the same variable constitute a dead-lock in the
model, since the state transition predicate Φ can never accommodate such
assignments.

Whenever no discrete transitions are possible, the system must perform a
delay transition. Within a delay transition (1) time must elapse and (2) no
state chart transition may become urgently enabled. All variable valuations
must remain unchanged. New input variable valuations may be assigned to
the system at the end of a delay transition.

The global system time tick tsystem ∈ T serves as indication of elapsed exe-
cution time and is used as reference for all running timers of a system during
delay transitions. Test models can accommodate dense real-time as long as
the valuation domain D(tsystem) is rational, i.e. D(tsystem) ⊂ Q. Test mod-
els may then be abstracted to use clock regions or clock zones as given by
[JGP99].

3.1.3 Generation Goals

The generation process is guided by generation goals specified by the user.
Such generation goals generally correspond to specific test cases, for which
test data is needed. Generally, generation goals specify properties, which a
generated computation – a sequence of system states – π must fulfill. Gen-
eration goal properties are specified using Linear Temporal Logic (LTL).

We consider predicate logic expressions over V to be our atomic propositions.
An expression exp ∈ AP can be evaluated in a system state s ∈ S by replac-
ing all occurrences of variables from v ∈ V with their valuations s(v). To
indicate that an expression exp evaluates to true when replacing all variables
with their valuations from state s we use the notation s |= exp.

As opposed to CTL, LTL does not contain path quantifiers, since it only
argues about the properties of a single path. Its syntax is defined below.

Definition 19. Consider a set of atomic propositions AP . The syntax of a
path formula is then defined inductively:

• If p ∈ AP , then p is a path formula.

• If f and g are path formulas, then ¬f , f∨g and f∧g are path formulas.

73

• If f and g are path formulas, then X f , F f , G f , f U g and f R g
are path formulas.

Given a sequence of states π ∈ S∗, a LTL formula is considered to hold under
the following conditions:

Definition 20. The ’models’ relation |=: S∗×LTL defines, which LTL for-
mulas hold within specific paths π ∈ S∗. Given paths π, atomic propositions
exp and generic LTL formulas f and g, it is defined according to the struc-
ture of the formula in question:

• π |= exp ⇔ s |= exp where s is first state of π

• π |= ¬f ⇔ π 6|= f

• π |= f ∨ g ⇔ π |= f or π |= g

• π |= f ∧ g ⇔ π |= f and π |= g

• π |= X f ⇔ π1 |= f

• π |= F f ⇔ ∃k ≥ 0 : πk |= f

• π |= G f ⇔ ∀k ≥ 0 : πk |= f

• π |= f U g ⇔ ∃k ≥ 0 : πk |= g ∧ ∀0 ≤ j < k : πj |= f

• π |= f R g ⇔ ∀j ≥ 0 : ((∀i < j : πi 6|= f)⇒ πj |= g)

In their simplest form, generation goals formalize a reachability problem. It
may for instance be desirable to generate a computation, which eventually
assigns a specific value val1 to an output variable out1. Such a generation
goal would then be specified as:

F(out1 = val1)

A more complex example could be a test case, which requires a specific
sequence of locations loc1, loc2, loc3 to be fulfilled by a computation. Such a
generation goal might be specified as:

F(loc1 ∧ (X(loc2 ∧ (X(loc3))))

74

Generally, any LTL property arguing over symbols of a test model may
be used as generation goal. However, some properties – while syntactically
valid – yield unsatisfying results. This is due to the fact, that the test
generation process relies on bounded model checking. More specifically, given
a generation goal LTL property g the test case generation will always produce
the shortest possible computation π, which fulfills g.

While reachability properties of the form

F(exp)

are well suited for test generation, invariants of the form

G(exp)

are not very useful because the generation process would – at best – yield a
computation π consisting of a single state s, such that s |= exp.

However, this apparent flaw is to be expected since testing is rarely the
methodology of choice to prove invariants in a system under consideration.
From the testers perspective, a witness of a violated invariant should be
the aim. For the given example, a tester would hence pose the reachability
property

F(¬exp)

as generation goal.

Generally, liveness properties may be used as generation goals while safety
properties should be tested by attempting to construct witnesses for their
violation.

3.1.4 Bounded Model Checking

It is natural to extend the above definition of our state transition predicate
to encompass unrolling of the transition relation. The predicate Φ(s, s′)
specifies the transition from one predecessor state to one successor state. We
can then define the corresponding predicate for a sequence of possible system
evolutions:

Φ(i) := Φ(s0, s1) ∧ Φ(s1, s2) ∧ . . . ∧ Φ(si−1, si)

Additionally, a given LTL property p may be transformed into a predicate
G(p, i) arguing over a finite sequence of system states of length i. Such an

75

unrolling of LTL formulas into a bounded model checking problem is given
in [BHJ+06].

The test generation problem tc(i) for generation goal p can now be described
as the following bounded model checking instance of length i:

tc(i) := s0 ∧ Φ(i) ∧G(p, i)

Φ(i) contains the transition relation of the test model, unrolled to reflect i
possible transitions (delay or discrete). G(p, i) contains the generation goal as
encoded when only checking computations of length i. Finally, s0 contains
all valuations of the current system state, which is to be the basis of the
generation process.

Given a maximum bound of system evolutions, the bounded model checking
problem instance tc(i) is then repeatedly passed to a satisfiability-modulo-
theory solver in order to determine a solution for the smallest possible un-
rolling i. The framework under consideration utilizes SONOLAR – as pre-
sented in[PVL11] – as solver.

3.1.5 Computation Tree

Typically, the test generation process involves multiple generation goals. Ex-
perience shows, that it is unnecessarily complex to attempt to solve each gen-
eration goal individually and using the test model’s initial system state as
the basis for generation. Rather, the generation process will attempt to find
a solution for any remaining generation goals. Using a back-tracking strat-
egy system states created from previous generation results serve as basis for
following generation steps.

While each solved generation goal results in a computation in the form of a
sequence of system states, the generation result for multiple generation goals
is then a tree of system states, such that each tree leaf corresponds to a com-
putation, which realizes a generation goal. The back-tracking algorithm used
to identify start states for generation steps thereby ensures, that generated
computations share as many computation prefixes as possible.

Note, that executable code for the stimulation of a system under test must
still be extracted from the computation tree. While the computation tree
contains all valuations for all involved system states, stimulator code must
only contain assignments to system inputs. Additionally, underlying delay

76

transitions must be detected within the computation tree in order to sort
input assignments into timed input assignment sequences.

Furthermore, note, that test oracles used to evaluate the correctness of system
under test responses to generated stimuli are generic. Their construction is
a purely syntactic transformation from the concrete test model syntax to
executable test code.

3.1.6 Concrete Interpreter

A solution model for a given generation goal encodes all intermediate system
states within a computation, which realizes the generation goal. However,
such a computation must not necessary end in a stable system state, i.e. a
system state, which can only perform a delay transition.

In case of solutions, which give rise to computations ending in an unstable
state, we still need to extend that computation to the next stable state. In
theory, this can be accomplished using the components already described.
Given a deterministic transition relation predicate Φ, unstable state s and
undetermined successor state s′, the predicate Φ(s, s′) should only have a
single solution.

In practice it is more sensible to implement a concrete interpreter, which
explicitly applies the rules of the operational semantics, rather than relying
on a solver and Φ as implicit specification of the semantics. Additionally, a
concrete interpreter provides code redundancy, which helps to validate the
generation of Φ from the intermediate model representation. If a solution
yielded by the solver cannot be reproduced by the concrete interpreter, there
must be an intolerable discrepancy between these two semantics specifica-
tions.

3.1.7 Generation Control Flow

Figure 3.1 describes the control flow of the generation process. Given a test
model and a set of generation goals, the generation framework firstly parses
its inputs in order to construct the intermediate model representation, the
state transition predicate Φ and the initial computation tree consisting only
of a single system state reflecting the model’s initial state.

77

Figure 3.1: Control Flow - Fully Automated Approach

78

Depending on a configurable strategy, the framework will then iteratively
select a generation goal from the set of generation goals to be solved. For
each generation goal, a back-tracking algorithm then iteratively selects a
source node from the computation tree to be used as a basis for a subsequent
generation attempt.

Given a specific generation goal p, a computation tree source node s0 and
a maximum unrolling bound k, the framework then attempts to solve the
bounded model checking problem

k∨
i=1

tc(i)

using the satisfiability-modulo-theory solver SONOLAR.

If a solution could be found it is added to the computation tree. In order to do
this the solution model is refined into a timed sequence of input assignments,
which in turn serves as input to the concrete interpreter. The resulting
computation is then inserted as a new child computation branch to system
state s0 within the computation tree.

Once the generation process cannot find any more additional generation goal
solutions – either because all goals were solved, or because the remaining
goals were infeasible – the computation tree is refined into test procedures.
Since each trace starting from the computation tree root node to a leaf node
represents a computation realizing a generation goal, each such trace is re-
fined into executable code. This purely syntactical transformation consists
of creating the appropriate sequence of executable statements for input as-
signments and time delays.

3.2 Interactive Generation Paradigm

The model-based test generation framework described thus far is afflicted by
some weaknesses, which can be addressed by modifying its current control
flow. This section presents an effort to do so by providing multiple opportu-
nities for the user to interactively intervene in the generation process.

79

3.2.1 Critique of the Fully Automated Paradigm

The fully automated test generation paradigm as described above contains
intrinsic weaknesses, which may cause generation results to be lacking with
respect to readability and maintainability. Generated test procedures may
successfully realize given generation goals, but they may do so in an unex-
pected fashion with respect to the intention of a generation goal.

Generation results may contain input assignments, which realize generation
goals in unforeseen ways. Consider for example the turn indication function
of an automobile. Given a generation goal, which postulates turning direc-
tional turn indication flashing on and subsequently off again, the generation
process may turn flashing on by moving the turn indication lever, but then
turn flashing off again by turning the ignition key. While this is a valid so-
lution to the generation goal, it is probably not, what the test engineer had
in mind.

Additionally, generation results may contain superfluous and unrelated input
assignments. A generated test procedure may indeed turn a directional turn
indication on and off again, but it may modify – for example – the battery
voltage of the vehicle within a range, that has no influence on the turn
indication. These input assignments are again valid with respect to a given
generation goal, but modifications to unrelated inputs are distracting and
unnecessary.

It is generally not sufficient to formulate generation goals to reflect what
functionality of a system under test should be exercised. Rather, generation
goals need to additionally exclude valuation changes in those parts of a sys-
tem under test, which should remain untouched. The reason for this is, that
the underlying satisfiability-modulo-theory solver has no notion of the easiest
or most intuitive solution. Rather, it relies on solver-intrinsic heuristics to
quickly find any solution for a given problem instance. The result is, that
generated test input assignment sequences can be very hard to comprehend.
This in turn impedes the validation of test results.

Another weakness arises from the fact, that back-tracking along an inter-
mediate computation tree to find a suitable source node for a subsequent
generation step is again heuristic and not guided by any application domain
knowledge. This can cause difficulty in maintaining sets of generation goals,
since modifications to a single generation goal can in turn influence multiple
subsequent generation steps.

80

The fully automated test generation paradigm allows for the user to inject
application domain knowledge into the generation process only through the
postulation of very specific generation goals and the delicate configuration of
the generation goal selection sequence and back-tracking algorithm. This in
turn necessitates the time consuming process of repeatedly generating test
procedures for all generation goals, until goals and configurations are suffi-
ciently fine-tuned. This process is additionally complicated by the fact, that
analysis of generation results must rely on generated executable code, since
the underlying computation tree is discarded at the end of the generation
process.

To address these weaknesses, this thesis introduces a modified control flow
and a suitable user interface, which allow the user to inject application knowl-
edge while the generation process is running. This allows for the following
interactive features:

• Visualization of each intermediate state of the computation tree as well
as each system state contained within.

• Model checking computation trees for LTL pre-conditions to facilitate
the user-guided selection of generation source nodes.

• Interactive selection of computation sub-trees to be pruned from an
existing intermediate computation tree.

• Interactive expansion of a computation tree by manually assigning in-
put valuations to a new branch.

• Interactive selection of LTL generation goals to extend an intermediate
computation tree using bounded model checking.

• Interactive selection of computation tree traces to be refined into test
procedures.

3.2.2 Modifications to the Generation Control Flow

While re-using multiple components from the fully automated generation
paradigm, the interactive generation paradigm features a new control flow
with multiple break points, where user interaction is required. Figure 3.2
shows the modified control flow.

81

Figure 3.2: Control Flow - Interactive Approach

82

As before, a given test model and a set of generation goals is parsed in order
to construct an instance of the intermediate model representation and the
initial trivial computation tree. The control flow then executes a main loop.

Firstly, the computation tree is visualized in a graph representation. Within
the graph, the user may select any system state in order to analyze the
contained input-, output-, variable-, location- and timer valuations.

Using the computation tree visualization, the user can then select a system
state to be modified by a subsequent computation tree operation. While
pure visual inspection of a computation tree might be sufficient for a user
to decide where to modify the computation tree, additional support is given.
The user may ask the generator to perform model checking for LTL proper-
ties on the computation tree in order to identify traces, which fulfill useful
pre-conditions. As a result, all traces fulfilling a given LTL property are
highlighted for further user inspection.

Once the user has selected a system state several operations are available
to be performed on the computation tree. Firstly, the user may delete the
computation sub-tree specified by the currently selected system state. This
operation is generally performed whenever generation results were achieved
using too coarse generation goals and therefore need to be discarded.

Secondly, the user may create a copy of a selected system state in order to
modify its inputs manually. This operation causes the modified system state
to be interpreted by the concrete interpreter, and the resulting computation
is added to the selected (modified) computation tree node.

Additionally, the user may select a generation goal to be solved using the
selected system state as a source state. This operation re-uses the bounded
model checking approach from before.

Finally, the user may earmark the selected system state for test procedure
generation. The computation from the computation tree root node to the
selected computation tree node is then refined into executable test procedure
code.

3.2.3 Model Checking for Computation Trees

The selection of a source computation tree node to be extended subsequently
is facilitated by performing model checking of computation trees against LTL

83

properties. It is useful to identify traces within a computation tree, which
fulfill given LTL properties, whenever pre-conditions for a test generation
step are required, which cannot easily be identified by visual inspection of a
– possibly quite large – computation tree.

Given an intermediate computation tree and an LTL property, the model
checking process is twofold. Firstly, all candidate traces π ∈ S∗ within
the computation tree are identified. Secondly, each trace is analyzed to
determine, whether it fulfills the given LTL property.

The set of candidate traces is constructed using nested depth-first searches
within the computation tree. The outer search begins with the currently
user-selected computation tree node and enumerates candidate trace start
nodes. The inner search begins with the current start node candidate and
enumerates candidate trace end nodes.

Combined, the nested searches enumerate candidate start- and end nodes,
and the intermediate trace nodes can be inferred. Note, that both the outer
(start node) and inner (end node) searches terminate their respective recur-
sions once a candidate trace actually fulfills the given LTL property. As a
result, the algorithm yields the closest shortest matching traces along each
computation tree branch starting from the currently user-selected computa-
tion tree node.

For each candidate trace π of length i we can check whether π fulfills LTL
property p by again unrolling p into predicate G(p, i) and substituting all
variables for all states along π with the concrete valuations from π. If the
resulting predicate simplifies to true, we have, that π |= p.

Note, that G(p, i) must return predicate false for all LTL properties p, which
due to their structure cannot be unrolled in i steps.

3.2.4 Manual Computation Tree Extension

In order to assign inputs manually, the user must select a stable system state,
since new inputs can only be assigned during delay transitions. Such a state
is then cloned and added as a child to the originally selected state. As such,
the newly created clone contains the same valuations as its successor, so
that new input assignments can be accumulative rather than having to be
exhaustive.

84

The user may then modify input valuations of the cloned system state at will.
Additionally, the user may forward the system time up to the point, where
the next running timer would elapse. In either case, the modified system
state is considered to be provisionally unstable, since the modified input-
and system time valuations may cause discrete transitions to be enabled.

Once the user is satisfied with the modifications, concrete interpretation is
performed in order to calculate the resulting computation up to the next
stable system state.

3.2.5 Generation Goal driven Computation Tree Ex-
tension

Generating computations according to given generation goals is performed
as before.

Given a generation goal p, selected computation tree source node s0 and a
maximum unrolling bound k, the bounded model checking instance

∨k
i=1 tc(i)

is passed to the satisfiability-modulo-theory solver.

The potential solution is subsequently passed to the concrete interpreter, so
that the solution can be refined into a computation ending in a stable state.
The resulting computation is then added to the computation tree as a new
branch of the selected source computation tree node.

Note, that back-tracking is explicitly disabled here. The selection of a source
system state to be used as basis for the bounded model checking process is
a wanted major decision for the user to inject domain expertise.

3.3 User Interface

This section complements the previous discussion of an interactive model-
based test generation paradigm by providing a brief overview of how a cor-
responding user interface was implemented to function.

The described user interface widgets are readily available and represent the
degree of interactivity currently supported by the model-based framework
under consideration. Special emphasis is given to a prototypical widget used

85

Figure 3.3: User Interface - Goal Editor

for creating and editing of LTL formulas.

3.3.1 Goal Editor

The Goal Editor Widget – as the name might suggest – is employed to edit
LTL properties used for either model checking intermediate computation
trees or for expanding them using generation goals. It is available during the
entirety of the work-flow described in section 3.2.2.

As opposed to simply utilizing a text widget, the LTL editor presented here
provides some noteworthy features. Figure 3.3 shows a typical screen-shot.

Using LTL to specify generation goal- or model checking properties for a
large system under test is usually a highly complex undertaking, since it is
rather difficult for practitioners to think of encoding all necessary pre- and
side-constraints when postulating an intended property. Some generic tool-
based reasons for this phenomenon have been given in section 3.2.1. However,
some pragmatic reasons may solely be due to using simple text editors.

Real-world LTL properties tend to be deeply nested, precisely because in or-
der to have specific expressive power they need to incorporate pre-conditions
and invariants. While parentheses are a suitable means to allow machine

86

parsing of such properties, they do not truly facilitate human readability.
Rather, most users will – when reduced to utilizing a text editor – depend on
line breaks and indentation to reflect the nested tree structure of any given
LTL property. It is therefore a nearly self-evident course of action to move
from text editors to a tree visualization reminiscent of the well-established
Polish Notation.

Using tree widgets for the representation of LTL propositions within a graph-
ical user interface allows for some additional advantages. Most notably, a tree
view widget provides the possibility for a separate text column, which can
be used for natural language annotations of LTL formula tree nodes. An-
notations are very useful for orientation purposes whenever a (sub-)formula
has to be (re-)used for or moved to new or modified formula tree vacancies.

Using a tree representation of LTL formulas with additional natural lan-
guage annotations for tree nodes becomes especially powerful when combined
with drag-and-drop and cut-copy-paste functionality of modern user interface
frameworks.

The goal editor presented here is split into two identical data view halves dis-
playing the same data model. This is done so as to encourage drag-and-drop
operations. Each data view provides identical/mirrored tabs containing the
basic building blocks for LTL propositions, i.e. inputs, outputs, variables, lo-
cations, timers, requirement LTL representations parsed from the test model
and LTL- and predicate logic operators. The special-purpose tabs “Goals”
and “Scratch” are the central writable tabs, which can be used for drag-and-
drop construction of generation goals.

Additionally, the following LTL formula stubs and annotations are provided
within tab “Scenarios”:

• Reachability — Some condition eventually holds:
F(f)

• Invariant — Some condition always holds:
G(f)

• Never —Some condition never holds:
G(¬f)

• Parallel composition —Conditions hold in parallel:
(f ∧ g)

87

• Alternatives — At least one condition holds:
(f ∨ g)

• Choice — Exactly one condition holds:
((f ∧ ¬g) ∨ (¬f ∧ g)

• Strict step sequence — Sequence of step conditions:
(f ∧ X(g))

• Strict path sequence — Sequence of multi-step conditions:
(f ∧ (f U g))

• Weak sequence — Sequence of intermittent conditions:
(f ∧ F(g))

Again, the tab “Scenarios” is provided to facilitate editing of LTL propo-
sitions using drag-and-drop mechanisms. Each contained formula stub may
be dragged into an incomplete generation goal or sub-formula to structure
a proposition argument. Its unspecified operand sub-trees f and g in turn
remain empty until specified.

3.3.2 Model Explorer

The visualization of a given computation trees and the system states it is
comprised of is performed by the Model Explorer Widget. Its concepts,
functionality and development considerations may be found in [Lan11]. It
consists of a computation tree view and a system state view. Figure 3.4 con-
tains a typical screen-shot of the Model Explorer Widget with a computation
tree visualization in its right half and a system state visualization in its left
half.

The computation tree visualization reflects the structure of the tree. Each
node visualization contains only the current system time of the respective
system state. Grey system states indicate unstable system states, white
system states are stable.

Whenever the user selects a computation tree node from the computation
tree visualization, the left half of the Model Explorer Widget is updated to
contain all valuations of the corresponding system state. A user may hence
inspect all system states of a computation tree by simply clicking on all nodes
in the tree visualization.

88

Figure 3.4: User Interface - Model Explorer and Computation Tree

Additionally, a user may modify input- or global system time valuations for
stable system states within the system state view. This causes a modified
system state clone to be created, and the Model Explorer Widget is blocked
until either the clone is finalized and interpreted or discarded.

The toolbar displayed above the computation tree- and system state view
contains all commands used to evolve an intermediate computation tree.
However, all computation tree manipulation commands depend on the selec-
tion of a current user-selected computation tree node. The user may select
such a node by double-clicking on it. As a result, the selected node is distin-
guished using a blue background.

Finally, figure 3.5 provides a closer look at the computation tree view of the
Model Explorer Widget. Note, that multiple traces may be highlighted by
use of red node edges. As such, figure 3.5 gives an example of how model
checking results of LTL properties against an intermediate computation tree
are visualized.

89

Figure 3.5: User Interface - Model Checking Results

90

Figure 3.6: Turn Indicator - System Overview

3.4 Case Study - Turn Indication

This section provides a small example test model and a selection of matching
test scenarios. For each scenario, different possible approaches for generating
test data are discussed in order to illuminate, how the interactive test gener-
ation paradigm can be used depending on the user’s preference and domain
knowledge.

3.4.1 Test Model

The system under test used in this case study is an example turn indication
automotive controller. Its inputs consist of battery voltage, turn indication
lever position and emergency switch position. As outputs, the system com-
putes lamp commands for the left and right side turn indicators. Figure 3.6
shows the interface stimuli and observables of the controller.

Internally, the system is split into two sub-systems running in parallel. Sub-
system FLASH CTRL handles priorities between directional flashing and
emergency flashing. Emergency flashing will override directional flashing.
However, if the turn indication lever is moved into a setting different from

91

Figure 3.7: Turn Indicator - System Under Test

its position when emergency flashing began, direction flashing may again
override emergency flashing.

As a result, the sub-system FLASH CTRL computes on/off statuses for
left and right side turn indicators and passes these to sub-system OUT-
PUT CTRL. Sub-system OUTPUT CTRL is responsible for transforming
on/off statuses for left and right turn indicators into concrete output com-
mands with corresponding timed on/off sequences. Additionally, sub-system
OUTPUT CTRL is responsible for realizing tip flashing. Tip flashing is ac-
tivated whenever flashing is enabled for a brief period of time and ensures,
that every detected flashing state will result in at least three turn indicator
on/off sequences. Figure 3.7 shows the decomposition into sub-systems.

Sub-system FLASH CTRL is modeled using a state chart with two states.
In state EMER OFF, no emergency flashing is active and turn indication
statuses are calculated simply as a function of the turn indication lever po-
sition. State EMER ON is reached once the emergency switch is pressed.
Figure 3.8 shows the state chart.

92

Figure 3.8: Turn Indicator - Flash Control

State EMER ON is a hierarchic state and contains the state chart shown in
figure 3.9. In sub-state EMER ACTIVE turn indication statuses are set to
one as a result of activated emergency flashing. Sub-state EMER OVERRIDE
is reached, if the turn indication lever position is changed to a new direction.
As a result, emergency flashing is overridden by directional flashing, and
turn indication statuses are again computed using the turn indication lever
position.

Sub-system OUTPUT CTRL consists of the state chart shown in figure 3.10.
In state IDLE no flashing takes place. State FLASHING performs flashing
only, if it is indicated by the turn indication statuses calculated in sub-
system FLASH CTRL, and if the battery voltage is within a valid range.
The state chart can transition from FLASHING back to IDLE if either the
battery voltage becomes invalid, or both side flashing statuses return to zero.
However, in the latter case the sub-system ensures, that three mandatory tip
flashing cycles are observed.

State FLASHING is again hierarchic and consists of the state chart shown in
figure 3.11. It contains states ON and OFF, which realize the concrete turn
indicator on and off periods of 340ms and 320ms respectively.

93

Figure 3.9: Turn Indicator - Flash Control - Emergency On

Figure 3.10: Turn Indicator - Output Control

94

Figure 3.11: Turn Indicator - Output Control - Flashing

95

3.4.2 Example Scenarios

Using the test model described above, we can now generate computations in
a computation tree, which in turn might be refined into executable test pro-
cedures. The following subsections give examples of different test scenarios
and different approaches in constructing suitable computations.

Stable Flashing

Consider creating a test procedure, which exercises stable direction left side
flashing. No emergency flashing should take place, and the battery voltage
should remain in range. The following LTL generation goal might be used.

(G ((voltage ≥ 10) ∧ (voltage < 15))) ∧
(G (EmerSwitch = 0)) ∧
(G (TurnIndLvr 6= 2)) ∧
(F (OUTPUT CTRL :: FLASHING :: ON ∧

(F (OUTPUT CTRL :: IDLE ∧
(OUTPUT CTRL :: ctr > 3)))))

The goal firstly enforces, that the voltage remains in a valid range during the
entire computation. Secondly, the goal disables any movement of the emer-
gency switch. Additionally, the turn indication lever position is restricted
to be in the neutral or left position. Finally, the goal requires, that even-
tually state OUTPUT CTRL::FLASHING::ON is reached, that after that
state OUTPUT CTRL::IDLE is reached, and that OUTPUT CTRL::ctr has
a value above the tip flashing threshold.

The generation results yield the following timed input assignment sequence:

1. System time: 0 ms

• EmerSwitch 7→ 0

• TurnIndLvr 7→ 1

• voltage 7→ 12.0

2. System time: 2320 ms

• EmerSwitch 7→ 0

96

Figure 3.12: Stable Flashing Signal View

• TurnIndLvr 7→ 0

• voltage 7→ 12.0

Figure 3.12 shows a signal graph for the left side turn indicator. The gen-
erated computation successfully causes left side flashes for four cycles before
turning it off again.

A more interactive approach to generating the same computation might be
to generate a partial computation enabling left side flashing using a simpler
generation goal and then manually letting time elapse, until tip flashing is
no longer active. A suitable initial generation goal might be:

F ((LampsLeft = 1) ∧
(LampsRight = 0))

The resulting computation contains only the initial input assignments to
initiate left side flashing:

1. System time: 0 ms

• EmerSwitch 7→ 0

97

• TurnIndLvr 7→ 1

• voltage 7→ 12.0

Using unchanged input assignments, the user can then let four flashing cycle
periods elapse manually. Finally, the user might reset the turn indication
lever position:

1. System time: 2320 ms

• EmerSwitch 7→ 0

• TurnIndLvr 7→ 0

• voltage 7→ 12.0

Finally, a completely manual approach can also be utilized. A user might
create the entire computation by manually turning left side flashing on and
off again.

Tip Flashing Direction Change

Consider a scenario, where the system is in stable left flashing for five cycles,
then the left stable flashing is overridden by a right flashing request. The
turn indication lever is subsequently returned to the neutral position in order
to exercise right side tip flashing.

The following generation goal postulates this scenario:

(G ((voltage ≥ 10) ∧ (voltage < 15))) ∧
(G (EmerSwitch = 0)) ∧
(F (OUTPUT CTRL :: FLASHING :: ON ∧

(LampsLeft = 1) ∧
(OUTPUT CTRL :: ctr ≥ 5)
F (OUTPUT CTRL :: FLASHING :: ON ∧

(LampsRight = 1) ∧
F (OUTPUT CTRL :: IDLE))))

Again, voltage is always kept in a valid range and the emergency switch is
locked into off position. The remaining property contains multiple applica-
tions of the weak path sequence property stub f ∧ F (g). Stable flashing is

98

enforced by requiring a large enough value of OUTPUT CTRL :: ctr dur-
ing left flashing. Tip flashing is implicitly postulated for right flashing by
omitting a similar OUTPUT CTRL :: ctr constraint.

The generation process yields the following computation:

1. System time: 0 ms

• EmerSwitch 7→ 0

• TurnIndLvr 7→ 1

• voltage 7→ 12.0

2. System time: 3300 ms

• EmerSwitch 7→ 0

• TurnIndLvr 7→ 2

• voltage 7→ 12.0

3. System time: 4620 ms

• EmerSwitch 7→ 0

• TurnIndLvr 7→ 0

• voltage 7→ 12.0

Figure 3.13 shows the corresponding outputs as a signal graphs. The first
graph indicates the turn indication lever position. The second and third
graphs show the left and right turn indicator values respectively.

Again, the same computation might be constructed using multiple genera-
tion steps. And again, the entire computation might be reproduced manually.
However, a more sensible approach might be to use multiple simpler genera-
tion goals:

1. Generate stable left flashing

(G ((voltage ≥ 10) ∧ (voltage < 15))) ∧
(G (EmerSwitch = 0)) ∧
(F (OUTPUT CTRL :: FLASHING :: ON ∧

(LampsLeft = 1) ∧
(OUTPUT CTRL :: ctr ≥ 5)))

99

Figure 3.13: Tip Flashing Override Signal View

2. Generate right tip flashing

(G ((voltage ≥ 10) ∧ (voltage < 15))) ∧
(G (EmerSwitch = 0)) ∧
(F (OUTPUT CTRL :: FLASHING :: ON ∧

(LampsRight = 1)

3. Generate flashing idle

(G ((voltage ≥ 10) ∧ (voltage < 15))) ∧
(F (OUTPUT CTRL :: IDLE))

Emergency Flashing Direction Override

In this scenario the system is driven into left directional flashing. Next, the
emergency switch is activated in order to override the directional flashing.
Finally, the turn indication lever is moved from left position to right position
in order to override emergency flashing by directional flashing again.

The following generation goal might be used in order to calculate a suitable
computation:

100

(G ((voltage ≥ 10) ∧ (voltage < 15))) ∧
(G (EmerSwitch = 0)) ∧
(F (OUTPUT CTRL :: FLASHING :: ON ∧

FLASH CTRL :: EMER OFF ∧
(OUTPUT CTRL :: ctr ≥ 3)
F (OUTPUT CTRL :: FLASHING :: ON ∧

FLASH CTRL :: EMER ON :: EMER ACTIV E ∧
(OUTPUT CTRL :: ctr ≥ 3)
F (OUTPUT CTRL :: FLASHING :: ON ∧

FLASH CTRL :: EMER ON :: EMER OV ERRIDE ∧
(OUTPUT CTRL :: ctr ≥ 3)
F (OUTPUT CTRL :: IDLE)))))

The resulting computation looks as follows:

1. System time: 0 ms

• EmerSwitch 7→ 0

• TurnIndLvr 7→ 1

• voltage 7→ 12.0

2. System time: 1980 ms

• EmerSwitch 7→ 1

• TurnIndLvr 7→ 1

• voltage 7→ 12.0

3. System time: 3960 ms

• EmerSwitch 7→ 1

• TurnIndLvr 7→ 2

• voltage 7→ 12.0

4. System time: 5620 ms

• EmerSwitch 7→ 0

• TurnIndLvr 7→ 0

• voltage 7→ 12.0

101

Figure 3.14: Emergency Flashing Direction Override Signal View

Figure 3.14 shows signal graphs to visualize the computation. The first graph
shows the turn indication lever movement. The second graph shows the
emergency switch position. The third and fourth graphs show left and right
turn indications respectively.

Again, the same computation can be created using a range of different ap-
proaches. A user might perform multiple manual input assignments or have
the generator solve a sequence of smaller generation goals.

Note, that the creation of this computation can be simplified if the previous
scenarios have already been created. A user does not have to generate each
scenario starting from scratch – the initial state of the test model. Rather,
an existing computation tree might be re-used.

Given an (intermediate) computation tree generated using one of the above
scenarios, a system state already providing stable left flashing may be iden-
tified and used as a pre-condition for simpler subsequent generation steps.
The following LTL property might yield a suitable state:

102

OUTPUT CTRL :: FLASHING :: ON ∧
FLASH CTRL :: EMER OFF ∧
(LampsLeft = 1) ∧
(OUTPUT CTRL :: ctr ≥ 3)

Using such a state as the user-selected basis for further generation steps, the
following simpler generation goal completes the computation:

(G ((voltage ≥ 10) ∧ (voltage < 15))) ∧
(G (EmerSwitch = 0)) ∧
(F (OUTPUT CTRL :: FLASHING :: ON ∧

FLASH CTRL :: EMER ON :: EMER ACTIV E ∧
(OUTPUT CTRL :: ctr ≥ 3)
F (OUTPUT CTRL :: FLASHING :: ON ∧

FLASH CTRL :: EMER ON :: EMER OV ERRIDE ∧
(OUTPUT CTRL :: ctr ≥ 3)
F (OUTPUT CTRL :: IDLE))))

3.5 Evaluation

This chapter introduced a modification to the work-flow of an existing frame-
work for model-based test generation. This modification was performed in
order to enable an expert to interactively infuse application domain knowl-
edge into the test generation process. As a result, the presented modified
framework is well suited for the development of test cases corresponding to
specific application scenarios.

Several algorithms, tools and publications from the scientific community
can be found, which examine different aspects of model-based testing, sce-
nario testing and user interaction paradigms within test generation processes.
However, the combination presented in this thesis seems to be unique.

In [RK11] system requirements are formalized as test scenarios, which in turn
are transformed into Petri nets. System-level tests are then automatically
generated from the resulting formal models.

[AQ13] perform model-based testing as well, but focuses on utilizing scenar-
ios for regression testing of functional differences between specific software

103

versions. Petri nets are used to analyze the particular differences between
baselines.

[DKT08] examine B machine models as a basis for fully automated test gen-
eration. The fully automated test generation approach is then extended to
include test scenarios to guide the generation process.

In [DCT12] customized regular expressions are used to generate tests on the
basis of behavioral B machine models. Scenarios can then be executed on
the test model in order to establish expected results.

In [CDJ11], the authors present an approach to generating test suites based
on UML behavioral models additionally constrained using OCL. The publi-
cation examines the power of a completely automated generation approach
and concludes, that test scenarios expressed as regular expressions are useful
to complement automatically generated functional tests.

[MLL09] describe a model-based testing approach based on Event-B test
models. Test scenarios are specified as CSP expressions, and are in turn
used to generate test cases. The authors show, how test scenarios can auto-
matically be adapted to changes in the test model.

[LK01] introduce an approach on using UML sequence diagrams to formalize
functional and real-time requirements as scenarios. The paper presents an
extension to a UML CASE-tool, which provides support for continuously
testing a system implementation against specified scenarios during the entire
software development process.

[CDKM11] and [BW05] utilize interactive theorem provers to facilitate the
generation of tests in order to verify programs on a unit testing integration
level. Single test cases are used to verify simple properties, while the theo-
rem provers are used to judge the state of proofs for higher-level properties.
Domain expertise is used to interactively guide the overall proof evolution.

In [GKP00] the authors present an interactive test generation approach for
sequential or concurrent programs. The generation process prepares visu-
alizations of control flow graphs and (interleavings of) paths through the
control flow. The user can then interactively select and edit paths to be
refined into test cases.

104

[MFT12] propose a concept for a generic work-flow, which couples search-
based software testing approaches with the ability to have domain specialists
interact with the generation process. The concept is focused on separating
software engineering concerns from domain knowledge useful during testing.

105

Chapter 4

Conclusion

There exists a wide variety of graphical specification formalisms used to spec-
ify embedded systems. While several formalisms such as UML are widely
used and have become standardized, they cannot completely eliminate the
need for domain specific specification languages.

While at first glance it may appear to be an unnecessary effort to develop
a complete specification formalism just for a specific application domain, it
is sometimes more efficient to do so, than to attempt to force an application
specification into a standardized specification formalism, which in some cases
might well be too complex and ill-suited to the task. Designing a specification
formalism and tailoring its semantics for a specific task is often the preferred
option, and this choice impacts the field of model-based software development
in general, and model-based testing and model checking in particular.

This thesis elaborated challenges in model-based testing from both ends of
the spectrum. The first part of the thesis considered model-based testing
and model checking for a domain specific specification formalism. The second
part evaluated and extended a general purpose model-based testing approach
for standardized specification formalisms.

4.1 Timed Moore Automata

In the first part of the thesis, Timed Moore Automata, a specification formal-
ism used for modeling embedded systems were introduced. The formalism

106

is used in real-world applications from the railway domain, particularly for
modeling the behavior of (components of) level crossings. As such, systems
specified using the Timed Moore Automata formalism are safety-critical, and
measures to verify their behavior need to be taken.

Timed Moore Automata are an extension of the classical Moore Automata.
Just as classical Moore Automata, they are finite state machines, for which
the outputs are only dependent on the location the automaton resides in.
However, with respect to classical Moore Automata, a number of features
have been added to Timed Moore Automata.

While classical Moore Automata view their inputs as queues of events, Timed
Moore Automata process inputs asynchronously as a vector of Boolean input
valuations. This, in turn, induces a run-to-completion semantics for Timed
Automata. They perform discrete transitions immediately and for as long as
such transitions are enabled. New input valuations are only accepted while
an automaton rests (i.e. performs a delay transition).

The eponymous addition to Timed Moore Automata in comparison to classi-
cal Moore Automata is the introduction of abstract timers into the formalism.
Within Timed Moore Automata, abstract timers do not entail concrete time
durations, after which they must elapse. Instead, they are realized as special
kinds of inputs and outputs of automata, which are interdependent and re-
stricted in their evolution of valuations to formalize the abstract notions of
timer running, timer elapsed (as inputs to the automaton) and timer started,
timer stopped (as outputs of the automaton).

The thesis presented approaches and algorithms to performing model-checking
and test data generation for test models specified as Timed Moore Automata.

Explicit model checking Timed Moore Automata against CTL properties was
done by constructing Kripke structures and employing separate algorithms
for each unique CTL operator pairing to label Kripke states with fulfilling
(sub-)properties. This approach was made more efficient by introduction of
delayed non-determinism into the automata’s execution semantics in order
to reduce the number of Kripke states needed.

As a practical application, the thesis showed how Timed Moore Automata
can be checked to be live-lock free. Special consideration was given to the
execution semantics to show, that this task can be achieved by reducing the
property in question (AF idle) to the much cheaper (EF idle).

While in theory, the generation of test data for Timed Moore Automata can

107

be achieved by using the model checking algorithms summarized above to
show the existence of executions, which fulfill reachability properties, the
thesis provided a specialized approach to test data generation.

Test data generation was done by (1) selection of a target trace through an
automaton, for which test data is to be generated, (2) formulating predicates
over input-, output-, timer status- and timer action variables, which enforce
a trace with a maximum number of intermittent stable states, and (3) using
a SAT constraint solver to produce a concrete test input sequence.

Selection of target traces to be enforced by generated test data was shown to
be the determining factor with respect to model-coverage criteria achievable
by this approach. In practice, the transition cover known from [Cho78] is
used for the selection of target traces in order to achieve branch coverage.

Several open questions on Timed Moore Automata warrant further research.
In practice, railway control systems are specified as entire collections of
Timed Moore Automata running in parallel. While it seems entirely possible
to extend the semantics given thus far to accommodate suitable interleavings
of automata execution, this would branch the formalism from its real-world
application. In currently existing systems, Timed Moore Automata trigger
connected neighbor automata executions whenever any outputs change, that
serve as inputs to the respective neighbor. This usually causes cascades of
triggered automata executions, and research on a model checking approach
to validate live-lock freedom from automata cyclically triggering each other
would be interesting in theory and in practice.

4.2 Interactive Model-Based Testing

The second part of the thesis described an existing framework for the auto-
matic model-based test generation for larger scale test models. The frame-
work utilizes an internal intermediate model representation to accommodate
multiple standardized modeling formalisms. As such, it serves as a basis to
derive the transition relation of a test model to formalize its behavior.

Test generation goals are specified using LTL formulas over model elements.
The test generation process then combines the transition relation of the test
model with a generation goal by unrolling each into a predicate encapsulating
multiple test model execution steps, which fulfill the given generation goal.
In effect, this yields a bounded model checking problem instance, which in

108

turn is passed to an SMT-Solver.

Since within an invocation of the generation framework there are usually
multiple generation goals to consider, results of the generation process are
not merely a sequence of timed input assignments, but rather an entire tree of
system computation states. Within the generation process, the computation
tree allows reuse of previous generation results, and is eventually refined into
individual executable test procedures.

This fully automatic generation control flow contains some weaknesses with
respect to readability and maintainability of generation goals as well as gen-
eration results. Therefore, the thesis introduced a modification to the gener-
ation control flow, which allows the user to interactively visualize and con-
struct a computation tree, while still being able to utilize the automated
generation capabilities of the framework. This allows the user to inject do-
main knowledge and thereby guide the generation process.

Pragmatically, the thesis introduced a new interactive generation work-flow
and a corresponding user interface, which was designed and implemented
specifically to interface with the generation framework. A scientific test
model depicting an automotive controller was used to develop various testable
scenarios, and to demonstrate exemplary use of the interactive generation
paradigm.

The thesis leaves some unanswered questions with regard to a more complete
integration of the interactive control flow with the generation framework.

While within the fully automated generation paradigm a testable require-
ment will correspond to a single generation goal, this is not the case in the
interactive generation paradigm. Instead, the user may utilize different tech-
niques and multiple generation (sub-)goals to expand a computation tree.

As a consequence, it would be necessary to bookkeep entire sequences of inter-
actions in order to achieve requirements tracing in the interactive generation
approach. Currently, only LTL generation (sub-)goals are stored persistently.

Generally, it would be useful to research an approach to expressing a sequence
of user interactions as a single LTL property. This would allow a user to
develop useful scenario tests within the interactive generation work-flow, and
to store them for later reuse within the fully automatic paradigm. This would
promote a more seamless interaction between both paradigms.

109

List of Figures

2.1 Moore Automaton Example 17

2.2 Timed Moore automaton for input debouncing 25

2.3 Procedure for creating Kripke structure 42

2.4 Function for creating initial Kripke state 43

2.5 Function for creating successor Kripke states 44

2.6 Function for creating successors for stable Kripke states 44

2.7 Function for creating successors for running Kripke states . . . 45

2.8 Function for unfolding states with Don’t-Care inputs 46

2.9 Function for transforming discrete states transitions 48

2.10 Procedure for labeling generic CTL state formula f 52

2.11 Procedure for labeling ¬f . 53

2.12 Procedure for labeling f1 ∨ f2 53

2.13 Procedure for labeling EX f 54

2.14 Procedure for labeling E(f1 U f2) 54

2.15 Procedure for labeling EG f 55

2.16 Function for generating test case data 62

2.17 Function for creating initial test data generation state 63

2.18 Function for generating test step data 64

110

2.19 Concrete interpretation function 66

3.1 Control Flow - Fully Automated Approach 78

3.2 Control Flow - Interactive Approach 82

3.3 User Interface - Goal Editor 86

3.4 User Interface - Model Explorer and Computation Tree 89

3.5 User Interface - Model Checking Results 90

3.6 Turn Indicator - System Overview 91

3.7 Turn Indicator - System Under Test 92

3.8 Turn Indicator - Flash Control 93

3.9 Turn Indicator - Flash Control - Emergency On 94

3.10 Turn Indicator - Output Control 94

3.11 Turn Indicator - Output Control - Flashing 95

3.12 Stable Flashing Signal View 97

3.13 Tip Flashing Override Signal View 100

3.14 Emergency Flashing Direction Override Signal View 102

111

List of Tables

2.1 Performance results for Timed Moore Automata benchmark . 69

112

Bibliography

[AADO00] A. Abdurazik, P. Ammann, Wei Ding, and J. Offutt. Evalua-
tion of three specification-based testing criteria. In Engineering
of Complex Computer Systems, 2000. ICECCS 2000. Proceed-
ings. Sixth IEEE International Conference on, pages 179–187,
2000.

[AB00] Paul E. Ammann and Paul E. Black. Test generation and
recognition with formal methods. In The First International
Workshop on Automated Program Analysis, Testing and Veri-
fication, pages 64–67, 2000.

[ABLN06] J.H. Andrews, L.C. Briand, Y. Labiche, and A.S. Namin. Us-
ing mutation analysis for assessing and comparing testing cov-
erage criteria. Software Engineering, IEEE Transactions on,
32(8):608–624, Aug 2006.

[ABM98] Paul E. Ammann, Paul E. Black, and William Majurski. Using
model checking to generate tests from specifications. In In
Proceedings of the Second IEEE International Conference on
Formal Engineering Methods (ICFEM’98, pages 46–54. IEEE
Computer Society, 1998.

[ABuR+07] Shaukat Ali, Lionel C. Briand, Muhammad Jaffar ur Rehman,
Hajra Asghar, Muhammad Zohaib Z. Iqbal, and Aamer
Nadeem. A state-based approach to integration testing based
on {UML} models. Information and Software Technology,
49(1112):1087 – 1106, 2007.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata.
Theoretical Computer Science, 126:183–235, 1994.

[APW08] Emine G. Aydal, Richard F. Paige, and Jim Woodcock. Ob-
servations for assertion-based scenarios in the context of model

113

validation and extension to test case generation. In ICST
Workshops, pages 11–20. IEEE Computer Society, 2008.

[AQ13] Farooq Ahmad and Zahid Hussain Qaisar. Scenario based func-
tional regression testing using petri net models. In ICMLA (2),
pages 572–577. IEEE, 2013.

[AS05] B.K. Aichernig and P.A.P. Salas. Test case generation by ocl
mutation and constraint solving. In Quality Software, 2005.
(QSIC 2005). Fifth International Conference on, pages 64–71,
Sept 2005.

[ATF09] Wasif Afzal, Richard Torkar, and Robert Feldt. A systematic
review of search-based testing for non-functional system prop-
erties. Inf. Softw. Technol., 51(6):957–976, June 2009.

[Bar03] Chitta Baral. Knowledge Representation, Reasoning, and
Declarative Problem Solving. Cambridge University Press, New
York, NY, USA, 2003.

[BBM02] Francesca Basanieri, Antonia Bertolino, and Eda Marchetti.
The cow suite approach to planning and deriving test suites in
uml projects. In Jean-Marc Jézéquel, Heinrich Hussmann, and
Stephen Cook, editors, UML 2002 — The Unified Modeling
Language, volume 2460 of Lecture Notes in Computer Science,
pages 383–397. Springer Berlin Heidelberg, 2002.

[BCES10] David Basin, Manuel Clavel, Marina Egea, and Michael
Schläpfer. Automatic generation of smart, security-aware gui
models. In Fabio Massacci, Dan Wallach, and Nicola Zannone,
editors, Engineering Secure Software and Systems, volume 5965
of Lecture Notes in Computer Science, pages 201–217. Springer
Berlin Heidelberg, 2010.

[BDL05] David Basin, Jürgen Doser, and Torsten Lodderstedt. Model
driven security. In Manfred Broy, Johannes Grünbauer, David
Harel, and Tony Hoare, editors, Engineering Theories of Soft-
ware Intensive Systems, volume 195 of NATO Science Series,
pages 353–398. Springer Netherlands, 2005.

[BDL+06] Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen,
John H̊akansson, Paul Pettersson, Wang Yi 0001, and Martijn
Hendriks. Uppaal 4.0. In QEST, pages 125–126. IEEE Com-
puter Society, 2006.

114

[Bel10] Axel Belinfante. Jtorx: A tool for on-line model-driven test
derivation and execution. In Javier Esparza and Rupak Ma-
jumdar, editors, Tools and Algorithms for the Construction and
Analysis of Systems, volume 6015 of Lecture Notes in Computer
Science, pages 266–270. Springer Berlin Heidelberg, 2010.

[BFJLT02] B. Baudry, F. Fleurey, J.-M. Jezequel, and Y. Le Traon. Auto-
matic test case optimization using a bacteriological adaptation
model: application to .net components. In Automated Software
Engineering, 2002. Proceedings. ASE 2002. 17th IEEE Inter-
national Conference on, pages 253–256, 2002.

[BGLP08] Fabrice Bouquet, Christophe Grandpierre, Bruno Legeard, and
Fabien Peureux. A test generation solution to automate soft-
ware testing. In Proceedings of the 3rd International Workshop
on Automation of Software Test, AST ’08, pages 45–48, New
York, NY, USA, 2008. ACM.

[BHH+94] Thomas Burch, Joachim Hartmann, Günter Hotz, M. Krall-
mann, U. Nikolaus, Sudhakar M. Reddy, and Uwe Sparmann.
A hierarchical environment for interactive test engineering. In
ITC, pages 461–470. IEEE Computer Society, 1994.

[BHJ+06] Armin Biere, Keijo Heljanko, Tommi A. Junttila, Timo Lat-
vala, and Viktor Schuppan. Linear encodings of bounded ltl
model checking. CoRR, abs/cs/0611029, 2006.

[BHvMW09] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh,
editors. Handbook of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications. IOS Press, 2009.

[BJ07] Paul Baker and Clive Jervis. Testing uml2.0 models using ttcn-
3 and the uml2.0 testing profile. In Emmanuel Gaudin, Elie
Najm, and Rick Reed, editors, SDL Forum, volume 4745 of
Lecture Notes in Computer Science, pages 86–100. Springer,
2007.

[BLL05] L.C. Briand, Y. Labiche, and Q. Lin. Improving statechart
testing criteria using data flow information. In Software Relia-
bility Engineering, 2005. ISSRE 2005. 16th IEEE International
Symposium on, pages 10 pp.–104, Nov 2005.

115

[BLLP04] Eddy Bernard, Bruno Legeard, Xavier Luck, and Fabien
Peureux. Generation of test sequences from formal specifica-
tions: Gsm 11-11 standard case study. Software: Practice and
Experience, 34(10):915–948, 2004.

[BLR05] Gerd Behrmann, Kim G. Larsen, and Jacob I. Rasmussen. Op-
timal scheduling using priced timed automata. SIGMETRICS
Perform. Eval. Rev., 32(4):34–40, March 2005.

[BM83] D. L. Bird and C.U. Munoz. Automatic generation of random
self-checking test cases. IBM Systems Journal, 22(3):229–245,
1983.

[BRST08] Clark Barrett, Silvio Ranise, Aaron Stump, and Cesare Tinelli.
The satisfiability modulo theories library (smt-lib). www.smt-
lib.org, 2008.

[BSST09] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and
Cesare Tinelli. Satisfiability modulo theories. In Armin Biere,
Marijn Heule, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability, volume 185 of Frontiers in Artifi-
cial Intelligence and Applications, pages 825–885. IOS Press,
2009.

[BW05] Achim D. Brucker and Burkhart Wolff. Interactive testing with
hol-testgen. In Wolfgang Grieskamp and Carsten Weise, edi-
tors, FATES, volume 3997 of Lecture Notes in Computer Sci-
ence, pages 87–102. Springer, 2005.

[CBL+14] Gustavo Carvalho, Flávia Barros, Florian Lapschies, Uwe
Schulze, and Jan Peleska. Model-based testing from con-
trolled natural language requirements. In Cyrille Artho and
Peter Csaba Ölveczky, editors, Formal Techniques for Safety-
Critical Systems, volume 419 of Communications in Computer
and Information Science, pages 19–35. Springer International
Publishing, 2014.

[CCGR00] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: a
new symbolic model checker. International Journal on Software
Tools for Technology Transfer, 2:2000, 2000.

[CDJ11] Kalou Cabrera Castillos, Frédéric Dadeau, and Jacques Jul-
liand. Scenario-based testing from uml/ocl behavioral models
- application to posix compliance. STTT, 13(5):431–448, 2011.

116

[CDKM11] Harsh Raju Chamarthi, Peter C. Dillinger, Matt Kaufmann,
and Panagiotis Manolios. Integrating testing and interactive
theorem proving. In David Hardin and Julien Schmaltz, editors,
ACL2, volume 70 of EPTCS, pages 4–19, 2011.

[Cen11] Cenelec. Railway applications - Communications, signalling
and processing systems - Software for railway control and pro-
tection systems (EN 50128). Technical report, CENELEC,
September 2011.

[CGP99] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled.
Model Checking. MIT Press, Cambridge, MA, USA, 1999.

[Cho78] T.S. Chow. Testing software design modeled by finite-state
machines. Software Engineering, IEEE Transactions on, SE-
4(3):178–187, 1978.

[CIvdPS05] J.R. Calame, N. Ioustinova, J. van de Pol, and N. Sidorova.
Data abstraction and constraint solving for conformance test-
ing. In Software Engineering Conference, 2005. APSEC ’05.
12th Asia-Pacific, pages 8 pp.–, Dec 2005.

[CJRZ02] Duncan Clarke, Thierry Jéron, Vlad Rusu, and Elena Zi-
novieva. Stg: A symbolic test generation tool. In Joost-Pieter
Katoen and Perdita Stevens, editors, Tools and Algorithms
for the Construction and Analysis of Systems, volume 2280 of
Lecture Notes in Computer Science, pages 470–475. Springer
Berlin Heidelberg, 2002.

[CLOM06] Ilinca Ciupa, Andreas Leitner, Manuel Oriol, and Bertrand
Meyer. Object distance and its application to adaptive ran-
dom testing of object-oriented programs. In Proceedings of the
1st International Workshop on Random Testing, RT ’06, pages
55–63, New York, NY, USA, 2006. ACM.

[CLOM07] Ilinca Ciupa, Andreas Leitner, Manuel Oriol, and Bertrand
Meyer. Experimental assessment of random testing for object-
oriented software. In Proceedings of the 2007 International
Symposium on Software Testing and Analysis, ISSTA ’07, pages
84–94, New York, NY, USA, 2007. ACM.

[CM94] J.J. Chilenski and S.P. Miller. Applicability of modified condi-
tion/decision coverage to software testing. Software Engineer-
ing Journal, 9(5):193–200, Sep 1994.

117

[Coo89] Walter A. Cook. Case Grammar Theory. Georgetown Univer-
sity Press, Washington, DC, 1989.

[CPL+08] I. Ciupa, A. Pretschner, A. Leitner, M. Oriol, and B. Meyer.
On the predictability of random tests for object-oriented soft-
ware. In Software Testing, Verification, and Validation, 2008
1st International Conference on, pages 72–81, April 2008.

[CSE96] John Callahan, Francis Schneider, and Steve Easterbrook. Au-
tomated software testing using model-checking, 1996.

[DBI12] Dimitris Dranidis, Konstantinos Bratanis, and Florentin Ipate.
Jsxm: A tool for automated test generation. In George Eleft-
herakis, Mike Hinchey, and Mike Holcombe, editors, Software
Engineering and Formal Methods, volume 7504 of Lecture Notes
in Computer Science, pages 352–366. Springer Berlin Heidel-
berg, 2012.

[DCT12] Frédéric Dadeau, Kalou Cabrera Castillos, and Régis Tissot.
Scenario-based testing using symbolic animation of b models.
Softw. Test., Verif. Reliab., 22(6):407–434, 2012.

[DEFT09] Rolf Drechsler, Stephan Eggersgl, Grschwin Fey, and Daniel
Tille. Test Pattern Generation Using Boolean Proof Engines.
Springer Publishing Company, Incorporated, 1st edition, 2009.

[Din04] George Din. Ttcn-3. In Manfred Broy, Bengt Jonsson, Joost-
Pieter Katoen, Martin Leucker, and Alexander Pretschner, ed-
itors, Model-Based Testing of Reactive Systems, volume 3472 of
Lecture Notes in Computer Science, pages 465–496. Springer,
2004.

[DJK+99] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M.
Lott, G. C. Patton, and B. M. Horowitz. Model-based testing
in practice. In Proceedings of the 21st International Conference
on Software Engineering, ICSE ’99, pages 285–294, New York,
NY, USA, 1999. ACM.

[DKT08] Frédéric Dadeau, Adrien De Kermadec, and Régis Tissot. Com-
bining scenario- and model-based testing to ensure posix com-
pliance. In Egon Börger, Michael J. Butler, Jonathan P. Bowen,
and Paul Boca, editors, ABZ, volume 5238 of Lecture Notes in
Computer Science, pages 153–166. Springer, 2008.

118

[DZ03] W. Dulz and Fenhua Zhen. Matelo - statistical usage testing
by annotated sequence diagrams, markov chains and ttcn-3. In
Quality Software, 2003. Proceedings. Third International Con-
ference on, pages 336–342, Nov 2003.

[EKRV06] Juhan-P. Ernits, Andres Kull, Kullo Raiend, and Jüri Vain.
Generating tests from efsm models using guided model check-
ing and iterated search refinement. In Klaus Havelund, Manuel
Núñez, Grigore Roşu, and Burkhart Wolff, editors, Formal Ap-
proaches to Software Testing and Runtime Verification, vol-
ume 4262 of Lecture Notes in Computer Science, pages 85–99.
Springer Berlin Heidelberg, 2006.

[Eng05] Dawson Engler. Concur 2005 - concurrency theory. chapter
Static Analysis Versus Model Checking for Bug Finding, pages
1–1. Springer-Verlag, London, UK, UK, 2005.

[EP11] C. Efkemann and J. Peleska. Model-based testing for the sec-
ond generation of integrated modular avionics. In Software
Testing, Verification and Validation Workshops (ICSTW),
2011 IEEE Fourth International Conference on, pages 55–62,
March 2011.

[FW08] Gordon Fraser and Franz Wotawa. Using model-checkers to
generate and analyze property relevant test-cases. Software
Quality Journal, 16(2):161–183, 2008.

[Gel07] Michael Gelfond. In Handbook of Knowledge Representation,
chapter Answer Sets. Elsevier Science, 2007.

[GH99] Angelo Gargantini and Constance Heitmeyer. Using model
checking to generate tests from requirements specifications. In
Proceedings of the 7th European Software Engineering Con-
ference Held Jointly with the 7th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineer-
ing, ESEC/FSE-7, pages 146–162, London, UK, UK, 1999.
Springer-Verlag.

[GKP00] Elsa L. Gunter, Robert P. Kurshan, and Doron Peled. Pet:
An interactive software testing tool. In E. Allen Emerson and
A. Prasad Sistla, editors, CAV, volume 1855 of Lecture Notes
in Computer Science, pages 552–556. Springer, 2000.

119

[GKSB11] Wolfgang Grieskamp, Nicolas Kicillof, Keith Stobie, and Victor
Braberman. Model-based quality assurance of protocol docu-
mentation: tools and methodology. Software Testing, Verifica-
tion and Reliability, 21(1):55–71, 2011.

[GMS98] Neelam Gupta, Aditya P. Mathur, and Mary Lou Soffa. Au-
tomated test data generation using an iterative relaxation
method. SIGSOFT Softw. Eng. Notes, 23(6):231–244, Novem-
ber 1998.

[GMS99] Neelam Gupta, Aditya P. Mathur, and Mary Lou Soffa. Una
based iterative test data generation and its evaluation. In 14th
IEEE International Conference on Automated Software Engi-
neering(ASE’99, pages 224–232, 1999.

[Gut99] Walter J. Gutjahr. Partition testing vs. random testing: The
influence of uncertainty. IEEE Trans. Softw. Eng., 25(5):661–
674, September 1999.

[Hau06] Matthew Hause. The sysml modelling language. In Fifteenth
European Systems Engineering Conference, 2006.

[HdMR05] Grégoire Hamon, Leonardo de Moura, and John Rushby. Au-
tomated test generation with sal. Technical report, Computer
Science Laboratory SRI International, SRI International 333
Ravenswood Avenue, Menlo Park, CA 94025-3493, 2005.

[HHL+07] Mark Harman, Youssef Hassoun, Kiran Lakhotia, Phil
McMinn, and Joachim Wegener. The impact of input domain
reduction on search-based test data generation. In Proceed-
ings of the the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering, ESEC-FSE ’07,
pages 155–164, New York, NY, USA, 2007. ACM.

[HLM+08] Anders Hessel, KimG. Larsen, Marius Mikucionis, Brian
Nielsen, Paul Pettersson, and Arne Skou. Testing real-time sys-
tems using uppaal. In RobertM. Hierons, JonathanP. Bowen,
and Mark Harman, editors, Formal Methods and Testing, vol-
ume 4949 of Lecture Notes in Computer Science, pages 77–117.
Springer Berlin Heidelberg, 2008.

[HLSC01] Hyoung Seok Hong, Insup Lee, Oleg Sokolsky, and Sung Deok
Cha. Automatic test generation from statecharts using model

120

checking. In In Proceedings of FATES’01, Workshop on Formal
Approaches to Testing of Software, volume NS-01-4 of BRICS
Notes Series, pages 15–30, 2001.

[HLSU02] HyoungSeok Hong, Insup Lee, Oleg Sokolsky, and Hasan Ural.
A temporal logic based theory of test coverage and generation.
In Joost-Pieter Katoen and Perdita Stevens, editors, Tools and
Algorithms for the Construction and Analysis of Systems, vol-
ume 2280 of Lecture Notes in Computer Science, pages 327–
341. Springer Berlin Heidelberg, 2002.

[HM07] Mark Harman and Phil McMinn. A theoretical & empirical
znalysis of evolutionary testing and hill climbing for structural
test data generation. In Proceedings of the 2007 International
Symposium on Software Testing and Analysis, ISSTA ’07, pages
73–83, New York, NY, USA, 2007. ACM.

[HN96] David Harel and Amnon Naamad. The statemate semantics of
statecharts. ACM Trans. Softw. Eng. Methodol., 5(4):293–333,
October 1996.

[HN04] A. Hartman and K. Nagin. The agedis tools for model based
testing. SIGSOFT Softw. Eng. Notes, 29(4):129–132, July
2004.

[Hol03] Gerard Holzmann. Spin Model Checker, the: Primer and Refer-
ence Manual. Addison-Wesley Professional, first edition, 2003.

[HP00] Klaus Havelund and Thomas Pressburger. Model checking java
programs using java pathfinder. International Journal on Soft-
ware Tools for Technology Transfer, 2(4):366–381, 2000.

[HP13] Wen-ling Huang and Jan Peleska. Exhaustive model-based
equivalence class testing. In Hüsnü Yenigün, Cemal Yilmaz,
and Andreas Ulrich, editors, Testing Software and Systems, vol-
ume 8254 of Lecture Notes in Computer Science, pages 49–64.
Springer Berlin Heidelberg, 2013.

[Hui07] Antti Huima. Implementing conformiq qtronic. In Alexan-
dre Petrenko, Margus Veanes, Jan Tretmans, and Wolfgang
Grieskamp, editors, Testing of Software and Communicating
Systems, volume 4581 of Lecture Notes in Computer Science,
pages 1–12. Springer Berlin Heidelberg, 2007.

121

[Jac11] Jonathan Jacky. Pymodel: Model-based testing in python. In
Stéfan van der Walt and Jarrod Millman, editors, Proceedings
of the 10th Python in Science Conference, pages 43 – 48, 2011.

[JGP99] Edmund M. Clarke Jr., Orna Grumberg, and Doron A. Peled.
Model Checking. The MIT Press, 1999.

[JJ05] Claude Jard and Thierry Jéron. Tgv: theory, principles and
algorithms. International Journal on Software Tools for Tech-
nology Transfer, 7(4):297–315, 2005.

[JM99] Thierry Jeron and Pierre Morel. Test generation derived from
model-checking. In Nicolas Halbwachs and Doron Peled, ed-
itors, Computer Aided Verification, volume 1633 of Lecture
Notes in Computer Science, pages 108–122. Springer Berlin
Heidelberg, 1999.

[JVCS] Jonathan Jacky, Margus Veanes, Colin Campbell, and Wolfram
Schulte. Model-Based Software Testing and Analysis with C#.
1 edition.

[KG04] Susan Khor and Peter Grogono. Using a genetic algorithm
and formal concept analysis to generate branch coverage test
data automatically. In Proceedings of the 19th IEEE Inter-
national Conference on Automated Software Engineering, ASE
’04, pages 346–349, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[Kor90] B. Korel. Automated software test data generation. Software
Engineering, IEEE Transactions on, 16(8):870–879, Aug 1990.

[KP12] Teemu Kanstrén and Olli-Pekka Puolitaival. Using built-in
domain-specific modeling support to guide model-based test
generation. In MBT, pages 58–72, 2012.

[Lan11] Sebastian Langer. Visualisierung von transitionsbäumen für
model- und szenariobasiertes testen. Bachelor report, Univer-
sität Bremen, Germany, September 2011.

[LHM08] Kiran Lakhotia, Mark Harman, and Phil McMinn. Handling
dynamic data structures in search based testing. In Proceedings
of the 10th Annual Conference on Genetic and Evolutionary
Computation, GECCO ’08, pages 1759–1766, New York, NY,
USA, 2008. ACM.

122

[LK01] Marc Lettrari and Jochen Klose. Scenario-based monitoring
and testing of real-time uml models. In Martin Gogolla and
Cris Kobryn, editors, UML, volume 2185 of Lecture Notes in
Computer Science, pages 317–328. Springer, 2001.

[LP08] Helge Löding and Jan Peleska. Symbolic and abstract inter-
pretation for C/C++ programs. Electr. Notes Theor. Comput.
Sci., 217:113–131, 2008.

[LP10] Helge Löding and Jan Peleska. Timed moore automata: Test
data generation and model checking. In Proceedings of the 2010
Third International Conference on Software Testing, Verifica-
tion and Validation, ICST ’10, pages 449–458, Washington,
DC, USA, 2010. IEEE Computer Society.

[MB05] Bruno Marre and Benjamin Blanc. Test selection strategies for
lustre descriptions in gatel. Electron. Notes Theor. Comput.
Sci., 111:93–111, January 2005.

[McM04] Phil McMinn. Search-based software test data generation: A
survey. SOFTWARE TESTING, VERIFICATION AND RE-
LIABILITY, 14:105–156, 2004.

[MFT12] Bogdan Marculescu, Robert Feldt, and Richard Torkar. A con-
cept for an interactive search-based software testing system.
In Gordon Fraser and Jerffeson Teixeira de Souza, editors, SS-
BSE, volume 7515 of Lecture Notes in Computer Science, pages
273–278. Springer, 2012.

[MGP+12] Stefan Milius, Henning Günther, Jan Peleska, Oliver Möller,
Helge Löding, Martin Sulzmann, Ramin Hedayati, and Axel
Zechner. A framework for formal verification of systems
of synchronous components. In Holger Giese, Michaela
Huhn, Jan Phillips, and Bernhard Schätz, editors, Dagstuhl-
Workshop MBEES: Modellbasierte Entwicklung eingebetteter
Systeme VIII, Schloss Dagstuhl, Germany, 2012, Tagungsband
Modellbasierte Entwicklung eingebetteter Systeme, pages 145–
154. fortiss GmbH, München, 2012.

[MHL+12] P. McMinn, M. Harman, K. Lakhotia, Y. Hassoun, and J. We-
gener. Input domain reduction through irrelevant variable re-
moval and its effect on local, global, and hybrid search-based

123

structural test data generation. Software Engineering, IEEE
Transactions on, 38(2):453–477, March 2012.

[MIU05] Johannes Mayer, Abteilung Angewandte Informationsverar-
beitung, and Universität Ulm. On testing image processing
applications with statistical methods. In In Software Engi-
neering (SE 2005), Lecture Notes in Informatics, pages 69–78,
2005.

[MLL09] Qaisar A. Malik, Johan Lilius, and Linas Laibinis. Model-based
testing using scenarios and event-b refinements. In Michael J.
Butler, Cliff B. Jones, Alexander Romanovsky, and Elena
Troubitsyna, editors, Methods, Models and Tools for Fault Tol-
erance, volume 5454 of Lecture Notes in Computer Science,
pages 177–195. Springer, 2009.

[MMS01] C.C. Michael, Gary McGraw, and M.A. Schatz. Generating
software test data by evolution. Software Engineering, IEEE
Transactions on, 27(12):1085–1110, Dec 2001.

[Moo56] Edward F. Moore. Gedanken experiments on sequential ma-
chines. In Automata Studies, pages 129–153. Princeton U.,
1956.

[MS04] Nashat Mansour and Miran Salame. Data generation for path
testing. Software Quality Journal, 12(2):121–136, 2004.

[MS06] Johannes Mayer and Christoph Schneckenburger. An empiri-
cal analysis and comparison of random testing techniques. In
Proceedings of the 2006 ACM/IEEE International Symposium
on Empirical Software Engineering, ISESE ’06, pages 105–114,
New York, NY, USA, 2006. ACM.

[NS08] Thomas Noll and Bastian Schlich. Delayed nondeterminism
in model checking embedded systems assembly code. In Pro-
ceedings of the 3rd International Haifa Verification Conference
on Hardware and Software: Verification and Testing, HVC’07,
pages 185–201, Berlin, Heidelberg, 2008. Springer-Verlag.

[OA99] Jeff Offutt and Aynur Abdurazik. Generating tests from uml
specifications. In Robert France and Bernhard Rumpe, edi-
tors, UML 99 - The Unified Modeling Language, volume 1723
of Lecture Notes in Computer Science, pages 416–429. Springer
Berlin Heidelberg, 1999.

124

[Obj10] Object Management Group. OCL 2.2 Specification, 2010.

[ODC06] David Owen, Dejan Desovski, and Bojan Cukic. Random test-
ing of formal software models and induced coverage. In Pro-
ceedings of the 1st International Workshop on Random Testing,
RT ’06, pages 20–27, New York, NY, USA, 2006. ACM.

[OMG11a] OMG. OMG Unified Modeling Language (OMG UML), Infras-
tructure, Version 2.4.1. Technical report, Object Management
Group, August 2011.

[OMG11b] OMG. OMG Unified Modeling Language (OMG UML), Super-
structure, Version 2.4.1. Technical report, Object Management
Group, August 2011.

[oR11] Special C. of RTCA. DO-178C, software considerations in air-
borne systems and equipment certification, 2011.

[Pel13] Jan Peleska. Industrial-strength model-based testing - state of
the art and current challenges. In Alexander K. Petrenko and
Holger Schlingloff, editors, MBT, volume 111 of EPTCS, pages
3–28, 2013.

[PHL+11] Jan Peleska, Artur Honisch, Florian Lapschies, Helge Loeding,
Hermann Schmid, Peer Smuda, Elena Vorobev, and Cornelia
Zahlten. A real-world benchmark model for testing concur-
rent real-time systems in the automotive domain. In Burkhart
Wolff and Fatiha Zaidi, editors, Testing Software and Systems,
volume 7019 of Lecture Notes in Computer Science, pages 146–
161. Springer Berlin Heidelberg, 2011.

[PHP99] Roy P. Pargas, Mary Jean Harrold, and Robert R. Peck. Test-
data generation using genetic algorithms. Software Testing,
Verification And Reliability, 9:263–282, 1999.

[PLK07] Jan Peleska, Helge Löding, and Tatiana Kotas. Test automa-
tion meets static analysis. In Rainer Koschke, Otthein Her-
zog, Karl-Heinz Rödiger, and Marc Ronthaler, editors, IN-
FORMATIK 2007: Informatik trifft Logistik. Band 2. Beiträge
der 37. Jahrestagung der Gesellschaft für Informatik e.V. (GI),
24.-27. September 2007 in Bremen, volume 110 of LNI, pages
280–290. GI, 2007.

125

[Plo81] G. D. Plotkin. A Structural Approach to Operational Seman-
tics. Technical Report DAIMI FN-19, University of Aarhus,
1981.

[PPW+05] A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel,
M. Baumgartner, B. Sostawa, R. Zölch, and T. Stauner. One
evaluation of model-based testing and its automation. In Pro-
ceedings of the 27th International Conference on Software En-
gineering, ICSE ’05, pages 392–401, New York, NY, USA, 2005.
ACM.

[Pre06] Alexander Pretschner. Zur kosteneffektivität des modell-
basierten testens. In MBEES, pages 85–94, 2006.

[Pro03] S.J. Prowell. Jumbl: a tool for model-based statistical test-
ing. In System Sciences, 2003. Proceedings of the 36th Annual
Hawaii International Conference on, pages 9 pp.–, Jan 2003.

[Pro05] S. J. Prowell. Using markov chain usage models to test com-
plex systems. In Proc. 38th Annual Hawaii International
DATA MUTATION TESTING: ACASE STUDY Page 17 of
18 THE COMPUTER JOURNAL, 2007 Conf. System Sciences
(HICSS’05), Big Island, HI, January 3–6, page 318, 2005.

[PSK08] Stephan Pietsch and Bogdan Stanca-Kaposta. Model-based
testing with utp and ttcn-3 and its application to hl7. Technical
report, Testing Technologies IST GmbH, 2008.

[PVL11] Jan Peleska, Elena Vorobev, and Florian Lapschies. Automated
test case generation with smt-solving and abstract interpreta-
tion. In Mihaela Bobaru, Klaus Havelund, GerardJ. Holzmann,
and Rajeev Joshi, editors, NASA Formal Methods, volume 6617
of Lecture Notes in Computer Science, pages 298–312. Springer
Berlin Heidelberg, 2011.

[Rav07] A.R. Ravindran. Operations Research and Management Sci-
ence Handbook. Operations Research Series. Taylor & Francis,
2007.

[RBW06] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook
of Constraint Programming (Foundations of Artificial Intelli-
gence). Elsevier Science Inc., New York, NY, USA, 2006.

126

[RK11] Hassan Reza and Scott D. Kerlin. A model-based testing using
scenarios and constraints-based modular petri nets. In ITNG,
pages 568–573. IEEE Computer Society, 2011.

[SE02] Niklas Sörensson and Niklas Een. Minisat v1.13 - a sat solver
with conflict-clause minimization. 2005. sat-2005 poster. 1 per-
haps under a generous notion of ”part-time”, but still con-
currently taking a statistics course and leading a normal life.
Technical report, 2002.

[SLS05] Andreas Spillner, Tilo Linz, and Hans Schaefer. Software test-
ing foundations. dpunkt., Heidelberg, 2005.

[SML06] Manoranjan Satpathy, Qaisar A. Malik, and Johan Lilius. Syn-
thesis of scenario based test cases from b models. In Klaus
Havelund, Manuel Núñez, Grigore Rosu, and Burkhart Wolff,
editors, FATES/RV, volume 4262 of Lecture Notes in Computer
Science, pages 133–147. Springer, 2006.

[SWB02] Harmen Sthamer, Joachim Wegener, and Andre Baresel. Using
evolutionary testing to improve efficiency and quality in soft-
ware testing. In In Proceedings of the 2nd Asia-Pacific Con-
ference on Software Testing Analysis and Review (AsiaSTAR,
pages 22–24, 2002.

[Tar71] Robert Tarjan. Depth-first search and linear graph algorithms.
In Switching and Automata Theory, 1971., 12th Annual Sym-
posium on, pages 114–121, 1971.

[TKSL04] L. Tan, Jesung Kim, O. Sokolsky, and I. Lee. Model-based
testing and monitoring for hybrid embedded systems. In In-
formation Reuse and Integration, 2004. IRI 2004. Proceedings
of the 2004 IEEE International Conference on, pages 487–492,
Nov 2004.

[Tre08] Jan Tretmans. Model based testing with labelled transition
systems. In RobertM. Hierons, JonathanP. Bowen, and Mark
Harman, editors, Formal Methods and Testing, volume 4949
of Lecture Notes in Computer Science, pages 1–38. Springer
Berlin Heidelberg, 2008.

[Tre11] Jan Tretmans. Model-based testing and some steps towards
test-based modelling. In Marco Bernardo and Valerie Issarny,

127

editors, Formal Methods for Eternal Networked Software Sys-
tems, volume 6659 of Lecture Notes in Computer Science, pages
297–326. Springer Berlin Heidelberg, 2011.

[TSL04] Li Tan, Oleg Sokolsky, and Insup Lee. Specification-based test-
ing with linear temporal logic. In Du Zhang, Éric Grégoire, and
Doug DeGroot, editors, IRI, pages 493–498. IEEE Systems,
Man, and Cybernetics Society, 2004.

[UPL12] Mark Utting, Alexander Pretschner, and Bruno Legeard. A
taxonomy of model-based testing approaches. Software Testing,
Verification and Reliability, 22(5):297–312, 2012.

[Utt08] Mark Utting. The role of model-based testing. In Bertrand
Meyer and Jim Woodcock, editors, Verified Software: Theories,
Tools, Experiments, volume 4171 of Lecture Notes in Computer
Science, pages 510–517. Springer Berlin Heidelberg, 2008.

[VCG+08] Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wol-
fram Schulte, Nikolai Tillmann, and Lev Nachmanson. Model-
based testing of object-oriented reactive systems with spec ex-
plorer. In RobertM. Hierons, JonathanP. Bowen, and Mark
Harman, editors, Formal Methods and Testing, volume 4949
of Lecture Notes in Computer Science, pages 39–76. Springer
Berlin Heidelberg, 2008.

[WB04] Joachim Wegener and Oliver Bühler. Evaluation of different
fitness functions for the evolutionary testing of an autonomous
parking system. In GECCO (2), pages 1400–1412, 2004.

[Weg03] Joachim Wegener. Evolutionary testing of embedded systems.
In Rolf Drechsler and Nicole Drechsler, editors, Evolutionary
Algorithms for Embedded System Design, volume 10 of Ge-
netic Algorithms and Evolutionary Computation, pages 1–33.
Springer US, 2003.

[WJ91] E.J. Weyuker and Bingchiang Jeng. Analyzing partition test-
ing strategies. Software Engineering, IEEE Transactions on,
17(7):703–711, Jul 1991.

[WL05] Stefan Wappler and Frank Lammermann. Using evolutionary
algorithms for the unit testing of object-oriented software. In

128

Proceedings of the 2005 Conference on Genetic and Evolution-
ary Computation, GECCO ’05, pages 1053–1060, New York,
NY, USA, 2005. ACM.

[WS07] Stefan Wappler and Ina Schieferdecker. Improving evolution-
ary class testing in the presence of non-public methods. In Pro-
ceedings of the Twenty-second IEEE/ACM International Con-
ference on Automated Software Engineering, ASE ’07, pages
381–384, New York, NY, USA, 2007. ACM.

129

	Introduction
	Overview
	Motivation
	Main Contribution
	Related Work
	Model-Based Testing
	Model Checking
	Constraint Solving
	Other Test Generation Techniques

	Timed Moore Automata
	Classical Moore Automata
	Abstract Syntax
	Concrete Syntax
	Static Semantics
	Operational Semantics
	Determinism

	Abstract Timing for Moore Automata
	Informal Introduction to Timed Moore Automata
	Abstract Syntax Extensions
	Concrete Syntax Extensions
	Static Semantics Extensions
	Operational Semantics Extensions
	Determinism

	Model Checking for Timed Moore Automata
	Construction of Kripke structures
	Computation Tree Logic
	Model Checking CTL Properties
	Checking for Live-Locks

	Test Data Generation for Timed Moore Automata
	Test Data Generation for Single Traces
	Trace Selection

	Benchmarks

	Interactive Model-Based Testing
	Model-Based Testing Framework
	Intermediate Model Representation
	Operational Semantics
	Generation Goals
	Bounded Model Checking
	Computation Tree
	Concrete Interpreter
	Generation Control Flow

	Interactive Generation Paradigm
	Critique of the Fully Automated Paradigm
	Modifications to the Generation Control Flow
	Model Checking for Computation Trees
	Manual Computation Tree Extension
	Generation Goal driven Computation Tree Extension

	User Interface
	Goal Editor
	Model Explorer

	Case Study - Turn Indication
	Test Model
	Example Scenarios

	Evaluation

	Conclusion
	Timed Moore Automata
	Interactive Model-Based Testing

	List of Figures
	List of Tables
	Bibliography

