51 research outputs found

    Towards Automatic and Adaptive Optimizations of MPI Collective Operations

    Get PDF
    Message passing is one of the most commonly used paradigms of parallel programming. Message Passing Interface, MPI, is a standard used in scientific and high-performance computing. Collective operations are a subset of MPI standard that deals with processes synchronization, data exchange and computation among a group of processes. The collective operations are commonly used and can be application performance bottleneck. The performance of collective operations depends on many factors, some of which are the input parameters (e.g., communicator and message size); system characteristics (e.g., interconnect type); the application computation and communication pattern; and internal algorithm parameters (e.g., internal segment size). We refer to an algorithm and its internal parameters as a method. The goal of this dissertation is a performance improvement of MPI collective operations and applications that use them. In our framework, during a collective call, a system-specific decision function is invoked to select the most appropriate method for the particular collective instance. This dissertation focuses on automatic techniques for system-specific decision function generation. Our approach takes the following steps: first, we collect method performance information on the system of interest; second, we analyze this information using parallel communication models, graphical encoding methods, and decision trees; third, based on the previous step, we automatically generate the system-specific decision function to be used at run-time. In situation when a detailed performance measurement is not feasible, method performance models can be used to supplement the measured method performance information. We build and evaluate parallel communication models of 35 different collective algorithms. These models are built on top of the three commonly used point-to-point communication models, Hockney, LogGP, and PLogP.We use the method performance information on a system to build quadtrees and C4.5 decision trees of variable sizes and accuracies. The collective method selection functions are then generated automatically from these trees. Our experiments show that quadtrees of three or four levels are often enough to approximate experimentally optimal decision with a small mean performance penalty (less than 10%). The C4.5 decision trees are even more accurate (with mean performance penalty of less than 5%). The size and accuracy of C4.5 decision trees can be further improved with use of appropriate composite attributes (such as “total message size”, or “even communicator size”.) Finally, we apply these techniques to tune the collective operations on the Grig cluster at the University of Tennessee and to improve an application performance on the Cray XT4 system at Oak Ridge National Laboratory. The tuned collective is able to achieve more than 40% mean performance improvement over the native broadcast implementation. Using the platform-specific reduce on Cray XT4 lead to 10% improvement in the overall application performance. Our results show that the methods we explored are both applicable and effective for the system-specific optimizations of collective operations and are a right step toward automatically tunable, adaptive, MPI collectives

    ATCOM: Automatically tuned collective communication system for SMP clusters.

    Get PDF
    Conventional implementations of collective communications are based on point-to-point communications, and their optimizations have been focused on efficiency of those communication algorithms. However, point-to-point communications are not the optimal choice for modern computing clusters of SMPs due to their two-level communication structure. In recent years, a few research efforts have investigated efficient collective communications for SMP clusters. This dissertation is focused on platform-independent algorithms and implementations in this area;There are two main approaches to implementing efficient collective communications for clusters of SMPs: using shared memory operations for intra-node communications, and over-lapping inter-node/intra-node communications. The former fully utilizes the hardware based shared memory of an SMP, and the latter takes advantage of the inherent hierarchy of the communications within a cluster of SMPs. Previous studies focused on clusters of SMP from certain vendors. However, the previously proposed methods are not portable to other systems. Because the performance optimization issue is very complicated and the developing process is very time consuming, it is highly desired to have self-tuning, platform-independent implementations. As proven in this dissertation, such an implementation can significantly outperform the other point-to-point based portable implementations and some platform-specific implementations;The dissertation describes in detail the architecture of the platform-independent implementation. There are four system components: shared memory-based collective communications, overlapping mechanisms for inter-node and intra-node communications, a prediction-based tuning module and a micro-benchmark based tuning module. Each component is carefully designed with the goal of automatic tuning in mind

    Partial aggregation for collective communication in distributed memory machines

    Get PDF
    High Performance Computing (HPC) systems interconnect a large number of Processing Elements (PEs) in high-bandwidth networks to simulate complex scientific problems. The increasing scale of HPC systems poses great challenges on algorithm designers. As the average distance between PEs increases, data movement across hierarchical memory subsystems introduces high latency. Minimizing latency is particularly challenging in collective communications, where many PEs may interact in complex communication patterns. Although collective communications can be optimized for network-level parallelism, occasional synchronization delays due to dependencies in the communication pattern degrade application performance. To reduce the performance impact of communication and synchronization costs, parallel algorithms are designed with sophisticated latency hiding techniques. The principle is to interleave computation with asynchronous communication, which increases the overall occupancy of compute cores. However, collective communication primitives abstract parallelism which limits the integration of latency hiding techniques. Approaches to work around these limitations either modify the algorithmic structure of application codes, or replace collective primitives with verbose low-level communication calls. While these approaches give fine-grained control for latency hiding, implementing collective communication algorithms is challenging and requires expertise knowledge about HPC network topologies. A collective communication pattern is commonly described as a Directed Acyclic Graph (DAG) where a set of PEs, represented as vertices, resolve data dependencies through communication along the edges. Our approach improves latency hiding in collective communication through partial aggregation. Based on mathematical rules of binary operations and homomorphism, we expose data parallelism in a respective DAG to overlap computation with communication. The proposed concepts are implemented and evaluated with a subset of collective primitives in the Message Passing Interface (MPI), an established communication standard in scientific computing. An experimental analysis with communication-bound microbenchmarks shows considerable performance benefits for the evaluated collective primitives. A detailed case study with a large-scale distributed sort algorithm demonstrates, how partial aggregation significantly improves performance in data-intensive scenarios. Besides better latency hiding capabilities with collective communication primitives, our approach enables further optimizations of their implementations within MPI libraries. The vast amount of asynchronous programming models, which are actively studied in the HPC community, benefit from partial aggregation in collective communication patterns. Future work can utilize partial aggregation to improve the interaction of MPI collectives with acclerator architectures, and to design more efficient communication algorithms

    A parallel butterfly algorithm

    Full text link
    The butterfly algorithm is a fast algorithm which approximately evaluates a discrete analogue of the integral transform \int K(x,y) g(y) dy at large numbers of target points when the kernel, K(x,y), is approximately low-rank when restricted to subdomains satisfying a certain simple geometric condition. In d dimensions with O(N^d) quasi-uniformly distributed source and target points, when each appropriate submatrix of K is approximately rank-r, the running time of the algorithm is at most O(r^2 N^d log N). A parallelization of the butterfly algorithm is introduced which, assuming a message latency of \alpha and per-process inverse bandwidth of \beta, executes in at most O(r^2 N^d/p log N + \beta r N^d/p + \alpha)log p) time using p processes. This parallel algorithm was then instantiated in the form of the open-source DistButterfly library for the special case where K(x,y)=exp(i \Phi(x,y)), where \Phi(x,y) is a black-box, sufficiently smooth, real-valued phase function. Experiments on Blue Gene/Q demonstrate impressive strong-scaling results for important classes of phase functions. Using quasi-uniform sources, hyperbolic Radon transforms and an analogue of a 3D generalized Radon transform were respectively observed to strong-scale from 1-node/16-cores up to 1024-nodes/16,384-cores with greater than 90% and 82% efficiency, respectively.Comment: To appear in SIAM Journal on Scientific Computin

    EXPLORING MULTIPLE LEVELS OF PERFORMANCE MODELING FOR HETEROGENEOUS SYSTEMS

    Get PDF
    The current trend in High-Performance Computing (HPC) is to extract concurrency from clusters that include heterogeneous resources such as General Purpose Graphical Processing Units (GPGPUs) and Field Programmable Gate Array (FPGAs). Although these heterogeneous systems can provide substantial performance for massively parallel applications, much of the available computing resources are often under-utilized due to inefficient application mapping, load balancing, and tuning. While several performance prediction models exist to efficiently tune applications, they often require significant computing architecture knowledge for reliable prediction. In addition, they do not address multiple levels of design space abstraction and it is often difficult to choose a reliable prediction model for a given design. In this research, we develop a multi-level suite of performance prediction models for heterogeneous systems that primarily targets Synchronous Iterative Algorithms (SIAs). The modeling suite aims to produce accurate and straightforward application runtime prediction prior to the actual large-scale implementation. This suite addresses two levels of system abstraction: 1) low-level where partial knowledge of the application implementation is present along with the system specifications and 2) high-level where the implementation details are minimum and only high-level computing system specifications are given. The performance prediction modeling suite is developed using our proposed Synchronous Iterative GPGPU Execution (SIGE) model for GPGPU clusters, motivated by the RC Amenability Test for Scalable Systems (RATSS) model for FPGA clusters. The low-level abstraction for GPGPU clusters consists of a regression-based performance prediction framework that statistically abstracts system architecture characteristics, enabling performance prediction without detailed architecture knowledge. In this framework, the overall execution time of an application is predicted using regression models developed for host-device computations and network-level communications performed in the algorithm. We have used a family of Spiking Neural Network (SNN) models and an Anisotropic Diffusion Filter (ADF) algorithm as SIA case studies for verification of the regression-based framework and achieved over 90% prediction accuracy compared to the actual implementations for several GPGPU cluster configurations tested. The results establish the adequacy of the low-level abstraction model for advanced, fine-grained performance prediction and design space exploration (DSE). The high-level abstraction consists of the following two primary modeling approaches: qualitative modeling that uses existing subjective-analytical models for computation and communication; and quantitative modeling that predicts computation and communication performance by measuring hardware events associated with objective-analytical models using micro-benchmarks. The performance prediction provided by the high-level abstraction approaches, albeit coarse-grained, delivers useful insight into application performance on the chosen heterogeneous system. A blend of the two high-level modeling approaches, labeled as hybrid modeling, is explored for insightful preliminary performance prediction. The performance prediction models in the multi-level suite are verified and compared for their accuracy and ease-of-use, allowing developers to choose a model that best satisfies their design space abstraction. We also construct a roadmap that guides user from optimal Application-to-Accelerator (A2A) mapping to fine-grained performance prediction, thereby providing a hierarchical approach to optimal application porting on the target heterogeneous system. The end goal of this dissertation research is to offer the HPC community a thorough, non-architecture specific, performance prediction framework in the form of a hierarchical modeling suite that enables them to optimally utilize the heterogeneous resources

    Efficient Broadcast for Multicast-Capable Interconnection Networks

    Get PDF
    The broadcast function MPI_Bcast() from the MPI-1.1 standard is one of the most heavily used collective operations for the message passing programming paradigm. This diploma thesis makes use of a feature called "Multicast", which is supported by several network technologies (like Ethernet or InfiniBand), to create an efficient MPI_Bcast() implementation, especially for large communicators and small-sized messages. A preceding analysis of existing real-world applications leads to an algorithm which does not only perform well for synthetical benchmarks but also even better for a wide class of parallel applications. The finally derived broadcast has been implemented for the open source MPI library "Open MPI" using IP multicast. The achieved results prove that the new broadcast is usually always better than existing point-to-point implementations, as soon as the number of MPI processes exceeds the 8 node boundary. The performance gain reaches a factor of 4.9 on 342 nodes, because the new algorithm scales practically independently of the number of involved processes.Die Broadcastfunktion MPI_Bcast() aus dem MPI-1.1 Standard ist eine der meistgenutzten kollektiven Kommunikationsoperationen des nachrichtenbasierten Programmierparadigmas. Diese Diplomarbeit nutzt die Multicastfähigkeit, die von mehreren Netzwerktechnologien (wie Ethernet oder InfiniBand) bereitgestellt wird, um eine effiziente MPI_Bcast() Implementation zu erschaffen, insbesondere für große Kommunikatoren und kleinere Nachrichtengrößen. Eine vorhergehende Analyse von existierenden parallelen Anwendungen führte dazu, dass der neue Algorithmus nicht nur bei synthetischen Benchmarks gut abschneidet, sondern sein Potential bei echten Anwendungen noch besser entfalten kann. Der letztendlich daraus entstandene Broadcast wurde für die Open-Source MPI Bibliothek "Open MPI" entwickelt und basiert auf IP Multicast. Die erreichten Ergebnisse belegen, dass der neue Broadcast üblicherweise immer besser als jegliche Punkt-zu-Punkt Implementierungen ist, sobald die Anzahl von MPI Prozessen die Grenze von 8 Knoten überschreitet. Der Geschwindigkeitszuwachs erreicht einen Faktor von 4,9 bei 342 Knoten, da der neue Algorithmus praktisch unabhängig von der Knotenzahl skaliert

    ATCOM: Automatically Tuned Collective Communication System for SMP Clusters

    Full text link
    corecore