
Clemson University
TigerPrints

All Dissertations Dissertations

12-2013

EXPLORING MULTIPLE LEVELS OF
PERFORMANCE MODELING FOR
HETEROGENEOUS SYSTEMS
Venkittaraman Vivek Pallipuram Krishnamani
Clemson University, kpallip@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Pallipuram Krishnamani, Venkittaraman Vivek, "EXPLORING MULTIPLE LEVELS OF PERFORMANCE MODELING FOR
HETEROGENEOUS SYSTEMS" (2013). All Dissertations. 1232.
https://tigerprints.clemson.edu/all_dissertations/1232

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1232&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1232&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1232&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1232&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1232&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/1232?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1232&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

EXPLORING MULTIPLE LEVELS OF PERFORMANCE MODELING FOR

HETEROGENEOUS SYSTEMS

A Dissertation

Presented to

The Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Computer Engineering

By

Venkittaraman Vivek Pallipuram Krishnamani

December 2013

Accepted by:

Dr. Melissa C. Smith, Committee Chair

Dr. Haiying (Helen) Shen

Dr. Walter Ligon III

Dr. Amy Apon

 ii

ABSTRACT

The current trend in High-Performance Computing (HPC) is to extract concurrency

from clusters that include heterogeneous resources such as General Purpose Graphical

Processing Units (GPGPUs) and Field Programmable Gate Array (FPGAs). Although

these heterogeneous systems can provide substantial performance for massively parallel

applications, much of the available computing resources are often under-utilized due to

inefficient application mapping, load balancing, and tuning. While several performance

prediction models exist to efficiently tune applications, they often require significant

computing architecture knowledge for reliable prediction. In addition, they do not address

multiple levels of design space abstraction and it is often difficult to choose a reliable

prediction model for a given design.

In this research, we develop a multi-level suite of performance prediction models for

heterogeneous systems that primarily targets Synchronous Iterative Algorithms (SIAs).

The modeling suite aims to produce accurate and straightforward application runtime

prediction prior to the actual large-scale implementation. This suite addresses two levels

of system abstraction: 1) low-level where partial knowledge of the application

implementation is present along with the system specifications and 2) high-level where

the implementation details are minimum and only high-level computing system

specifications are given. The performance prediction modeling suite is developed using

our proposed Synchronous Iterative GPGPU Execution (SIGE) model for GPGPU

clusters, motivated by the RC Amenability Test for Scalable Systems (RATSS) model for

FPGA clusters.

 iii

The low-level abstraction for GPGPU clusters consists of a regression-based

performance prediction framework that statistically abstracts system architecture

characteristics, enabling performance prediction without detailed architecture knowledge.

In this framework, the overall execution time of an application is predicted using

regression models developed for host-device computations and network-level

communications performed in the algorithm. We have used a family of Spiking Neural

Network (SNN) models and an Anisotropic Diffusion Filter (ADF) algorithm as SIA case

studies for verification of the regression-based framework and achieved over 90%

prediction accuracy compared to the actual implementations for several GPGPU cluster

configurations tested. The results establish the adequacy of the low-level abstraction

model for advanced, fine-grained performance prediction and design space exploration

(DSE). The high-level abstraction consists of the following two primary modeling

approaches: qualitative modeling that uses existing subjective-analytical models for

computation and communication; and quantitative modeling that predicts computation

and communication performance by measuring hardware events associated with

objective-analytical models using micro-benchmarks. The performance prediction

provided by the high-level abstraction approaches, albeit coarse-grained, delivers useful

insight into application performance on the chosen heterogeneous system. A blend of the

two high-level modeling approaches, labeled as hybrid modeling, is explored for

insightful preliminary performance prediction.

The performance prediction models in the multi-level suite are verified and compared

for their accuracy and ease-of-use, allowing developers to choose a model that best

 iv

satisfies their design space abstraction. We also construct a roadmap that guides user

from optimal Application-to-Accelerator (A2A) mapping to fine-grained performance

prediction, thereby providing a hierarchical approach to optimal application porting on

the target heterogeneous system. The end goal of this dissertation research is to offer the

HPC community a thorough, non-architecture specific, performance prediction

framework in the form of a hierarchical modeling suite that enables them to optimally

utilize the heterogeneous resources.

 v

DEDICATION

I dedicate this dissertation to my mother, father, academic advisor, and all teachers that

shaped my life. I also dedicate this dissertation to my younger brother, cousins, close

family members, and friends; they are the source of my happiness. Special dedications to

three symbols in my life: Saraswati (Knowledge), Ganesh (Success), and Hanuman

(Strength).

 vi

ACKNOWLEDGMENTS

Five years of graduate school at Clemson were the golden years of my life. I was able to

advance myself intellectually, physically, and spiritually. I owe heartfelt thanks to my

advisor Dr. Melissa C. Smith for making my graduate life an enriching experience; I

could not have asked for a better mentor. She encouraged me at each turn with her

wisdom and insightful suggestions that made research, writing, and teaching enjoyable. I

sincerely hope to follow in her footsteps. I would like to thank my committee members:

Dr. Helen Shen, Dr. Walter Ligon, and Dr. Amy Apon for reviewing my dissertation

work. They taught me several aspects of parallel computing and provided me with

necessary resources that contributed significantly to this dissertation research. I would

also like to thank Dr. Smith, Dr. Ligon and Dr. Apon for providing me with several

opportunities to represent Clemson at top-tier conferences including Super-Computing

(SC), which contributed significantly to my professional development.

Many thanks to the National Science Foundation (NSF) for their support with research

grant (NSF Career Award #1149644), resources provided by XSEDE, Clemson

University CITI, and NSF MRI Grant #1228312 that made this dissertation possible.

Special thanks to my professional family at Future Computing Technologies (FCTLab)

group here at Clemson University for all the jovial and fun-filled discussions.

Finally, I would like to thank my parents for their unwavering support and teaching me

valuable life lessons. My friends Abhishek, Koushik, Chinmay, Sudershan, Jyoti, Vijay,

CM, Raj, and many others that I undoubtedly missed, I can’t thank enough for having

you in my life. Go Tigers!

 vii

TABLE OF CONTENTS

Page

TITLE PAGE .. i

ABSTRACT ... ii

DEDICATION ... v

ACKNOWLEDGMENTS .. vi

LIST OF TABLES ... x

LIST OF FIGURES .. xvi

CHAPTER

 I. INTRODUCTION ... 1

 Motivation .. 1

 Dissertation Research... 3

 Method of Study .. 7

 Dissertation Outline ... 8

 II. LITERATURE REVIEW .. 9

 Performance Modeling: GPGPU-Based Systems 10

 Performance Modeling: FPGA-Based Systems 19

 Network-level Modeling .. 20

 SNNs and ADF .. 21

 Summary .. 24

 III. BACKGROUND ... 25

 GPGPU Architecture ... 25

 Spiking Neural Networks (SNNs) and Large-Scale

 SNN Simulations ... 31

 Non Linear Anisotropic Diffusion Filter (ADF) 34

 Summary .. 37

 viii

Table of Contents (Continued) Page

 IV. EXPERIMENTAL SET-UP, MAPPING,

 ORCHESTRATION, AND

 PERFORMANCE ANALYSIS STUDY ... 39

 Experimental Set-up... 39

 SNN Mapping and Orchestration ... 41

 ADF Mapping and Orchestration ... 44

 Performance Analysis Study: SNNs .. 47

 Performance Analysis Study: ADF .. 56

 Summary .. 62

 V. SIGE MODEL AND MULTI-LEVEL PERFORMANCE

 MODELING SUITE .. 64

 Synchronous Iterative GPGPU Execution (SIGE) Model 64

 Multi-level Modeling Suite: Low-Level Abstraction 69

 Multi-level Modeling Suite: High-Level Abstraction.................................. 71

 Summary .. 73

 VI. THE LOW-LEVEL ABSTRACTION ... 75

 Multiple Regression Analysis .. 75

 Low-Level Abstraction: Regression-Based Framework 77

 GPGPU DSE Using Low-Level Abstraction ... 91

 Summary .. 100

 VII. VERIFICATION OF THE

 LOW-LEVEL ABSTRACTION ... 102

 Verification Results: SNNs .. 102

 Verification Results: ADF ... 113

 Results and Analysis for DSE .. 119

 SWO Analysis of the Regression-Based Framework 125

 Summary .. 131

 VIII. THE HIGH-LEVEL ABSTRACTION .. 133

 Qualitative Modeling ... 133

 Quantitative Modeling ... 141

 Summary .. 151

 ix

Table of Contents (Continued) Page

 IX. VERIFICATION OF THE

 HIGH-LEVEL ABSTRACTION... 154

 Verification Results: Qualitative Modeling ... 154

 Verification Results: Quantitative Modeling ... 157

 Hybrid Modeling .. 168

 Strengths, Weaknesses, and, Opportunities (SWO)

 Analysis.. 176

 Summary .. 178

 X. CONCLUSIONS AND FUTURE RESEARCH 180

 Dissertation Summary .. 180

 Model Selection Criteria .. 191

 Contributions and Outcomes.. 193

 Future Work ... 194

BIBLIOGRAPHY .. 197

APPENDIX A .. 209

 Tying-it-all-Together:

 Application-to-Accelerator Roadmap ... 209

APPENDIX B .. 213

 List of Frequently Used Acronyms .. 213

 x

LIST OF TABLES

Table Page

 3.1 FLOPs/Byte Ratio for SNN Models .. 33

 4.1 HH model: Statistical-Average

 Runtime Values (in milliseconds) ... 48

 4.2 HH model: multi-GPGPU vs. MPI-only

 Implementation .. 50

 4.3 ML model: Statistical-Average

 Runtime Values (in milliseconds) ... 51

 4.4 Wilson model: Statistical-Average

 Runtime Values (in milliseconds) ... 52

 4.5 Izhikevich model: Statistical-Average

 Runtime Values (in milliseconds) ... 53

 4.6 Izhikevich model: multi-GPGPU vs. MPI-only

 Implementation .. 55

 4.7 ADF: Statistical-Average Kernel Runtimes (ms) .. 57

 4.8 PSNR Values (in dB) for Varying Test Image Sizes 58

 4.9 Final output PSNR Values (in dB) for Varying

 Images Sizes and Node Configurations ... 58

 4.10 ADF: Statistical-Average Runtime Values (ms) .. 59

 4.11 ADF: Scaling Efficiency Values, η (%) ... 59

 4.12 Speed-up Values: Multi-GPGPU Implementation vs.

 MPI-only Implementation .. 62

 6.1 GPGPU Kernel Execution Time for SNN Models 80

 6.2 FLOPs, Bytes, and FLOPs/Byte ratio

 per Data Element.. 81

 xi

List of Tables (Continued)

Table Page

 6.3 Vmax (MB/sec) and Km (MB) for

 Scatter and Gather Operations .. 84

 6.4 Regression Models for sendrecv Operation

 in ADF Algorithm .. 85

 6.5 Vmax (MB/sec) and Km (MB) for PCI-Ex

 Download and Read-back .. 87

 6.6 Regression Models for Download and

 Read-back Throughput (MB/sec) ... 88

 7.1 HH model: Estimated and Experimental Time Values for

 Computation Component ... 104

 7.2 HH model: Estimated and Experimental Time Values for

 Communication Component .. 105

 7.3 HH model: Estimated Runtime, Experimental Runtime,

 And Error Rate ... 105

 7.4 ML model: Estimated and Experimental Time Values for

 Computation Component ... 107

 7.5 ML model: Estimated and Experimental Time Values for

 Communication Component .. 107

 7.6 ML model: Estimated Runtime, Experimental Runtime,

 And Error Rate ... 108

 7.7 Wilson model: Estimated and Experimental Time Values for

 Computation Component ... 109

 7.8 Wilson model: Estimated and Experimental Time Values for

 Communication Component .. 109

 7.9 Wilson model: Estimated Runtime, Experimental Runtime,

 And Error Rate ... 110

 xii

List of Tables (Continued)

Table Page

 7.10 Izhikevich model: Estimated and Experimental Time Values

 for Computation Component ... 111

 7.11 Izhikevich model: Estimated and Experimental Time Values

 for Communication Component .. 112

 7.12 Izhikevich model: Estimated Runtime, Experimental

 Runtime, and Error Rate .. 112

 7.13 Izhikevich model: Estimated and Experimental Time Values

 for Computation Component ... 114

 7.14 Izhikevich model: Estimated and Experimental Time Values

 for Communication Component .. 115

 7.15 Izhikevich model: Estimated Runtime, Experimental

 Runtime, and Error Rate .. 115

 7.16 ADF: Estimated and Experimental Time Values for

 Computation Component ... 117

 7.17a ADF: Estimated and Experimental Time Values for

 Communication Component .. 117

 7.17b ADF: Prediction Error in Communication Component 118

 7.18 ADF: Estimated Runtime, Experimental Runtime,

 And Error Rate ... 118

 7.19 Observed and Predicted Runtime Values (in ms)

 for Implementation 1.. 120

 7.20 Observed and Predicted Runtime Values (in ms)

 for Implementation 2.. 121

 7.21 Observed and Predicted Runtime Values (in ms)

 for Implementation 3.. 122

 xiii

List of Tables (Continued)

Table Page

 7.22 Observed Kernel Runtime Values for

 Three Design Space Implementations ... 123

 7.23 Predicted Kernel Runtime Values for

 Three Design Space Implementations ... 124

 7.24 HH Model on Fermi: Observed and Predicted Values

 for Total Execution Time (ms) .. 126

 7.25 ML Model on Fermi: Observed and Predicted Values

 for Total Execution Time (ms) .. 126

 7.26 Wilson Model on Fermi: Observed and Predicted Values

 for Total Execution Time (ms) .. 127

 7.27 Izhikevich Model on Fermi: Observed and Predicted Values

 for Total Execution Time (ms) .. 127

 7.28 HH Model on Kepler: Observed and Predicted Values

 for Total Execution Time (ms) .. 127

 7.29 ML Model on Kepler: Observed and Predicted Values

 for Total Execution Time (ms) .. 128

 7.30 Wilson Model on Kepler: Observed and Predicted Values

 for Total Execution Time (ms) .. 128

 7.31 Izhikevich Model on Kepler: Observed and Predicted Values

 for Total Execution Time (ms) .. 128

 8.1 Overhead (ms) and Message Gap (ms/KB)

 for Scatter Time ... 149

 8.2 Overhead (ms) and Message Gap (ms/KB)

 for Gather Time.. 149

 8.3 Overhead (ms) and Message Gap (ms/KB)

 for Sendrecv Time.. 149

 xiv

List of Tables (Continued)

Table Page

 8.4 Overhead (ms) and Message Gap (ms/KB) for

 Download and Read-back Time... 151

 9.1 HH Model: Observed and Estimated

 Kernel Runtime Values (ms) ... 155

 9.2 ML Model: Observed and Estimated

 Kernel Runtime Values (ms) ... 156

 9.3 Wilson Model: Observed and Estimated

 Kernel Runtime Values (ms) ... 156

 9.4 Izhikevich Model: Observed and Estimated

 Kernel Runtime Values (ms) ... 156

 9.5 ADF: Observed and Estimated

 Kernel Runtime Values (ms) ... 156

 9.6 Kepler (K20) GPGPU Device

 Parameter Values ... 158

 9.7 SNN Models: Application Specific Parameters .. 158

 9.8 HH Model: Objective-Analytical

 Model Parameter Values; 4-Node Configuration 159

 9.9 SNN Models: Observed and Estimated

 Kernel Runtime Values (ms) ... 160

 9.10 HH Model: Observed and Predicted Time Values

 for Computation Component ... 169

 9.11 HH Model: Observed and Predicted Time Values

 for Communication Component .. 170

 9.12 HH Model: Observed and Predicted

 Execution Time Values .. 170

 xv

List of Tables (Continued)

Table Page

 9.13 ML Model: Observed and Predicted Time Values

 for Computation Component ... 171

 9.14 ML Model: Observed and Predicted Time Values

 for Communication Component .. 171

 9.15 ML Model: Observed and Predicted

 Execution Time Values .. 171

 9.16 Wilson Model: Observed and Predicted Time Values

 for Computation Component ... 172

 9.17 Wilson Model: Observed and Predicted Time Values

 for Communication Component .. 172

 9.18 Wilson Model: Observed and Predicted

 Execution Time Values .. 172

 9.19 Izhikevich Model: Observed and Predicted Time Values

 for Computation Component ... 173

 9.20 Izhikevich Model: Observed and Predicted Time Values

 for Communication Component .. 173

 9.21 Izhikevich Model: Observed and Predicted

 Execution Time Values .. 174

 9.22 ADF: Observed and Predicted Time Values

 for Computation Component ... 174

 9.23 ADF: Observed and Predicted Time Values

 for Communication Component .. 175

 9.24 ADF: Observed and Predicted

 Execution Time Values .. 175

 xvi

LIST OF FIGURES

Figure Page

 3.1 An SMX in Kepler GK110 Architecture ... 28

 3.2 Two-Level Character Recognition Network .. 34

 4.1 An Example Layout of a server in the

 NCSA Forge Cluster .. 40

 4.2 The Concept of Block Firing Vector ... 42

 4.3 Multi-GPGPU Orchestration using

 Master-Worker Paradigm... 44

 4.4 Four Stages in Multi-GPGPU Orchestration ... 47

 4.5 HH model: Runtime Breakdown for 32-node

 Configuration ... 49

 4.6 ML model: Runtime Breakdown for 32-node

 Configuration ... 51

 4.7 Wilson model: Runtime Breakdown for 32-node

 Configuration ... 53

 4.8 Izhikevich: Runtime Breakdown for 32-node

 Configuration ... 54

 4.9 Overall Runtime Breakdown for 32-node

 Configuration ... 60

 4.10 Overall Runtime Breakdown for 4-node

 Configuration ... 61

 5.1a SIGE Model ... 66

 5.1b 1:1 Host-Device Pair .. 66

 5.2 The Multi-Level Performance Modeling Suite .. 73

 xvii

List of Figures (Continued)

Figure Page

 6.1 Scatter Throughput vs. Message Size .. 83

 6.2 Gather Throughput vs. Message Size .. 83

 6.3 Sendrecv Throughput vs. Data Exchange Size .. 84

 6.4 Download Throughput vs. Message Size... 86

 6.5 Read-back Throughput vs. Message Size .. 87

 6.6 Scatter Throughput Prediction for 8-node Configuration

 Using Michaelis-Menten Kinetics ... 90

 6.7 Scatter Throughput Prediction for 8-node Configuration

 Using Log-Transformation .. 91

 8.1 HH Model: Element Throughput vs.

 Number of Elements .. 136

 8.2 ML Model: Element Throughput vs.

 Number of Elements .. 136

 8.3 Wilson Model: Element Throughput vs.

 Number of Elements .. 137

 8.4 Izhikevich Model: Element Throughput vs.

 Number of Elements .. 137

 8.5 ADF: Element Throughput vs.

 Number of Elements .. 140

 8.6 4-node Scatter Time vs. Message Size:

 Data Region 1 KB – 512 KB ... 147

 8.7 4-node Scatter Time vs. Message Size:

 Data Region 512 KB – 1024 KB ... 147

 8.8 4-node Scatter Time vs. Message Size:

 Data Region Over 1024 KB ... 148

 xviii

List of Figures (Continued)

Figure Page

 8.9 Download Time vs. Message Size 1 B – 8 KB .. 150

 8.10 Download Time vs. Message Size 8 KB – 512 KB 150

 8.11 Download Time vs. Message Size 512 KB – 1024 KB 150

 8.12 Download Time vs. Message Size 1 MB – 8 MB...................................... 150

 8.13 Download Time vs. Message Size 8 MB – 256 MB.................................. 151

 9.1 Scatter Time Prediction for 4-Node Configuration 161

 9.2 Scatter Time Prediction for 8-Node Configuration 161

 9.3 Scatter Time Prediction for 16-Node Configuration 162

 9.4 Gather Time Prediction for 4-Node Configuration 163

 9.5 Gather Time Prediction for 8-Node Configuration 163

 9.6 Gather Time Prediction for 16-Node Configuration 164

 9.7 Sendrecv Time Prediction for 4-Node Configuration 164

 9.8 Sendrecv Time Prediction for 8-Node Configuration 165

 9.9 Sendrecv Time Prediction for 16-Node Configuration 165

 9.10 HH model: Overall Download Time Prediction

 for 8-Node Configuration ... 167

 9.11 ADF: Overall Read-back Time Prediction

 for 8-Node Configuration .. 167

 A.1 Application-to-Accelerator Roadmap .. 210

 1

CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

There is widespread speculation that the principles of the Moore’s law for increasing the

single-core processor performance will no longer hold [1]. Because of power and memory clock

limitations, the industrial trend has shifted to multi-core and many-core processors. Many

vendors including IBM, AMD, and Intel are demonstrating many-core processor prototypes that

can theoretically achieve performance over 1 Teraflops. Intel’s Many Integrated Core (MIC)

architecture is one such initiative that claims to surpass the Exascale performance barrier using a

combination of several MICs [2]. However, amongst these advancements, hybrid accelerators

such as the General Purpose Graphical Processing Units (GPGPUs) and Field Programmable

Gate Arrays (FPGAs) continue to remain effective and popular in the High-Performance

Computing (HPC) community. These architectures have been reported to provide several orders

of magnitude higher performance compared to traditional sequential processors. Furthermore, the

aforementioned architectures provide high floating-point operations per second per watt

(FLOPS/watt) performance, an increasingly important parameter in green super-computing [3].

With the advent of GPGPUs and FPGAs in HPC, the conventional methods of seeking

concurrency in a homogeneous environment no longer apply. The current trend is to extract

concurrency from heterogeneous clusters that include GPGPU and FPGA clusters [4 and 5].

Current state-of-the-art heterogeneous systems are composed of several thousand compute nodes

 2

where each node consists of multiple CPU-cores in conjunction with one or more hybrid

accelerators.

Although these heterogeneous systems can provide substantial performance for massively

parallel applications, much of their computing resources are often under-utilized due to

inefficient application mapping, load-balancing, and tuning, ultimately leading to poor

application speed-up and sub-optimal scaling efficiency. This inefficiency further leads to

secondary effects such as long job queue delays and increased power consumption [6]. To

achieve optimal utilization of heterogeneous resources, it is important to perform efficient load-

balancing between the CPU-cores and accelerators. Several performance prediction models exist

that enable developers to efficiently tune applications via design space exploration [6, 7, and 8].

Typically, the performance prediction models are used to predict application runtime prior to the

actual execution, allowing developers to further fine-tune their applications. Although existing

performance prediction models are sufficiently accurate, they do not address multiple levels of

design space abstraction and it is often difficult to choose a reliable prediction model for the

given design goals. Additionally, the existing performance prediction models often require

intricate knowledge of the underlying computing architecture for accurate prediction, making the

modeling task difficult. With the above as motivation, we formally introduce the problem

statement:

Design a straightforward and accurate performance prediction framework for

heterogeneous clusters that addresses multiple levels of design space abstraction,

allowing developers to choose an effective performance model that best fits their design

needs and goals.

 3

1.2 DISSERTATION RESEARCH

We develop a multi-level suite of performance prediction models for heterogeneous systems

that primarily targets Synchronous Iterative Algorithms (SIAs). The modeling suite aims to

accurately predict application runtime with a user-friendly approach prior to actual large-scale

implementation. The application runtime prediction is also employed to perform Design Space

Exploration (DSE) that enables researchers to ultimately map an optimal implementation to the

target heterogeneous cluster, thereby facilitating high application performance. The modeling

suite addresses two levels of system abstraction: 1) low-level where partial knowledge of the

implementation is present along with the target system specifications and 2) high-level where the

implementation details are minimum and only high-level computing system specifications are

given. The multi-level performance modeling suite is developed using our proposed Synchronous

Iterative GPGPU Execution (SIGE) model for GPGPU clusters, motivated by the existing RC

Amenability Test for Scalable Systems (RATSS) model [9] for FPGA clusters. These execution

models describe the execution flow of SIAs on GPGPU and FPGA clusters, respectively.

The low-level abstraction of the modeling suite consists of a regression-based performance

prediction framework that statistically abstracts the system architecture characteristics, thereby

enabling performance and scalability prediction without detailed system architecture knowledge.

The regression-based framework is broken into two primary components: the computation

component that models the hybrid accelerator and host computations; and the communication

component that models the network-level communications. The regression models for the

computation component use algorithm characteristics such as the number of floating-point

operations (FLOPs) performed and total number of bytes required as predictor variables. It is

worth mentioning that FLOPS and FLOPs are two distinct parameters; FLOPS (floating-point

 4

operations per second) is a measure of computer performance, whereas FLOPs is the number of

floating-point operations performed in an algorithm. The regression models are trained using

several small instrumented executions of an SIA set with a range of communication-to-

computation requirements. The communication component of the regression-based framework is

broken into two sub-components: 1) inter-processor communication over Infiniband [10] and 2)

CPU-host/GPGPU-device (host-device) communication over Peripheral Interconnect Express

(PCI-Ex) bus [11]. The regression models for the communication component are developed

using micro-benchmarks and employ data transfer size and processor count as predictor

variables.

The high-level abstraction of the modeling suite relies on minimum implementation details

and high-level system specifications to model the computations and communications. The high-

level abstraction consists of the following two primary modeling approaches: Qualitative

Modeling and Quantitative Modeling. The qualitative modeling uses subjective-analytical

models for the computation and communication components. The quantitative modeling

approach predicts computation and communication performance by measuring hardware events

associated with objective-analytical models using micro-benchmarks. The measurement of

hardware events such as arithmetic operation throughput, device memory bandwidth, latency and

bandwidth of the network (and interconnects), etc. in conjunction with algorithm characteristics

enables the developer to estimate the application execution time. The qualitative and quantitative

approaches are combined to yield an intermediate hybrid approach where a few performance

components are estimated analytically, while the remaining components are estimated by

employing micro-benchmarks. In this dissertation research, we show that amongst the high-level

 5

abstraction approaches, the hybrid approach is a viable paradigm to perform high quality

performance prediction on the chosen computing platform.

The two levels of the modeling suite are verified with large-scale SNN simulations and a

non-linear anisotropic diffusion filter (ADF) algorithm for massive images as SIA case studies.

We implemented both applications on the National Center for Supercomputing Applications

(NCSA) Forge GPGPU cluster [12] and achieved significantly high performance versus the

Message Passing Interface (MPI)-only implementations. The multi-GPGPU based large-scale

SNN simulations scale up to 200 million neurons using a 32-node cluster configuration and

achieves speed-up as high as 253x compared to an equivalent MPI-only implementation [13].

The multi-GPGPU implementation of the ADF is capable of processing images as large as 156

mega-pixels and achieves 11.5x speed-up using a 32-node GPGPU cluster configuration when

compared to an equivalent MPI-only implementation [14].

The multi-level performance prediction models are compared for their accuracy and ease-of-

use, thereby providing model selection criteria that allow developers to choose a prediction

model that best satisfies their design space abstraction. The verification of the low-level

abstraction reports average prediction accuracy over 90% compared to the actual

implementations for several tested GPGPU cluster configurations, making it practicable for

advanced, fine-grained performance prediction and design space exploration. Predictions with

the two high-level abstraction approaches were found to be coarse-grained; however the hybrid

approach, a suitable combination of these two modeling strategies, is an efficacious paradigm

that provides significant insight into application performance, ergo highly suitable for

preliminary performance prediction on the chosen or potential heterogeneous systems.

 6

The dissertation research also provides a roadmap for users to perform optimal Application-

to-Accelerator (A2A) mapping by means of appropriate architecture identification and

performance prediction (preliminary and advanced). In this roadmap, the first milestone is A2A

mapping that identifies an optimal accelerator for the application. The next milestone is

preliminary performance prediction, facilitated by the high-level abstraction approach, to obtain

an insight into application performance on the selected accelerator platform. This task also

enables the identification of plausible optimization techniques for high application performance.

The last milestone is constituted by the low-level abstraction that determines the best

implementation for the target system via DSE. The A2A roadmap facilitates a hierarchical

approach to optimal application porting on the heterogeneous system. It is worth mentioning that

we follow a bottom-up approach to construct the performance modeling suite (low-level

abstraction to high-level abstraction). However, the A2A roadmap seeks a top-down approach

(high-level abstraction to low-level abstraction) for application performance prediction that is

most useful for developers.

The end goal of this dissertation research is to offer the HPC community a thorough

performance prediction framework in the form of a hierarchical modeling suite that enables them

to optimally utilize the heterogeneous resources without requiring intricate knowledge of the low

level architectures or restricting the specific architectures or accelerators used. The outcomes and

contributions of this doctoral dissertation research are summarized below.

1) Development of synchronous iterative execution model (SIGE) for GPGPU clusters.

2) Development of a multi-level performance modeling suite for heterogeneous systems

encompassing multiple levels of system abstraction.

 7

3) Verification of the modeling suite using Synchronous Iterative Algorithms (SIAs) with a

range of computation-to-communication requirements.

4) Application of the low-level abstraction for Design Space Exploration (DSE).

5) Performance analysis of SIAs on the chosen heterogeneous systems (to confirm the

implementations achieve sufficient efficiency and scaling).

6) Tying-it-all-Together: A roadmap for users to perform optimal A2A mapping.

1.3 METHOD OF STUDY

The set of highly biologically accurate SNN models and ADF algorithm, both SIAs, offer a

range of communication and computation requirements, making them valuable case studies to

verify the hierarchical performance model for this algorithm domain; these algorithms are used

to perform large-scale SNN and image filtering simulations, respectively.

The planned experiments are conducted on available heterogeneous clusters by varying the

problem size (neural network size, image size, etc.) and scaling the number of nodes in the

cluster. The heterogeneous resources include NCSA Forge GPGPU cluster [12] and GPGPU-

augmented Palmetto cluster [15]. In addition to verifying the performance prediction models for

accurate runtime prediction, performance and scalability studies are also conducted on the NCSA

Forge cluster to confirm the implementations achieve sufficient efficiency and scaling. Initial

verification of the regression-based framework (low-level abstraction) for GPGPU clusters using

the SNN models and ADF algorithm [16] is completed on the NCSA Forge GPGPU cluster. The

GPGPU DSE using low-level abstraction and high-level abstraction studies are performed on the

GPGPU-augmented Palmetto cluster.

 8

1.4 DISSERTATION OUTLINE

Chapter 2 provides a literature review of important work done in the field of heterogeneous

performance modeling. Following the literature survey, Chapter 3 provides the background on

the base GPGPU architectures and the SNN and ADF algorithms. Chapter 4 details the

experimental set-up, SIA mapping methodology and multi-node orchestration. This chapter also

provides the performance analysis study of SNN-ADF SIAs on the NCSA Forge cluster. The

development of SIGE model and multi-level performance prediction suite is explained in

Chapter 5. The low-level abstraction approach is elaborated in Chapter 6 followed by the

verification results provided in Chapter 7. The high-level abstraction approach is elucidated in

Chapter 8 and verified in Chapter 9. The dissertation is concluded in Chapter 10 with

conclusions and directions for future research. Appendix A provides the A2A roadmap.

 9

CHAPTER 2

LITERATURE REVIEW

Systematic architecture studies conducted on heterogeneous systems including GPGPU- and

FPGA-based clusters are widely documented in the literature. Several research activities have

focused on important performance modeling aspects that include runtime prediction, architecture

parameter study, load-balancing, programming models for HPC, and network-level modeling;

making them relevant to this dissertation research. The two SIA case studies discussed, namely

Spiking Neural Networks (SNNs) and Anisotropic Diffusion Filtering (ADF) have been

implemented on several leading architectures. In this chapter, we examine some of the prominent

heterogeneous performance modeling efforts targeting GPGPU- and FPGA-based systems and

several architecture studies using SNNs and ADF. The chapter is structured as follows. Section

2.1 examines performance modeling studies conducted on GPGPU-based systems, the primary

heterogeneous platform investigated in this research. We also review load-balancing studies,

performance tuning for applications, and programming models for GPGPU architectures. The

discussion of performance models for FPGA-based systems, influential in this research, follows

in Section 2.2. Section 2.3 reviews some of the important network-level modeling research.

Section 2.4 highlights the architecture studies conducted using SNNs and ADF. The chapter is

concluded with a summary in Section 2.5.

 10

2.1 PERFORMANCE MODELING: GPGPU-BASED SYSTEMS

In [17], the authors proposed an analytical model that estimates the execution time of

GPGPU kernels for massively parallel applications by estimating the number of memory

requests (memory-warp parallelism) and the number of computations (computation-warp

parallelism). Based on these warp-level parallelisms, the analytical model estimates the costs of

memory requests and computations, thereby estimating the overall execution time of the

application. The authors achieved geometric mean error rate of 5.4% for micro-benchmarks and

13.3% for other GPGPU applications. Although sufficiently accurate, the model proposed in [17]

requires meticulous evaluation of the warp-level parallelism for accurate runtime prediction.

Additionally, their analytical model is tightly-coupled to the Nvidia Tesla architecture used in the

GeForce-8 series, which is significantly different from subsequent GPGPU architectures.

In [7], the authors designed an analytical model to provide performance information to an

auto-tuning compiler, thereby assisting the fine-tuning of GPGPU implementations. The

analytical model interprets the GPGPU kernel as an abstract work-flow graph to estimate the

execution time. The authors used micro-benchmarks to characterize GPGPU micro-architecture

events such as incoherent memory accesses, shared memory bank conflicts, and control flow

divergence. The authors validated their model using commonly used benchmarks and observed

good agreement between the predicted and observed measurements. Similar to the research work

presented in [17], the model requires significant GPGPU micro-architecture knowledge for

accurate runtime prediction for complex applications.

In [18], the authors proposed a performance model for the Nvidia GeForce 200-series

GPGPUs using micro-benchmarks. The proposed model targets three major components of the

GPGPU execution time: instruction pipeline, shared memory accesses, and global memory

 11

accesses. Using real-world matrix problems, the authors achieved prediction performance with 5-

15% error rate. While the approach is expected to satisfactorily predict the aforementioned

architecture components, quantitative modeling of other micro-architecture events such as thread

block synchronization may not be trivial. A similar quantitative approach is presented in [19]

where the authors developed a micro-benchmark suite that measures CUDA-visible architectural

characteristics of the Nvidia GTX 280. The suite also measures several undisclosed architectural

features that impact program performance and correctness. Although the proposed suite is very

thorough with respect to the Nvidia GTX 280 architecture, continual revision of the micro-

benchmark suite is required to accommodate new architectural features as the GPGPU

architecture evolves.

In [8], the authors developed a methodology to predict the execution time of GPGPU

applications using runtime information from a single GPGPU implementation while varying the

number and configuration of GPGPU devices. The authors define per-element average as the

average time taken by the reference GPGPU device to execute a single computational entity in a

given algorithm. The authors then use the per-element average information to extrapolate the

algorithm execution time on M GPGPU devices, where M is the number of devices. The authors

estimate the performance of the PCI-Ex bus and network-level transactions using micro-

benchmarked throughput values and peak theoretical network bandwidth, respectively. The

authors used their prediction framework on six applications and achieved 11% average error rate.

Although straightforward, this approach to predicting the GPGPU execution time lacks statistical

rigor. Several algorithm parameters, including but not limited to floating-point operations

(FLOPs) and computational bytes, affect the GPGPU execution time. Therefore, it is extremely

important to characterize the relationship between GPGPU execution time and algorithm

 12

parameters. A similar argument can be used for predicting the performance of the PCI-Ex bus

and network-level transactions, where the data transaction behavior can be characterized using

statistical analysis.

Regression-based methods have been previously investigated for GPGPU design space

exploration. In [20], the authors proposed an automated tool developed using step-wise

regression modeling to evaluate the GPGPU performance. The tool randomly samples parameter

values from the GPGPU design space and simulates regression designs. The tool then selects the

most significant architecture parameters and their interactions to construct an estimator. The

authors reported less than 1.1% error rate for 11 GPGPU applications. Unlike the statistical

approach described in [20], the low-level abstraction of our proposed multi-level performance

modeling suite relies on easily accessible algorithm parameters such as FLOPs and

computational bytes for runtime prediction, thereby statistically capturing the architectural

behavior.

In [21], the authors developed an analytical tool called TEG (Timing Estimation tool for

GPU) to estimate the GPGPU device performance. The inputs to TEG are constituted by kernel

binary code and instruction trace obtained using cuobjdump [22] and Barra simulator [23],

respectively. TEG analyzes the binary code and instruction trace to generate information

regarding the type of instructions and operands used in the GPGPU kernel. The analytical tool

then uses instruction latency information obtained from micro-benchmarks [19] to evaluate the

total number of execution cycles. The authors used dense matrix multiplication as a case study

and achieved less than 10% error rate in execution cycle prediction. The authors admit that TEG

does not model other important parameters such as instruction pipeline stages and memory

 13

behavior. Additionally, their modeling methodology only supports a specific Nvidia GPGPU

device.

Similar to the work described in [21], Parallel Thread eXecution (PTX) kernels [24] have

been analyzed to solidify the understanding of GPGPU architectures. As mentioned in [24], PTX

defines a virtual machine and instruction set architecture (ISA) for parallel thread execution on

GPGPU devices. In [25], the authors proposed a set of metrics for GPGPU workloads to analyze

the behavior of GPGPU programs. The authors analyzed over 50 CUDA kernels from Nvidia

CUDA SDK [26] and UIUC’s Parboil benchmark suite [27]. The analysis was conducted to

study control flow, data flow, and memory behavior of CUDA programs using a PTX functional

emulator developed by the same authors. The authors also used the PTX functional emulator to

quantify the effects of common CUDA optimizations such as branch divergence reduction,

synchronization, etc. However, as mentioned in [21], direct PTX analysis is not always desirable

since resource allocations occur at the compiling stage from PTX to binary code. In [21], the

authors claim that since binary code is the native code that executes on the GPGPU device, this

level of analysis is more suitable for performance modeling and related studies.

In [28], the authors proposed a performance prediction model for GPGPU-based systems that

incorporates various components of the GPGPU architecture including warp scheduling, memory

hierarchy, and pipelining. The model is developed with a combination of the BSP model of

Valiant [29], the PRAM model of Fortune and Wyllie [30], and the extension to the PRAM

model proposed by Gibbons et al. called the QRQW model [31]. The proposed model derives a

relationship among the various components of the GPGPU architecture including the number of

cores, effects of memory latency, memory access conflicts, computing cost, scheduling, and

pipelining to analyze pseudo-code for a CUDA kernel and finally predicts the performance of an

 14

application. Unlike the regression-based framework developed in this research, the model in [28]

does not consider the performance of texture memory along with global and shared memories,

thereby providing limited insight into the GPGPU design space exploration (DSE).

In [32], the GPGPURoofline model was proposed to empirically guide the optimizations on

GPGPU devices with limited knowledge of the GPGPU architecture. The model explores the

potential performance bottlenecks and evaluates the impact of specific optimization techniques

on the overall kernel performance. The authors optimized representative applications, namely

matrix transpose, Laplace transform, and face detection on NVIDIA and AMD GPGPU devices

and achieved 3.74 to 14.8 times speed-up compared to the naïve implementations. The modeling

approach, similar to the popular Roofline model by Williams et al. [33] for multi-core

architectures, is primarily intended to evaluate the GPGPU performance optimizations. Unlike

the low-level abstraction methods developed in this dissertation research, the performance

prediction facilitated by the GPURoofline model is expected to be coarse-grained, hence of

limited value for accurate runtime and scalability predictions.

 In [34], the authors introduced a metric that accurately estimates the effect of control flow

divergence on application performance. The metric targets computation-bound GPGPU kernels

with control flow divergence and is used as a value function for thread re-grouping algorithms to

eliminate the divergence. The authors claim that their metric enables performance modeling

more efficiently versus the previous control flow divergence metrics such as divergent warps and

divergent branches. The authors tested the proposed metric on CUDA SDK examples [26] and

two real-world applications including 3D sound localization [35] and stereo-matching [36]. The

authors reported application performance improvement up to 3.19x using thread re-grouping [37]

 15

guided by the proposed metric. Similar to the study presented in [32], the research in [34] solely

aims at guiding users to perform kernel optimizations that improve the overall performance.

In [38], the authors presented an approach to analytical modeling by constructing a domain

specific language (DSL) called Aspen. Aspen includes a formal specification of an application’s

performance behavior and an abstract machine model. The DSL allows scientists to write

structured models of their applications and architecture, thereby describing the application

behavior and abstract machine model. The authors demonstrated the use of Aspen to express a

performance model for 3D Fast Fourier Transform (FFT), in addition, showed how Aspen allows

model composition by incorporating 3D FFT model for use in molecular dynamics. Although an

efficient tool for quick performance estimation, the proposed DSL is based on analytical models

that often provide coarse-grained predictions.

Recently, application specific performance models have been proposed to predict the

application execution time on GPGPU devices. In [39], the authors proposed an integrated

analytical and profile-based performance model to predict the CUDA kernel execution time for

Sparse Matrix Vector Multiplication (SpMV). The modeling approach involves two phases. In

the first phase, benchmark matrices are generated based on the GPGPU architectural features.

These benchmark matrices are then executed on the target GPGPU device to obtain the execution

time. In the second phase, the authors derive an analytical model that establishes a relationship

between the maximum number of rows that the target GPGPU device can execute at a time, the

number of non-zero elements per row in the target matrix, and execution times of the benchmark

matrices. Although the authors report less than 10% error rate for 32 test cases, the prediction

approach is tightly coupled to the SpMV application and must be revised as the GPGPU

architecture changes.

 16

The literature also reports multi-GPGPU studies that assist in the characterization and

performance modeling of GPGPU clusters. In [40], the authors studied Non-Uniform Memory

Access (NUMA) contention effects for shared system resources, quantified the contention

effects, and presented guidelines to maximize the performance. The authors conducted their tests

using the Scalable Heterogeneous Computing (SHOC) benchmark suite [41] and High-

Performance Linpack (HPL) [42] and concluded that significant NUMA contention effects

prevail in dual-IO hub multi-GPGPU systems. The authors claim that the severity of the

contention penalty depends on several factors such as computational density, number of kernel

executions per PCI-Ex transfer, and the fraction of the application ported to the GPGPU devices.

The authors suggest that sharing GPGPU devices among a small number of MPI tasks or threads

can increase GPGPU device utilization. The authors also suggest splitting MPI communication

and GPGPU traffic into different threads to alleviate the contention penalties and promote

maximum GPGPU bandwidth. The SHOC benchmark [41] proposed by the same authors is a

valuable tool to measure throughput values for several device related operations such as

arithmetic computations, host-device transfers, and hierarchical memory transactions (global,

shared, texture, and constant). The throughput values of the above mentioned parameters in turn

assist with the quantitative analysis of GPGPU performance.

In addition to performance modeling and GPGPU architecture studies, several research

activities have focused on load-balancing issues for GPGPU systems. These studies are

interesting since optimal performance is achieved only with efficient application tuning that

further aides in consolidated performance analysis. In [43], the authors presented a task-based

dynamic load-balancing solution in the form of a task queue scheme for single- and multi-

GPGPU systems. The authors assert that their scheme provides a load-balancing solution at a

 17

finer granularity compared to the Nvidia CUDA SDK [26]. The authors verified their scheme

using micro-benchmarks and a molecular dynamics application and achieved significant

performance improvement over other implementations. In [44], the authors proposed a technique

that distributes iso-surfacing load (used for scientific visualization) to GPGPU devices in a

cluster. The load-balanced implementation by the same authors is reported to exhibit strong

scalability and yield performance as high as 250 million triangles per second on 24 GPGPUs. In

[45], the authors studied different load-balancing schemes including: static task list, blocking

dynamic task queue, lock-free dynamic task queue, and task stealing to improve the performance

of GPGPU quicksort algorithm. The authors concluded that lock-free methods achieve better

scaling and higher performance over blocking methods for the quicksort algorithm on GPGPUs.

The programming models for GPGPU devices, such as the Compute Unified Device

Architecture (CUDA) [22] and Open Computing Language (OpenCL) [46], are integral for high

application performance. Although programming models are not commonly incorporated into

performance modeling, their study provides useful insight into application-on-accelerator

behavior. In what follows, we mention important programming model comparison studies and

recent programming paradigms developed for GPGPU devices. In [47], the authors accelerated

an EMRI modeling application using Nvidia’s C1060 as one of the accelerators and achieved

similar performance for both CUDA and OpenCL. In [48], the authors used the Adiabatic

Quantum Algorithms (AQUA), which are Monte Carlo simulations, to compare CUDA and

OpenCL on Nvidia’s GTX-260 (Compute capability 1.3). They compared the programming

models for data transfer time, kernel execution time and end-to-end runtime. They concluded

that CUDA implementations perform consistently better than the OpenCL implementations. In

[49], the authors studied the performance portability of OpenCL and concluded that the

 18

performance is not portable. They implemented TRSM and GEMM (both SGEMM and

DGEMM) from the BLAS library [50] for their studies on both Nvidia Fermi [51] and AMD

Radeon [52] architectures. Based on the above literature review for CUDA and OpenCL

programming paradigms, we conclude that CUDA programming model is an optimal choice for

high application performance on Nvidia GPGPU architectures.

Recently, directive-based programming models have emerged that provide different levels of

abstraction and require different levels of programming effort to port and optimize applications

on GPGPU devices. The examples of directive-based programming models include Hicuda [53],

OpenMPC [54], PGI Accelerator [55], and OpenACC [56]. In [57], the authors evaluated these

directive-based programming models by porting thirteen application kernels from various

scientific fields on CUDA GPGPU devices. Their evaluation reported that the directive-based

models can achieve reasonable performance versus the traditional hand-written GPGPU kernel

codes. They also concluded that the high-level abstraction provided by the directive-based

programming models will better assist in code portability for future architectures that combine

GPUs and CPUs onto the same die [58].

In this sub-section, some of the prominent GPGPU performance modeling and architecture

studies documented in the literature were discussed. Although the performance modeling

schemes discussed are sufficiently accurate, they present a number of shortcomings. Both the

analytical and quantitative models discussed require intricate GPGPU architecture knowledge for

viable performance prediction. The accuracy of qualitative models is highly sensitive to the

precise evaluation of model parameters. The quantitative models are prone to miss non-

measurable architecture parameters, leading to imprecise predictions. Additionally, the

quantitative approach is often tightly coupled to a specific GPGPU architecture, rendering them

 19

invalid/incomplete for future generations. Therefore, it is not always a clear choice for

developers to select a reliable prediction model for a given application. Unlike the performance

modeling approaches discussed in this sub-section, our research aims to provide a user-friendly

performance prediction framework that addresses multiple levels of design space abstraction,

thereby allowing developers to choose the best model for the given design goals and the level of

knowledge regarding the algorithm and architecture(s).

2.2 PERFORMANCE MODELING: FPGA-BASED SYSTEMS

Several research activities have focused on performance modeling of High-Performance

Reconfigurable Computing (HPRC) systems. Although our research does not include FPGA-

based systems, we mention relevant HPRC modeling studies that inspired the research work in

this dissertation. In [59], the author proposed a model for shared resource load imbalance,

dedicated resource imbalance, and communications in distributed applications utilizing shared

resources. The author validated the model using four implementations: Boolean Satisfiability,

Matrix-Vector Multiplication, Encryption, and CHAMPION demo algorithms. In [60], the

authors proposed the RC Amenability Test (RAT) model that provides a framework to predict

speed-up of applications on single-node FPGA-based systems. In [9], the authors extended the

RAT model for multi-node FPGA systems. The RATSS (RC Amenability Test for Scalable

Systems) model proposed in [9] predicts the application runtime by separately modeling the node

computations using the RAT model and inter-node communications using LogGP model [61].

The authors validated the RATSS model using 2D Probability Density Function (PDF)

estimation and image processing algorithms. The research presented in this dissertation is

motivated by the multi-FPGA-based system modeling studies presented in [9].

 20

2.3 NETWORK-LEVEL MODELING

In addition to performance analysis of node-level computations (device kernels, host

computations, and host-device transactions), it is imperative to perform efficient analysis of the

network-level transactions to accurately predict the application runtime on heterogeneous

clusters. In this sub-section, we discuss some of the important network-level modeling

techniques documented in the literature. In [62], the authors proposed the logP model that

attempts to capture important bottlenecks in parallel computing with a limited number of

parameters that include latency, overhead, bandwidth of communication, and the number of

processors. The authors claim that the logP model can sufficiently describe the performance

characteristics of several parallel machines. An extension to the logP model, parameterized logP

(plogP), provided in [63], incorporates the message size for measurements. The plogP model

defines five parameters, namely the number of processors, end-to-end latency, sender overhead,

receiver overhead, and bandwidth for a given message size. Although logP and plogP models are

state-of-the-art parallel machine models, the logGP model [61] is currently the most popular and

widely used parallel machine model. The logGP model adds the gap term, G for long messages

to the logP model. The experimental data collected by the authors in [61] shows that the logGP

model can accurately predict the communication performance for both long and short messages.

In [64], the authors derived a new logGP parameter assessment technique, netgauge that does not

saturate the network for measurements. The authors also proposed a methodology to detect

network protocol changes in the underlying communication system.

While the logP, PlogP, and logGP models constitute the foundation of any network-level

performance analysis, several other derivatives of the logP model exist that explain the

secondary network characteristics. The logGPG model [65] adds a network contention parameter

 21

to the traditional logGP model. The logGPS model [66] captures the synchronization needed

prior to sending long messages by high-level communication libraries. As mentioned in [66], the

logGPS model adds the parameter S that defines the threshold for message length above which

the synchronous messages are sent. In [67], the authors developed the logfP model that

characterizes the small message performance over Infiniband. The logfP model adds the

parameter f to the logP model, which indicates the number of messages where a small message

gap has not been accounted.

In our research, we develop a variant of the above mentioned performance models for

network communication, specifically in the high-level abstraction of the modeling suite.

Although the above mentioned models adequately describe the network characteristics,

communication transactions in heterogeneous systems often exhibit randomness in their behavior

as explored ahead in Chapter 7. Therefore, regression analysis of communications (both PCI-Ex

and network-level) enables us to capture the data transaction behavior statistically, thereby

abstracting high-level architecture details. Regression-based techniques for modeling the

communications using Michaelis-Menten kinetics [68] are expounded in Chapter 7.

2.4 SNNs and ADF

2.4.1 SNNs

Spiking Neural Networks (SNNs) are very popular in the neuroscience community for

modeling the mammalian brain to understand its functional and operational principles. The

ability of spiking neurons to reproduce most of the neuronal properties with high accuracy makes

them amenable for brain related studies [69]. Biologically inspired SNNs are popular in other

fields such as pattern recognition [70], artificial intelligence [71], and smart control of power

 22

grids [72]. In this section, we discuss some of the prominent architecture studies conducted using

large-scale SNN simulations.

In [73], the authors studied the mammalian brain neo-cortex and simulated a rat-size cortex

in 42% of real-time and a cat-size cortex in 23% of real-time on a 442-node Dell Xeon cluster.

In [74], the authors successfully utilized the Izhikevich SNN model to simulate a cat-size cortical

model with 10
9
 neurons and 10

13
 synapses using the BlueGene/P machine [75] with 147,456

processors and 144 TB of main memory. The authors claim their simulation scale is roughly 1-2

orders of magnitude smaller than the human cortex and 2-3 orders of magnitude slower than real-

time.

Heterogeneous architectures such as GPGPUs are now being investigated for biologically

realistic simulations. In [76], the authors implemented Izhikevich’s random network on Nvidia’s

GTX-280 with 1 GB memory and achieved a speed-up for a 100K neuron network simulation.

They also discussed mapping strategies on the GPGPU to efficiently utilize the memory

bandwidth and parallelism. In [77], the authors investigated GPGPU cluster-based

implementations of the Hodgkin-Huxley (HH) and Izhikevich SNN models using a two-level

character recognition network. They reported GPGPU speed-ups of 24.6x and 177x for the

Izhikevich and HH models, respectively. Their 16 GPGPU-based MPI implementation on a 32-

node Tesla S1070 NCSA cluster was successful in scaling the network up to 150 million neurons

and achieved 17910 millisecond runtime for the HH model.

2.4.2 ADF

The non-linear anisotropic diffusion filter (ADF) investigated in this research belongs to the

class of stencil-based algorithms for image processing. Several research activities have been

motivated by the cluster and grid computing paradigms for stencil-based image processing

 23

applications. In [78], the authors implemented an anisotropic diffusion filter for parallel and

distributed systems. Their implementation was parallelized with point-to-point and collective

communications using LAM-MPI [79] on a heterogeneous cluster of workstations. The

anisotropic filtering technique adopted by the authors used 30 iterations and a neighborhood

factor of 15. Their point-to-point and collective communication implementations achieved

performance gains of 81.9% and 93.8%, respectively, when compared to the execution time on a

single computing node. The authors observed that their collective communication

implementation was 21% more efficient when compared to the point-to-point communication

implementation.

The CUDA and hybrid CUDA/MPI paradigms have recently gained interest for stencil-based

image processing applications. In [80], the authors proposed a new method to remove Rician

noise from magnetic resonance images using GPGPU devices. The authors designed an

anisotropic diffusion filter that characterizes the direction of diffusion and pixel properties using

Eigen-values and Eigen-vectors. To preserve the edges, the authors coupled the proposed

anisotropic diffusion filter with a shock filter based on fuzzy sets. The authors compared their

filter implementation with the traditional anisotropic diffusion filter and wavelet based methods

and reported an average gain of 0.01 dB in PSNR values. Additionally, their GPGPU

implementation (kernel computation only) performed approximately 9 times faster than the

CPU-only implementation.

In [81], the authors implemented the gradient domain processing technique for massive

images using MPI, threading, and a GPGPU-based component. The authors successfully stitched

giga-pixel size panoramas and demonstrated performance and scalability on two GPGPU

 24

clusters. The authors achieved over 60% scaling efficiency for both clusters even when scaled

beyond 60 nodes.

2.5 SUMMARY

In this chapter, we discussed some of the recent performance modeling studies targeting

GPGPU- and FPGA-based heterogeneous systems. While the GPGPU performance prediction

models discussed are accurate, they require significant knowledge of the underlying system

architecture. In addition, they do not address the multiple levels of design space abstraction,

making the model selection and implementation task difficult. Unlike the modeling efforts

discussed in this chapter, our research addresses two levels of design space abstraction in the

form of a multi-level performance modeling suite: low-level where some implementation details

are present along with the system specifications; and high-level where the implementation details

are minimum and only high-level system specifications are available. The proposed multi-level

suite aims to provide straightforward and accurate runtime prediction, allowing developers to

choose a performance prediction model that best satisfies their design space.

In addition to performance models for heterogeneous systems, we also discussed several

architecture studies conducted using SNNs and ADF. Since our current research focuses on

GPGPU-based systems, the next chapter provides additional details on the base GPGPU

architectures and SNN-ADF SIA case studies.

 25

CHAPTER 3

BACKGROUND

In this chapter, we provide background on Nvidia’s Fermi and Kepler GPGPU architectures

and the Compute Unified Device Architecture (CUDA) framework, and discuss the algorithmic

details of the SNN-ADF SIAs studied in this research. The chapter is structured as follows.

Section 3.1 describes the Fermi and Kepler GPGPU architectures and the CUDA framework for

general purpose graphics computing. Section 3.2 provides background on the Spiking Neural

Network (SNN) models along with the large-scale SNN simulation performed in the form of a

two-level character recognition network. The non-linear anisotropic diffusion filtering (ADF) is

described in Section 3.3. The chapter is concluded in Section 3.4 with a summary.

3.1 GPGPU ARCHITECTURE

The GPU architecture, initially intended as a fixed many-core processor dedicated to

transforming 3D scenes to a 2D image composed of pixels, has undergone several innovations to

meet the computationally demanding needs of the supercomputing research community. The

traditional GPU pipeline came with several disadvantages for HPC including limited data reuse

in the pipeline, excessive variations in hardware usage, and lack of integer instructions coupled

with weak floating-point precision. In November 2006 [82], NVIDIA introduced the GeForce

8800 GTX with a novel unified pipeline and shader architecture. In addition to overcoming the

limitations of the traditional GPU pipeline, the GeForce 8800 GTX architecture added the

concept of a streaming processor (SMP) architecture that is highly pertinent to current GPGPU

 26

programming. SMPs can work together in close proximity with extremely high parallel

processing power. The outputs produced can be stored in fast cache and used by other SMPs.

SMPs have instruction decoder units and execution logic performing similar operations on the

data. This architecture allows SIMD instructions to be efficiently mapped across groups of

SMPs. The streaming processors are accompanied by units for texture fetch (TF), texture

addressing (TA), and caches. The structure is maintained and scaled up to 128 SMPs in the

GeForce 8800 GTX. The SMPs operate at 2.35 GHz in the GeForce 8800 GTX, which is

separate from core clock operating at 575 MHz. Several GPGPUs used thus far for HPC

applications have architectures that are concurrent with the GeForce 8800 GTX. However,

introduction of the Fermi architecture by Nvidia in September 2009 [51] has radically changed

the contours of the GPGPU architecture, as discussed in this section.

3.1.1 Nvidia Fermi GPGPU Architecture

The Compute Unified Device Architecture (CUDA) programming framework [22] views the

GPGPU architecture as an array of streaming multi-processors (SMPs), each containing a set of

scalar processors (referred to as CUDA cores), a double-precision (DP) unit, shared memory for

thread cooperation, and texture addressing and texture fetch units. The GPGPU functionality in

CUDA is expressed by writing GPGPU user-defined functions, referred to as kernels, that are

executed by all threads created in an application. While a single thread is executed on a CUDA

core, a group of threads called a thread block is executed on the SMPs. The thread blocks are

further divided into warps (a group of 32 concurrent threads) and half-warps (a group of 16

concurrent threads). Threads in a thread block can synchronize with each other using shared

memory.

 27

The 20-series architecture, codenamed Fermi [51], has brought numerous innovations versus

previous architectures. The 512 CUDA cores are organized as 16 SMPs with 32 cores each

gathered around an L2 cache. A Gigathread scheduler dispatches thread blocks to the SMP

thread schedulers. The GPGPU has the capability of supporting 6 GB of GDDR 5 DRAM

memory. SMPs in Fermi have an instruction cache, dual warp schedulers and dispatch units, two

sets of 16 CUDA cores, 4 special function units for transcendental functions, 16 load/store units,

a hefty register file, and most importantly, a configurable 64 KB of shared memory/L1 cache.

The SMPs share a second level L2 cache. More information about the architecture can be found

in [51]. The Fermi-based Tesla M2070 used for this research can theoretically offer 1.03

Teraflops of single-precision floating-point performance and 515 Gigaflops of double-precision

floating-point performance. This GPGPU architecture is used for the verification and Strengths,

Weaknesses, and Opportunities (SWO) analysis of the regression-based framework (low-level

abstraction).

3.1.2 Kepler GK110 (K20) Architecture

The GK110 Kepler GPGPU devices [83] have 5 GB of GDDR5 memory, 64 KB L1

cache/shared memory, 48KB read-only cache, 1536 KB L2 cache, and a quad warp scheduler.

The Kepler GPGPU device family introduces new features such as the Next Generation

Streaming Multiprocessor (SMX) that includes 192 CUDA cores, for a total of 1536 cores in the

entire GPGPU, providing tremendous performance boost at lower power consumption when

compared to the earlier GPGPUs. The Kepler GPGPU devices also feature Dynamic Parallelism

that enables dynamic spawning of new threads from the device kernel without returning to the

host CPU. Furthermore, the Hyper-Q technology enables multiple CPU-cores to launch work on

a single GPGPU device simultaneously, thereby increasing the GPGPU device utilization and

 28

reducing the CPU idle time. Figure 3.1 shows the SMX of the Kepler GK110 GPGPU

architecture [83]. We use the Kepler architecture for SWO analysis of the regression-based

framework and high-level abstraction studies.

Figure 3.1 An SMX in Kepler GK110 Architecture [83]

3.1.3 Compute Unified Device Architecture (CUDA) Framework

In CUDA for C [22], the GPGPU functionality is defined by writing device functions, which

are called kernels. A thread, which is a sequence of instructions, is instantiated several thousands

of times. When a kernel is called, N threads execute the kernel in parallel. Threads are accessed

inside kernels using built-in variables: threadIdx, blockIdx, and blockDim. Collections of threads

 29

called thread blocks are executed on the SMPs. The blocks are further divided into SIMD groups

of 32 threads called warps, which are further divided into groups of 16 threads called half-warps.

The memory hierarchy in CUDA is comprised of a set of registers (on-chip) and local memory

(residing in an off-chip DRAM) for each thread, private shared memory for thread blocks, global

memory for all threads created, and read-only texture cache and constant memory. CUDA offers

three primary optimization strategies, namely the Memory Optimization, Execution

Configuration Optimization, and Instruction Optimization.

Several memory optimization strategies can be found in [22]; here we discuss the prominent

ones used in this research. One memory optimization strategy is to reduce the frequent transfers

between the host and the device since the host-to-device bandwidth is usually an order of

magnitude lower than the device-to-device bandwidth. It is highly beneficial to transfer all of the

relevant data to the device memory for processing and later transfer the data back to the host

memory once all of the operations are finished. The device-host bandwidth can be most

efficiently utilized by overlapping the kernel execution with data transfers using Zero Copy (Z).

This feature is available only in devices with compute capability greater than or equal to 1.1. In

this technique, the data transfers are performed implicitly as needed by the device kernel code.

For the operation described, it is required that the device should support the host mapped

memory.

Compute capability devices 2.0 and beyond introduce L1 and L2 caches for improving the

global memory performance. These architectures allow the user to configure the amount of L1

cache and shared memory used. From the 64 KB of on-chip memory, 48 KB can be configured

either as L1 cache or shared memory. The user is also allowed to cache the global memory either

in L2 cache alone, or both in L1 and L2 caches [22]. Caching the intermediate data can promote

 30

performance improvement in applications that involve frequent global memory data accesses or

those that suffer from register pressure.

Software Pre-fetching (SP) is another useful memory optimization technique for avoiding

frequent accesses to the device global memory. The technique involves the use of on-chip

Registers and/or Shared Memory (SM) to cache and operate on the data. Once all of the

operations are finished, the data is transferred back to the device memory. Registers are more

commonly used for such scenarios since they do not involve bank conflicts that can occur with

shared memory accesses. Bank conflicts occur when threads in a half-warp access the same

shared memory bank. These conflicting accesses are serialized and therefore negatively impact

the performance.

Execution Configuration Optimization is an effective method for hiding latency on the

memory bound kernels. Execution configuration is related to the number of threads per block.

Varying the number of threads per block changes the multiprocessor occupancy: the ratio of the

number of warps running on the multiprocessor to the maximum number of warps that can

physically run on the multiprocessor. The CUDA profiler [22] provides information about the

multiprocessor occupancy. The number of threads per block should also remain a multiple of 32

and sufficiently large, typically greater than or equal to 192. Keeping the number of threads per

block a multiple of 32 facilitates coalescing, meaning all threads in a warp complete the data

access in one or more transactions.

The Instruction-level Optimization technique utilized in this research with CUDA involves

the use of fast math functions and Reduced Conditional Statements (RCS). The use of fast math

results in fewer clock cycles for the instruction at the expense of reduced accuracy. The compiler

optimization –use_fast_math forces compiling arithmetic functions as fast math functions. RCS

 31

reduces divergent paths taken within a warp. Divergent paths are serialized, which results in

reduced performance.

3.2 SPIKING NEURAL NETWORKS (SNNs) AND LARGE-SCALE SNN

SIMULATIONS

SNNs constitute the third generation of neural networks and are considered highly

biologically accurate. A spiking neuron fires an electric pulse, commonly referred to as spike, at

certain time intervals. The amplitude of the spike is irrespective of the input, but the timing of

the spike is a function of the input. This type of time encoding is useful for many signal-

processing applications. Several models have been proposed for SNNs, ranging from very

computationally efficient and moderately accurate, to compute intensive and highly accurate. In

[69], Izhikevich lists the 20 most prominent features of biological neurons and ranks several

models based on their ability to mimic these neuron features. Four models, namely, the Hodgkin-

Huxley (HH) model [84], Morris-Lecar model [85], Wilson model [86], and Izhikevich model

[87] were found to satisfy the requirements of accurately modeling the neuron dynamics, and

hence were used in this research not only for their validity, but also for their range of

computation and communication requirements. In what follows, we provide a brief chronological

overview of these four SNN models.

3.2.1. Four SNN Models

The Hodgkin-Huxley (HH) model is considered to be the most accurate and the most

important model in the neuroscience community till date. As mentioned in [69], the model

involves four equations and ten parameters describing neuron current activation and deactivation.

 32

The model takes 1200 FLOPs per millisecond to the complete neuron update. In our research, we

have used a 0.01 milliseconds time-step for the neuron update.

The Morris-Lecar (ML) model is another biophysically meaningful model, replicating almost

all of the spiking neuron properties. The relevant equations found in [85] include hyperbolic

functions, making this model the second most complex SNN model used in this study. The

model takes 600 FLOPs per millisecond time-step for the neuron update. For our experiments,

we have used a plausible 0.01 milliseconds time-step for the neuron update.

Wilson [86] attempted to model cortical neurons with a system of polynomial equations. This

model introduces a few additional conduction channels compared to the HH model as reported in

[86]. With proper tuning of the channel parameters, the Wilson model can mimic all

characteristics of spiking neurons. A time-step of 0.01 milliseconds was used to evaluate the

polynomial equations describing neuron dynamics. The model in general takes 180 FLOPs per

millisecond for the neuron update.

In [87], Izhikevich developed a simple and very computationally efficient spiking neuron

model that is almost as plausible as the most accurate HH model. Izhikevich was successful in

reducing the complex HH model equations to a 2D system of ordinary equations. Izhikevich’s

model requires only 13 FLOPs per neuron update and still sufficiently reproduces a majority of

the neuronal properties with the equations found in [87]. In our research, we have used a 1

millisecond time-step (13 FLOPS per millisecond) for neuronal dynamics update.

 The time-step values used in our research for the SNN models discussed are in the range

deemed sufficient for reproducing biologically relevant neuron dynamics [69]. More detailed

description of the four SNN models can be found in [88]. In Table 3.1, we summarize the

FLOPs/Byte ratio for the four SNN models, which provides an algorithmic analysis of the

 33

aforementioned SNN models used in this study. The FLOPs/Byte ratio is an algorithm specific

value and is defined as the ratio of the number of floating-point operations required for a

complete neuron update (level-1 and level-2 of the two-level network) to the overall bytes

requested (all model parameters and supporting data structures) for all of the neuron updates

[88].

Table 3.1 FLOPs/Byte Ratio for SNN Models

Model FLOPs required for the

complete neuron update

Bytes required for the

complete neuron update

FLOPs/Byte

Ratio

HH 246 25 9.84

ML 147 17 8.65

Wilson 38 25 1.52

Izhikevich 13 13 1

3.2.2. The Two-Level Network

We use the SNN models discussed in the previous section for the large-scale SNN

simulations. These simulations are performed using a two-level character recognition network

based on [89] shown in Figure 3.2. The task of the network is to identify images from a training

data set of 48 images. The level-1 neurons act as an input collection layer and the level-2 neurons

act as output collection layer. Each neuron in level-1 corresponds to a pixel in the input image;

hence the number of neurons in the input level is equal to the total number of pixels in the test

image (image-size
2
), making it the most compute-intensive layer of the two-level network. The

number of neurons in the output layer, level-2, is equal to the number of images in the database,

making it less computationally dense. When an input image is presented to level-1, each neuron

evaluates its membrane potential based on the pixel level presented and the neuron model

chosen. This process is referred to as the evaluation of neuron dynamics. If the pixel is “on,” a

constant current is supplied to the neuron for membrane potential evaluation. The input current

equation for a level-2 neuron is:

 34

*j ij iI w f (3.1)

In Equation 3.1, Ij is the net input current to the neuron j in level-2, wij is the weight of the

synapse connecting neuron i in level-1 with the neuron j in level-2. A neuron in any level is said

to have “fired” if its membrane potential crosses the threshold value for the selected neuron

model. In our research, we accelerate the recognition phase of the network by implementing all

of the level-1 neurons on the GPGPU devices since they are highly compute-intensive, while the

less computationally dense level-2 neurons (input current accumulation and dynamics) are

implemented on the host processors.

Figure 3.2 Two-level Character Recognition Network

3.3 NON LINEAR ANISOTROPIC DIFFUSION FILTER (ADF)

The quality of an image is highly critical for image processing applications such as machine

vision, surveillance, medical imaging, etc. Even the most sophisticated image capturing devices

are prone to noise signals from the surroundings including but not limited to Gaussian noise,

Poisson noise, and Salt-and-Pepper noise. The literature reports the existence of several noise

removal schemes, some of which are computationally efficient but prone to boundary errors [90],

 35

while others require an excessively large number of iterations [91]. Some of the proposed

filtering schemes such as the median filtering and hybrid median filtering (bidirectional linear

median filter) preserve the edge information at the expense of fine image details ultimately

leading to streak and blotched effects in the final image [92]. Out of several proposed noise

removal schemes, non-linear anisotropic diffusion filtering has been reported to yield superior

results [78, 93, and 94]. The anisotropic diffusion filtering scheme effectively improves the

quality of noised images via piecewise smoothing and immediate localization. In piecewise

smoothing of an image, the intra-region smoothing is preferred over inter-region smoothing at all

scales. The immediate localization property requires the region boundaries to be sharp and

coincide with the “semantically meaningful” boundaries at a given resolution. These properties

of anisotropic diffusion filtering preserve the inter-region edges and fine details of the image.

Therefore, it is widely used in real-time video processing [95].

The theoretical aspects of anisotropic diffusion filtering are well documented in the literature

[96]. In this research, we discuss and implement a novel non-linear anisotropic diffusion filter

based on the statistic-local open system proposed in [97]. In the proposed filtering scheme, only

the estimated noised pixels are processed to reduce any unnecessary blurring caused by pure

pixel energy diffusion. The filtering scheme also incorporates a newly designed conduction

coefficient to avoid energy flow from neighboring noised pixels.

In [97], the authors assert that the traditional order-statistic filter has two shortcomings. First,

the order-statistic filter tends to ignore the texture information in edges. Second, the order-

statistic filter cannot efficiently filter the impulse noise in high-level noised images. In what

follows, we describe the steps proposed in [97] to alleviate these problems. To address the first

problem, the proposed filter only processes the estimated noised pixels in a single iteration,

 36

thereby only allowing for local diffusion. The proposed scheme then compares the real value of

the center pixel with the pixel value after the order-statistic filtering. If the difference in the

values is above a threshold level Knoise, only then will the pixel be declared a noised pixel,

otherwise it is declared a pure pixel.

To address the second problem associated with the traditional order-statistic filter, the

authors in [97] propose an anisotropic diffusion system based on a local open system, where part

of the pixels are labeled as convergences and others as origins. The convergence pixels represent

the energy flowing in, whereas the origin pixels represent the energy flowing out. The neighbors

of noised pixels are declared as either convergences or origins and their values remain

unchanged. The authors claim if the above two labels are properly chosen, the image details can

be well preserved. The authors also propose a new conduction coefficient sgni (med(ui))*ci, to

avoid the effects of neighboring noise energy as shown in Equation 3.2.

sgni(med(ui))*ci = 0 if Knoise ≤ | med(ui) – ui|

ig(|| u||) Otherwise


 (3.2)

where, ui represents the pixel in the i
th

 direction (i = N, S, E, W), med(ui) represents the median

filter pixel value in the i
th

 direction, and ci represents the conduction coefficient in the i
th

direction. As suggested in [97], the conduction coefficient ci can be selected as the gradient of

the image in the i
th

 direction. The new conduction coefficient in Equation 3.2 is zero if ui is

estimated as a noised pixel; otherwise the conduction coefficient follows the gradient of ui. The

proposed filter is then modeled as shown in Equation 3.3.

0

(sgn(()). .)

(, ; 0)

u
div med u c u

t

u x y t u




 

 

 (3.3)

 37

To achieve sufficiently accurate filter output, we have chosen 30 iterations for the

implementation as suggested in [98]. The quality of the filter is evaluated using the Peak Signal-

to-Noise Ratio (PSNR) criteria as shown in Equation 3.4 where, MSE stands for mean squared

error, u represents the original noise-free image, and v represents the filtered output image.

10*log(255*255 /)

[((,) (,)) ^ 2] / 256 ^ 2
i j

PSNR MSE

MSE u i j v i j



  (3.4)

 The anisotropic diffusion filtering scheme used in this research is summarized as follows:

1) Estimate the noised pixels. If the difference between the real center pixel value and the

value of pixel after the order-statistic filtering is above a threshold Knoise, the pixel is

declared as a noised pixel and will be processed. The threshold Knoise for our

implementation is 40.

2) Evaluate the new conduction coefficient using Equation 3.2.

3) Perform the anisotropic diffusion filtering using Equation 3.3.

4) Repeat steps 1 through 3 for 30 iterations.

3.4 SUMMARY

In this chapter, we discussed the base GPGPU architectures utilized in this research, namely

Nvidia’s Fermi architecture and Kepler K20 architecture and the CUDA framework for general

purpose graphics computing. We also discussed the four SNN models, the two-level character

recognition network for large-scale simulations, and the anisotropic diffusion filter (ADF) for

massive images. In the next chapter, we describe the experimental set-up, mapping and

orchestration of the SIA algorithms on GPGPU clusters. We also provide the performance

 38

analysis study for the SNN-ADF SIA implementations to confirm their applicability for the

verification of the multi-level modeling suite.

 39

CHAPTER 4

EXPERIMENTAL SET-UP, MAPPING, ORCHESTRATION,

AND PERFORMANCE ANALYSIS STUDY

In this chapter, we provide the details of the experimental set-up, SNN-ADF SIA mapping,

and multi-GPGPU orchestration. We also provide a performance analysis study for the SNN-

ADF SIA implementations conducted on the NCSA Forge cluster. The contents of this chapter

are focused toward the verification of the performance modeling suite. Section 4.1 details the

layout of the NCSA’s Forge GPGPU cluster and GPGPU-augmented Palmetto cluster. Sections

4.2 and 4.3 describe the mapping and orchestration of SNN and ADF simulations, respectively.

The performance analysis study for the SNN-ADF SIAs follows in Sections 4.4 and 4.5. The

chapter is summarized in Section 4.6.

4.1 EXPERIMENTAL SET-UP

4.1.1 NCSA Forge Cluster

Our research uses the Forge GPGPU cluster at the National Center for Super-Computing

Applications (NCSA) [12] for the large-scale SNN and ADF simulations. The 153 Teraflop

cluster is composed of 36 Dell PowerEdge C6145 servers; each server is connected to six Fermi-

based Tesla M2070 GPGPUs via three PCI-Ex Gen2x16 slots. Each server is equipped with two

2.4 GHz AMD Opteron Magny-Cours 6136 processors, eight cores each. The network

interconnect is comprised of Infiniband QDR. Our implementations were developed using

CUDA 4.0 and OpenMPI version 1.4.3 [99] on Red Hat Enterprise Linux 6. More information

 40

on the Forge GPGPU cluster can be obtained from [12]. Figure 4.1 provides an example layout

of a server in the Forge cluster.

Figure 4.1 An Example Layout of a server in the NCSA Forge Cluster [12]

4.1.2 GPGPU-augmented Palmetto Cluster

The research also uses the GPGPU-augmented Palmetto cluster at Clemson University [15]

for the SNN-ADF SIA implementations, GPGPU Design Space Exploration (DSE) study using

low-level abstraction, and the development of the high-level abstraction prediction models. The

Palmetto Cluster includes 12 GPGPU HP SL250 servers, with each server connected to two

Fermi-based Nvidia Tesla M2075 [51] GPGPU devices via Peripheral Component Interconnect

Express (PCI-Ex) bus. Recently, the cluster acquired an additional 96 nodes equipped with

Nvidia Kepler GK110 (K20) GPGPU devices [83]. Each server is composed of two 2.4 GHz

Intel E5-2665 processors with 8 cores each and 64 GB RAM. The servers are connected via

Infiniband [10]. For our implementations, we used CUDA 4.2 [26] and MPI version 2.2 [100] on

 41

Scientific Linux 6. Additional details on the Palmetto Cluster can be found in [15]. The low-level

abstraction DSE studies were performed on the Kepler devices. Both the Fermi and Kepler

GPGPU architectures were employed for the Strengths, Weaknesses, and Opportunities (SWO)

analysis of the regression-based framework (low-level abstraction). This analysis shows the

ability of the framework to span generations of the GPGPU architecture. The high-level

abstraction modeling and analysis were completed using Kepler devices.

4.2 SNN MAPPING AND ORCHESTRATION

In this sub-section, we first provide details of the network mapping for the single-GPGPU

implementation that is subsequently extended to a multi-GPGPU implementation.

As discussed in Chapter 3, level-1 is the most compute-intensive layer of the network since

the number of neurons is equal to the number of pixels in the input image; therefore these

operations are performed on the GPGPU device. Each GPGPU thread evaluates the dynamics of

a single level-1 neuron. Therefore, the number of GPGPU threads created is equal to the number

of level-1 neurons. The GPGPU device then provides the host processor with the level-1 neuron

firing information, the global firing vector, which is used by the host processor to obtain the

level-2 neuron currents and dynamics. The level-2 computations (current accumulation and

dynamics) are implemented on the host processor since the level-2 neuron computations

constitute less than 5% of the total computation overhead and, implementing the level-2

dynamics on the GPGPU would require transfer of the weight matrix (matrix-size = level-2

neurons * level-1 neurons) to the GPGPU device memory. Hence any computational

improvement obtained by implementing level-2 neuron dynamics will be insufficient to amortize

the communication overhead involved in transferring the large weight matrix to the GPGPU

 42

device. The single-GPGPU implementation was optimized with memory-level, instruction-level,

and execution configuration level optimizations as mentioned in [101].

The host-device bandwidth was further optimized using a block firing vector concept

introduced in [88]. The block firing vector is implemented in the device shared memory to avoid

transferring the global firing vector in each algorithmic time-step. The block firing vector is

similar to the global firing vector but instead acts as a collection of flags for thread blocks. Since

the threads are collected in thread blocks of size: blocksize, the block firing vector is blocksize

magnitude smaller than the global firing vector, and hence can be transferred from the device to

host in each time-step with minimal overhead. If at any time-step the block firing vector contains

information of a firing event, only then will the entire global firing vector be transferred from the

device to host and then read by the host. Figure 4.2 illustrates the block firing vector concept.

Figure 4.2 The Concept of Block Firing Vector

The single-GPGPU implementation is then extended to a multi-GPGPU implementation. The

MPI ranks were assigned in node-packing fashion, meaning the ranks are packed into nodes. The

nodes were configured with a maximum of six MPI processes per node allowing for a 1:1 CPU-

core/GPGPU-device ratio at each node and potentially reducing long distance inter-node

communication. The GPGPU devices were allotted to the CPU cores using modulo rule where an

 43

MPI process with rank n is coupled with the GPGPU device number, n modulo 6 [4]. Future

work beyond this dissertation will investigate the impact of other CPU-core/GPGPU-device

ratios on application performance.

The multi-GPGPU orchestration follows the Master-Worker Paradigm as shown in Figure

4.3. MPI rank 0 acts as the master process that scatters the level-1 neuron inputs to all other

processes. The level-1 neuron parameters are initialized to the SNN model specific constant

values at each MPI process, and hence require no MPI communication. Each CPU-GPGPU pair

works as an independent unit where the GPGPU device evaluates the partial level-1 neuron

dynamics and the host processor evaluates the partial level-2 currents using the firing vector

obtained from its designated GPGPU device. The partial level-2 currents from each MPI process

are then accumulated at MPI rank 0 where the complete level-2 neuron dynamics are evaluated

and the image detection decision is made. The level-2 neuron computations on the hosts were

accelerated using OpenMP.

As discussed later in this chapter, we successfully scaled the neural network size from 5.7

million to over 200 million neurons.

 44

Figure 4.3 Multi-GPGPU Orchestration using Master-Worker Paradigm

4.3 ADF MAPPING AND ORCHESTRATION

4.3.1 ADF Mapping Methodology

The steps involved in the anisotropic diffusion scheme are described in Chapter 3. The

algorithm involves the evaluation of two computationally intensive tasks: 1) median filtering of

the input image to evaluate the conduction coefficient as shown in Equation 3.2; and 2)

evaluation of the partial differential equation (PDE) to perform the anisotropic diffusion filtering

as shown in Equation 3.3. Since these operations are highly data-parallel, they are performed on

the GPGPU devices using two separate GPGPU kernels, namely the median_kernel and

PDE_kernel, whereas the CPU host processor(s) only perform communication operations (row

exchange) and serial processing (image padding).

In each of the GPGPU kernels, a single CUDA thread operates on a single pixel. Therefore,

the number of threads created for each kernel is equal to the number of pixels in the input image.

 45

The GPGPU kernels were optimized with CUDA optimization techniques including execution

configuration optimization, memory optimization, and branch divergence reduction. The

execution configuration optimization involves the selection of an optimal thread-block

configuration to maximize the multiprocessor occupancy: the ratio of the number of warps (a

group of 32 concurrent threads) running on the multi-processor to the maximum number of

warps that can physically run on the multi-processor. In our implementation, we chose a thread-

block configuration of 256 threads per block to maximize the multiprocessor occupancy. The

Software-Prefetching (SP) memory optimization technique was used to fetch the neighboring

pixel values into the GPGPU registers, reducing frequent incoherent accesses to the device

global memory and promoting performance. Divergent branches, due to conditional statements,

lead to warp serialization and low execution unit utilization, ultimately impeding performance

[102]. The conditional statements were replaced with ternary operators to reduce divergent

branches. Detailed information on CUDA optimization techniques used in this research is

presented in Chapter 3.

4.3.2 Multi-GPGPU Orchestration

The network set-up and multi-GPGPU orchestration for ADF is similar to that of the SNN

simulations described in Section 4.2.

The orchestration for ADF is divided into four stages. In the first stage, the master process

MPI rank 0 reads the input image and scatters the image tiles in row-wise fashion to all other

processes. In the second stage, each of the individual processes pads its respective image tile to

avoid any out-of-bound conditions. The adjacent processes then exchange the boundary rows,

labeled as ghost rows, to avoid any boundary errors. The MPI point-to-point routine Sendrecv is

used to accomplish the exchange operation. Once the above serial processing and

 46

communication operations are completed, the implementation proceeds to the third stage where

each CPU-GPGPU pair works as an independent unit. The CPU host transfers the image tile to

the GPGPU device memory and the GPGPU device performs the filtering iterations on the image

tile as described in Chapter 3. Once the GPGPU device completes the iterations, it transfers the

output image tile to its respective CPU host. The CPU host then un-pads the output image tile to

remove unnecessary ghost rows and pad-boundaries. In the fourth and final stage, the master

process (MPI rank 0) gathers the output image tiles from all other processes, constructs the final

output image, and performs the PSNR check using Equation 3.4. Figure 4.4 elucidates the four

stages of the multi-GPGPU implementation.

As will be discussed in detail in Section 4.5, our ADF implementation successfully scaled up

to 156 mega-pixels. In the next section, we present the SIA performance analysis study

conducted on the Forge GPGPU cluster. We investigate the scaling behavior of the SIAs by

varying configuration from 2- to 32-nodes. As elaborated in Chapter 5, a node consists of a

single CPU-host tightly coupled with a GPGPU device to perform computations and data

exchange. For a few specific SIAs, we provide the speed-up achieved by the multi-GPGPU

implementations over equivalent MPI-only implementations.

 47

Figure 4.4 Four Stages in Multi-GPGPU Implementation

4.4 PERFORMANCE ANALYSIS STUDY: SNNs

In this section, we present the performance analysis study of the four SNN models conducted

on the Forge GPGPU cluster. We discuss the application runtime values for all of the tested node

configurations and show the overall runtime breakdown in terms of GPGPU time, CPU time, and

communication time for a 32-node configuration. For the HH and Izhikevich models, we

compare the multi-GPGPU implementation with an equivalent MPI-only implementation. The

HH and Izhikevich models are particularly interesting since they represent the two ends of the

 48

computation-to-communication spectrum for the SNN models. First, we present the results for

the compute-intensive HH model and then proceed to the compute-efficient Izhikevich model.

4.4.1 Performance Analysis Study: HH Model

The statistical-average runtime values for different node configurations versus the neural

network size are given in Table 4.1. These runtimes correspond to those measured by the master

process, MPI rank 0, which distributes the tasks and makes the final image detection decision.

The implementation for the HH model successfully scaled the two-level network to 200 million

neurons using a 32-node configuration with a statistical-average runtime of 3315.4 milliseconds.

The dashes in the table indicate problem sizes that do not fit in the GPGPU device memory,

resulting in a configuration failure for that particular neural network size.

Table 4.1 HH model: Statistical-Average Runtime Values (in milliseconds)

Node

Configuration

Network Size (in millions)

12.96 51.8 92.16 207.36

2 1946.99 - - -

4 1123.4 4172.82 - -

8 725.8 2492.45 4443.04 -

16 512.68 1568.03 2663.6 -

32 360.63 922.37 1529.23 3315.4

As seen in Table 4.1, the scalability of the implementation generally improves with an

increase in network size. We define the runtime improvement ratio as the ratio of runtimes of

two successive node configurations for a given network size. For a network size of 12.96 million

neurons, the runtime improvement ratio is 1.8 for 2- vs. 4-node, 1.63 for 4- vs. 8-node, 1.5 for 8-

vs. 16-node, and 1.6 for 16- vs. 32-node configuration. However, for a larger network size, 51.8

million neurons, the improvement ratios are better with values 1.67, 1.6, and 1.7 for 4 vs. 8, 8 vs.

16, and 16 vs. 32-node configuration, respectively. The above scaling behavior is expected since

the amount of computations per GPGPU device decreases with the CPU-host/GPGPU-device

 49

pair (node) scaling. Consequently, for smaller network sizes, the GPGPU computations are not

sufficient to amortize the necessary CPU computations and MPI communications.

Figure 4.5 further supports the observed scaling. The figure provides the runtime broken into:

GPGPU time (kernel time and host-device transfer time), CPU time (level-2 currents and

dynamics), and MPI communication time for a 32-node configuration versus the network size.

As the network size increases, the number of computations per GPGPU device increases

significantly, thereby making the computations highly dominant with respect to the overall

runtime. Because GPGPU computations generally scale well, their dominance with respect to the

application runtime is highly amenable to the overall scalability.

Figure 4.5 HH model: Runtime Breakdown for 32-node Configuration

Table 4.2 provides the speed-up of the multi-GPGPU implementation over an equivalent

MPI-only implementation for many of the intermediate network sizes tested. As shown in Table

4.2, the speed-up over the equivalent MPI implementation increases with the increase in network

 50

size for all of the node configurations. The increased speed-up is due to the amortization of MPI

communication by GPGPU computations due to the increased number of GPGPU computations

required by the increasing network size. The speed-up values are particularly large for the HH

model due to its high FLOPs/Byte ratio requirements (see Table 3.1). This data supports the

claim that applications with high FLOPs/Byte ratios are particularly suited for GPGPU-based

implementations [88]. Further inspection of Table 4.2 reveals that for a fixed network size, the

speed-up of the multi-GPGPU implementation over the equivalent MPI-only implementation

declines with the node scaling due to fewer computations per GPGPU device. As explained

previously, a significant number of computations are required to fully utilize the compute

capabilities of the GPGPU device; hence large node configurations observe lower speed-up

values for smaller network sizes.

Table 4.2 HH model: multi-GPGPU vs. MPI-only Implementation

Node

Configuration

Network Size (in millions)

1.44 9.73 25.4 92.2

2 187x 340x - -

4 146x 288x 374x -

8 75x 220x 264x 355x

16 44x 162x 233x 306x

32 20x 90x 120x 253x

4.4.2 Performance Analysis Study: ML Model

The statistical average runtime values for the ML model are given in Table 4.3. As seen in the

same table, for a given network size, the improvement ratio drops with node scaling due to

decreasing GPGPU device computations. For the network size 25.4 million neurons, the

improvement ratios are 1.76, 1.70, 1.46, and 1.40 for 2- vs. 4-node, 4- vs. 8-node, 8- vs. 16-node,

and 16- vs. 32-node configurations, respectively. For a large network size, 51.8 million for

instance, the improvement ratios are better with values: 1.75, 1.58, and 1.54 for 4- vs. 8-node, 8-

 51

vs. 16-node, 16-node vs. 32-node configurations, attributed to the increased GPGPU device

computations. Additionally, for a given node configuration, the improvement ratio improves with

the network size due to increasing computations that amortize the communication overhead. As

seen in the same table, the improvement ratios for a 32-node configuration are 1.40, 1.54, and

1.61 for network sizes 25.4, 51.8, and 92.16 million, respectively. Figure 4.6 provides the

runtime broken into: GPGPU time, CPU time, and MPI communication time.

Table 4.3 ML model: Statistical-Average Runtime Values (in milliseconds)

Node

Configuration

Network Size (in millions)

25.4 51.8 92.16 207.36

2 2064 - - -

4 1169 2309 - -

8 691 1319 2316 -

16 472 831 1383 -

32 340 540 859 1768

Figure 4.6 ML model: Runtime Breakdown for 32-node Configuration

 52

Unlike the HH model, the ML model with low FLOPs, bytes, and FLOPs/Byte ratio

requirement (see Table 3.1) exhibits relatively short GPGPU execution time, while the CPU time

and MPI communication time dominate the overall runtime. Consequently, the improvement

ratios are relatively weak for the ML model compared to the HH model. However, the scalability

is preserved due to dominant CPU computations that scale better compared to the MPI

communications.

4.4.3 Performance Analysis Study: Wilson Model

The statistical-average runtime values for the Wilson model are presented in Table 4.4.

Similar to the previously discussed SNN models, the improvement ratio drops for a given neural

network size with the node scaling. Also seen in Table 4.4, the improvement ratio is slightly

weaker compared to the ML model. For 16- vs. 32-node configuration, the improvement ratios

are 1.27, 1.44, and 1.53 versus 1.40, 1.54, and 1.61 for the ML model. As seen in Table 3.1, the

FLOPs/Byte ratio for the Wilson model is low compared to the ML model, thereby resulting in

relatively weak scaling behavior. Figure 4.7 provides the overall runtime breakdown for a 32-

node configuration. As seen in the same figure, the Wilson model is less computationally dense

compared to the previously discussed SNN models. Consequently, the MPI communication time

contributes significantly to the overall runtime, leading to relatively weak scaling behavior for

the Wilson model.

Table 4.4 Wilson model: Statistical-Average Runtime Values (in milliseconds)

Node

Configuration

Network Size (in millions)

25.4 51.8 92.16 207.36

2 1827 - - -

4 1200 2334 - -

8 679 1256 2152 -

16 485 815 1328 -

32 381 564 865 1735

 53

Figure 4.7 Wilson model: Runtime Breakdown for 32-node Configuration

4.4.4 Performance Analysis Study: Izhikevich Model

The statistical-average runtime values for different node configurations versus the network

size using the Izhikevich model are given in Table 4.5. Unlike the high FLOPs/Byte ratio

models, strong scaling is not observed for the low FLOPs/Byte ratio Izhikevich model as seen in

Table 4.5. In addition to the lower number of computations in the Izhikevich model (see Table

3.1), the lower number of computations per GPGPU device further impedes the scaling

performance. Figure 4.8 provides the overall runtime breakdown for the 32-node configuration in

terms of CPU time, GPGPU time, and communication time.

Table 4.5 Izhikevich model: Statistical-Average Runtime Values (in milliseconds)

Node

Configuration

Network Size (in millions)

25.4 51.8 92.16 207.36

2 1425

4 829 1637

8 499 945 1669 -

16 332 583 963 -

32 254 392 614 1260

 54

Figure 4.8 Izhikevich model: Runtime Breakdown for 32-node Configuration

As seen in Figure 4.8, the MPI communication time continues to dominate the GPGPU time

as the network size increases, leading to sub-optimal performance for the Izhikevich model.

Although computations per GPGPU device also increase with an increase in network size, the

increase is marginal due to nominal number of computations in the Izhikevich model.

Table 4.6 presents the performance comparison of the multi-GPGPU implementation and

MPI-only implementation. The 32-node configuration attained a speed-up of 2.87x versus the

32-processor MPI-only implementation. As seen in Table 4.6, the increase in speed-up with the

increase in network size is marginal for the node configurations examined. The explanation for

the decline in the speed-up with the increase in node configuration for fixed network size is the

same as was given for the HH model.

 55

Table 4.6 Izhikevich model: multi-GPGPU vs. MPI-only Implementation

Node

Configuration

Network Size (in millions)

1.44 9.73 25.4 92.2

2 3.9x 4.0x 4.0x -

4 2.8x 3.0x 3.2x -

8 2.3x 2.0x 2.4x -

16 1.5x 2.5x 1.6x 2.7x

32 1.2x 1.1x 2.4x 2.5x

The Izhikevich model is an interesting case for multi-GPGPU implementation. Although the

application itself is massively-parallel, it involves only a nominal amount of computations per

byte accessed. Therefore, the GPGPU computations cannot amortize the increased CPU

computation and MPI communication overhead as the SNN network size increases. The

Izhikevich model explored in this research serves well to highlight the importance of an optimal

application-to-accelerator cluster match. It is claimed that applications should not only expose

sufficient parallelism, but should also yield enough computations to fully utilize the compute

capabilities of heterogeneous clusters. Nonetheless, our multi-GPGPU implementations

produced performance advantages versus the equivalent MPI-only implementations as shown in

this section. A thorough analysis of the impact of GPGPU kernel optimizations on SNN

implementations is given in [88].

In this section, we presented the performance analysis study of the four SNN models

conducted on the Forge GPGPU cluster. The two-level character recognition network (see Figure

3.2) based on the four SNN models successfully scaled to 200 million neurons using a 32-node

(CPU-host/GPGPU-device pairs) configuration. In addition to providing significant speed-ups,

as high as 282x over an equivalent MPI-only implementation, the multi-GPGPU implementation

for the HH model scaled well with the SNN network size. Although the scaling behavior was

found to be satisfactory for other SNN models, the runtime improvement ratios were found to

fall with the decrease in FLOPs/Byte ratio requirements (HH to Izhikevich models). The

 56

implementation for the Izhikevich model highlighted the importance of an optimal application-

to-accelerator cluster match for maximum application performance. It is claimed that

applications should not only expose sufficient parallelism, but should also yield enough

computations to fully utilize the compute capabilities of heterogeneous clusters.

4.5 PERFORMANCE ANALYSIS STUDY: ADF

In this section, we present the performance results for the multi-GPGPU implementation of

the non-linear anisotropic diffusion (ADF) filter. First, we compare the runtime performance of

the optimized and un-optimized versions of the GPGPU kernels. Second, we present the filter

output quality evaluation using the PSNR criteria as discussed in Section 3.3. Third, we discuss

the application runtime for different node configurations and the scalability analysis. Fourth, to

assist with the scalability analysis, we provide the application runtime breakdown in terms of

GPGPU time, CPU time, and communication time for intermediate node configurations. The

section concludes by comparing the multi-GPGPU implementation with an equivalent MPI-only

implementation.

As mentioned in Section 4.3, the ADF scheme requires two separate GPGPU kernels, namely

the median_kernel and PDE_kernel. Table 4.7 provides the statistical-average runtimes of the

optimized and un-optimized kernel versions versus the test image size. The optimized kernel

version employs all of the CUDA optimization techniques mentioned in Section 4.3 and

performs approximately 4.5 times faster than the un-optimized version for all the test image sizes

as shown in the same table. The un-optimized kernel version lags in runtime performance due to

frequent incoherent global memory accesses and divergent branches resulting from conditional

statements. The frequent incoherent global memory accesses waste the GPGPU device’s memory

 57

bandwidth and the divergent branches lead to warp serialization, both of which are highly

detrimental to performance.

Table 4.7 ADF: Statistical-Average Kernel Runtimes (ms)

Kernel Version

Image Size

4096x4096 5120x5120 7680x7680 10240x10240 12800x12800

Optimized 669.23 1073.8 2468.031 4363.16 7083.01

Un-Optimized 3030.50 4973.13 11285.24 19873.33 31957.10

The multi-GPGPU implementation of the ADF algorithm was tested using multi-GPGPU

node configurations varying from 2- to 32-nodes. The standard Lenna test images were used to

evaluate the filter operation. The following Lenna test image sizes were obtained using the

MATLAB imresize command: 4096x4096, 5120x5120, 7680x7680, 10240x10240, and

12800x12800. The Salt-and-Pepper noise was added to each of the above Lenna test image sizes

with 30% noise density using the MATLAB imnoise command. More information on the

MATLAB commands is available in [103].

Table 4.8 provides the PSNR values for noised test images of varying sizes used for the filter

implementation. Table 4.9 provides the final output PSNR values for different node

configurations versus the image size. A careful inspection of Equation 3.4 in Chapter 3 suggests

that since PSNR is inversely related with the mean square error (MSE), a high value of PSNR

implies a good quality output image. As seen in Table 4.9, the final output images attain high

PSNR, thereby indicating good noise removal quality of the implemented filter. The output

PSNR values are also consistent across all node configurations. The output PSNR value for any

node configuration is observed to decrease with the test image size due to different initial PSNR

values for the test images as seen in Table 4.9.

 58

Table 4.8 PSNR Values (in dB) for Varying Test Image Sizes

Noised Image Size PSNR Value

4096 x 4096 10.67

5120 x 5120 10.67

76280 x 7680 12.633

10240 x 10240 12.74

12800 x 12800 12.70

Table 4.9 Final output PSNR Values (in dB) for Varying Images Sizes

and Node Configurations

Node

Configuration

Image Size

4096x4096 5120x5120 7680x7680 10240x10240 12800x12800

1 37.01 37.10 27.25 24.62 22.71

2 37.007 37.09 27.25 24.62 22.71

4 36.99 37.08 27.25 24.61 22.71

8 36.96 37.06 27.24 24.61 22.70

16 36.91 37.02 27.22 24.60 22.70

32 36.79 36.93 27.20 24.58 22.68

Table 4.10 provides the statistical-average runtime values for different node configurations

versus the test image size. These values correspond to those measured by the master process,

MPI rank 0, which distributes the tasks and gathers the final filtered output image. As seen in the

table, a 32-node configuration achieves a statistical-average runtime of 1404.34 milliseconds for

the image size, 12800 x 12800, which corresponds to 156 mega-pixels. Table 4.11 presents the

scaling efficiency values (η) for successive host-device pair configurations. The scaling

efficiency is calculated using:

2

0.5*
*100% a 1

a

a

T

T
   (4.1)

where Ta and T2a represent the time required to complete a unit of work on a and 2a processors,

respectively.

 59

Table 4.10 ADF: Statistical-Average Runtime Values (ms)

Node

Configuration

Image Size

4096x4096 5120x5120 7680x7680 10240x10240 12800x12800

1 1153.3 1776.02 4114.62 7181.89 12118.54

2 734.90 1145.92 2568.81 4570.64 7121.68

4 430.35 661.38 1505.34 2673.46 4146.87

8 316.77 486.96 1028.70 1979.80 3147.98

16 207.76 318.64 643.78 1238.33 2104.50

32 154.26 230.52 515.26 904.85 1404.34

Table 4.11 ADF: Scaling Efficiency Values, η (%)

Node

Configuration

Image Size

4096x4096 5120x5120 7680x7680 10240x10240 12800x12800

1 - - - - -

2 78.5 77.49 80.08 78.56 85.08

4 85.4 86.63 85.32 85.48 85.86

8 67.92 67.90 73.16 67.51 65.86

16 76.23 76.41 79.90 79.94 74.8

32 67.34 69.11 62.47 68.42 74.93

As seen in Table 4.11, the scaling efficiency for all node configurations generally improves

with the increase in test image size. Additionally, for a given test image size, the scaling

efficiency decreases with node scaling. This behavior is expected since the amount of

computations per GPGPU device decreases with node scaling. Consequently, for smaller test

image sizes, the GPGPU computations are not sufficient to amortize the necessary CPU

computations and MPI communications. Also seen in Table 4.11, the scaling efficiency values do

not reach the maximum value of 100%, which is largely due to the MPI communications

overhead.

Figure 4.9 further supports the scalability explanation given above, justifying the low scaling

efficiency values for a 32-node configuration. The figure provides the overall runtime broken

into: GPGPU time (kernel time and host-device transfer time), CPU time, and MPI

communication time for a 32-node configuration versus the test image size. The figure highlights

 60

that the application is largely communication bound for a 32-node configuration due to the

expensive scatter and gather operations. While the MPI communication time dominates the

overall runtime for all of the test image sizes, for small test image sizes, the GPGPU time is

insignificant due to a small number of computations per GPGPU device. As the test image size

increases, the GPGPU time increases due to increased computations per GPGPU device,

providing marginal improvement in scaling efficiency. Nonetheless, the dominating MPI

communication overhead results in low scaling efficiency for the 32-node configuration.

Figure 4.9 Overall Runtime Breakdown for 32-node Configuration

Figure 4.10 provides the overall runtime breakdown for a 4-node configuration. In this case,

unlike the 32-node configuration, the CPU and GPGPU computation times dominate the overall

runtime. Since the amount of computation generally scales well with the number of processors,

dominant CPU-GPGPU computation times are highly amenable to strong-scaling behavior as

shown in Table 4.11. Unlike computation, the amount of MPI communication scales differently

 61

and depends on the application [6]. Since the GPGPU and CPU computation times significantly

influence the overall runtime, high scaling efficiency values are observed for the 4-node

configuration.

Figure 4.10 Overall Runtime Breakdown for 4-node Configuration

Table 4.12 provides the speed-up values for all node configurations versus the test image

size. As seen in the table, the 32-node configuration achieves a speed-up of 11.5x over the

equivalent MPI-only implementation. The speed-up values reach a plateau for all node

configurations and fall with the node scaling for a given test image size. This behavior confirms

the previously provided scalability explanation. With the node scaling, GPGPU and CPU

communications do not amortize the dominant MPI communication overhead, which ultimately

degrades the overall performance.

 62

Table 4.12 Speed-up Values: Multi-GPGPU Implementation vs. MPI-only Implementation

Node

Configuration

Image Size

4096x4096 5120x5120 7680x7680 10240x10240 12800x12800

1 32.02x 33.80x 32.26x 32.27x 26.73x

2 27.51x 28.01x 27.44x 28.07x 29.14x

4 16.67x 17.04x 17.02x 15.75x 15.36x

8 15.13x 15.91x 16.76x 16.10x 15.10x

16 10.07x 10.80x 11.80x 11.50x 11.50x

32 32.02x 33.80x 32.26x 32.27x 26.73x

In this section, we provided the performance analysis study for the ADF algorithm on the

Forge GPGPU cluster. Our implementation of the ADF algorithm was successful in processing

images as large as 156 mega-pixels and achieved a speed-up, as high as 29x, over an equivalent

MPI-only implementation for the same test image size. The multi-GPGPU implementation

demonstrated reasonable scaling behavior with nearly 86% scaling efficiency for a 4-node

configuration. The scaling efficiency for all node configurations generally improved with the test

image sizes. However, the scaling efficiency dropped with the node (CPU-host/GPGPU-device

pair) scaling. Analysis of the application runtime broken down in terms of GPGPU time, CPU

time, and MPI communication time for intermediate node configurations demonstrated the

dominance of MPI communication overhead in the application runtime for large node

configurations. Subsequently, large node configurations observed low scaling efficiency values.

Conversely, smaller node configurations observed higher scaling efficiency values since GPGPU

and CPU computations dominate the application runtime. The multi-node GPGPU

implementation speed-up over the equivalent MPI implementation followed the scaling behavior.

4.6 SUMMARY

In this chapter, we discussed the Forge and Palmetto GPGPU clusters used for the

verification of the multi-level performance modeling suite. We also discussed in detail the

 63

mapping methodology and orchestration of the large-scale SNN simulations and ADF algorithm

for massive images. The scaling behavior of the SIA case studies was studied to ensure that the

implementations used for the preliminary verification of the multi-level suite were optimal. In

the next chapter, we describe the development of the Synchronous Iterative GPGPU Execution

(SIGE) model and multi-level performance modeling suite.

 64

CHAPTER 5

SIGE MODEL AND MULTI-LEVEL PERFORMANCE

MODELING SUITE

In this chapter, we define and describe the Synchronous Iterative GPGPU Execution (SIGE)

model that serves as the backbone for the multi-level performance modeling suite. The SIGE

model describes the execution flow of synchronous iterative algorithms (SIAs) on multi-GPGPU

systems by providing a set of equations for estimating the total runtime; these equations are

evaluated using the multi-level suite. This chapter also provides a prelude to the proposed multi-

level performance modeling suite. The individual performance modeling methodologies (low-

level and high-level abstractions) are discussed in detail in Chapters 6 and 8, respectively. The

rest of this chapter is structured as follows. Section 5.1 describes the SIGE model in detail. The

multi-level performance modeling suite is discussed in Section 5.2, where we introduce the low-

level and high-level abstraction approaches. The chapter concludes in Section 5.3 with a

summary.

5.1 SYNCHRONOUS ITERATIVE GPGPU EXECUTION (SIGE) MODEL

5.1.1 The Definition and Description

Figure 5.1 (a) elucidates the Synchronous Iterative GPGPU Execution (SIGE) model that

serves as the backbone for the proposed multi-level performance modeling suite. The SIGE

model describes the execution flow of a special class of deterministic algorithms on multi-

GPGPU systems: synchronous iterative algorithms (SIAs). Some examples that fall in the

 65

category of SIAs include: neural network simulations (SNNs), stencil-based image processing

(e.g. ADF), 2D Probability Density Function (PDF) estimation [104], and bio-molecular

dynamics [105]. Prior to describing the SIGE model operation in detail, we first define the

following important terms pertinent to the model: node, network, stage, synchronous, and

iterative.

A node in the SIGE model consists of a single CPU-host tightly coupled with a GPGPU

device to perform computations and data exchange. The CPU-host/GPGPU-device coupling is

referred to as a host-device pair and is shown in Figure 5.1 (b). The nodes communicate data and

synchronize with each other using the communication medium: network. It should be noted that

both Infiniband and PCI-Ex bus constitute communication mediums; they serve as channels to

perform data communication.

A stage in the SIGE model is a collection of hardware operations pertinent to the algorithm.

Some examples that constitute a stage include: inter-node synchronizing data transfers, pre-/post-

processing, intra-node computations and communications, etc. A stage is executed by either one

node or a combination of nodes.

The synchronous property of the SIGE model implies that computations occur concurrently

on the nodes. The synchronizing inter-node communications occur prior to and after the node

computations as shown in Figure 5.1 (a).

The iterative property of the SIGE model implies that a single stage or a combination of

stages can be repeated multiple times as required by the algorithm.

 66

Figure 5.1 (a) SIGE Model Figure 5.1 (b) 1:1 Host-Device

Pairing

In what follows, we describe the SIGE model operation used to develop the multi-level suite.

The SIGE model assumes deterministic SIA execution flow, meaning the algorithm behavior is

predictable. Unless specified otherwise, the SIAs studied are assumed deterministic. The SIA

execution flow begins with the master MPI process rank 0 disseminating tasks to all other MPI

processes via a synchronizing data transfer. Once the tasks are distributed, the MPI processes act

as independent nodes and perform the assigned computations. At each node, the CPU-host

transfers the data to the GPGPU device for computationally intensive operations. The CPU-host

performs serial processing operations and waits for the GPGPU device operations to complete.

Once the GPGPU device operations are completed, the GPGPU device transfers the data back to

the CPU-host. The host-device computations and communications constitute an algorithm stage

that can be iterated several times as required by the algorithm. Once the host-device stage

finishes, the MPI processes synchronize in the form of data transfer, typically at MPI rank 0, to

evaluate the final/partial result or to terminate the SIA with post-processing.

 67

The overall execution time of a deterministic SIA executing on the SIGE model is the

summation of runtimes of all the stages. Mathematically, the execution time of a SIA is

expressed as shown in Equation 5.1:

. . .

1 2

1 1 1

...
stage iter stage iter stage iter

execution time stage stage stage N

i i i

T T T T
  

   

  

      (5.1)

where, the individual summation terms represent the accumulation of the longest completion

times (Tstage) for that particular stage over the given stage iterations. Equation 5.1 assumes that

none of the stages overlap during the course of SIA execution. However, recent GPGPU

architectures allow for concurrent stages including but not limited to asynchronous data

transfer(s) from CPU-host(s) to the GPGPU device(s), host-device computation overlap, and

host-device communication overlap with the kernel computation. These overlapping stages are

accommodated by introducing the max function as elucidated by Equation 5.2. The max function

returns the largest value amongst the parameters in the function’s list.

max(, ,...)execution time stage a stage bT T T     (5.2)

In Equation 5.2, the parameters in the max function represent the overlapping SIA stages and

the total execution time is equal to the sum of disjoint max functions. The overall execution time

evaluation involves identification of appropriate stages pertinent to the SIA. As mentioned

previously, these stages represent the hardware operations required by the algorithm. In our

research, we perform a two-level stage classification for straightforward execution time

evaluation: 1) computation-level stage that includes pre-/post-processing (Tpre-proc. and Tpost-proc.),

CPU-host/GPGPU-device computations (TCPU-Host and TGPU-Kernel), host-to-device and device-to-

host communications (TH2D and TD2H), and 2) network- or communication-level transfers that

include all of the inter-node network-level transactions (scatter, gather, send-receive, etc.

denoted by ∑TTransactions) pertaining to the algorithm. Throughout the rest of the dissertation, we

 68

use the terms execution time and runtime interchangeably. Equation 5.3 summarizes the SIGE

model:

. .

1 1

computation iter communication iter

execution time computation communication

i i

T T T
 



 

  

. . .computation pre proc post proc compT T T T   

.comp CPU Host GPUT T T  (5.3)

2 2GPU GPU Kernel H D D HT T T T  

communication TransactionsT T

Using the SIGE model explained in this sub-section, we construct the multi-level

performance modeling suite to predict the overall execution time of SIAs on multi-GPGPU

systems.

5.1.2 SIGE Model Usefulness

Several parallel machine models have been proposed such as the Bulk Synchronous Parallel

(BSP) model [29] and Heterogeneous Bulk Synchronous Parallel (HBSP) model [106] that aim

to guide the design of applications for optimal performance on a given machine. Unlike these

parallel models, the goal of the SIGE model is to generalize the execution flow of deterministic

synchronous iterative algorithms (SIAs) on multi-GPGPU systems. Although the SIGE model

does not provide guidelines for optimal performance, it is useful for straightforward design space

exploration (DSE) via runtime prediction. The SIGE model breaks the application runtime into a

number of stages (see Equations 5.1 and 5.2) that are dependent on the SIA studied and the

corresponding application mapping. The stages, classified as a computation- or communication-

stage, are estimated either using statistical techniques provided by the low-level abstraction or

the high-level abstraction models (existing qualitative models, quantitative models, or hybrid

 69

models). The overall runtime breakdown into multiple stages allows the developer to weigh the

effects of optimizations on the overall application behavior, enabling a thorough survey of the

design space. For instance, optimizing the CUDA kernel (labeled stage-k for instance) may lead

to increased host execution time (labeled stage-n) or device-host communications (labeled stage-

m). Our framework allows developers to identify such problems and take preventative measures.

Using the SIGE model explained in this sub-section, we construct the multi-level

performance modeling suite to predict the overall execution time of the SNN-ADF SIAs on

multi-GPGPU systems. In the following sections, we introduce the low-level and high-level

abstractions of the modeling suite. As mentioned previously, the low-level abstraction is

constituted by the regression-based framework that is broken into two primary components:

computation that models the computation-level stage of the SIA and communication that seeks to

model the network- or communication-level stage of the SIA. The high-level abstraction uses the

qualitative, quantitative, or hybrid approach to evaluate the components of the SIGE model.

5.2 MULTI-LEVEL MODELING SUITE: LOW-LEVEL ABSTRACTION

The low-level abstraction of the modeling suite uses limited implementation details and

system information for the application runtime prediction. Therefore, partial details of the

implementation such as the legacy code, preliminary device kernel, and system specifications

must be available. The regression-based analysis best fits the low-level abstraction since it

enables the determination of mathematical models that describe the application behavior on the

given computing system with a certain degree of confidence [107]. In performance modeling

studies, such as the one conducted in this dissertation research, application runtime adequately

represents the dependent variable for the statistical regression analysis. Furthermore, to assist

with the user-friendly analysis, the application runtime can be further broken into host-device

 70

runtime, host-device data transfer time, and inter-processor data transfer time. Selection of the

independent variables depends on analysis of the algorithm. For SIAs such as those mentioned

previously, common algorithm parameters that can adequately represent the set of independent

variables to characterize the application runtime with a high degree of confidence include but are

not limited to the number of floating-point operations (FLOPs) performed, number of bytes

required for computation, data transfer size, number of data transactions, and processor count. It

is worth reiterating that FLOPS and FLOPs are two distinct parameters; FLOPS (floating-point

operations per second) is a measure of computer performance, whereas FLOPs is the number of

floating-point operations performed in an algorithm. In addition, one can adjust the independent

variable space by adding/removing the parameters based on their statistical significance

(contribution to the overall regression model).

The primary goal of the low-level abstraction of the multi-level performance modeling suite

is to statistically abstract the system architecture characteristics, thereby enabling performance

prediction without detailed knowledge of the underlying computing architecture. The low-level

abstraction constituted by the regression-based framework is broken into two components:

computation and communication. The computation component models the CPU-host and

GPGPU device computations using algorithm characteristics such as the number of FLOPs and

computational bytes as predictor variables. The regression models for the computation

component are trained using several small, instrumented executions of an SIA set with a range of

computation-to-communication requirements. These instrumented executions are conducted

using a set of selected problem sizes (neural network size, image size, etc.) that constitute the

sample for the regression analysis. For any statistical study, it is imperative to choose a sample

large enough to satisfactorily estimate/model the behavior of the entire population. In our

 71

research, we choose a set of problem sizes that adequately fit on a single GPGPU device as the

sample to typify the behavior of the entire population (other problem sizes including those

executing on larger GPGPU cluster configurations). The communication component of the

regression-based framework is further divided into two sub-components: 1) inter-processor

communication over the network (Infiniband) and 2) CPU-host/GPGPU-device (host-device)

communication over the PCI-Ex bus. The regression models for the communication component

are developed using micro-benchmarks that measure transaction throughput and employ data

transfer size and processor count as predictor variables. The sample for the communication

component is constituted by a set of representative data transfer sizes (e.g. 8 KB – 128 MB).

We assert that the low-level abstraction is expected to provide fine-grained runtime

predictions because the performance models are developed using instrumented executions of the

SIA on the chosen system. Consequently, it is a viable approach to DSE where the goal is to

identify an optimal implementation from the design space for the target heterogeneous system.

We substantiate the above claim in Chapter 7 by verifying the low-level abstraction for accurate

runtime prediction and productive GPGPU DSE. In the roadmap for optimal A2A mapping

(Appendix A), the low-level abstraction is the last milestone that identifies the best

implementation for the target system through DSE.

5.3 MULTI-LEVEL MODELING SUITE: HIGH-LEVEL ABSTRACTION

The high-level abstraction of the performance modeling suite aims to predict the runtime of

SIAs on multi-GPGPU systems using minimum implementation details and high-level system

specifications. The high-level abstraction does not assume existence of significant

implementation knowledge and largely relies on the algorithm characteristics (floating-point

operations, bytes consumed, number of computational elements, etc.) and system specifications

 72

(device computation bandwidth, PCI-Ex bandwidth, network bandwidth, etc.). The SIGE model

described in Section 5.1 is applicable to the high-level abstraction modeling approach where the

computation and communication components are estimated either analytically or using micro-

benchmarks (or augmented micro-benchmarks). Consequently, the high-level abstraction is

broken into two primary components: Qualitative Modeling and Quantitative Modeling. The

qualitative modeling approach uses existing subjective-analytical models for device

computations, host-device communications, and network-level communications. The subjective-

analytical models describe the system using simple mathematical analytic functions, avoiding

minute estimation of the large number of parameters pertaining to the system. These analytical

models are developed based on those discussed in Chapter 2. The quantitative modeling

approach predicts computation and communication performance by measuring hardware-specific

events associated with objective-analytical models using micro-benchmarks. A hybrid modeling

approach is derived using the above two high-level approaches where some of the SIGE model

components are estimated analytically, and the remaining components are analyzed

quantitatively. We assert that the predictions enabled by the high-level abstraction models are

expected to be coarse-grained; accordingly the models are better suited for preliminary

performance prediction. As elaborated by the A2A roadmap (Chapter 10), the high-level

abstraction is an intermediate milestone that provides an initial insight into the application

performance.

Figure 5.2 summarizes the multi-level performance modeling suite and highlights the

performance modeling space. Based on the given design goals and the level of knowledge

regarding the algorithm and architecture(s), the multi-level performance modeling suite provides

 73

an appropriate modeling strategy from the modeling space that enables straightforward and

accurate application runtime prediction.

Figure 5.2 The Multi-level Performance Modeling Suite

5.4 SUMMARY

In this chapter, we introduced the multi-level performance prediction modeling suite

proposed in the dissertation research. We explained the development of the SIGE model and

described the SIA execution flow on the SIGE model. We also provided a prelude to the multi-

level performance modeling suite and summarized the performance modeling space in Figure

5.2. The next chapter details the low-level abstraction of the performance modeling suite. We

elucidate the development of regression models for the computation and communication

components that are ultimately used to estimate the overall SIA execution time (Equations 5.1 -

 74

5.3). It is re-iterated that we follow a bottom-up approach to construct the performance modeling

suite (low-level abstraction to high-level abstraction); whereas the A2A roadmap seeks a top-

down approach (high-level abstraction to low-level abstraction) for application performance

prediction.

 75

CHAPTER 6

THE LOW-LEVEL ABSTRACTION

In the foregoing chapter, we explained the SIGE model that describes the execution flow of

SIAs on multi-GPGPU systems. We also provided an overview of the multi-level performance

modeling suite that includes two-levels of abstraction: low-level and high-level. In this chapter,

we discuss the low-level abstraction in detail. The low-level abstraction consists of the

regression-based framework that is broken into two primary components: computation and

communication. In Section 6.1, we provide a brief background on the multiple regression

analysis theory and mention pertinent mathematical terms used throughout the analysis. The low-

level abstraction is expounded in Section 6.2 where we construct the regression models for SNN-

ADF SIAs. In Section 6.3, we demonstrate the application of the low-level abstraction for

GPGPU DSE for the chosen SIAs. Section 6.4 concludes the chapter with a summary.

6.1 MULTIPLE REGRESSION ANALYSIS

Multiple regression analysis is a popular statistical tool used to obtain a relationship between

the dependent variable and a set of independent variables with a certain degree of confidence

[107 and 108]. Mathematically, the regression analysis is concerned with relating the response,

y, with a set of independent variables, xi. The mathematical literature defines population as an

entire set of data-points that may be collected for a given problem. The size of the population is

usually very large and it is difficult to draw any statistical inference using all of the data-points in

that population. Instead, a valid statistical inference is made by selecting a subset of data-points,

termed as sample, from the population. Multiple regression analysis is concerned with obtaining

 76

a predictor equation or regression model using a sample that adequately represents the entire

population. A multiple regression model can take several mathematical forms, either it can be

linear with respect to the independent variables or may involve interaction and higher-order

terms. An example multiple regression model is elucidated by Equation 6.1:

 1 1 2 3 1 2y x x x x x           (6.1)

where the coefficients αi represent the estimates of the model parameters, ε represents the error

due to the difference between the actual response and the estimated response, and the term x1x2

represents the interaction between independent variables x1 and x2, respectively. The commonly

used model estimation criterion is the least square method, which must satisfy two important

conditions: 1) The sum of errors must be zero and 2) the sum of the squares of errors is the

minimum. Additionally, as described in [107], the error ε must satisfy the following four

conditions for reliable prediction. First, the mean of the probability distribution (PD) of ε is zero.

Second, the variance of PD is constant irrespective of xi. Third, the PD of ε is normal and lastly,

the errors associated with any two observations are independent.

Once an initial model is constructed, it is important to evaluate the validity of the model.

Several criteria exist to evaluate the model’s validity, in this research we rely on the R-squared

and p-values of the regression model, p-values of the individual estimates, and visual inspection

of the residual plots. Typically, a model is considered reliable if the R-squared value is greater

than 0.95 and p-values are less than 0.05. A detailed background on the regression theory can be

found in [107]. In this research, we use the statistical package R [109] to perform all regression

analysis.

 77

6.2 LOW-LEVEL ABSTRACTION: REGRESSION-BASED FRAMEWORK

In this section, we describe the regression model construction for the computation and

communication components of the regression-based framework using two SIA case studies:

large-scale SNN simulations based on the four SNN models and ADF for massive images. These

SIA implementations were performed on the NCSA Forge GPGPU cluster, subsequently the

regression models developed correspond to this computing system.

6.2.1 The Computation Component

The computation component of the regression-based framework models the CPU-host and

GPGPU device computations. The regression model for CPU-host computations is trained using

instrumented runs of the legacy code on a small set of processors. This method has been adapted

from [6] where the authors develop the regression model for CPU computations using a set of

processors to predict the performance of large cluster configurations. In our research, we profile

the sections of code executing on the CPU-host and develop the regression model for the CPU

execution time, TCPU-Host, with the following predictor variables: the number of processors P,

number of floating-point operations FLOPs, and the total number of bytes involved in

computations, BYTES.

The regression model for CPU computations can take several forms depending on the

number of FLOPs performed (computation-bound) and bytes accessed (communication-bound).

However, for our chosen SIA case studies, the CPU-host computations are predominantly

communication-bound (data structure access/ look-up); therefore P and bytes constitute the

significant parameters in the regression model for CPU computations. The regression models for

TCPU-Host for the four SNN models and ADF are elucidated by equations 6.2 – 6.6. These

 78

regression models were selected based on their high R
2
 values (greater than 0.95) and low p-

values (less than 0.05).

HH model:

CPU- HostT = -126.35+ 256.72* + 25.016* +12.19*(-2.55)*(-4.6)GBYTES P GBYTES P

 (6.2)

ML model:

CPU- HostT = -147.85+1486.12* + 28.8* +51.14*(-0.581)*(-4.57)GBYTES P GBYTES P

 (6.3)

Wilson model:

CPU- HostT = -62.65+944.8* +11.86* + 23.56*(-0.70)*(-4.5)GBYTES P GBYTES P

 (6.4)

Izhikevich model:

CPU- HostT = -100.832+10240.5* +18.76* + 484.97*(-0.0581)*(-4.48)GBYTES P GBYTES P

 (6.5)

ADF:

CPU-HostT = -36.57 + 4.28* + 5.11* +0.206*(- 27.215)*(- 7.13)MBYTES P MBYTES P

 (6.6)

Unlike the CPU computations, the GPGPU computations for SNN-ADF SIAs significantly

depend on the FLOPs and BYTES variables, which increase with the problem size (SNN size and

image size). First, we describe the derivation of the regression models for the SNN SIAs. To

obtain reliable regression models (high R
2
 and low p-values) for the SNN SIAs, the four SNN

models are grouped either as computation-bound or communication-bound models based on the

FLOPs/Byte ratio values in Table 3.1. The regression models are then developed separately for

 79

the computation-bound or communication-bound SNN models. As seen in Table 3.1, the HH and

ML models have high FLOPs/Bytes ratio, hence they are grouped as computation-bound models,

whereas the Izhikevich and Wilson models have low FLOPs/Byte ratio, consequently they are

grouped as communication-bound models. For each of the SNN models, we perform

instrumented executions of the GPGPU kernel using several network sizes to construct the

regression models. These network sizes adequately fit on a single GPGPU device, hence fittingly

constitute the sample for regression testing. The regression models for computation- and

communication-bound SNN models are shown in Equations 6.7 and 6.8.

Computation-Bound:

GPU KernelT 85.25 19.2* 177.6* 0.0028*(363.34)*(35.9)GFLOPs GBYTES GFLOPs GBYTES      

 (6.7)

Communication-Bound:

GPU KernelT 8.3 23.53* 42.6* 0.0133*(13.35)*(8.54)GFLOPs GBYTES GFLOPs GBYTES      

 (6.8)

The ML and Wilson models present an interesting situation where both models are

moderately computation-bound and communication-bound with moderate FLOPs and bytes

requirement as shown in Table 3.1. In addition to the above regression models for computation-

bound and communication-bound SNNs, we also develop regression models for the special case

of moderately computation- and communication-bound SNN models as shown in Equation 6.9.

Moderately Computation- and Communication-Bound:

GPU- KernelT =10.083-0.275* +5.43*GFLOPs GBYTES (6.9)

To demonstrate the cost of constructing the regression models for GPGPU device

computations, Table 6.1 shows the GPGPU kernel execution time for selected neural network

 80

sizes from the chosen test sample. As seen in Table 6.1, the execution times are fairly short and

easily obtainable based on the system/device availability. The regression models are derived

using the sample data fed to a regression engine, R [109] for instance.

Table 6.1 GPGPU Kernel Execution Time for SNN Models

Network

Size (in

millions)

GPGPU Kernel Execution Time (milliseconds)

HH Model ML Model Wilson Model Izhikevich

Model

12.7 2315.31 70.79 183.1 32.6

10.5 1868.85 57.41 148.38 26.56

8.1 1499.56 46.54 119.01 21.67

4.8 934.5 29.29 74.25 13.97

2.88 588.97 18.78 46.71 9.29

0.72 206.1 7.34 16.41 4.23

To obtain the GPGPU computation regression model for the ADF algorithm, we paired the

ADF algorithm with the Izhikevich SNN model. Table 6.2 shows the FLOPs-to-Byte and

FLOPs/Byte ratio information per data element for the two algorithms. For the ADF-Izhikevich

SIA pair, we define FLOPs/Byte ratio as the ratio of the number of floating-point operations

performed in the algorithm to the overall bytes requested by the algorithm for computations. As

seen in Table 6.2, both Izhikevich SNN and ADF algorithms have similar FLOPs-to-Byte

requirements with FLOPs/Byte ratio close to 1, therefore we classify them together as

communication-bound algorithms with a common regression model for GPGPU device

computations. Similar to the SNN case studies, we perform several small, instrumented

executions of the GPGPU kernels for different problem sizes to construct the ADF-Izhikevich

GPGPU regression model given by Equation 6.10.

GPU-KernelT = 2.212 +490.63* - 509.7012* +0.246*(-1.53)*(- 1.09) GFLOPs GBYTES GFLOPs GBYTES

 (6.10)

 81

Table 6.2 FLOPs, Bytes, and FLOPs/Byte ratio per Data Element

Algorithm FLOPs Bytes FLOPs/Byte ratio

Izhikevich SNN 13 13 1.00

ADF 16 12 1.33

6.2.2 The Communication Component

The communication component of the regression-based framework is broken into two sub-

components: 1) Inter-node communication over Infiniband and 2) CPU-host/GPGPU-device

communication over PCI-Ex bus. Although mentioned here as a part of the communication

component, we also include the host-device communications over PCI-Ex bus in the

computation stage of the SIGE model for straightforward analysis. First, we develop the

regression models for the inter-node communication.

A. Inter-node Communications

The inter-node communication over Infiniband can be comprised of several network-level

transactions such as scatter, gather, reduce, etc. We separately model the network-level

operations as a function of the message size, MBYTES (message size in megabytes) and the

number of processors, P. We perform micro-benchmarks on the aforementioned network-level

transactions using typical data-size range (8 KB - 128 MB) to obtain an initial sketch of the

transaction throughput. Figures 6.1 and 6.2 show the scatter and gather throughputs for different

node configurations versus the message size. As seen in the same figures, the scatter and gather

throughput curves saturate at different levels for different node configurations and resemble the

Michaelis-Menten kinetics [68]. The development of a single regression model for transaction

throughput with this behavior is non-trivial; therefore we choose to perform a separate regression

analysis for the network-level transactions at all node configurations. The equation for the

Michaelis-Menten kinetics adapted to model the scatter/gather throughput is:

 82

max[]

[]m

V S
v

K S



 (6.11)

where, v represents the reaction rate, Vmax represents the maximum rate achieved by the system,

and Km represents the substrate concentration where the reaction rate is half of Vmax [68].

Correspondingly, for the scatter/gather throughput over Infiniband, v and [S] correspond to the

scatter/gather throughput and message size in megabytes, respectively. The terms Km and Vmax

for the scatter/gather throughput, expressed in megabytes and MB/sec respectively, are obtained

by performing non-linear regression analysis (using the nls command in R [109 and 110]) on the

training dataset. Table 6.3 provides the Km and Vmax values corresponding to the Michaelis-

Menten kinetics (Equation 6.11) for the scatter and gather network-level operations. For the

reduce operation performed in the SNN multi-GPGPU orchestration, we use the micro-

benchmark throughput values, since data size is constant (48 neurons x 4 bytes = 192 bytes) and

is reduced at MPI rank 0 irrespective of the neural network size and cluster configuration. The

regression models for scatter/gather throughput presented in Table 6.3 have satisfactory R
2
 and

p-values, making them reliable for prediction.

In Chapter 8, we explain this intuitive mapping of the network-level transaction problem onto

the Michaelis-Menten kinetics with a perspective of subjective-analytical models.

 83

Figure 6.1 Scatter Throughput vs. Message Size

Figure 6.2 Gather Throughput vs. Message Size

 84

Table 6.3 Vmax (MB/sec) and Km (MB) for Scatter and Gather Operations

Network

Operation

2 Proc. 4 Proc. 8 Proc. 16 Proc. 32 Proc.

Scatter Vmax Km Vmax Km Vmax Km Vmax Km Vmax Km

1867 -0.14 1386 -0.03 1399 0.03 1947 0.65 2253 2.42

Gather Vmax Km Vmax Km Vmax Km Vmax Km Vmax Km

1801 -0.06 1953.9 0.43 1788.5 -0.34 1774.5 -0.22 1669.7 -1.4

To obtain the regression models for the sendrecv operation, we perform micro-benchmarks

on configurations ranging from 4- to 32-nodes. The sendrecv times obtained for the 2-node

configuration were very short (in fractions of milliseconds) for any reasonable data size

compared to the other node configurations; therefore we do not show the regression analysis for

the 2-node case. The sendrecv micro-benchmark replicates the sendrecv communication pattern

used in the ADF algorithm for different test image sizes. Figure 6.3 shows the sendrecv

throughput values versus data exchange size for different node configurations.

Figure 6.3 Sendrecv Throughput vs. Data Exchange Size

 85

As seen in Figure 6.3, the sendrecv throughput exponentially decays with the data exchange

size for all of the specified node configurations. A visual inspection of the same figure suggests

regression of the logarithm of throughput on the data exchange size to obtain a linear model.

Table 6.4 summarizes the regression models for the sendrecv operation. In the equations shown

below, the sendrecv variable corresponds to the sendrecv throughput and Kbytes represents the

data exchange size in KB.

Table 6.4 Regression Models for sendrecv Operation in ADF Algorithm

Node Configuration Regression Model

4 log() 6.98 0.039*Sendrecv Kbytes 

8 log() 6.90 0.049*Sendrecv Kbytes 

16 log() 7.01 0.045*Sendrecv Kbytes 

32 log() 6.86 0.035*Sendrecv Kbytes 

B. PCI-Ex Bus Communications

As discussed in Section 4.1, each server in the Forge GPGPU cluster consists of 6 GPGPU

devices interfaced with the NUMA nodes via PCI-Ex bus using PCI-Ex switches (see Figure

4.1). As mentioned in Section 4.2, the MPI ranks are assigned in node packing fashion with 1:1

CPU-host/GPGPU-device ratio at each server. Consequently, at node configurations greater than

4 host-device pairs, up to 6 host-device pairs may be packed in a single server leading to PCI-Ex

bus congestion in that server. Therefore, the regression models for PCI-Ex download (host-to-

device) and read-back (device-to-host) throughputs are developed for different host-device

pairings in a single server.

We perform micro-benchmarks for download and read-back throughputs using typical

message sizes (8 KB to 32 MB) for 2, 4, and 6 host-device pairs in a single server. The

intermediate host-device pairs (1, 3, and 5 host-device pairs) are not included since our test node

configurations are multiples of 2. Figures 6.4 and 6.5 show the download and read-back

 86

throughput curves for different per-server host-device pair configurations. Similar to the

Infiniband performance, the PCI-Ex bus performance resembles the Michaelis-Menten kinetics.

Also seen in the figures, the throughput values drop with host-device pair scaling, confirming the

hypothesis that host-device pair scaling in a server leads to PCI-Ex traffic congestion, leading to

reduced download and read-back throughput values. Table 6.5 provides the Vmax and Km values

corresponding to Equation 6.11 for download and read-back throughput. The subjective-

analytical modeling perspective of this analysis is elaborated in Chapter 8.

Figure 6.4 Download Throughput vs. Message Size

 87

Figure 6.5 Read-back Throughput vs. Message Size

Table 6.5 Vmax (MB/sec) and Km (MB) for PCI-Ex Download and Read-back

PCI-Ex Operation 2 Proc. 4 Proc. 6 Proc.

Download Vmax Km Vmax Km Vmax Km

1759 0.0012 1682.8 -0.02 1108.9 0.48

Readback Vmax Km Vmax Km Vmax Km

1567.86 0.43 1385.12 0.7 501.12 0.8

In the foregoing discussion, the Michaelis-Menten kinetics equation was intuitively applied

to model the download and read-back operations over the PCI-Ex bus. However, additional

mathematical techniques can be employed to fit regression models that may provide higher

prediction accuracy. As seen in Figures 6.4 and 6.5, the relationship between the throughput

values and message size is highly non-linear, thereby requiring a variable transformation. We

apply a logarithm transformation, henceforth log-transformation, on the message size and

perform regression of the PCI-Ex throughput on log-transformed message size to obtain a simple

linear relation. Table 6.6 provides the regression models for the download and read-back

 88

operations obtained using the log-transformation. These regression models were selected based

on high R
2
 and low p-values.

Table 6.6 Regression Models for Download and Read-back Throughput (MB/sec)

Host-

Device

Pair

PCI-Ex Download PCI-Ex Read-back

2 1269.34 284.11*log()Download Mbytes  1022.21 218.81*log()Read -back Mbytes 

4 1021.36 255.06*log()Download Mbytes  794.12 193.43*log()Read -back Mbytes 

6 720.73 179.63*log()Download Mbytes  290.25 74.24*log()Read -back Mbytes 

In this section, we elucidated the low-level abstraction constituted by the regression-based

framework that aims to provide analysis of the following components of the SIGE model:

computation and communication. The computation components were developed using algorithm

characteristics such FLOPs and bytes, whereas the communication component regression models

were developed with micro-benchmarks of the Infiniband and PCI-Ex bus performance. In

addition to intuitively applying the Michaelis-Menten kinetics for PCI-Ex bus performance

modeling, the variable transformation technique was also applied to develop alternate regression

models. We performed log-transformations on the message size to obtain a simple linear relation

between the PCI-Ex throughput (download and read-back) and log-transformed message size.

The resulting simple linear models for download and read-back throughputs were accepted based

on their high R
2
 and low p-values. In simple linear regression analysis, a high R

2
 value signifies

that the chosen regression model adequately explains the variation of the independent variable

with respect to the dependent variable, whereas a low p-value signifies the validity of the simple

linear model. Although the variable transformation analysis can be applied for the network-level

transactions, our log-transformation analysis for the network-level yielded regression models

with low R
2
 values, hence not suitable for predictions. We surmise that a larger sample for the

network-level can better aide the regression analysis (both Michaelis-Menten and log-

 89

transformation). To justify this claim, Figures 6.6 and 6.7 show the scatter throughput prediction

capability of the Michaelis-Menten and log-transformation methods when a large sample is

chosen. These figures show the predicted and actual scatter throughput values for an 8-node

configuration on the Palmetto multi-GPGPU cluster [15]. As seen in the same figures, the scatter

throughput is approximated reasonably by both Michaelis-Menten and log-transformation

methods due to the selection of a large sample for analysis. The Michaelis-Menten kinetics better

approximates the scatter throughput compared to the log-transformation method given its high R
2

value (0.99 vs. 0.93). In the next chapter, we employ the regression models developed in this

section to perform runtime predictions for SNN-ADF SIAs.

The authors assert that these regression-based techniques can be extended to other computing

systems as well. In the next section, we present the GPGPU DSE leveraged by the low-level

abstraction. This analysis was conducted on the GPGPU-augmented Palmetto cluster with latest

Kepler K20 devices.

 90

Figure 6.6 Scatter Throughput Prediction for 8-node Configuration using

Michaelis-Menten Kinetics

 91

Figure 6.7 Scatter Throughput Prediction for 8-node Configuration using Log-

Transformation

6.3 GPGPU DSE USING LOW-LEVEL ABSTRACTION

Design Space Exploration (DSE) studies offer an interesting way to perform application

tuning and mapping by exploring several possible implementations (the design space) of an

application on the target computing system. The GPGPU DSE aims to analyze the runtime

performance of several functionally equivalent implementations of an algorithm, thereby ranking

the GPGPU design space. This ranking enables developers to choose the best implementation for

optimal algorithm performance on GPGPU-based systems. The GPGPU devices have a

 92

specialized architecture with a memory hierarchy comprising of global, local, shared, constant,

and texture memories, each with distinct properties that influence the application performance,

thereby requiring prudent use of these memories. An application can employ several plausible

optimizations pertaining to the GPGPU memory hierarchy, creating a large design space. As

mentioned in Chapter 5, the low-level abstraction (regression-based framework) is anticipated to

provide fine-grained runtime predictions, providing a viable approach to GPGPU DSE. Using the

regression-based framework, we explore the GPGPU design space featuring optimizations of the

GPGPU memory hierarchy for optimal application performance. The regression-based

framework models the GPGPU kernel performance using minimum application and accelerator

details such as the number of floating-point operations (FLOPs), number of bytes consumed, and

parameters pertaining to the GPGPU memory hierarchy including global, texture, and shared

memories. Additional algorithm parameters that influence the runtime performance can also be

included in the regression analysis. For instance, the number of non-zero rows in a sparse matrix

problem can be used as an independent variable for the analysis. The kernel runtime predictor

equations are developed with the kernel runtime data collected using several small, instrumented

executions of SIAs with a range of computation-to-communication requirements. The kernel

runtime predictions for candidate implementations are then compared to ultimately rank the

GPGPU design space for a given application. In Section 6.3.1, we discuss the three GPGPU

design space implementations for the SNN-ADF SIAs studied in this research. These

implementations employ GPGPU-CPU task division identical to the one described in Section

4.2. The GPGPU kernels for implementations differ with respect to the type of memory

optimizations employed. These functionally identical implementations are executed on the

GPGPU-augmented Palmetto cluster with Kepler K20 devices. The development of regression

 93

equations for evaluating the GPGPU design space is given in Section 6.3.2. The verification of

the low-level abstraction for GPGPU DSE is performed in the next chapter.

6.3.1 Design Space Implementations

A. Global Memory

Implementation 1 uses the GPGPU device DRAM (the largest memory), the global memory,

to store the entire input data pertaining to an application. The GPGPU device fetches the data

from the global memory for computations; once all of the computations are finished, the GPGPU

device writes the output back to the global memory for reading by the host processor. As the

global memory is off-chip memory, frequent accesses result in higher memory latency, thereby

impeding the overall application performance. All memory accesses for the SNN and ADF

implementations use the global memory. We chose a constant thread block configuration of 256

threads per block to maximize the multiprocessor occupancy for the SNN and ADF

implementations using the global memory.

B. Shared Memory

Implementation 2 uses the shared memory, which is an on-chip read/write memory local to a

given thread block. All the threads in a thread block have access to the same shared memory,

thereby enabling synchronization of the threads within a thread block. Additionally, being an on-

chip memory, the use of shared memory reduces the frequent accesses to the off-chip global

memory, improving the application performance. For our chosen SIAs, the size of the shared

memory depends on the BLOCKSIZE (number of threads in a block). Therefore, to obtain the

kernel runtimes using various BLOCKSIZES, we vary the BLOCKSIZE parameter in the kernel

from 32 threads to 1024 threads. Additionally, for the SNN models, Implementation 1 is

 94

equivalent to Implementation 2 using a BLOCKSIZE of 256, as they have same number of

global memory accesses; whereas for the ADF algorithm, the neighboring pixels in the noised

image are fetched from the shared memory, making Implementation 2 distinct from

Implementation 1.

C. Texture Memory

For Implementation 3, we use the texture memory designed for high-speed data reading. The

texture memory is cached and therefore allows for faster accesses to the data, reducing the

frequent high latency accesses to the global memory. The CUDA framework provides techniques

for using 1D, 2D, or 3D textures. We use the read-only 1D texture memory to read the level-1

currents for the SNN implementation. For the ADF implementation, we use the read-only 2D

texture memory to fetch the neighboring pixels in the noised image.

The next section discusses the low-level design space abstraction where we develop the

kernel runtime regression models for these implementations.

6.3.2 Regression-Based Framework for GPGPU DSE

In this section, we explain the regression-based framework for GPGPU design space

exploration. The regression-based framework constitutes the low-level abstraction of the design

space where partial knowledge of the implementation is present along with the system

specifications. We first explain the low-level design space abstraction, followed by the

development of regression equations for the three GPGPU design space implementations of the

SNN-ADF SIAs.

 95

A. Low-Level Design Space Abstraction

As mentioned previously, the GPGPU design space consists of a specialized memory

hierarchy comprising of global, local, shared, constant, and texture memories, each with distinct

properties that influence the application performance. Motivated by the modeling concepts

developed in [16], we introduce the low-level design space abstraction that aims to statistically

encapsulate the characteristics of the aforementioned GPGPU device memories, enabling DSE

via kernel runtime prediction using limited implementation details and system information. The

regression-based framework, which constitutes the low-level design space abstraction, enables

the formulation of mathematical models that assist in the kernel runtime prediction for the given

GPGPU architecture with a certain degree of confidence [107]. In this framework, the GPGPU

kernel runtime satisfactorily typifies the dependent variable for the regression analysis. The

choice of independent variables depends on the algorithm studied and the implementation

selected from the design space. For the SIAs used in this research, parameters that can

adequately represent the set of independent variables include: the number of floating-point

operations (FLOPs), number of bytes required for computation, and memory types employed

from the GPGPU device memory hierarchy.

The regression models for GPGPU computations are trained using several instrumented

executions of an SIA set with a range of computation-to-communication requirements. To

perform the regression analysis, we choose a set of nominal test sizes as samples to characterize

the behavior of the entire population that includes larger input sizes. The regression models were

selected based on their high R
2
 values (greater than 0.95) and low p-values of the regression

coefficients and overall model (less than 0.05).

 96

B. Regression Models for Implementation 1

For Implementation 1, we group the four SNN models either as computation-bound or

communication-bound SNN models based on the FLOPs/Byte ratio values mentioned in Table

3.1. Therefore, the HH and ML models are grouped as computation-bound models, whereas the

Izhikevich and Wilson models are grouped as communication-bound models. Additionally, to

obtain the prediction models for algorithms that have FLOPs/Byte ratios between the ML and

Wilson models, we present a case where both the models are moderately computation-bound and

communication-bound with moderate FLOPs and bytes requirements. The GPGPU kernel

regression models are developed separately for the computation-bound, communication-bound,

and moderately computation-bound and communication-bound SNN models. These regression

models use algorithm characteristics such as the number of floating-point operations, MFLOPs

(in megaflops) and the number of computational bytes, MBYTES (in megabytes) as predictor

variables. For each of the SNN models, we perform several instrumented executions of the

GPGPU kernel using several network sizes to construct the regression models for the

aforementioned bounds. The SNN regression models for all of the aforementioned bounds are

shown in Equations 6.12, 6.13, and 6.14.

Computation-Bound:

4.821375 0.008194 0.065055GPU KernelT MFLOPs MBYTES      
 (6.12)

Communication-Bound:

2.2410263 0.0405150 0.0678999GPU KernelT MFLOPs MBYTES     
 (6.13)

 97

Moderately Computation- and Communication-Bound:

3.449 3.649 04 6.669 03GPU KernelT e MFLOPs e MBYTES       
 (6.14)

We now explain the development of the GPGPU kernel runtime regression model for the

ADF algorithm. Table 6.2 shows the FLOPs, Bytes, and FLOPs/Byte ratio information per data

element for the ADF algorithm and the Izhikevich SNN model. As seen in Table 6.2, both the

Izhikevich SNN and ADF algorithms have similar FLOPs-to-Byte requirements with

FLOPs/Byte ratio close to 1, therefore we group them together as communication-bound

algorithms with a common regression model for the GPGPU device computations, given by

Equation 6.15.

Communication-Bound (ADF and Izhikevich):

5.304158 0.126048 0.107107GPU KernelT MFLOPs MBYTES      
 (6.15)

C. Regression Models for Implementation 2

As mentioned in Section 6.3.1, shared memory utilizes locality to reduce the frequent

accesses to the global memory. As shared memory is allocated per thread block and all threads in

the block have access to the same shared memory, we consider the hardware parameter

BLOCKSIZE (number of threads in a thread block), as one of the independent variables for

developing the GPGPU kernel runtime regression model, in addition to the parameters MFLOPs

and MBYTES. Due to hardware constraints on the algorithm correctness, the SNN

implementations were limited to BLOCKSIZES: 128, 256, and 512. Consequently, we define two

indicator variables, A and B, to index the above BLOCKSIZES and analyze each of the four SNN

models individually. The indicator variables are commonly used to incorporate the categorical

 98

effects of independent variables in the regression analysis [107]. The indexing of BLOCKSIZES

is elucidated as:

 128: A=1, B=0

 256: A=0, B=1

 512: A=0, B=0

BLOCKSIZE

BLOCKSIZE

BLOCKSIZE

The regression models for the four SNN models are shown in Equations 6.16, 6.17, 6.18, and

6.19. It should be noted that MBYTES is not included in the regression models due to its weak

statistical significance. Unlike the SNN models, the shared memory implementation of the ADF

algorithm was not limited by the choice of BLOCKSIZE. Consequently for the ADF

Implementation 2, we consider the BLOCKSIZE parameter as a quantitative variable along with

MFLOPs and MBYTES for developing the regression model given in Equation 6.20. These

regression models statistically capture the effects of shared memory usage on the GPGPU kernel

runtime, in addition to the FLOPs performed and BYTES consumed by the GPGPU kernel.

HH:

129 0.001796 120.3 107.2GPU KernelT MFLOPs A B        
 (6.16)

ML:

2.502 0.0004477 0.1879 0.2645GPU KernelT MFLOPs A B       
 (6.17)

Wilson:

4.320 0.003955 0.02133 0.2126GPU KernelT MFLOPs A B       
 (6.18)

Izhikevich:

1.800584 0.0287466 0.9955 0.567GPU KernelT MFLOPs A B       
 (6.19)

 99

ADF:

244.25560 208.47496 580.82102 0.15345GPU KernelT MFLOPs MBYTES BLOCKSIZE        

 (6.20)

D. Regression Models for Implementation 3

Texture memory is a fast, read-only cache between the GPGPU Streaming Multiprocessors

(SMPs) and device memory that provides high bandwidth by reducing memory requests to the

off-chip global memory. The four SNN models represent a wide-range of computation

requirements; therefore the amount of texture memory and global memory accessed varies for

each of the four SNN models. Unlike Implementation 1, we model the kernel runtime of the four

SNN models algorithm individually. The kernel runtime regression models for the four SNN

models observed significant collinearity between the predictor variables: global memory

(GLOBAL) and the texture memory (TEXTURE). To mitigate the collinearity between the

predictor variables, we use the texture memory as an indicator variable for developing the kernel

runtime regression models. The predictor variables used for the kernel runtime regression models

are the number of floating-point operations (MFLOPs) and the number of bytes accessed from

the global memory (GLOBAL) as quantitative variables, and the texture memory (TEXTURE) as

an indicator variable. The regression models for the SNN models are shown in Equations 6.21,

6.22, 6.23, and 6.24. The texture memory implementation of the ADF algorithm did not observe

any collinearity amongst the predictor variables. Consequently, GLOBAL, MFLOPS, and

TEXTURE are used as quantitative variables. Equation 6.25 gives the regression equation for the

ADF algorithm.

 100

HH:

57.02 7.589 03 2.383 01 56.66GPU KernelT e MFLOPs e GLOBAL TEXTURE          
 (6.21)

ML:

1.775 6.655 04 7.221 03 2.138 01GPU KernelT e MFLOPs e GLOBAL e TEXTURE          
 (6.22)

Wilson:

3.5580964 6.4678 03 1.48080 02 3.98392 02GPU KernelT e MFLOPs e GLOBAL e TEXTURE          
 (6.23)

Izhikevich:

1.1830696 0.0316368 0.0016329 0.0144303GPU KernelT MFLOPs GLOBAL TEXTURE       
 (6.24)

ADF:

65.90 57.08 3415.26GPU KernelT MFLOPs TEXTURE     
 (6.25)

6.4 SUMMARY

In this chapter, we discussed the low-level abstraction of the multi-level performance

modeling suite in detail. We explained the development of regression models to estimate the

computation and communication components of the SNN-ADF SIAs using the NCSA Forge

GPGPU cluster. Profiles of the CPU sections of the parallel algorithm were used to develop the

CPU computation regression models. These regression models were constructed using the

number of processors (P) and data accessed (BYTES) as predictor variables. Unlike the CPU-host

computations, the GPGPU device computation regression models were developed using the

number of floating-point operations (FLOPs) and bytes consumed (BYTES) as predictor

variables. The SIAs were grouped either as computation-bound, communication-bound, or

moderately computation- and communication-bound models to obtain reliable predictor

 101

equations. For the communication component of the SIAs, micro-benchmarks were used to train

the transaction throughput regression equations. The throughput equations were developed using

the Michaelis-Menten kinetics equation and log-transformation method. We also demonstrated

the use of low-level abstraction for design space exploration. We discussed three design space

implementations of the SNN-ADF SIAs, namely global memory, shared memory, and texture

memory, and developed the kernel runtime regression equations for these implementations. The

construction of the kernel runtime regression equations included parameters pertaining to the

GPGPU device memory hierarchy, in addition to FLOPs and BYTES. In the next chapter, we

employ the regression equations developed in this chapter to verify the low-level abstraction for

fine-grained runtime prediction and GPGPU DSE.

 102

CHAPTER 7

VERIFICATION OF THE LOW-LEVEL ABSTRACTION

In this chapter, we present the verification results for the low-level abstraction using all of the

SIA case studies employed in this dissertation research. We report error rates for the computation

component, communication component, and the overall application runtime. We also verify the

use of low-level abstraction for optimal design space exploration. A Strengths, Weaknesses, and

Opportunities (SWO) analysis study is also conducted to identify the merits and demerits of the

low-level abstraction methodology, identifying avenues for further improvement. The

verification of the low-level abstraction for accurate runtime prediction of SIAs on multi-

GPGPU systems is provided in Section 7.1. As mentioned in the previous chapters, this analysis

is performed on the NCSA Forge GPGPU cluster. Section 7.2 presents the results and analysis of

GPGPU DSE using the low-level abstraction. This study was conducted on the GPGPU-

augmented Palmetto cluster with Kepler K20 devices. The SWO analysis is performed in Section

7.3 with both the Fermi and Kepler architectures, highlighting the framework’s ability to span

GPGPU architecture generations. The chapter concludes in Section 7.4 with a summary.

7.1 VERIFICATION RESULTS: SNNs

In this section, we present the verification results for the regression-based framework using

the four SNN models. As mentioned in Chapter 5, we scaled the two-level network from 5.7

million neurons to 207 million neurons and varied the node configuration from 2- to 32-nodes.

We present the prediction errors for the computation and communication components of the

regression-based framework for all of the node configurations using a set of selected SNN

 103

network sizes at each node configuration. First, we discuss the computationally intensive HH

model, followed by the ML model, Wilson model, and the Izhikevich model.

7.1.1 HH Model

Table 7.1 shows the total estimated and experimental computation times for the computation

component of the node configurations varying from 2- to 32-nodes. As shown in Equation 5.3,

the computation time, Tcomp., is the sum of CPU computation time, TCPU-Host and GPGPU

computation time, TGPU. The GPGPU computation time includes GPGPU kernel time and host-

device transfer times as shown by the same equation. In our experiments, we do not account for

pre-/post-processing operations since they are only data structure initializations. Consequently,

the equation for the computation component takes the form:

. .

.

1 1

computation iter computation iter

computation comp

i i

T T
 

 

  (7.1)

Equations 6.2 and 6.7 give the regression models for the computation component of the HH

model. As seen in Table 7.1, the computation component regression models provide good

prediction results for the tested node configurations and SNN network sizes with maximum error

rate of 8.3%.

 104

Table 7.1 HH model: Estimated and Experimental Time Values for Computation Component

Configuration Computation Component (∑Tcomp.=∑TCPU-Host + ∑TGPU) (in ms)

2-Node Network Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

4800x4800 1144.16 2393.84 3538 3402.96 -3.96%

5040x5040 1260.96 2581.88 3842.84 3708.05 -3.64%

4-Node Network Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

5040x5040 688.62 1467.47 2156.1 2031.89 -6.11%

7200x7200 1413.27 2629.52 4042.8 4026.05 -0.42%

8-Node Network Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

7200x7200 817.27 1541.29 2358.57 2342.29 -0.69%

9600x9600 1477.86 2484.35 3962.22 4100.45 3.37%

16-Node Network Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

7200x7200 482.6 847.75 1330.35 1450.3 8.27%

9600x9600 920.92 1393.08 2313.99 2455.62 5.76%

32-Node Network Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

12480 x12480 1085.12 1204.602 2289.72 2165.78 -5.72%

14400x14400 1503.92 1541.3 3045.21 2883.80 -5.59%

Table 7.2 shows the communication times involved in a single scatter operation and multiple

reduction operations. As discussed in Chapter 4, the input image is scattered by the master MPI

process rank 0 to all the other MPI processes at the beginning of the algorithm. Once the

algorithm begins, at each time-step (472 times-steps for the HH model), the MPI processes

synchronize at the master process to accumulate the partial level-2 currents (reduce at MPI rank

0) required for the level-2 neuron dynamics computation. Consequently, the equation for the

communication component reduces to:

. .

1 1

communication iter communication iter

communication scatter reduce

i i

T T T
 

 

   (7.2)

The regression models for the communication component yield satisfactory results with few

outliers for large node configurations. The error rates are approximately 24% for 8-node and

16% for 32-node configurations at the respective largest SNN network sizes. Table 7.3 provides

 105

the estimated runtime, experimental runtime, and the error rate in overall runtime prediction,

where the largest error is 8.44%.

Table 7.2 HH model: Estimated and Experimental Time Values for Communication Component

Configuration Communication Component (∑Tcomm.=TScatter + ∑TReduce) (in ms)

2-Node Network Size TScatter

Est.

TReduce

Est.

Tcomm.

Est.

Tcomm.

Exp.

Error in

Tcomm.

4800x4800 46.98 1.156 48.14 49.25 2.25%

5040x5040 51.81 1.156 52.96 53.98 1.87%

4-Node Network Size TScatter

Est.

TReduce

Est.

Tcomm.

Est.

Tcomm.

Exp.

Error in

Tcomm.

5040x5040 69.88 2.675 72.56 74.207 2.21%

7200x7200 142.65 2.675 145.33 149.381 2.71%

8-Node Network Size TScatter

Est.

TReduce

Est.

Tcomm.

Est.

Tcomm.

Exp.

Error in

Tcomm.

7200x7200 141.3447 11.68 153.028 154.965 1.25%

9600x9600 251.26 11.68 262.94 347.6 24.35%

16-Node Network Size TScatter

Est.

TReduce

Est.

Tcomm.

Est.

Tcomm.

Exp.

Error in

Tcomm.

7200x7200 101.88 9.87 111.76 124.8 10.43%

9600x9600 180.87 9.87 190.75 214.771 11.2%

32-Node Network Size TScatter

Est.

TReduce

Est.

Tcomm.

Est.

Tcomm.

Exp.

Error in

Tcomm.

12480 x12480 264.7 14.65 279.35 290.5 3.82%

14400x14400 352.05 14.65 366.70 439.86 16.63%

Table 7.3 HH model: Estimated Runtime, Experimental Runtime, and Error Rate

Configuration TExecution =∑Tcomputation + ∑Tcommunication (in ms)

2-Node Network Size TExecution Est. TExecution Exp. Error (%)

4800 x 4800 3586.15 3452.207 -3.87%

5040 x 5040 3895.81 3762.025 -3.55%

4-Node Network Size TExecution Est. TExecution Exp. Error (%)

5040 x 5040 2228.66 2106.1 -5.81%

7200 x 7200 4188.12 4175.43 -0.30%

8-Node Network Size TExecution Est. TExecution Exp. Error (%)

7200 x 7200 2511.6 2497.25 -0.57%

9600 x 9600 4225.164 4448.044 5.07%

16-Node Network Size TExecution Est. TExecution Exp. Error (%)

7200 x 7200 1442.11 1575.1 8.44%

9600 x 9600 2504.741 2670.4 6.2%

32-Node Network Size TExecution Est. TExecution Exp. Error (%)

12480 x 12480 2554.417 2447.751 -4.35%

14400 x 14400 3397.265 3315.4 -2.46%

 106

7.1.2 ML Model

Tables 7.4 and 7.5 provide the experimental and estimated runtime values for the

computation and communication components, respectively. Equations 7.1 and 7.2 apply for the

evaluation of computation and communication components. Since the ML model is moderately

computation- and communication-bound, we use Equation 6.9 for the GPGPU kernel time

estimation. Equation 6.3 applies for the CPU-host computation time estimation. The estimations

for the computation component are observed to be generally satisfactory; however the prediction

errors are high for 32-node configuration for large SNN network sizes. Although our results

achieve high prediction accuracy for the GPGPU time estimation (3-5%), the CPU-host

estimation time observed high error rates. The authors attribute the high error rate to variability

in the level-1 firing event. The slightly non-deterministic nature of the level-1 firing leads to

imprecise CPU-host time estimation. Additionally, unlike the HH model, the ML model is CPU

computation-bound as seen in Table 7.4. The regression models for the communication

components yield satisfactory results with high prediction accuracy (error rate < 11%) as seen in

Table 7.5.

Table 7.6 shows the estimated runtime, experimental runtime, and overall error rate in the

runtime prediction. While the error estimates for most of the node configurations are in

acceptable ranges, the 32-node configuration observes only about 80% prediction accuracy due

to inaccurate CPU-host time predictions as previously explained in this sub-section.

 107

Table 7.4 ML model: Estimated and Experimental Time Values for Computation Component

Configuration Computation Component (∑Tcomp.=∑TCPU-Host + ∑TGPU) (in ms)

2-Node Network Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

4800x4800 1657.55 183.6 1841.15 1734.43 -6.15%

5040x5040 1828.87 200.51 2029.38 1911.42 -6.17%

4-Node Network Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

5040x5040 975.22 112.05 1087.26 1231.92 -11.74%

7200x7200 2006.61 209.3 2215.89 2498.84 -11.32%

8-Node Network Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

7200x7200 545.64 82.03 627.67 625 -0.42%

9600x9600 1133.75 146.15 1279.9 1244.67 -2.83%

16-Node Network Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

7200x7200 691.82 83.3 775.1 703.88 -10.12%

9600x9600 1250.68 132.19 1382.86 1246.85 -10.9%

32-Node Network Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

9600 x9600 849.71 77.44 927.15 742.24 -25%

12480x12480 1464.56 116.07 1580.63 1250.83 -26.4%

Table 7.5 ML model: Estimated and Experimental Time Values for Communication Component

Configuration Communication Component (∑Tcomm.=TScatter + ∑TReduce) (in ms)

2-Node Network Size TScatter

Est.

TReduce

Est.

Tcomm.

Est.

Tcomm.

Exp.

Error in

Tcomm.

4800x4800 46.98 0.27 47.26 48.63 2.81%

5040x5040 51.81 0.27 52.08 53.04 1.8%

4-Node Network Size TScatter

Est.

TReduce

Est.

Tcomm.

Est.

Tcomm.

Exp.

Error in

Tcomm.

5040x5040 69.88 0.63 70.52 77.95 9.53%

7200x7200 142.65 0.63 143.28 153.772 6.82%

8-Node Network Size TScatter

Est.

TReduce

Est.

Tcomm.

Est.

Tcomm.

Exp.

Error in

Tcomm.

7200x7200 69.27 2.76 72.02 74.15 2.86%

9600x9600 141.35 2.76 144.1 144.84 0.51%

16-Node Network Size TScatter

Est.

TReduce

Est.

Tcomm.

Est.

Tcomm.

Exp.

Error in

Tcomm.

7200x7200 101.88 2.33 104.22 113.6 8.26%

9600x9600 180.86 2.33 183.2 200.85 8.78%

32-Node Network Size TScatter

Est.

TReduce

Est.

Tcomm.

Est.

Tcomm.

Exp.

Error in

Tcomm.

9600x9600 157.06 3.46 160.52 176.33 8.96%

12480x12480 264.7 3.46 268.15 299.1 10.35%

 108

Table 7.6 ML model: Estimated Runtime, Experimental Runtime, and Error Rate

Configuration TExecution =∑Tcomputation + ∑Tcommunication (in ms)

2-Node Network Size TExecution Est. TExecution Exp. Error (%)

4800 x 4800 1888.412 1783.06 -5.9%

5040 x 5040 2081.46 1964.45 -5.96%

4-Node Network Size TExecution Est. TExecution Exp. Error (%)

5040 x 5040 1157.78 1309.87 11.6%

7200 x 7200 2359.17 2652.6 11.06%

8-Node Network Size TExecution Est. TExecution Exp. Error (%)

7200 x 7200 1424 1389.5 -2.5%

9600 x 9600 2528.6 2549.85 -0.83%

16-Node Network Size TExecution Est. TExecution Exp. Error (%)

7200 x 7200 879.32 817.5 -7.56%

9600 x 9600 1566.06 1447.7 -8.17%

32-Node Network Size TExecution Est. TExecution Exp. Error (%)

9600x9600 1087.67 918.56 -18.41%

12480x12480 1848.78 1549.94 -19.28%

7.1.3 Wilson Model

Table 7.7 provides the experimental and estimated times for the computation components. To

predict the computation performance, we use Equation 6.4 for the CPU-host computations and

Equation 6.8 for the GPGPU kernel time estimation. The prediction error values for most of the

test cases are less than 10% as seen in the same table.

Table 7.8 provides the estimated time, experimental time, and prediction error values for the

communication component of the regression-based framework. The equations for the

communication components are given in Tables 6.3 and 6.6. For the Wilson model, the

communication component prediction models yielded slightly higher error values that are

between 10-15%. Table 7.9 provides the estimated runtime, experimental runtime, and overall

prediction error values for all of the node configurations versus the SNN network size where the

maximum error is 12.2%.

 109

Table 7.7 Wilson model: Estimated and Experimental Time Values for Computation Component

Configuration Computation Component (∑Tcomp.=∑TCPU-Host + ∑TGPU) (in ms)

2-Node Network Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

4800x4800 1218.6 340.24 1558.84 1444.03 -7.95%

5040x5040 1343.3 370.8 1714.14 1587.4 -7.98%

4-Node Network Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

5040x5040 699.3 204.26 903.56 976.46 7.46%

7200x7200 1434.45 385.08 1819.52 1972.15 7.74%

8-Node Network Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

7200x7200 768.45 256.25 1024.71 959.921 -6.74%

9600x9600 1385.65 430.75 1816.4 1687.07 -7.66%

16-Node Network Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

7200x7200 408.36 139.46 547.82 617.165 11.23%

9600x9600 773.58 235.4 1004.20 1085.95 7.52%

32-Node Network Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

9600x9600 413.377 126.25 539.63 550.1 1.91%

12480x12480 790.70 198.57 989.25 899.4 -9.98%

Table 7.8 Wilson model: Estimated and Experimental Time Values for Communication

Component

Configuration Communication Component (∑Tcomm.=TScatter + ∑TReduce) (in ms)

2-Node Network Size TScatter

Est.

TReduce

Est.

Tcomm.

Est.

Tcomm.

Exp.

Error in

Tcomm.

4800x4800 46.98 0.306 47.29 48.643 2.77%

5040x5040 51.81 0.306 52.11 52.93 1.53%

4-Node Network Size TScatter

Est.

TReduce

Est.

Tcomm.

Est.

Tcomm.

Exp.

Error in

Tcomm.

5040x5040 69.88 0.708 70.59 76.76 8.02%

7200x7200 142.65 0.708 143.36 161.673 11.32%

8-Node Network Size TScatter

Est.

TReduce

Est.

Tcomm.

Est.

Tcomm.

Exp.

Error in

Tcomm.

7200x7200 69.27 3.09 72.36 83.31 13.13%

9600x9600 141.34 3.09 144.44 166.06 13.02%

16-Node Network Size TScatter

Est.

TReduce

Est.

Tcomm.

Est.

Tcomm.

Exp.

Error in

Tcomm.

7200x7200 101.88 2.61 104.5 125.56 16.76%

9600x9600 180.87 2.61 183.5 217.41 15.6%

32-Node Network Size TScatter

Est.

TReduce

Est.

Tcomm.

Est.

Tcomm.

Exp.

Error in

Tcomm.

9600x9600 157.06 3.88 160.95 181.90 11.52%

12480x12480 264.7 3.88 268.57 301.86 11.02%

 110

Table 7.9 Wilson model: Estimated Runtime, Experimental Runtime, and Error Rate

Configuration TExecution =∑Tcomputation + ∑Tcommunication

2-Node Network Size TExecution Est. TExecution Exp. Error (%)

4800 x 4800 1606.131 1492.675 -7.6%

5040 x 5040 1766.26 1640.307 -7.67%

4-Node Network Size TExecution Est. TExecution Exp. Error (%)

5040 x 5040 974.155 1053.214 7.5%

7200 x 7200 1962.883 2133.82 8.01%

8-Node Network Size TExecution Est. TExecution Exp. Error (%)

7200 x 7200 1169.15 1125.98 -3.83%

9600 x 9600 2070.75 2057.14 -0.66%

16-Node Network Size TExecution Est. TExecution Exp. Error (%)

7200 x 7200 652.33 741.8 12.17%

9600 x 9600 1187.69 1303.36 8.87%

32-Node Network Size TExecution Est. TExecution Exp. Error (%)

9600x9600 700.57 732.07 4.3%

12480x12480 1257.83 1201.27 -6.82%

7.1.4 Izhikevich Model

Tables 7.10 and 7.11 provide the estimated and experimental time values for the computation

and communication components, respectively, along with the prediction error values.

The prediction error values for the computation component are high compared to previously

studied SNN models. As mentioned in Section 6.2.1, the Wilson and Izhikevich models are

communication-bound SNN models; therefore the communication-bound regression model is

trained using execution times from both SNN models. However, any deviation produced by the

resulting regression model may cause large errors for short execution times. The Izhikevich

model, with its nominal FLOPs and bytes requirements (see Table 3.1), has a relatively short

execution time and consequently results in high prediction error rates [111] compared to the

more complex SNN models with longer execution times. The regression models for the

communication component yielded satisfactory results with one outlier (15% error) for the 32-

node configuration. Table 7.12 provides the estimated and experimental runtime values along

 111

with the overall prediction error values for all of the node configurations where the maximum

error is 14.8%.

Table 7.10 Izhikevich model: Estimated and Experimental Time Values for Computation

Component

Configuration Computation Component (∑Tcomp.=∑TCPU-Host + ∑TGPU) (in ms)

2-Node Network Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

4800x4800 1073.16 112.31 1185.5 1201.75 1.35%

5040x5040 1182.48 123.03 1305.52 1296.83 -0.67%

4-Node Network Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

5040x5040 638.76 65.38 704.14 735.15 4.21%

7200x7200 1316.41 125.38 1441.8 1491.53 3.33%

8-Node Network Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

7200x7200 743.12 66.55 809.7 857.23 5.55%

9600x9600 1360.1 112.31 1472.32 1557.75 5.5%

16-Node Network Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

7200x7200 399.92 58.21 458.13 545.42 16%

9600x9600 808.52 97.5 906 963.91 6%

32-Node Network Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

9600x9600 419.65 33.86 453.52 390.46 -16.15%

14400x14400 1289.55 66.55 1356.10 1162.63 -16.64%

 112

Table 7.11 Izhikevich model: Estimated and Experimental Time Values for Communication

Component

 Configuration Communication Component (∑Tcomm.=TScatter + ∑TReduce) (in ms)

2-Node Network Size TScatter

Est.

TReduce

Est.

Tcomm.

Est.

Tcomm.

Exp.

Error in

Tcomm.

4800x4800 46.98 0.026 47.01 48.58 3.22%

5040x5040 51.81 0.026 51.83 53.90 3.82%

4-Node Network Size TScatter

Est.

TReduce

Est.

Tcomm.

Est.

Tcomm.

Exp.

Error in

Tcomm.

5040x5040 69.88 0.06 69.95 77.65 9.92%

7200x7200 142.65 0.06 142.71 148.66 4%

8-Node Network Size TScatter

Est.

TScatter

Est.

TReduce

Est.

Tcomm.

Est.

Tcomm.

Exp.

7200x7200 69.27 0.27 69.54 69.93 0.57%

9600x9600 141.35 0.27 141.61 142.35 0.53%

16-Node Network Size TScatter

Est.

TReduce

Est.

Tcomm.

Est.

Tcomm.

Exp.

Error in

Tcomm.

7200x7200 101.89 0.25 102.11 111.85 8.7%

9600x9600 180.86 0.25 181.1 198.02 8.56%

32-Node Network Size TScatter

Est.

TReduce

Est.

Tcomm.

Est.

Tcomm.

Exp.

Error in

Tcomm.

9600x9600 157.06 0.33 157.4 176.75 8.93%

14400x14400 352.05 0.33 352.4 418.327 15.76%

Table 7.12 Izhikevich model: Estimated Runtime, Experimental Runtime, and Error Rate

Configuration TExecution =∑Tcomputation + ∑Tcommunication

2-Node Network Size TExecution Est. TExecution Exp. Error (%)

4800 x 4800 1232.5 1250.3 1.42%

5040 x 5040 1357.35 1350.32 -0.5%

4-Node Network Size TExecution Est. TExecution Exp. Error (%)

5040 x 5040 774.1 812.8 4.76%

7200 x 7200 1584.5 1640.2 3.4%

8-Node Network Size TExecution Est. TExecution Exp. Error (%)

7200 x 7200 951.29 999.59 4.83%

9600 x 9600 1723.85 1872.995 7.96%

16-Node Network Size TExecution Est. TExecution Exp. Error (%)

7200 x 7200 560.24 657.27 14.76%

9600 x 9600 1087.1 1161.9 6.44%

32-Node Network Size TExecution Est. TExecution Exp. Error (%)

9600x9600 610.6 567.2 -7.8%

14400x14400 1708.16 1580.23 -8.1%

In this section, we presented the preliminary verification results for the regression-based

framework (low-level abstraction) using the four SNN models as SIA case studies. The

 113

regression models for the computation and communication components demonstrated high

prediction accuracy (over 90%), barring a few test cases. It was observed that the regression

models yielded better results for the complex SNN models, HH model for instance, which have

longer execution times. The complex SNN models with longer execution times have relatively

small deviations from the predicted values compared to the deviations observed for simple SNN

models with shorter execution times. Additionally, the regression models for the computation

components were generally more accurate compared to the communication component models.

One theory to explain these deviations is that additional unaccounted for network characteristics,

such as change in the protocol, can affect the network-level transactions and hence the prediction

accuracy. Additionally, implicit synchronization in collective operations including scatter and

reduce may affect the prediction accuracy. Future work beyond this dissertation research will

include exploring these network effects on communication performance and prediction.

7.2 VERIFICATION RESULTS: ADF

As mentioned in Section 6.2.1, we paired the ADF algorithm with the Izhikevich SNN model

to obtain a common GPGPU computation regression model, given their similar FLOPs, bytes,

and FLOPs/Byte ratio requirements (see Table 6.2). First, we provide the prediction error rates

for the Izhikevich SNN model followed by the discussion of the ADF algorithm.

7.2.1 Izhikevich Model

The computation component of the Izhikevich model follows Equation 7.1. While Equation

6.5 applies for the CPU computations, we use the combined GPGPU computation regression

model given by Equation 6.10 for the GPGPU device computations. Table 7.13 shows the total

estimated and experimental computation times for the computation component with node

 114

configurations varying from 2- to 32-nodes. The lower FLOPs/Byte ratio requirements of the

Izhikevich SNN (see Table 6.2) and small number of algorithm iterations (12 vs. 30 in ADF)

results in shorter execution times, which ultimately leads to higher prediction errors (small

execution time deviations result in larger errors for shorter execution times). Table 7.14 shows

the communication times involved in a single scatter operation and multiple reduction

operations. As discussed in Chapter 4, the input image is scattered by the master MPI process

rank 0 to all the other MPI processes at the beginning of the algorithm. Once the algorithm

begins, at each time-step (12 times-steps for the Izhikevich SNN model), the MPI processes

synchronize at the master process to accumulate the partial level-2 currents (reduce at MPI rank

0) required for the level-2 neuron dynamics computation. The reduced equation for the

communication component is given by Equation 7.2.

Table 7.13 Izhikevich model: Estimated and Experimental Time Values for Computation

Component

Configuration Computation Component (∑Tcomp.=∑TCPU-Host + ∑TGPU)

2-Node Network Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

4800 x 4800 1073.16 113.97 1187.15 1201.75 1.21

5040 x 5040 1182.48 125.35 1307.85 1296.83 -0.85

4-Node Network Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

5040 x 5040 638.76 64.28 703.09 735.15 4.36%

7200 x 7200 1316.41 127.85 1444.3 1491.53 3.16%

8-Node Network Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

7200 x 7200 743.12 66.52 808.73 857.23 5.65%

9600 x 9600 1360.1 113.96 1474.05 1557.75 5.37%

16-Node Network Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

7200 x 7200 399.92 55.57 458.65 545.42 16.45%

9600 x 9600 808.52 96.1 904.7 963.91 6.13%

32-Node Network Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

9600 x 9600 419.65 31.05 451.03 390.46 -15.51%

14400 x 14400 1289.55 65.52 1355.4 1162.63 -16.6%

 115

Table 7.14 Izhikevich model: Estimated and Experimental Time Values for Communication

Component

Configuration Communication Component (∑Tcomm.=TScatter + ∑TReduce)

2-Node Network Size TScatter

Est.

TReduce

Est.

Tcomm.

Est.

Tcomm.

Exp.

Error in

Tcomm.

4800 x 4800 46.98 0.026 47.01 48.58 3.22%

5040 x 5040 51.81 0.026 51.83 53.90 3.82%

4-Node Network Size TScatter

Est.

TReduce

Est.

Tcomm.

Est.

Tcomm.

Exp.

Error in

Tcomm.

5040 x 5040 69.88 0.06 69.95 77.65 9.92%

7200 x 7200 142.65 0.06 142.71 148.66 4%

8-Node Network Size TScatter

Est.

TReduce

Est.

Tcomm.

Est.

Tcomm.

Exp.

Error in

Tcomm.

7200 x 7200 69.27 0.27 69.54 69.93 0.57%

9600 x 9600 141.35 0.27 141.61 142.35 0.53%

16-Node Network Size TScatter

Est.

TReduce

Est.

Tcomm.

Est.

Tcomm.

Exp.

Error in

Tcomm.

7200 x 7200 101.89 0.25 102.11 111.85 8.7%

9600 x 9600 180.86 0.25 181.1 198.02 8.56%

32-Node Network Size TScatter

Est.

TReduce

Est.

Tcomm.

Est.

Tcomm.

Exp.

Error in

Tcomm.

12480 x 12480 157.06 0.33 157.4 176.75 8.93%

14400 x 14400 352.05 0.33 352.4 418.327 15.76%

Table 7.15 provides the estimated and experimental runtime values along with the overall

prediction error values for all of the node configurations for maximum image size tested at that

configuration.

Table 7.15 Izhikevich model: Estimated Runtime, Experimental Runtime, and Error Rate (%)

Configuration TExecution =∑Tcomputation + ∑Tcommunication

2-Node Network Size TExecution Est. TExecution Exp. Error (%)

5040 x 5040 1359.67 1350.32 -0.67

4-Node Network Size TExecution Est. TExecution Exp. Error (%)

7200 x 7200 1586.95 1640.2 3.23

8-Node Network Size TExecution Est. TExecution Exp. Error (%)

9600 x 9600 1725.32 1872.995 7.86

16-Node Network Size TExecution Est. TExecution Exp. Error (%)

9600 x 9600 1085.65 1161.9 6.52

32-Node Network Size TExecution Est. TExecution Exp. Error (%)

14400x14400 1707.45 1580.23 -8.1

 116

7.2.2 ADF

As mentioned previously, the test images for ADF were scaled up to 156 mega-pixels and the

node configurations varied from 2- to 32-nodes. Equation 7.1 also applies for the ADF

computation component since pre-processing only involves image read operations at rank 0. As

described in Chapter 4, the network-level operations (scatter, gather, and sendrecv) occur only

once in the algorithm. Consequently, the communication component for ADF algorithm reduces

to:

.

1

communication iter

communication scatter sendrecv gather

i

T T T T




  
 (7.3)

Tables 7.16 and 7.17 (a-b) provide the experimental and estimated values for the computation

and communication components, respectively for selected image sizes. As seen in these tables,

the error rates for the predictions are less than 10% for the computation component for several of

the test cases, whereas the communication component observes slightly higher error rates,

contributing to higher error rates in the overall execution time prediction. Table 7.18 provides the

estimated and experimental runtime values along with the prediction error rates.

 117

Table 7.16 ADF: Estimated and Experimental Time Values for Computation Component

Configuration Computation Component (∑Tcomp.=∑TCPU-Host + ∑TGPU) (in ms)

2-Node Image Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

10240 x 10240 969.5 2854.1 3802.5 4069.95 6.57%

12800 x 12800 1513.5 4547 5954.5 6575.52 9.45%

4-Node Image Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

10240 x 10240 546.91 1411.86 1975.38 1901.3 -3.9%

12800 x 12800 853.7 2226.74 3094.02 2970.6 -4.15%

8-Node Image Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

10240 x 10240 334.13 738.8 1194.74 1258.1 5.03%

12800 x 12800 522.32 1158.17 1871.7 1957.34 4.37%

16-Node Image Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

10240 x 10240 224.8 369.4 638.11 618.01 -3.25%

12800 x 12800 353.8 576.8 990.82 957.21 -3.51%

32-Node Image Size TCPU-Host

Est.

TGPU

Est.

Tcomp.

Est.

Tcomp.

Exp.

Error in

Tcomp.

10240 x 10240 164.4 185.87 371.52 307.9 17.1%

12800 x 12800 263.7 289.03 616.35 661.7 6.85%

Table 7.17 (a) ADF: Estimated and Experimental Time Values for Communication Component

2-Node Image Size TScatter Est. TGather Est. Tsendrecv Est.

10240 x 10240 428.3 222.02 0

12800 x 12800 669.24 346.95 0

4-Node Image Size TScatter Est. TGather Est. Tsendrecv Est.

10240 x 10240 577.16 204.94 177.17

12800 x 12800 901.83 320.1 327.1

8-Node Image Size TScatter Est. TGather Est. Tsendrecv Est.

10240 x 10240 571.73 223.46 286.35

12800 x 12800 893.32 349.26 584.24

16-Node Image Size TScatter Est. TGather Est. Tsendrecv Est.

10240 x 10240 411.23 225.3 218.6

12800 x 12800 642.36 352.1 428.5

32-Node Image Size TScatter Est. TGather Est. Tsendrecv Est.

10240 x 10240 356.03 234.51 170.2

12800 x 12800 555.7 366.89 201.93

 118

Table 7.17 (b) ADF: Prediction Error in Communication Component

Node

Configuration

Communication Component

(∑Tcomm.=Tscatter + Tgather + Tsendrecv) (in ms)

2-Node Image Size Tcomm.

Est.

Tcomm.

 Exp.

Error (%)

10240 x 10240 650.31 732.53 11.22

12800 x 12800 1016.17 1131.4 10.2

4-Node Image Size Tcomm.

Est.

Tcomm.

 Exp.

Error (%)

10240 x 10240 959.28 981.93 2.3

12800 x 12800 1549.02 1529.32 -1.28

8-Node Image Size Tcomm.

Est.

Tcomm.

 Exp.

Error (%)

10240 x 10240 1081.54 1225.37 11.73

12800 x 12800 1826.83 2118.93 13.8

16-Node Image Size Tcomm.

Est.

Tcomm.

 Exp.

Error (%)

10240 x 10240 855.1 907.98 5.8

12800 x 12800 1422.95 1421.1 -0.133

32-Node Image Size Tcomm.

Est.

Tcomm.

 Exp.

Error (%)

10240 x 10240 760.77 854.6 10.97

12800 x 12800 1224.53 1482.4 17.4

Table 7.18 ADF: Estimated Runtime, Experimental Runtime, and Error Rate

Configuration TExecution =∑Tcomputation + ∑Tcommunication (in ms)

2-Node Image Size TExecution Est. TExecution Exp. Error (%)

10240 x 10240 4494.9 4802.5 6.4

12800 x 12800 7111.8 7706.9 7.7

4-Node Image Size TExecution Est. TExecution Exp. Error (%)

10240 x 10240 2935.4 2883.3 -1.8

12800 x 12800 4657.13 4499.9 -3.5

8-Node Image Size TExecution Est. TExecution Exp. Error (%)

10240 x 10240 2214.96 2483.5 10.8

12800 x 12800 3598.5 4076.3 11.72

16-Node Image Size TExecution Est. TExecution Exp. Error (%)

10240 x 10240 1497.8 1526 1.85

12800 x 12800 2419.3 2378.3 -1.7

32-Node Image Size TExecution Est. TExecution Exp. Error (%)

10240 x 10240 1170.85 1162.55 -0.71

12800 x 12800 1847.8 2144.04 13.81

 119

In this section, we provided the preliminary verification results for the regression-based

framework using the Izhikevich-ADF SIA pair. The regression models for the computation and

communication components demonstrated high prediction accuracy (over 90%), discounting a

few test cases. It was observed that the regression models for computation yielded better results

for the computationally intensive ADF algorithm. The ADF algorithm with its longer execution

time observes relatively small deviations from the predicted values compared to the deviations

observed for relatively less computationally intensive Izhikevich SNN. The regression models

for the computation components were generally more accurate compared to the communication

component models, a similar behavior was also observed for the SNN-SIA case studies.

7.3 RESULTS AND ANALYSIS FOR DSE

We present the results and analysis for GPGPU DSE study using the regression-based

performance prediction framework. The study was conducted on the GPGPU-augmented

Palmetto cluster with Kepler K20 devices. Section 7.3.1 provides the design space exploration

results using the SNN models and ADF algorithm.

7.3.1 Design Space Exploration

First, we discuss the kernel runtime values and the prediction error rates for the four SNN

models and ADF algorithm to further consolidate the efficacy of the prediction framework and

facilitate the DSE analysis. Second, the GPGPU design space for the chosen SIAs is explored

using the intermediate SNN network sizes ranging from 3120x3120 to 4800x4800. Similarly, we

use the image sizes ranging from 8960x8960 to 10240x10240 for the ADF algorithm.

 120

A. Prediction Results for Implementation 1

Implementation 1 relies on global memory for all of the input data accesses and uses a fixed

thread BLOCKSIZE equal to 256. Table 7.19 presents the observed statistical-average kernel

runtime values, predicted kernel runtime values, and the prediction error rates obtained using

Equations 6.12, 6.13, 6.14, and 6.15 for the four SNN models and ADF algorithm. For the

compute-intensive HH model, the regression-based framework predicts the kernel runtime with

error rate 7.59% for the largest test data size, with overall prediction error rates less than 10% for

all the other test data sizes. The ML, Wilson, and the Izhikevich models observe error rates of

9.27%, 3.2%, and 4.48%, respectively for their largest test input size. The ADF algorithm also

observes less than 10% prediction error rate for all of the test input sizes.

Table 7.19 Observed and Predicted Runtime Values (in ms) for Implementation 1

Algorithms Test Data Size Observed

Time

Predicted

Time

Error Rate

(%)

HH 3360x3360 960.5499 958.4288 0.22

3840x3840 1361.244 1253.415 7.92

4800x4800 2184.25 2018.444 7.59

ML 3120x3120 39.04656 35.33421 9.50

3240x3240 41.37167 37.83408 8.55

3360x3360 44.56183 40.4283 9.27

Wilson 3120x3120 96.72402 94.97815 1.80

3240x3240 104.8952 102.1543 2.61

3360x3360 113.2308 109.6012 3.20

Izhikevich 3120x3120 32.84 32.27 1.73

3240x3240 39.19 38.17 2.60

3360x3360 51.48 49.17 4.48

ADF 8960x8960 1804.638 1674.823 7.20

9728x9728 2078.855 1975.189 4.98

10240x10240 2218.426 2189.148 1.32

B. Prediction Results for Implementation 2

For Implementation 2, we use the best performing BLOCKSIZE for the four SNN models

and the ADF algorithm: 512 for the HH model, 256 for the ML model, and 128 for the Wilson,

 121

Izhikevich, and ADF algorithms, respectively. The observed statistical-average kernel runtime

values, predicted kernel runtime values, and prediction error rates are given in Table 7.20. The

predicted kernel runtime values are obtained using Equations 6.16 through 6.20. All case studies

observe error rates below 10%, barring the HH model where the highest error rate of 11% is

observed for an intermediate test data size.

Table 7.20 Observed and Predicted Runtime Values (in ms) for Implementation 2

Algorithms Test Data Size Observed

Time

Predicted

Time

Error Rate

(%)

HH 3840x3840 1267.877 1340.383 -5.72

4080x4080 1467.17 1628.807 -11.02

4200x4200 2237.872 2166.912 3.17

ML 3120x3120 39.12896 37.36777 4.50

3240x3240 40.73593 40.12207 1.50

3360x3360 44.99906 42.9803 4.48

Wilson 3120x3120 96.87 94.311 3.04

3240x3240 103.89 101.3665 2.62

3360x3360 110.97 108.6883 2.78

Izhikevich 3120x3120 32.57 32.33 0.73

3240x3240 38.44 38.52 -0.21

3360x3360 49.85 50.07 -0.44

ADF 8192x8192 2190.834 2151.443 1.80

8488x8488 2359.41 2238.716 5.12

8704x8704 2426.996 2302.402 5.13

C. Prediction Results for Implementation 3

Implementation 3 uses the texture memory as discussed in Section 6.3.2. Table 7.21 presents

the observed statistical-average kernel runtime values, predicted kernel runtime values and the

error rate obtained using the Equations 6.21 through 6.25 for the SNN-ADF SIAs. The prediction

error rates are below 5% for all of the SNN models and less than 11% for the ADF algorithm.

The largest data size used to verify the prediction framework for the HH model is 4800x4800

with an observed error rate of 1.61%. For the ML model, the largest data size used to verify the

framework is 3360x3360 with error rate 0.2%. The Wilson and Izhikevich models observe error

 122

rates 0.97% and 2.1%, respectively for the largest data size as seen in Table 7.21. Finally, for the

ADF algorithm the largest image size used for verification is 10240x10240 with an error rate of

10.78%.

Table 7.21 Observed and Predicted Values for Implementation 3

Algorithms Test Data Size Observed

Time

(ms)

Predicted

Time

(ms)

Error Rate

(%)

HH 3360x3360 1671.249 1602.441 4.11

3840x3840 2114.976 2127.784 -0.60

4800x4800 3444.07 3388.607 1.61

ML 3120x3120 41.55399 41.86467 -0.75

3240x3240 44.51993 45.02456 -1.13

3360x3360 48.4023 48.30368 0.20

Wilson 3120x3120 105.8983 105.5538 0.32

3240x3240 114.7781 113.5537 1.06

3360x3360 123.0514 121.8554 0.97

Izhikevich 3120x3120 32.64 32.72 -0.24

3240x3240 39.23 38.92 -0.79

3360x3360 51.58 50.48 2.1

ADF 8960x8960 5115.432 4975.186 2.74

9728x9728 6306.859 5939.77 5.82

10240x10240 7432.2 6630.527 10.80

D. Design Space Exploration: Comparing Implementations

Sections 7.3.1.A, 7.3.1.B, and 7.3.1.C provided the kernel runtime values for the three design

space implementations. In this sub-section, we first compare the observed kernel runtime values

of the implementations in Table 7.22, followed by the predicted kernel runtime values

comparison in Table 7.23. We discuss the comparison results for the four SNN models first and

then discuss the results for the ADF algorithm.

As mentioned in Section 7.3.1.B, the SNN Implementation 2 employs a BLOCKSIZE of 512

for the HH model, 256 for the ML model, and 128 for the Wilson and Izhikevich SNN models

based on the best observed kernel runtime values. Based on the test input sizes given in Table

7.22 and other inspected inputs, the design space Implementations 1 and 2 perform similarly for

 123

the HH, ML, and Wilson models. Implementation 2 however, outperforms the rest in the case of

the Izhikevich model. As mentioned in Section 6.3.2, Implementation 1 uses the global memory

for all the data accesses. Since the latest GPGPU devices including Tesla M2075 and Kepler K20

have cached global memory, the memory access latencies are reduced, improving performance.

Implementation 2 is identical to Implementation 1, except for the choice of thread BLOCKSIZE.

For our experiments with SNN SIAs on the Kepler K20, a significant difference in performance

was not observed across the BLOCKSIZES. As seen in Table 7.22, for the HH, ML, and Wilson

SNN models, the difference in the kernel timing between Implementations 1 and 2 is nominal.

Therefore either of the two implementations can be a viable candidate for the GPGPU device.

The use of texture memory did not provide performance improvement versus the use of cached

global memory as seen in Table 7.22.

Table 7.22 Observed Kernel Runtime Values for Three Design Space Implementations

Algorithms Data Size Impl. 1

(ms)

Impl. 2

 (ms)

Impl. 3

 (ms)

Best

Implementation

HH 3840x3840 1361.244 1267.877 2114.976

Impl. 1

Impl. 2
4200x4200 1778.395 1467.17 2514.61

4800x4800 2184.25 2237.872 3444.07

ML 3120x3120 39.04656 39.12896 41.55399

Impl. 1

Impl. 2
3240x3240 41.37167 40.73593 44.51993

3360x3360 44.56183 44.99906 48.4023

Wilson 3120x3120 96.72402 96.87869 105.8983

Impl. 1

Impl. 2
3240x3240 104.8952 103.8904 114.7781

3360x3360 113.2308 110.9705 123.0514

Izhikevich 3840x3840 32.84272 32.57381 32.63963

Impl. 2 4200x4200 39.19225 38.44291 39.23024

4800x4800 51.48266 49.85226 51.57866

ADF 7680x7680 1378.762 1980.202 3468.152

Impl. 1 8192x8192 1581.421 2190.834 4169.742

8704x8704 1657.688 2426.996 4964.6

Table 7.23 shows that the regression-based framework predicts Implementation 1 of the four

SNN models as the best candidate for the GPGPU device. Except for the Izhikevich model, the

design space ranking matches for all of the other SNN models. Additionally for the Izhikevich

 124

model, the difference in the kernel runtime values of the observed design space Implementation 2

and the predicted design space Implementation 1 is small (less than 3% difference) for the tested

data sizes. Therefore, the prediction framework satisfactorily maps the appropriate design space

implementations and gives expected prediction results for all of the SNN models.

Unlike the SNN implementations, Implementations 1 and 2 for the ADF algorithm are

distinct as they use the global memory and shared memory, respectively for fetching the

neighboring pixels in an image. Additionally, we use 2D read-only texture memory for fetching

the neighboring pixels for Implementation 3. As seen in Tables 7.22 and 7.23, Implementation 1

decisively outperforms Implementations 2 and 3. Since the Kepler GPGPUs are equipped with

global memory cache, accesses to the global memory are optimized.

Table 7.23 Predicted Kernel Runtime Values for Three Design Space Implementations

Algorithms Test Data

Size

Impl. 1

(ms)

Impl. 2

 (ms)

Impl. 3

 (ms)

Best

Implementation

HH 3840x3840 1290.068 1340.383 2127.784

Impl. 1 4200x4200 1544.241 1628.807 2567.759

4800x4800 2018.444 2166.912 3388.607

ML 3120x3120 35.33421 37.36777 41.86467

Impl. 1 3240x3240 37.83408 40.12207 45.02456

3360x3360 40.4283 42.9803 48.30368

Wilson 3120x3120 94.97815 94.311 105.5538

Impl. 1 3240x3240 102.1543 101.365 113.5537

3360x3360 109.6012 108.688 121.8554

Izhikevich 3840x3840 32.27884 32.33651 32.72586

Impl. 1 4200x4200 38.17493 38.52579 38.9202

4800x4800 49.17511 50.07294 50.4768

ADF 7680x7680 1229.075 2000.484 3558.344

Impl. 1 8192x8192 1399.145 2151.443 4096.461

8704x8704 1580.187 2302.402 4672.737

In this section, we performed the GPGPU Design Space Exploration (DSE) study to map an

optimal implementation to the target GPGPU architecture, promoting high application

performance. We explored the GPGPU design space for Synchronous Iterative Algorithms

 125

(SIAs) featuring optimizations of the GPGPU memory hierarchy using a regression-based

performance prediction framework. The implementations were ranked based on application

runtime predictions that were facilitated by the regression-based framework.

From the design space exploration results based on the observed kernel runtime, we conclude

that the global memory implementation performs the best for most of the case studies used in this

research. In recent GPGPU architectures such as the Tesla M2075 and Kepler K20, the device

global memory is cached, which aids in faster data accesses and promoting performance. The

predicted kernel runtime also ranks the global memory implementation as the best

implementation for the four SNN models and ADF algorithm. The regression-based framework

appropriately ranks the design space implementations for 4 out of 5 case studies, although there

is a deviation in the predicted and observed design space ranking for the Izhikevich SNN case

study. The difference in the kernel runtime values of the observed design space Implementation 2

and the predicted design space Implementation 1 is small (less than 3%) for the tested data sizes.

Therefore, our prediction framework ranks the best design space implementation for an

application as expected for 4 out 5 cases and provides acceptable results for the Izhikevich SNN

case study. Future work includes extension of the GPGPU design space by including other

GPGPU memories such as the local memory and constant memory.

7.4 SWO ANALYSIS OF THE REGRESSION-BASED FRAMEWORK

In this sub-section, we perform the Strengths, Weaknesses, and Opportunities (SWO)

analysis of the regression-based framework for multi-GPGPU systems proposed in [16]. This

study is conducted on the GPGPU-augmented Palmetto cluster with multiple Tesla M2075 and

Kepler K20 devices. The host-device pairs are varied from 2-node up to 16-node configuration.

The SWO analysis enables one to study a framework or model, discussing its strengths and

 126

weaknesses for further improvements. To perform the SWO analysis, we provide the predicted

overall runtime, observed runtime, and overall error rate for the HH, ML, Wilson, and Izhikevich

models in Tables 7.24-7.27 (Fermi) and Tables 7.28-7.31 (Kepler). An in-depth SWO analysis of

the regression-based framework can be found in [112 and 113].

Table 7.24 HH Model on Fermi: Observed and Predicted Values for Total Execution Time (ms)

Configuration Texecution-time=Tcomputation+Tcommunication

Test Data Size Observed

Time

(ms)

Predicted

Time

(ms)

Error Rate

(%)

2-Node 3360x3360 2377.918 2375.387 -0.10

3600x3600 2722.044 2688.843 -1.23

4-Node 4940x4940 2979.75 2998.08 0.61

5040x5040 3098.522 3118.508 0.64

8-Node 5200x5200 2163.648 2218.991 2.49

5280x5280 2227.842 2251.59 1.05

16-Node 5040x5040 1519.719 1518.377 -0.08

5200x5200 1609.402 1606.104 -0.20

Table 7.25 ML Model on Fermi: Observed and Predicted Values for Total Execution Time (ms)

Configuration Texecution-time=Tcomputation+Tcommunication

Test Data Size Observed

Time

(ms)

Predicted

Time

(ms)

Error Rate

(%)

2-Node 3360x3360 377.1141 363.7835 -3.66

3600x3600 432.8445 414.3471 -4.46

4-Node 4800x4800 766.701 803.5798 4.59

5040x5040 843.8928 879.417 4.04

8-Node 6960x6960 1659.5 1678.35 1.12

7200x7200 1772.969 1792.154 1.07

16-Node 10080x10080 3463.262 3487.739 0.70

10120x10120 3490.021 3722.942 6.26

 127

Table 7.26 Wilson Model on Fermi: Observed and Predicted Values for

 Total Execution Time (ms)

Configuration Texecution-time=Tcomputation+Tcommunication

Test Data Size Observed

Time

(ms)

Predicted

Time

(ms)

Error Rate

(%)

2-Node 3360x3360 491.8691 478.0189 -2.90

3600x3600 563.9396 549.4184 -2.64

4-Node 4800x4800 882.9638 914.9215 3.50

5040x5040 971.7063 1004.55 3.27

8-Node 7140x7140 1870.148 1891.293 1.12

7200x7200 1900.98 1931.365 1.57

16-Node 9840x9840 3419.897 3444.12 0.70

10080x10080 3584.07 3621.075 1.02

Table7.27 Izhikevich Model on Fermi: Observed and Predicted Values for

Total Execution Time (ms)

Configuration Texecution-time=Tcomputation+Tcommunication

Test Data Size Observed

Time

(ms)

Predicted

Time

(ms)

Error Rate

(%)

2-Node 3360x3360 315.995 296.9556 -6.41

3600x3600 362.2265 346.1223 -4.65

4-Node 4940x4940 735.2246 769.96 4.51

5040x5040 765.0101 807.8265 5.30

8-Node 6960x6960 1564.886 1574.407 0.60

7200x7200 1673.528 1692.217 1.10

16-Node 10080x10080 3327.271 3338.222 0.33

10120x10120 3353.455 3362.771 0.28

Table 7.28 HH Model on Kepler: Observed and Predicted Values for Total Execution Time (ms)

Configuration Texecution-time=Tcomputation+Tcommunication

Test Data Size Observed

Time

(ms)

Predicted

Time

(ms)

Error Rate

(%)

2-Node 3360x3360 975.905 1020.044 -4.52

3720X3720 1191.36 1250.501 -4.96

4-Node 4200X4200 1723.866 171.609 0.362

4800X4800 2220.83 2228.33 -0.34

8-Node 5040x5040 1713.93 1696.42 1.02

6840x6840 2765.74 2753.45 0.44

16-Node 7200x7200 2860.74 2832.107 1

8400x8400 3911 3786.04 3.2

 128

Table 7.29 ML Model on Kepler: Observed and Predicted Values for Total Execution Time (ms)

Configuration Texecution-time=Tcomputation+Tcommunication

Test Data Size Observed

Time

(ms)

Predicted

Time

(ms)

Error Rate

(%)

2-Node 5040x5040 1903.7 1555.6 18.3

5420x5420 2218.85 1791.33 19.3

4-Node 4080x4080 1712.8 1367.98 20.13

5040x5040 2447.1 2099.95 14.2

8-Node 6840x6840 2227.8 2233.115 -0.24

7140x7140 2599.8 2435.1 6.31

16-Node 4800x4800 1209.22 1164.033 3.73

6840x6840 2555.6 2303.842 9.85

Table 7.30 Wilson Model on Kepler: Observed and Predicted Values for

Total Execution Time (ms)

Configuration Texecution-time=Tcomputation+Tcommunication

Test Data Size Observed

Time

(ms)

Predicted

Time

(ms)

Error Rate

(%)

2-Node 3720x3720 614.05 637.99 -3.89

4800x4800 1032.1 1050.723 -1.81

4-Node 3600x3600 516.7 448.2 13.26

4080x4080 630.26 573.445 9.01

8-Node 5040x5040 893.67 877.1 1.86

6840x6840 1640.26 1592.4 2.92

16-Node 6840x6840 2050.63 1797.4 12.35

7200x7200 1792.633 1978.45 -10.36

Table 7.31 Izhikevich Model on Kepler: Observed and Predicted Values for

 Total Execution Time (ms)

Configuration Texecution-time=Tcomputation+Tcommunication

Test Data Size Observed

Time

(ms)

Predicted

Time

(ms)

Error Rate

(%)

2-Node 4480x4480 458.9 453.3 1.22

4800x4800 528.18 521.42 1.28

4-Node 3600x3600 369.32 365.95 0.91

4080x4080 530.52 469.422 11.52

8-Node 6840x6840 1441.5 1439.13 0.17

7200x7200 1589.87 1567.023 1.44

16-Node 6840x6840 1493.1 1694.7 -13.5

7200x7200 1677.44 1868.31 11.4

 129

Strengths – In [16], the authors proposed the SIGE model for developing the regression-

based framework for predicting the runtime of Synchronous Iterative Algorithms (SIAs) on

multi-GPGPU systems. The authors used the Forge GPGPU cluster at the National Center for

Super-Computing Applications (NCSA) [12], which consists of the Fermi-based Tesla M2070

GPGPUs for implementing the SIAs. For the SWO analysis, we use the Palmetto cluster that has

a mix of Fermi-enabled and Kepler-enabled GPGPU nodes; each of these nodes is equipped with

two GPGPU devices. From Tables 7.24 – 7.27 for the Fermi GPGPU device, we observe that the

prediction framework developed using the SIGE model gives good prediction results with very

low error rates. The HH model yields a prediction error rate below 3% for all test data sizes and

all node configurations. The ML model provides an overall prediction error rate below 5%. The

Wilson model also yields a prediction error rate below 5%. The Izhikevich model gives error

rates up to 6.5% for the given test data sizes and all node configurations. Similarly for the Kepler

architecture, we observe less than 5% error rates for the HH model (see Table 7.28). The

prediction error rates for the ML model (Table 7.29) agree with those mentioned in [16].

Although the framework provides high accuracy for GPGPU time estimation, the CPU-host

estimation time observed high error rates due to variability in the level-1 firing event. Both the

Wilson and Izhikevich models (Tables 7.30 and 7.31) observe satisfactory prediction error rates

that are less than 12%. The high prediction error rates for the low complexity SNN models are

attributed to low prediction accuracy in the communication component, which significantly

contributes to the overall execution time [16 and 112]. The regression-based framework is

deemed satisfactory for runtime prediction for other clusters consisting of other GPGPU

architectures, thereby establishing its efficacy to span architecture generations. The regression-

based framework enables runtime prediction for SIAs without actual large-scale

 130

implementations; therefore the framework can be used for obtaining runtime values for larger-

node configurations and larger data sizes.

The regression-based framework for DSE targets researchers and developers that lack the

expertise to use complex analytical models, which require architecture knowledge beyond

CUDA programming paradigm. The framework allows for quick and straightforward evaluation

of the SIA design space with limited architecture knowledge. We expect the framework to be

independent of application regularity. The authors assert that the regression-based framework

will also work for other complex algorithms where the algorithm complexity is accounted for by

the regression coefficients.

Weaknesses – The regression-based framework is broken into two components: computation

and communication. Although this component division provides sufficient insight into the

algorithm performance, the behavior of the individual components may vary across computing

systems. Albeit the regression-based framework provides satisfactory prediction results for the

communication component [112], we observed a few outliers that are attributed to the missing

predictor variables in the regression equations, for instance, network protocol changes and

implicit synchronization effects. In addition to the above mentioned shortcomings, the

regression-based framework requires a preliminary GPGPU kernel implementation; therefore it

is imperative to possess knowledge of the sections of algorithm appropriate for implementation

on GPGPU devices.

Opportunities – Considering the weaknesses mentioned above, other predictor variables, in

addition to the ones used in this research, can be employed to obtain better prediction results.

The synchronous iterative model and the regression-based framework should be verified with

other accelerators and non-regular algorithms to broaden the scope of performance modeling.

 131

Additional features of the Kepler architecture, dynamic parallelism for instance, should also be

explored.

In this section, we performed a SWO analysis study of the regression-based framework for

multi-GPGPU systems. In research beyond this dissertation, other predictor variables such as

network protocols will be explored for the communication component performance modeling.

The synchronous iterative scheme coupled with regression-based framework will also be verified

using non-regular algorithms and other accelerators to broaden the scope of performance

modeling. The regression-based framework employed for GPGPU DSE constitutes the low-level

abstraction of the design space, where partial knowledge of the implementation is present along

with system specifications. The next step is to address the high-level abstraction of the design

space where the implementation knowledge is less and only high-level system specifications are

known. The high-level design space abstraction consists of qualitative, quantitative, and hybrid

(mix of qualitative and quantitative approaches) performance modeling approaches. The two

levels of design space abstractions will be compared for the ease-of-use and accuracy, allowing

the developers to select a suitable DSE method that best satisfies their design goals.

6.5 SUMMARY

In this chapter, we presented the verification results for the low-level abstraction (regression-

based framework) of the modeling suite using the four SNN models and ADF algorithm as SIA

case studies. The regression models for the computation and communication components

demonstrated satisfactory prediction accuracy (less than 10-12%), barring a few test cases. The

computation component yielded high prediction accuracy, given the high reproducible nature of

the computing devices in general. The communication component (network-level) observed

larger errors compared to the computation component. The authors assert that additional network

 132

characteristics such as change in network protocol can affect the network-level transactions and

hence the prediction accuracy.

We also performed the GPGPU DSE to map an optimal implementation to the target GPGPU

architecture. The design space was explored for SIAs featuring optimizations of the GPGPU

memory hierarchy including global, shared, and texture memories. The implementations in the

design space were ranked based on the runtime predictions facilitated by the low-level

abstraction (regression-based framework). The SWO analysis was conducted that enunciates the

strengths and weaknesses of the prediction framework. Additionally, the analysis identifies the

scope for further improvement. In the next chapter, we discuss the high-level abstraction of the

modeling suite.

 133

CHAPTER 8

THE HIGH-LEVEL ABSTRACTION

In this chapter, we discuss the high-level abstraction that consists of two principal

approaches: Qualitative Modeling and Quantitative Modeling. The former employs subjective-

analytical models to estimate the computation and communication components of the SIGE

model; whereas, the latter predicts these components by measuring hardware events associated

with the objective-analytical models using micro-benchmarks. The classification of analytical

models into subjective and objective categories is explained in this chapter. These two modeling

techniques are coupled to yield an intermediate hybrid approach where some SIGE model

components are estimated qualitatively, while the remaining components are analyzed

quantitatively. This analysis is demonstrated in the next chapter. The high-level abstraction study

is conducted on the GPGPU-augmented Palmetto cluster with Kepler GPGPU devices. It should

be noted that we follow the same CPU computation modeling strategies given by [6 and 9],

which resulted in the construction of CPU regression equations in Chapter 6. Therefore, the

emphasis is on modeling the GPGPU computations, network-level and PCI-Ex bus

communications. Sections 8.1 and 8.2 discuss the qualitative and quantitative modeling

approaches, respectively. The chapter concludes with a summary in Section 8.3.

8.1 QUALITATIVE MODELING

In [114], the authors claim that the accuracy of quantitative models largely depends on the

precise estimation of several parameters pertaining to the system under investigation. They also

assert that the determination of precise parameter values is not always feasible; however it is

 134

usually possible to state some qualitative relations that sufficiently describe the system behavior.

Qualitative models avoid numerical complexities by specifying minimum essential qualitative

relations amongst the system parameters, thereby providing straightforward insight into the

system characteristics. To facilitate qualitative modeling, we study subjective-analytical models

that describe the system behavior using simple analytical equations. For the heterogeneous

systems studied, these analytical models relate the target variables (GPGPU kernel runtime and

communication throughput) to algorithm characteristics (computation elements, data size, etc.)

and system specifications (computation throughput, peak communication bandwidth, etc.). The

following sections illustrate how the subjective-analytical models are developed for estimating

the SIGE model components.

8.1.1 Qualitative Modeling of GPGPU Computations

We study the subjective-analytical modeling for GPGPU computations by adapting the

analytical model proposed by Schaa et al. [8], which predicts the application execution time on

multi-GPGPU systems using runtime information from a reference GPGPU implementation

while varying the number and configuration of GPGPU devices. The authors define per-element

average (Tper_element_average) as the average time taken by the reference GPGPU device to execute a

single computational element (total Nelements) in the given algorithm. This information is used to

extrapolate the algorithm execution time on M GPGPU devices, where M is the number of

devices. The per-element average evaluation and execution time extrapolation is elucidated by

Equations 8.1 and 8.2, respectively.

_ _
ref GPGPU

per element average

elements

T
T

N


 (8.1)

 135

_ _ *
elements

M GPGPU per element average
N

T T
M

  (8.2)

As highlighted in Chapter 2, the performance modeling approach in [8] lacks statistical rigor.

Several algorithm parameters, including but not limited to floating-point operations (FLOPs),

computational bytes, and the number of computational entities affect the per-element average

time. To verify this claim, we define element-throughput as the number of elements processed by

the GPGPU device per unit time (mathematical inverse of per-element average). For the chosen

SIA case studies, this throughput corresponds to either the number of neurons (SNN models) or

pixels (ADF) processed per unit time by the GPGPU device. Figures 8.1 through 8.4 show the

non-linear variation of element-throughput with respect to the number of elements (SNN

network size) for the SNN models using a 4-node configuration. It is worth mentioning that 1-

and 2-node configurations yielded substantially different results that do not reflect the

application behavior at larger configurations, therefore we chose the 4-node configuration as the

reference in this analytical modeling. As seen in these figures, the GPGPU device utilization

increases with the SNN network size, thereby resulting in an initial rise of element-throughput

values. Beyond a threshold SNN network size, the GPGPU device is fully occupied with

computations, ultimately leading to element-throughput saturation. This observation confirms the

claim that per-element average should be expressed as a function of algorithm parameters

(number of elements in this case) for accurate runtime estimation.

 136

Figure 8.1 HH Model: Element Throughput vs. Number of Elements

Figure 8.2 ML Model: Element Throughput vs. Number of Elements

 137

Figure 8.3 Wilson Model: Element Throughput vs. Number of Elements

Figure 8.4 Izhikevich Model: Element Throughput vs. Number of Elements

 138

To address the non-linear relationship between element-throughput and the number of

elements processed by the GPGPU device, we provide a new set of equations for the multi-

GPGPU subjective-analytical model shown below.

_ ()
elements

elements

ref GPGPU

N
Element Throughput N

T 

 (8.3)

()

_ (())

elements

M GPGPU
elements

N

MT
N

Element Throughput
M

  (8.4)

The accurate runtime estimation on M GPGPU devices highly depends on the precise

description of element-throughput as a function of the number of elements (Nelements). The initial

sketches of element-throughput (Figures 8.1 – 8.4) strongly resemble the Michaelis-Menten

kinetics [68]; therefore, we apply the regression technique developed in Chapter 6 to obtain a

relation between element-throughput and Nelements. Equations 8.5 through 8.8 provide the

element-throughput equations for the HH, ML, Wilson, and the Izhikevich SNN models. The

terms Km and Vmax expressed in elements and elements/millisecond, respectively are obtained

using non-linear regression analysis explained in Chapter 6.

HH Model:

3993.23*
_

160014.3

3993.23

160014.3

elements

elements

max

m

N
element throughput

N

V = elements / ms

K = elements




 (8.5)

ML Model:

279435.6*
_

58294.5

279435.6

58294.5

elements

elements

max

m

N
element throughput

N

V = elements / ms

K = elements




 (8.6)

 139

Wilson Model:

51490.83*
_

140027.1

51490.83

140027.1

elements

elements

max

m

N
element throughput

N

V = elements / ms

K = elements




 (8.7)

Izhikevich Model:

272022.6*
_

343499.3

272022.6

343499.3

elements

elements

max

m

N
element throughput

N

V = elements / ms

K = elements




 (8.8)

For the ADF algorithm, we follow the same approach and plot element-throughput with

respect to the number of elements shown in Figure 8.5. Unlike the SNN models, the throughput

sketch initially resembles the Michaelis-Menten kinetics, however after a particular image size,

the throughput values drop and saturate to a distinct level. Consequently, the mathematical

equation for element-throughput takes the form shown by Equation 8.9.

ADF:

14682.8*
*(() (802816))

8766.999

(9.254 5* 8247)* (802816)

elements
elements elements

elements

elements elements

N
element throughput u N u N

N

e N u N

   


   

 () 1 if

 0 elsewhere

elements elementsu N a N a 


 (8.9)

 140

Figure 8.5 ADF: Element Throughput vs. Number of Elements

For the chosen SIAs, we elucidated the multi-GPGPU subjective-analytical modeling by

relating the kernel execution time on M GPGPU devices with element-throughput using simple

analytical functions. We established that element-throughput largely depends on the number of

computational entities and provided mathematical equations for element-throughput using the

regression analysis developed in Chapter 6. This level of modeling avoided complex numerical

estimations of architecture specific parameters and facilitated the development of intuitive and

simple qualitative relations that explain the application behavior on GPGPU devices. The next

section describes the qualitative modeling of communications.

8.1.2 Qualitative Modeling of Communications (Network-level and PCI-Ex Bus)

In Chapter 2, we discussed some of the important network-level modeling techniques

including logP, plogP, and logGP models that provide significant insight into the network

 141

characteristics. However, these models require accurate measurement of network parameters

such as latency, overhead, small and large message gaps; a task that may not be straightforward

on all heterogeneous systems. Additionally, the network simulators [64] that estimate these

parameters provide overly elaborate numerical output, making the analysis more complex. As

discussed in the previous section, subjective-analytical models evade numerical complexities by

describing the system behavior intuitively. In Chapter 6, we mapped the data transfer problem

onto the well-known Michaelis-Menten enzyme kinetics [68], which relates the reaction rate, ν,

with the substrate concentration, [S], using a first-order equation (see Equation 6.11). Mapping

the data transfer problem onto the enzyme kinetics problem is highly intuitive because the data

transfer throughput (MB/sec) corresponds to the reaction rate and the data transfer size (MB)

corresponds to the substrate concentration, [S]. In Chapters 6 and 7, this qualitative mapping is

demonstrated for high prediction accuracy whilst avoiding any complex network parameter

estimation. The readers are referred to Sections 6.2.2, 7.1, 7.2, and 7.4 for the qualitative analysis

of communication performance.

8.2 QUANTITATIVE MODELING

In the foregoing section, we discussed the subjective-analytical models that derive qualitative

relations amongst the parameters to represent the system behavior. The quantitative methods also

provide an interesting route to performance modeling where the performance/behavior of the

target system is estimated by measuring several associated parameters using micro-benchmarks.

For instance, one can measure the number of execution cycles involved in computations and

DRAM communications to estimate the overall GPGPU kernel execution time [17]. Similarly,

the performance of data transfer operations over Infiniband and PCI-Ex bus (henceforth referred

to as communication mediums or simply mediums) can be estimated by measuring overhead,

 142

latency, and message gap on these mediums [61]. These system parameters often constitute the

variables of analytical equations, which we refer to as objective-analytical models. Formally, the

objective-analytical models are defined as a class of analytical models that express target

variable(s) as function(s) of hardware events estimated using micro-benchmarks. The following

sections elucidate the objective-analytical models for GPGPU computations and medium

communications.

8.2.1 Quantitative Modeling of GPGPU Computations

Amongst the several GPGPU analytical models discussed in Chapter 2, the model proposed

by Hong and Kim [17] aligns well with our definition of objective-analytical models, which we

describe in this section. The authors claim that their analytical model is the first for the GPGPU

architecture that can also be extended to other multi-threaded architectures. The analytical model

estimates the total number of execution cycles in an application by estimating the number of

parallel memory requests (memory warp parallelism) and computation requests (computation

warp parallelism). These metrics are evaluated by measuring GPGPU-specific hardware events

such as the number of coalesced/uncoalesced accesses, memory access latency, global memory

bandwidth, number of memory and computation instructions, and the number of warps (groups

of 32 concurrent threads) active on a streaming multiprocessor (SM).

In [17], Hong and Kim assert that active warps execute on SMs in a time sharing fashion;

when a warp issues a memory request, the computations from ready warps are serviced. This

warp-level parallelism is expressed using two metrics: memory warp parallelism (MWP) and

computation warp parallelism (CWP). The authors define MWP as the maximum number of

warps that can simultaneously access the memory during the period when a memory request has

been issued from a warp. The waiting warp is referred to as the memory warp and the waiting

 143

period is labeled as the memory waiting period. CWP, a parameter of less significance in this

model, is defined as the number of warps that are ready for computations during the memory

waiting period. MWP is strongly related to the peak DRAM (global) memory bandwidth and

number of active warps per SM. The authors express peak MWP as shown by Equation 8.10.

_

_ _ * _

* _ _ _
_ _

_

peak
Memory Bandwidth

MWP
Bandwidth per warp Active SMs

Frequency load bytes per warp
Bandwidth per warp

Mem Latency





 (8.10)

The variables in this equation are defined as follows.

 Memory_Bandwidth: Peak DRAM (global memory) bandwidth

 Bandwidth_per_warp: Peak DRAM bandwidth for a single warp

 Active_SMs: Number of active SMs in the device

 Frequency: Operation frequency of a SM

 Load_bytes_per_warp: Number of bytes loaded/stored by the warp

 Mem_Latency: The round-trip time to the device DRAM

Unlike MWPpeak, MWPnot-peak (MWP without the peak device bandwidth) is related to the

number of coalesced and uncoalesced accesses in an application. Hong and Kim claim that active

warps accessing the global memory concurrently are skewed with respect to each other by

departure_delay time. Because MWPnot-peak is the number of warps that can access memory in a

memory warp period (Mem_Latency) simultaneously, this metric is evaluated as:

_

_
not peak

Mem Latency
MWP

departure delay
  (8.11)

The actual MWP is the minimum of MWPpeak, MWPnot-peak, and the number of active warps

on SMs, N. Because recent GPGPU devices have relaxed memory access coalescing rules, in

 144

most cases the MWP is equal to N as discussed in the next chapter. The authors provide several

equations in [17] that evaluate the total number of execution cycles in the given application.

Equation 8.12 shows the two most commonly occurring scenarios including: 1) MWP is equal to

the number of active warps, N and 2) computation cycles are greater than memory cycles. This

equation also includes any execution costs associated with the thread synchronization. The

equation parameters are evaluated using micro-benchmarks and PTX assembly [24] inspection.

()

_
_ _ (_ _ *(1))*

_

(_ _)

_
_ _ (_ * *(1))*

_

_ _

if MWP N

Comp cycles
Exec cycles app Mem cycles Comp cycles MWP Reps

Memory Insts

if Comp cycles Mem cycles

N Comp cycles
Exec cycles app Mem cycles MWP Reps

MWP Memory Insts

Thread Sync cost



   



  

_ *(1)* _ * _ _ _ *

_ _ _ _Total

departure delay MWP sync insts Active blocks per SM Reps

Exec Exec cycles app Thread Sync cost

 

 

 (8.12)

The variables in the above equation are summarized as follows.

 Mem_cycles: Execution cycles per thread to execute memory instructions

 Comp_cycles: Execution cycles per thread to execute computation instructions

 #Memory_Insts: The number of memory instructions

 Reps: The number of repetitions for SMs to execute all of the assigned warps in the

application

 Thread_Sync_cost: Execution cycles due to synchronizing threads in a block

 Sync_insts: Number of __syncthreads() calls

 Active_blocks_per_SM: Total number of active blocks assigned to a single SM

 145

The objective-analytical model described in this section is used in the next chapter to predict

the GPGPU kernel execution time for the SNN-ADF SIAs, highlighting the potential merits,

challenges, and pitfalls associated with this modeling paradigm.

8.2.2 Qualitative Modeling of Communications (Network-level and PCI-Ex Bus)

To study the objective-analytical modeling for communications, we develop a variant of the

communication models discussed in Chapter 2. We propose piecewise analytical model that

describes the performance of communication operations (scatter, gather, sendrecv, device-to-

host, host-to-device, etc.) over different data regions (e.g. 1 KB – 256 KB, 256 KB – 512 KB,

etc.) using two medium parameters: overhead (oT) and message gap (G). Any two data regions

are separated by the cut-off message size, kcutoff. The parameters pertaining to the piecewise

analytical model are summarized below:

 Overhead (oT): The estimated time taken by the processor to initiate the operation

 Message gap (G): The estimated transfer time per byte for a message in a given data

region; consequently, G varies across data regions

 Message cut-off (kcutoff-n): The message size that separates data regions, n and n+1

The runtime performance of data operations over Infiniband and PCI-Ex bus is given by

Equation 8.13. The numbers in the subscript denote the data regions.

 (8.13)

In what follows, we illustrate the piecewise-analytical modeling for the two communication

mediums.

1 1

1 2 1 1 - 1 2

2 3 1 1

*

 * (-)*

 * (

cutoff T

cutoff cutoff T cutoff cutoff

cutoff cutoff T cutoff

k k T o k G

k k k T o k G k k G

k k k T k G k



  

  

  

    

     - 2 1 2 - 2 3

() (1) 1 1 - 1

1

)* (-)*

 = + ()* (-)*

cutoff cutoff cutoff

n

cutoff n cutoff n T cutoff i cutoff i i cutoff n n

i

k G k k G

k k k T o k k G k k G



      



 

    

 146

A. Infiniband Operations: Scatter, Gather, and Sendrecv

As mentioned previously, SIAs fit well with the Master-Worker paradigm where the Master

process disseminates tasks to all the other processes and gathers the final result when all of the

computations are finished. Albeit not recommended, the processes may also engage in

intermediate data exchange during the course of SIA execution using the point-to-point Sendrecv

routine. We elaborate our communication modeling methodology for the two most commonly

used and runtime intensive message passing routines namely, scatter and gather. We briefly

discuss the Sendrecv routine and provide the relevant model parameters. The piecewise

analytical modeling approach can be easily extended to other communication routines as well.

We perform micro-benchmarks for the communication medium operations at different node

configurations and select the data regions based on the initial sketches of data transfer time.

Typically, these data regions can be classified into short, medium, and long message regions. In

our experiments for Infiniband operations, message sizes 1 B – 512 KB constitute the short

message region, 512 KB – 1024 KB constitute the medium message region and lastly, 1 MB and

above belong to the long message region. Thereafter, the message gap (G) parameter is

determined for each of these regions via curve fitting. It is worth mentioning that overhead (oT)

is the one-time cost required to initiate the operation and is relevant in region 1 only. Equation

8.13 implicitly accounts for the overhead parameter in all the other data regions. Figures 8.6 –

8.8 show the scatter operation time and corresponding message gap (G) in different data regions

for the 4-node configuration, justifying the piecewise modeling approach. This technique also

overcomes any inaccuracies introduced by the subjective-analytical model, which considers all

messages in a single data region and fits a single curve for communication throughput.

 147

Figure 8.6 4-node Scatter Time vs. Message Size: Data Region 1 KB – 512 KB

Figure 8.7 4-node Scatter Time vs. Message Size: Data Region 512 KB-1024 KB

 148

Figure 8.8 4-node Scatter Time vs. Message Size: Data Region Over 1024 KB

 Tables 8.1 and 8.2 show the overhead and message gap parameters for scatter and gather

operations at 2-node, 4-node, 8-node, and 16-node configurations. The dashes in the table signify

that the parameter is either irrelevant or statistically insignificant in that data region. Table 8.3

provides the model parameters for the Sendrecv routine at different node configurations. The

training data-set for the Sendrecv routine is obtained using micro-benchmarks that resemble the

ADF operations. As seen in the same table, the overhead and message gap parameters for this

point-to-point routine are large when compared to the collective scatter and gather routines.

Therefore, programmers are advised to avoid frequent point-to-point communications and

instead use collective operations for optimal performance.

 149

Table 8.1 Overhead (ms) and Message Gap (ms/KB) for Scatter Time

Node

Configuration

Region 1

 (1 KB – 512 KB)

Region 2

 (512 KB – 1024 KB)

Region 3

 (over 1024 KB)

oT G oT G oT G

2-Node - 9.57e-5 - 9.39e-5 - 2.6e-4

4-Node 2.771e-3 4.13e-3 - 3.66e-3 - 4.43e-3

8-Node 6.86e-3 6.21e-3 - 6.03e-3 - 6.43e-3

16-Node 5.6e-3 7.27e-3 - 7.03e-3 - 7.5e-3

Table 8.2 Overhead (ms) and Message Gap (ms/KB) for Gather Time

Node

Configuration

Region 1

 (1 KB – 512 KB)

Region 2

 (512 KB – 1024 KB)

Region 3

 (over 1024 KB)

oT G oT G oT G

2-Node 9e-4 6.15e-5 - 1.53e-5 - 2.65e-4

4-Node 4.52e-3 4.13e-3 - 4.2e-3 - 4.26e-3

8-Node 2.93e-3 6.20e-3 - 6.17e-3 - 6.32e-3

16-Node 0.59 1e-2 - 1.03e-2 - 7.36e-3

Table 8.3 Overhead (ms) and Message Gap (ms/KB) for Sendrecv Time

Node

Configuration

Model Parameters

oT G

2-Node 0.58 0.02

4-Node 1.1 0.086

8-Node 1.98 0.186

16-Node 3.77 0.43

B. PCI-Ex Bus Operations: Download and Read-back

As discussed in Chapter 4, the Palmetto cluster [15] includes GPGPU-enabled servers

equipped with two Nvidia Kepler GK110 devices each. Consequently, up to two MPI ranks (two

host-device pairs) can be packed in a single server for node configurations greater than two

nodes. Therefore, we perform micro-benchmarks for download (host-to-device) and read-back

(device-to-host) operations using two host-device pairs in a single server. We define the

following data regions: 1 B – 8 KB (small message region), 8 KB – 512 KB and 512 KB – 1024

KB (medium message region), and 1024 KB – 8 MB and 8 MB – 256 MB (long message

regions). Figures 8.9 through 8.13 provide the initial sketches of download time and

corresponding message gap (G), justifying the constructed data regions.

 150

Figure 8.9 Download Time vs. Message Size

1 B – 8 KB

Figure 8.10 Download Time vs.

Message Size 8 KB – 512 KB

Figure 8.11 Download Time vs.

Message Size 512 KB – 1024 KB

Figure 8.12 Download Time vs.

Message Size 1 MB – 8 MB

 151

Figure 8.13 Download Time vs. Message Size 8 MB – 256 MB

Table 8.4 gives the overhead and message gap parameters for download and read-back

operations. Similar to the Infiniband operations, the dashes in the table are due to irrelevance or

statistical insignificance of the parameter values.

 Table 8.4 Overhead (ms) and Message Gap (ms/KB) for Download and Read-back Time

PCI-Ex

Bus

Operation

Region 1

 (1 KB

– 8 KB)

Region 2

 (8 KB –

512 KB)

Region 3

 (512 KB –

1024 MB)

Region 4

 (1 MB –

8 MB)

Region 5

 (8 MB –

256 MB)

oT G oT G oT G oT G oT G

Download 0.014 - - 5.8e-4 - 8.5e-4 - 4.76e-4 - 4.2e-4

Readback 0.017 - - 4.95e-4 - 5.4e-4 - 3.41e-4 - 3.6e-4

8.3 SUMMARY

In this chapter, we discussed the high-level abstraction for modeling the GPGPU

computations and medium communications. The high-level abstraction approaches, namely

qualitative and quantitative methods, were described using subjective-analytical and objective-

analytical models, respectively. The subjective-analytical models avoid numerical complexities

 152

by describing the system using minimum qualitative relations amongst the system parameters,

providing user-friendly approach to performance modeling. To model the GPGPU computations,

we derived simple mathematical relations between element-throughput, number of computational

entities, and the execution time on M GPGPU devices. For the communication medium

modeling, we explained the Michaelis-Menten kinetics approach with a subjective-analytic

perspective.

Unlike qualitative methods, the quantitative approach is described by objective-analytical

models that employ micro-benchmarks to measure system parameters, thereby estimating the

target variable. We adapted the GPGPU analytical model proposed by Hong and Kim [17] and

provided a sub-set of relevant equations for measuring the GPGPU architecture performance.

The parameters associated with this objective-analytical model are estimated using micro-

benchmarks and PTX assembly inspection. For the communication component, we proposed a

variant of the analytical models described in Chapter 2 called the piecewise-analytical model.

This approach estimates the data transfer time by defining data regions determined by cut-off

messages and using two medium parameters: overhead (oT) and message gap (G). The overhead

parameter is the estimated time taken by the processor to initiate the operation; whereas the

message gap parameter is the transfer time per byte for a message in a given data region. We

elucidated the piecewise-analytical model construction for the two most commonly used, runtime

intensive network-level routines (scatter and gather) and interconnect operations (download and

read-back). A brief discussion on the Sendrecv routine was provided along with the model

parameter values. This point-to-point routine observed significantly high overhead and message

gap parameter values, suggesting the avoidance of this point-to-point routine. In the next chapter,

we verify the high-level abstraction models for their prediction efficacy, keeping the emphasis on

 153

GPGPU computations and medium communications. We also explore a suitable combination of

qualitative and quantitative methods, the hybrid approach, for performance predictions on

heterogeneous system.

 154

CHAPTER 9

VERIFICATION OF THE HIGH-LEVEL ABSTRACTION

This chapter presents the verification results for the high-level abstraction using the SNN-

ADF SIAs studied in this dissertation research. The primary focus is verifying the prediction

models for GPGPU computations and medium communications; we report prediction error rates

for these SIGE model components. A Strengths, Weaknesses, and Opportunities (SWO) study

for the high-level abstraction is also presented. The rest of the chapter is structured as follows.

Section 9.1 verifies the subjective-analytical model for GPGPU computations. Because

qualitative models for communications were comprehensively studied in Chapters 6 and 7, we do

not show this analysis. Section 9.2 verifies the objective-analytical models for GPGPU

computations and medium communications (Infiniband and PCI-Ex bus) including scatter,

gather, sendrecv, download, and read-back. A combination of effective qualitative and

quantitative methods, the hybrid approach, is discussed in Section 9.3. The SWO analysis for the

high-level abstraction models follows in Section 9.4. The chapter concludes with a summary in

Section 9.5.

9.1 VERIFICATION RESULTS: QUALITATIVE MODELING

9.1.1 GPGPU Computations

This section provides the verification results for the GPGPU subjective-analytical model

using the SNN-ADF SIA case studies. We present the values for observed kernel runtime,

estimated kernel runtime, and prediction error rate using selected SNN network and noised

 155

image sizes. The SIAs were executed on the Kepler GPGPU-augmented Palmetto cluster using

node configurations varying from 4- to 16-nodes.

We use Equations 8.3 through 8.8 for estimating the GPGPU kernel execution time for the

four SNN models. Tables 9.1 through 9.4 provide the observed and estimated kernel runtime

values along with the prediction error rates for the HH, ML, Wilson, and Izhikevich models. All

of the SNN models observe high prediction accuracy (less than 10%) for several SNN network

sizes across the tested node configurations. The ML model, however observes a few outliers with

error rates distinctively high compared to the other SNN models. As explained in Chapter 8, the

subjective-analytical model extrapolates the execution time on M GPGPU devices using runtime

information from the reference GPGPU device (see Equation 8.3). Because GPGPU

computations usually scale well with the number of processors, the analytical approach is

expected to yield highly accurate predictions as shown by these tables.

Table 9.5 provides the values of observed kernel runtime, estimated kernel runtime, and

corresponding error rate for the ADF algorithm. Similar to the SNN models, the ADF algorithm

also observes high prediction accuracy (error less than 5%).

Table 9.1 HH Model: Observed and Estimated Kernel Runtime Values (ms)

Node

Configuration

Input Size Observed

Kernel Time

Estimated

Kernel Time

Error Rate

(%)

4-Node 4200x4200 1144.58 1144.44 0.01

4800x4800 1472.32 1482.5 -0.7

8-Node 6480x6480 1349.07 1354.5 -0.41

7200x7200 1681.24 1662.82 1.1

16-Node 8400x8400 1145.26 1144.44 0.072

9600x9600 1474.214 1482.51 -0.6

 156

Table 9.2 ML Model: Observed and Estimated Kernel Runtime Values (ms)

Node

Configuration

Input Size Observed

Kernel Time

Estimated

Kernel Time

Error Rate

(%)

4-Node 4080x4080 18.24 18.16 0.41

4800x4800 20.87 20.82 0.22

8-Node 4800x4800 11.78 10.51 10.73

5040x5040 12.91 11.57 10.4

16-Node 6840x6840 11.97 10.67 10.83

7140x7140 12.81 11.61 9.36

Table 9.3 Wilson Model: Observed and Estimated Kernel Runtime Values (ms)

Node

Configuration

Input Size Observed

Kernel Time

Estimated

Kernel Time

Error Rate

(%)

4-Node 3600x3600 63.83 65.64 -2.83

4080x4080 83.7 83.5 0.2

8-Node 4800x4800 57.06 58.7 -2.8

5040x5040 63.53 64.4 -1.35

16-Node 4800x4800 30.11 30.68 -1.9

7200x7200 63.83 65.64 -2.85

Table 9.4 Izhikevich Model: Observed and Estimated Kernel Runtime Values (ms)

Node

Configuration

Input Size Observed

Kernel Time

Estimated

Kernel Time

Error Rate

(%)

4-Node 3600x3600 13.04 13.17 -1.04

4080x4080 16.50 16.56 -0.41

8-Node 4800x4800 11.72 11.85 -1.14

5040x5040 12.72 12.93 -1.7

16-Node 4800x4800 6.45 6.56 -1.7

7200x7200 13.01 13.17 -1.26

Table 9.5 ADF: Observed and Estimated Kernel Runtime Values (ms)

Node

Configuration

Input Size Observed

Kernel Time

Estimated

Kernel Time

Error Rate

(%)

4-Node 5120x5120 897 857.74 4.38

6400x6400 1380.18 1402.86 -1.65

8-Node 6400x6400 686.5 658.7 4.06

7168x7168 852.3 839.26 1.53

16-Node 7168x7168 391.18 374.62 4.23

7680x7680 468.6 466.3 0.5

 157

9.2 VERIFICATION RESULTS: QUANTITATIVE MODELING

In this section, we verify the objective-analytical models for GPGPU computations and

medium communications. For the GPGPU analysis, we only show the prediction results for the

SNN models using a 4-node configuration; the kernel runtime can be extrapolated for predictions

at larger node configurations. The SNN models, with their wide range of computation-to-

communication requirements, are highly suitable case studies for the model verification. The

communication component prediction models are verified across a range of data sizes; these

models are later included in the hybrid approach where we investigate their efficacy for overall

application runtime prediction.

9.2.1 GPGPU Computations

The objective-analytical model for GPGPU computations is discussed in Chapter 8 along

with the relevant equations. We performed micro-benchmarks on the Kepler GPGPU device to

estimate the values of global memory bandwidth, memory access latency, and departure delays.

We specifically adapted the micro-benchmarks given in the SHOC suite [41] to obtain these

values. Additional hardware parameters including multi-processor (SMX) frequency, instruction

issue cycles, and the number of SMXs were obtained using CUDA programming guide [22] and

deviceQuery routine from the CUDA SDK [26]. The hardware parameters relevant to the Kepler

architecture are summarized in Table 9.6. The application specific parameters including the

number of active warps per SMX (related to occupancy), number of load/store bytes per warp,

and the number of computation and memory instructions were obtained via PTX assembly

analysis [24] and CUDA profile generation [22]. These parameter values are given in Table 9.7

 158

Table 9.6 Kepler (K20) GPGPU Device Parameter Values

Parameter Value Method

Global Memory Bandwidth 144 GB/sec SHOC Benchmark

Memory Access Latency Coalesced Uncoalesced Adapted SHOC Benchmark
133 cycles 572 cycles

Departure Delays

Coalesced Uncoalesced Adapted SHOC Benchmark
1 cycle 38 cycles

SMX 13 deviceQuery

SMX Frequency 0.71 GHz deviceQuery

Instruction Issue Cycles SP* Trans.*

Device Specifications 32

192
 cycles

32

32
 cycles

*SP: Single-Precision Floating Point; Trans.: Transcendental Functions; cycles: SMX cycles

.

Table 9.7 SNN Models: Application Specific Parameters

SNN Model Application Specific Parameters

HH

#Active_Warps 24

#load/store_bytes_per

Warp

56

#Comp_Insts 71 SP + 13 Trans.

#Mem_Insts 14

ML

#Active_Warps 32

#load/store_bytes_per

Warp

40

#Comp_Insts 58 SP + 9 Trans.

#Mem_Insts 10

Wilson

#Active_Warps 32

#load/store_bytes_per

Warp

52

#Comp_Insts 49 SP + 5 Trans.

#Mem_Insts 13

Izhikevich

#Active_Warps 32

#load/store_bytes_per

Warp

32

#Comp_Insts 19 SP

#Mem_Insts 8

Prior to providing the prediction results for the four SNN models, we first demonstrate the

objective-analytical model for HH model kernel runtime prediction using the 4-node

configuration and a SNN network size of 4200 x 4200. The runtime analysis is based on the

 159

multi-GPGPU orchestration for the SNN models given in Chapter 4. The parameters pertaining

to Equations 8.10 through 8.12 are summarized in Table 9.8.

Table 9.8 HH Model: Objective-Analytical Model Parameter Values; 4-Node Configuration

Parameter Value Obtained Using

Input Size Per GPGPU 4200*4200
4.41 6

4
e

Algorithm Specification

Threads per Block 256 CUDA User-Defined Specification

#Blocks 17227 Input Size

Threads per Block

#Active_blocks_per_SM 3 # _

Threads per Block
()

Warp Size

Active Warps

Reps 442 Equation 8.12

Mem_cycles (cycles) 1862 _ * _Mem Insts Mem Latency

Comp_cycles (cycles) 28 _ *

_ _

Comp insts

instruction issue cycles

Exec_cycles_app (cycles) 8.56e5 Equation 8.12

Thread_Sync_cost (cycles) 6.1e4 Equation 8.12

ExecTotal 9.17e5 Equation 8.12

Execution time per kernel

(milliseconds)

1.29 TotalExec

Frequency

Algorithm Iterations 472 Algorithm Specification

Total Execution Time

(milliseconds)

608.8 Execution time per kernel *

Algorithm Iterations

The kernel runtime predictions for the four SNN models at the 4-node configuration using

selected SNN sizes are given in Table 9.9. The error rates for all test cases are high (40-60%),

suggesting several missing components in the objective-analytical model. The prediction model

yielded significantly high error values for the ML model that are beyond 100%; this observation

is under investigation. Although the model provides significant insight into the GPGPU

architecture, a comprehensive study of several device parameters pertaining to instruction

caches, quad warp schedulers, and multi-level L1/L2 caches should to be incorporated in the

modeling approach in future work. The future work also includes the use/development of

 160

effective PTX assembly parsing software to obtain precise counts of memory and computation

instructions.

Table 9.9 SNN Models: Observed and Estimated Kernel Runtime Values (ms)

SNN Model Network Size Observed

Kernel Time

Estimated

Kernel Time

Error

HH 4200x4200 1144.58 608.88 -47%

4800x4800 1472.32 791.1 -47%

ML 4080x4080 18.24 83.22 356%

5040x5040 12.91 127.7 889%

Wilson 3600x3600 63.83 89.22 -40%

4080x4080 83.7 114.56 37%

Izhikevich 3600x3600 13.04 5.03 -61%

4080x4080 16.5 6.5 -61%

The values marked in red are under investigation

9.2.2 Medium Communications: Infiniband and PCI-Ex Bus

A. Infiniband: Scatter, Gather, and Sendrecv

The piecewise analytical models for medium communications were discussed in the previous

chapter. Figures 9.1 through 9.3 provide the bar graph representation of the observed and

predicted scatter time values versus the data size for 4-node, 8-node, and 16-node configurations.

The prediction analysis is performed using Equation 8.13 and model parameters given in Table

8.1. The predicted scatter time values match the observed time values closely for multiple test

cases. The 4-node and 8-node configurations observed satisfactory predictions with error rates of

2.06% and 0.9% for their respective largest test data size. Although the prediction model yielded

acceptable predictions for the 16-node configuration using several test cases, a few outliers with

over 15% error rate were observed. Overall, the scatter time predictions were found to be

satisfactory; the objective-analytical model captures the network behavior effectively by

analyzing the data regions separately.

 161

Figure 9.1 Scatter Time Prediction for 4-Node Configuration

Figure 9.2 Scatter Time Prediction for 8-Node Configuration

 162

Figure 9.3 Scatter Time Prediction for 16-Node Configuration

Figures 9.4 through 9.6 provide the observed and predicted gather time bar graphs using data

sizes typically employed by the ADF algorithm. The predictions are performed using Equation

8.13 and model parameter values given in Table 8.2. All node configurations observed

satisfactory gather time predictions with error rate less than 6% for several tested data sizes. The

sendrecv time predictions were also acceptable as shown in Figures 9.7 – 9.9, verifying the

adequacy of objective-analytical models for productive communication component prediction.

 163

Figure 9.4 Gather Time Prediction for 4-Node Configuration

Figure 9.5 Gather Time Prediction for 8-Node Configuration

 164

Figure 9.6 Gather Time Prediction for 16-Node Configuration

Figure 9.7 Sendrecv Time Prediction for 4-Node Configuration

 165

Figure 9.8 Sendrecv Time Prediction for 8-Node Configuration

Figure 9.9 Sendrecv Time Prediction for 16-Node Configuration

B. PCI-Ex Bus: Download and Read-back

We assert that the performance impact of download and read-back operations are most

suitably studied in conjunction with the GPGPU kernel execution time as elucidated in Chapters

 166

6 and 7. Equation 5.3 combines the GPGPU kernel time with host-to-device (download) and

device-to-host (read-back) transfer times to facilitate user-friendly analysis. To demonstrate the

prediction capabilities of the PCI-Ex bus objective-analytical model, we only show the selected

cases of the HH model and ADF algorithm at 8-node configuration for the download and read-

back operations, respectively. These two case studies sufficiently represent the chosen SIA set

for inter-connect medium communications. The analytical model parameters are given in Table

8.4. Figures 9.10 and 9.11 show the download and read-back prediction performances,

respectively.

The download prediction accuracy was found to be satisfactory with less than 10% error rate

for most of the test cases. Moderately high prediction errors were observed only for smaller data

sizes; small deviations in predictions result in high error rates for numerically small runtimes.

Unlike the download operation, the read-back predictions were imprecise with few test cases

yielding error rates between 20 to 25%. The authors surmise that the GPGPU device may require

additional time to service the data request from the host processor, which may vary across

applications. The additional time may be attributed to the inter-connect protocol execution [11].

Consequently, the model parameters generated using micro-benchmarks may not completely

represent the read-back characteristics in an application. These claims require additional

investigation and are left for future work beyond this dissertation.

 167

Figure 9.10 HH model: Overall Download Time Prediction for 8-Node Configuration

Figure 9.11 ADF: Overall Read-back Time Prediction for 8-Node Configuration

 168

9.3 HYBRID MODELING

The high-level abstraction verification results in the preceding sections suggest that these

models, when used alone, are likely to yield coarse-grained application runtime prediction,

thereby necessitating a mixed approach. While several combinations of qualitative and

quantitative methods can be explored to yield an optimal hybrid modeling approach, our

selection of the high-level abstraction model framework is as follows. To perform the GPGPU

kernel runtime predictions, we employ the subjective-analytical model because it is user-friendly

and offers high prediction accuracy. Unlike the objective-analytical models, the subjective

modeling approach avoids complex numerical estimations of hardware events by determining

simple and intuitive relations amongst the system variables. Additionally, since the GPGPU

computations are highly reproducible and generally scale well with data and the number of

processors, the subjective modeling approach is expected to yield superior results. However for

the medium communications (Infiniband and PCI-Ex bus), we select the objective-analytical

models for performance prediction. As discussed in the previous chapter, the proposed piecewise

analytical model describes the communication performance across different data regions using

medium specific parameters namely, overhead and message gap. This objective-analytical model

overcomes any inaccuracies introduced by the subjective modeling approach, which fits a single

qualitative relation for the data transfer throughput regardless of varying medium performance

over multiple data regions.

In what follows, we present the preliminary prediction results for the computation and

communication components of the SIGE model for the SNN-ADF SIAs. The predictions are

performed using a set of selected input sizes and node configurations varying from 4- to 16-

nodes. We also provide error rates for the overall runtime prediction. It should be noted that the

 169

high-level abstraction analysis for the computation component only comprises the GPGPU

computations, which includes kernel time, host-to-device time, and device-to-host time (see

Equation 5.3). Similar to the low-level abstraction modeling, the communication component

analysis comprises of all the network-level transactions performed in the algorithm.

9.3.1 HH Model

Tables 9.10 and 9.11 provide the observed and predicted runtime values for computations

and communication components, respectively. All of the SIGE model equations employed to

verify the regression-based framework (Chapter 7) also apply for this analysis. The computation

component yielded satisfactory prediction results with error rates less than 2%, barring a single

test case where 11% error rate was observed. The communication component observed

satisfactory prediction results using the piecewise-analytical model with error rates less than 2%,

owing to the highly accurate scatter time predictions. Given the high prediction accuracies of the

computation and communication components, error rates for the overall execution time

predictions were also low as seen in Table 9.12.

Table 9.10 HH Model: Observed and Predicted Time Values for Computation Component

Configuration Tcomputation=TGPGPU-kernel+TH2D + TD2H

Test Data Size Observed

Time

(ms)

Predicted

Time

(ms)

Error Rate

(%)

4-Node 4200x4200 1229.25 1249.03 -1.6

4800x4800 1574.52 1401.8 10.96

8-Node 6480x6480 1444.5 1453.7 -0.64

7200x7200 1788.72 1776.4 0.7

16-Node 8400x8400 1232.4 1233.9 -0.13

9600x9600 1575.5 1587.73 -0.77

 170

Table 9.11 HH Model: Observed and Predicted Time Values for Communication Component

Configuration Tcommunicatation=∑TTransactions

Test Data Size Observed

Time

(ms)

Predicted

Time

(ms)

Error Rate

(%)

4-Node 4200x4200 307.3 304.7 0.84

4800x4800 401.5 398.16 0.83

8-Node 6480x6480 1066.35 1054.37 1.12

7200x7200 1312.6 1301.8 0.83

16-Node 8400x8400 2066.4 2066.84 -0.02

9600x9600 2692.07 2699.65 -0.28

Table 9.12 HH Model: Observed and Predicted Execution Time Values

Configuration TExecution = Tcomputatiom + Tcommunication

Test Data Size Observed

Time

(ms)

Predicted

Time

(ms)

Error Rate

(%)

4-Node 4200x4200 1536.53 1553.74 -1.12

4800x4800 1976.02 1799.97 8.9

8-Node 6480x6480 2630.53 2508.14 4.65

7200x7200 3101.32 3078.16 0.75

16-Node 8400x8400 3298.8 3300.807 -0.06

9600x9600 4267.61 4287.37 -0.46

9.3.2 ML Model

The computation and communication component predictions are given in Tables 9.13 and

9.14, respectively. The computation predictions were not as accurate as the HH model; error rate

values as high as 7% and 11% were observed. Although the GPGPU computation predictions

were acceptable, the download and read-back operations yielded large error values. Because the

ML model is moderately computationally intensive, the host-device transfer times match the

GPGPU kernel time, thereby significantly contributing to the overall prediction error. Similar to

the HH model, the communication component predictions were satisfactory as seen in Table

9.14. The overall execution time prediction results are given in Table 9.15.

 171

Table 9.13 ML Model: Observed and Predicted Time Values for Computation Component

Configuration Tcomputation=TGPGPU-kernel+TH2D + TD2H

Test Data Size Observed

Time

(ms)

Predicted

Time

(ms)

Error Rate

(%)

4-Node 4080x4080 44.99 48.22 -7.17

4800x4800 59.33 66.17 -11.55

8-Node 4800x4800 33.87 35.02 -3.4

5040x5040 39.3 38.33 2.46

16-Node 6840x6840 33.922 35.5 -4.65

7140x7140 37.47 38.44 -2.6

Table 9.14 ML Model: Observed and Predicted Time Values for Communication Component

Configuration Tcomputation=∑TTransactions

Test Data Size Observed

Time

(ms)

Predicted

Time

(ms)

Error Rate

(%)

4-Node 4080x4080 283.52 287.52 -1.41

4800x4800 393.95 398.16 -1.07

8-Node 4800x4800 581.67 578.38 0.6

5040x5040 637.12 637.7 -0.1

16-Node 6840x6840 1370.65 1370.32 0.024

7140x7140 1491.74 1493.2 -0.1

Table 9.15 ML Model: Observed and Predicted Execution Time Values

Configuration TExecution = Tcomputatiom + Tcommunication

Test Data Size Observed

Time

(ms)

Predicted

Time

(ms)

Error Rate

(%)

4-Node 4080x4080 328.52 335.75 -2.2

4800x4800 453.28 464.33 -2.44

8-Node 4800x4800 615.54 613.411 0.35

5040x5040 676.43 676.04 0.06

16-Node 6840x6840 1404.57 1405.82 -0.1

7140x7140 1529.209 1531.632 -0.16

9.3.3 Wilson Model

Similar to the previous SNN model, the Wilson model is also moderately computationally

intensive. Consequently, error rates between 5-10% were observed for the computation

component shown in Table 9.16. The communication component predictions were fair with error

 172

rates less than 2%, albeit with an outlier at SNN network size 4080x4080 for the 4-node

configuration (see Table 9.17). Given the high prediction accuracies for the computations and

communications, the overall execution time predictions observed error values less than 6% (see

Table 9.18).

Table 9.16 Wilson Model: Observed and Predicted Time Values for Computation Component

Configuration Tcomputation=TGPGPU-kernel+TH2D + TD2H

Test Data Size Observed

Time

(ms)

Predicted

Time

(ms)

Error Rate

(%)

4-Node 3600x3600 100.76 103.94 -3.15

4080x4080 129.83 132.34 -1.93

8-Node 4800x4800 90.22 95.45 -5.81

5040x5040 100.47 104.55 -4.1

16-Node 6840x6840 101.1 94.25 6.78

7200x7200 111.27 103.97 6.55

Table 9.17 Wilson Model: Observed and Predicted Time Values for Communication Component

Configuration Tcomputation=∑TTransactions

Test Data Size Observed

Time

(ms)

Predicted

Time

(ms)

Error Rate

(%)

4-Node 3600x3600 220.95 223.72 -1.25

4080x4080 315.31 287.52 8.81

8-Node 4800x4800 586.06 578.4 1.31

5040x5040 645.84 637.7 1.26

16-Node 6840x6840 1376.14 1370.32 0.42

7200x7200 1515.67 1521.99 -0.42

Table 9.18 Wilson Model: Observed and Predicted Execution Time Values

Configuration TExecution = Tcomputatiom + Tcommunication

Test Data Size Observed

Time

(ms)

Predicted

Time

(ms)

Error Rate

(%)

4-Node 3600x3600 321.7 327.66 -1.85

4080x4080 445.14 419.85 5.7

8-Node 4800x4800 676.27 673.85 0.36

5040x5040 746.3 742.26 0.54

16-Node 6840x6840 1477.24 1464.56 0.86

7200x7200 1626.94 1625.97 0.06

 173

9.3.4 Izhikevich Model

The prediction results for the computation component, communication component, and

overall execution time are given in Tables 9.19 – 9.21. The subjective-analytical model for the

GPGPU kernel computations coupled with the objective-analytical models for the medium

communications yielded high prediction accuracy as seen in these tables.

Table 9.19 Izhikevich Model: Observed and Predicted Time Values for Computation Component

Configuration Tcomputation=TGPGPU-kernel+TH2D + TD2H

Test Data Size Observed

Time

(ms)

Predicted

Time

(ms)

Error Rate

(%)

4-Node 3600x3600 30.15 31.33 -3.9

4080x4080 37.43 39.88 -6.52

8-Node 4800x4800 27.834 27.99 -0.57

5040x5040 30.26 30.73 -1.55

16-Node 6840x6840 28.61 28.40 0.74

7200x7200 32 31.33 2.1

Table 9.20 Izhikevich Model: Observed and Predicted Time Values for Communication

Component

Configuration Tcomputation=∑TTransactions

Test Data Size Observed

Time

(ms)

Predicted

Time

(ms)

Error Rate

(%)

4-Node 3600x3600 218.45 223.73 -2.41

4080x4080 338.435 287.52 15.04

8-Node 4800x4800 576.2 578.4 -0.4

5040x5040 638.55 637.7 0.132

16-Node 6840x6840 1356.84 1370.32 -1

7200x7200 1527.26 1518.4 0.6

 174

Table 9.21 Izhikevich Model: Observed and Predicted Execution Time Values

Configuration TExecution = Tcomputatiom + Tcommunication

Test Data Size Observed

Time

(ms)

Predicted

Time

(ms)

Error Rate

(%)

4-Node 3600x3600 248.6 255.056 -2.6

4080x4080 375.87 327.4 12.89

8-Node 4800x4800 604.034 606.4 -0.4

5040x5040 668.81 668.44 0.056

16-Node 6840x6840 1385.45 1398.72 -0.95

7200x7200 1559.27 1549.73 0.61

9.3.5 ADF

Similar to the SNN models, the ADF algorithm also observed high prediction accuracy for all

of the SIGE model components. The prediction values are provided in Tables 9.22 through 9.24.

The computation component observed slightly high prediction error rates (values up to 4.5%

versus 1.6% for the HH model) due to the error-prone download and read-back predictions.

Owing to the high prediction accuracy of objective-analytical models for scatter, gather, and

sendrecv operations, the communication component for the ADF algorithm yielded error rates

less than 1.5%. The results confirm the applicability of the piecewise analytical models for

highly accurate communication performance prediction. The overall execution time predictions

are nearly 98% accurate, verifying the viability of the hybrid approach for satisfactory

performance prediction.

Table 9.22 ADF: Observed and Predicted Time Values for Computation Component

Configuration Tcomputation=TGPGPU-kernel+TH2D + TD2H

Test Data Size Observed

Time

(ms)

Predicted

Time

(ms)

Error Rate

(%)

4-Node 5120x5120 918.83 881.22 4.1

6400x6400 1463.5 1439.1 1.67

8-Node 6400x6400 708.83 677.05 4.48

7168x7168 881.98 862.3 2.23

16-Node 7168x7168 406.52 415.75 -2.3

7680x7680 486.4 479.8 1.36

 175

Table 9.23 ADF: Observed and Predicted Time Values for Communication Component

Configuration Tcomputation=∑TTransactions

Test Data Size Observed

Time

(ms)

Predicted

Time

(ms)

Error Rate

(%)

4-Node 5120x5120 1330.78 1345.13 -1.08

6400x6400 2085.56 2101.27 -0.74

8-Node 6400x6400 3082.7 3074.7 0.26

7168x7168 3867.05 3855.94 0.29

16-Node 7168x7168 4471.5 4506.3 -0.78

7680x7680 5136.7 5171.16 -0.7

Table 9.24 ADF: Observed and Predicted Execution Time Values

Configuration TExecution = Tcomputatiom + Tcommunication

Test Data Size Observed

Time

(ms)

Predicted

Time

(ms)

Error Rate

(%)

4-Node 5120x5120 2255.31 2226.77 1.27

6400x6400 3510.26 3540.32 -0.85

8-Node 6400x6400 3791.51 3751.73 1.05

7168x7168 4749.02 4718.22 0.65

16-Node 7168x7168 4878.02 4922.05 -1

7680x7680 5623.11 5650.95 -0.5

In the foregoing section, we discussed the hybrid approach as a suitable combination of

qualitative and quantitative models for highly accurate application performance prediction. The

initial verification of this approach with the SNN-ADF SIAs yielded high quality prediction

results for both the computation and communication components of the SIGE model. The

presented results satisfactorily establish the hybrid approach as a viable paradigm for precise

runtime estimations. In the next section, we provide the Strengths, Weaknesses, and

Opportunities (SWO) analysis of the high-level abstraction models, based on the verification

results given in Sections 9.1 – 9.3.

 176

9.4 STRENGTHS, WEAKNESSES, AND OPPORTUNITIES (SWO) ANALYSIS

Strengths – The qualitative models are described using subjective-analytical models that define

qualitative relations amongst the system variables to describe the overall system behavior. This

intuitive approach is easy to understand and straightforward to apply; consequently, these models

can also be used by developers and researchers with limited computer architecture knowledge. In

this dissertation research, the subjective-analytical models were shown to provide quality

performance predictions for GPGPU computations. Similar to the regression-based framework,

the subjective-analytical modeling approach is expected to span generations of GPGPU

architectures.

Unlike qualitative modeling, the quantitative approach is described by objective-analytical

models that estimate the system behavior by measuring hardware-specific events using micro-

benchmarks. We developed piecewise analytical models for the medium communications that

leveraged accurate communication time predictions. These models also avoid any inaccuracies

introduced by the subjective-analytical models that provide a single qualitative relation for

communications regardless of varying system behavior across message sizes.

Weaknesses – The simplified qualitative methods are prone to overlooking additional system

features, ultimately leading to imprecise performance predictions. The proposed subjective-

analytical model (Michaelis-Menten approach) for medium communications does not include

additional network parameters, such as change in network protocol for instance. Consequently,

these models observed high error rates for the communication component as elucidated in

Chapter 7. We assert that the qualitative models are better suited for systems with reproducible

characteristics, GPGPU devices computations for instance. Owing to the reproducible scalability

of GPGPU computations, the subjective-analytical model was shown to effectively extrapolate

 177

the execution time on M GPGPU devices using runtime information from the reference device.

Unlike computations, the medium communications are prone to randomness in the system;

consequently, simple qualitative relations with minimum parameters may not suffice for accurate

performance predictions.

The quantitative methods provide an elaborate route to performance prediction via system

parameter estimation using micro-benchmarks. Depending on the system complexity, this

approach offers varied user-friendliness and accuracy. Complex systems including CPU and

GPGPU architectures necessitate precise parameter estimation for accurate performance

prediction. The GPGPU architecture, expounded in Chapter 3, has significantly developed since

the introduction of programmable-shader architecture in GeForce 8800 device [82]. The

computer architects have unfailingly addressed the ever-growing demands of HPC programmers

by offering performance enhancing features including relaxed memory access coalescing rules,

L1/L2 caches, large shared memory, dual-warp and quad-warp schedulers, and increased number

of double-precision (DP) units. Consequently, the quantitative methods require comprehensive

micro-benchmark suites that address these architecture features for precise performance

predictions. The accuracy of micro-benchmarks is also highly critical because even the slightest

miscalculations may lead to ineffective predictions. We claim that the quantitative methods are

better suited for less complex systems, communication mediums for instance, which can be

represented using a small set of measurable system parameters. The piecewise analytical models

proposed in Chapter 8 were shown to effectively represent the medium behavior using

parameters including overhead, message gap, and cut-off messages.

Opportunities – The qualitative models can include additional parameters to obtain a better

insight into the system behavior. The quantitative methods also provide significant research

 178

opportunities; architecture specific micro-benchmarks need continual revision with the evolving

architecture. The piecewise analytical models proposed in this dissertation require

communication medium characterization at each node configuration, thereby yielding varying

model parameter values across the node configurations. The proposed future work includes the

development of generic model(s) that relate(s) the system parameters across the node

configurations. The high-level abstraction studies conducted in this dissertation research were

limited to a single computing system with limited number of host-device pairs. To broaden the

scope of performance modeling, the future work also includes comprehensive verification using

other computing systems with larger node configurations. The high-level abstraction approach

can also be explored for effective design space exploration (DSE).

9.5 SUMMARY

 In this chapter, we verified the high-level abstraction of the multi-level performance

modeling suite using the SNN-ADF SIA case studies. The qualitative and quantitative modeling

approaches were verified for satisfactory estimation of computation and communication

components of the SIGE model. The qualitative approach, described by the subjective-analytical

models, provided highly accurate predictions for the GPGPU device computations. However in

Chapter 7, this approach was shown to be error-prone for communication component modeling,

given their inability to accommodate additional medium parameters.

Unlike qualitative models, the quantitative approach described by objective-analytical

models yielded high prediction error rates for the GPGPU computations. Because the GPGPU

device architecture is rapidly evolving, these prediction methods often miss several hardware

parameters that ultimately lead to imprecise predictions. The quantitative modeling approach

provided satisfactory prediction results for the communication component. Relatively less

 179

complex systems, including Infiniband and PCI-Ex bus, can be effectively characterized using

limited number of measurable parameters.

We suitably combined the subjective-analytical model for GPGPU computations and

objective-analytical models for communications to produce the hybrid approach, which provided

high quality predictions as discussed in Section 9.3. With this chapter, we conclude the

construction and verification of the multi-level performance modeling suite for heterogeneous

systems with GPGPU devices. In the next chapter, we summarize the research findings and

provide model selection criteria based on the performance modeling efforts presented in this

dissertation research. We also highlight the dissertation research contributions and discuss future

work directions. The A2A roadmap construction is given in Appendix A.

 180

CHAPTER 10

CONCLUSIONS AND FUTURE RESEARCH

In this final chapter, we summarize the dissertation findings, provide model selection criteria

for effective performance modeling, highlight the important contributions made, and provide

directions for future research. The chapter organization is as follows. Section 1 provides chapter-

wise summaries, highlighting the key dissertation research findings. This section also serves as

an epilogue that connects all of the major developments in this doctoral dissertation research.

Based on our performance modeling efforts, we outline the model selection criteria in Section 2.

The primary contributions and research outcomes are listed in Section 3. The chapter closes with

directions for future work in Section 4.

10.1 DISSERTATION SUMMARY

The research presented in this doctoral dissertation seeks to address one of the major

challenges faced by the HPC community today: user-friendly and accurate heterogeneous

performance modeling. Chapter 1 highlights the widespread popularity of heterogeneous

architectures such as GPGPU- and FPGA-based clusters in HPC. As asserted in Chapter 1,

although these heterogeneous systems offer tremendous performance gains for highly parallel

applications, their resources may be under-utilized due to inefficient application mapping, load-

balancing, and tuning. These inefficiencies lead to secondary effects including long job queue

delays and increased power consumption. Although performance prediction models exist to fine-

tune applications, they are seldom easy-to-use and do not address multiple levels of design space

abstraction. Due to the above mentioned factors, application developers ultimately face difficulty

 181

in choosing a reliable model for the given design goals. This dissertation research aims to bridge

the gap between reliable performance model selection and user-friendly performance analysis.

More formally, the doctoral dissertation research goal is to design a straightforward and

accurate performance prediction framework for heterogeneous systems that addresses multiple

levels of design space abstraction, thereby allowing developers to choose an optimal

performance model that best fits their design goals. The dissertation research also provides a

roadmap for users to perform optimal Application-to-Accelerator (A2A) mapping via appropriate

architecture selection and performance prediction (preliminary and advanced). This roadmap is

given in Appendix A.

Chapter 2 surveyed the literature, discussing several performance prediction modeling

efforts, GPGPU architecture studies, and load-balancing issues. Several qualitative and

quantitative performance models were discussed that provide reasonable runtime prediction

accuracy. However, it was asserted that these modeling approaches are accompanied with

numerous shortcomings. First, the qualitative models require significant knowledge of the

computing architecture for accurate runtime prediction. Consequently, this approach can

potentially be inaccessible to developers or researchers with limited knowledge of the computer

architecture. Second, the quantitative approach relies heavily on micro-benchmarks that measure

hardware events, making them prone to miss non-measurable architecture features. Third, the

quantitative approach is often tied to a specific GPGPU device. The aim of this dissertation

research is to address the above mentioned issues in the form of a multi-level performance

modeling suite that provides an optimal performance modeling strategy for the given design

goals and architecture knowledge. Chapter 2 also examines some of the important analytical

models that characterize the network-level behavior. It was highlighted that communication

 182

transactions in heterogeneous systems often exhibit randomness in their behavior, making them

non-compliant with the network-level analytical models. To address this problem, we

recommended the use of regression-based approaches to model the network-level transactions.

The regression analysis of the network-level transactions can either be performed intuitively by

mapping the transaction problem to the well-known Michaelis-Menten enzyme kinetics or by

employing traditional regression methods such as the log-transformation. We also alluded to the

proposal of a simple quantitative model motivated by the existing analytical models for

communications.

 Chapter 3 acquaints readers with Nvidia’s GPGPU architecture (Fermi and Kepler) and

CUDA framework used in this dissertation research. The chapter also provides background on

the case studies, namely the spiking neural networks (SNNs), large-scale SNN simulations, and

non-linear anisotropic diffusion filter (ADF) for massive images. Chapter 4 describes the tested

GPGPU clusters: NCSA Forge and GPGPU-augmented Palmetto cluster. The chapter also

provides a detailed discussion of the SNN-ADF mapping methodology and orchestration on

these clusters. To verify the applicability of SNN-ADF implementations, a thorough

performance analysis study was conducted on the Forge GPGPU cluster. This performance

analysis was supplemented with the application runtime values, speed-up versus the equivalent

MPI-only implementations, and overall runtime breakdown into CPU time, GPGPU time, and

MPI communication time for intermediate node configurations. The scalability of the SNN

models correlated with their FLOPs/Byte ratio requirements. The most compute-intensive HH

model scaled well compared to the lower FLOPs/Byte ratio models. The performance of the

SNN models was found to improve generally with both problem size and node scaling. A similar

scaling characteristic was observed for the ADF implementation. The performance analysis

 183

exercise establishes high-data parallelism as necessary but not sufficient condition for GPGPU

system usage. The applications should also yield enough computations to the amortize

communication latency for optimal performance.

Chapter 5 describes the Synchronous Iterative GPGPU Execution (SIGE) model that serves

as the backbone for the proposed modeling suite. The SIGE model describes the execution flow

of the synchronous iterative algorithms (SIAs) on multi-GPGPU systems by providing a set of

equations for estimating the total application runtime. These equations are evaluated using

modeling techniques provided by the multi-level suite. The chapter also highlights the goals and

usefulness of the SIGE model. The aim of the SIGE model is to generalize the execution flow of

deterministic SIAs on multi-GPGPU systems. We asserted that although the SIGE model does

not provide explicit optimization guidelines, it is useful for straightforward and insightful design

space exploration (DSE). The SIGE model breaks the SIA execution flow into a number of

stages, which allows developers to selectively and progressively optimize their applications. In

addition to discussing the SIGE model, the chapter also provides a prelude to the multi-level

performance modeling suite that is broken into two levels of abstraction, namely the low-level

abstraction and high-level abstraction. The low-level abstraction uses limited implementation

details and system information for the application runtime prediction; therefore, partial details of

the implementation such as the legacy code, preliminary device kernel, and system specifications

must be available. The regression-based analysis best fits the low-level abstraction since it

enables the determination of mathematical models that describe the application behavior on the

given computing system with a certain degree of confidence. On the contrary, the high-level

abstraction seeks to predict the application runtime using algorithm characteristics and system

specifications whilst minimizing the reliance on implementation details. This level of abstraction

 184

predicts the computation and communication components of the SIGE model using qualitative

and quantitative modeling approaches. The qualitative approach estimates the SIGE model

components using subjective-analytical models that employ simple analytical functions, thereby

avoiding meticulous evaluation of parameters pertaining to the system; whereas the quantitative

approach is based on objective-analytical models, which predicts these components by

measuring system parameters using micro-benchmarks. These two approaches are expounded in

Chapters 6 through 9.

Chapter 6 elaborates on the low-level abstraction of the modeling suite. This level of

abstraction is composed of the regression-based framework, which aims to model the

computations (host and device) and medium communications (network-level and PCI-Ex). The

regression model development for the SNN-ADF SIAs was described in detail. It was

highlighted that simple algorithm parameters, including but not limited to the number of floating-

point operations (FLOPs) and computational bytes, can be used to model the host-device

computations with a high degree of confidence. We elucidated two regression-based approaches

for the network-level and PCI-Ex bus performance modeling: 1) intuitive mapping of the

transaction problem to the well-known Michaelis-Menten enzymatic kinetics and 2) log-

transformation method. To demonstrate their prediction efficacy, we presented the prediction

results for an 8-node scatter throughput problem on the Palmetto cluster using these approaches.

It was observed that the Michaelis-Menten kinetics approach better approximates the scatter

throughput versus the log-transformation method given its high R
2
 value (0.99 vs. 0.93).

We also demonstrated the use of a low-level abstraction approach to perform straightforward

and productive GPGPU design space exploration (DSE). This exercise offers an interesting

method to perform application tuning and mapping by exploring several possible

 185

implementations (the design space) of an application on the target or potential computing

systems. The GPGPU DSE analyzes the runtime performance of several functionally equivalent

implementations of an algorithm, thereby ranking the GPGPU design space. This ranking

enables developers to select the best implementation for optimal algorithm performance on

GPGPU-based systems. Using the low-level abstraction, we exemplified the GPGPU DSE for

SNN-ADF SIAs by developing kernel runtime regression equations for three design space

implementations; each implementation features an optimization of the GPGPU memory

hierarchy.

Chapter 7 provides the preliminary verification results for the low-level abstraction using the

SNN-ADF SIAs. This analysis was conducted on the NCSA Forge GPGPU cluster. The

regression models for the SNN computation and communication components demonstrated

reasonable prediction accuracies (10-12% error rate), discounting a few test cases. Analysis of

the results revealed that the complex SNN models with longer execution times have relatively

small deviations from the predicted values compared to the deviations observed for simple SNN

models with shorter execution times. The computation component regression models were found

to be more accurate compared to the communication component models, given the high

reproducibility of computations versus the communications. Additional network-level

characteristics, such as change in network protocols, may affect the network-level transactions

and hence the prediction accuracy. Future work beyond this dissertation includes expansion of

the independent variables space for the network-level transactions and inclusion of the protocol

parameters for superior performance modeling. The joint regression analysis of the Izhikevich-

ADF pair yielded results similar to the four SNN SIAs. We observed high prediction accuracies

for the computation component, communication component, and overall runtime prediction.

 186

Chapter 7 also presents the results and analysis for GPGPU DSE using the regression-based

framework. This study was conducted on the GPGPU-augmented Palmetto cluster with Kepler

K20 devices using the four SNN models and ADF algorithm as case studies. The design space

included implementations that feature optimizations of the GPGPU memory hierarchy including

global, shared, and texture memories. These implementations were ranked based on the runtime

predictions facilitated by the regression-based framework. The GPGPU DSE for the Kepler K20

devices ranked the global memory implementation as the best implementation for the SNN-ADF

SIA set. The regression-based framework ranked the design space implementations appropriately

for the HH, ML, Wilson, and ADF algorithms, while providing acceptable results for the

Izhikevich SNN model.

The Strengths, Weaknesses, and Opportunities (SWO) study follows the comprehensive

verification of the low-level abstraction. This level of analysis cogently identifies the merits and

demerits of any structured methodology (heterogeneous performance modeling in this research),

opening avenues for further refinement and inquiry. We highly recommend SWO studies to the

academic community for effective strengths and limitation analysis of any recently developed

methodology/theory. The SWO analysis was conducted on the Palmetto cluster using multiple

Tesla 2075 and Kepler K20 devices (two GPGPU generations) with host-device pairs varying

from 2-node up to 16-node configuration. The ability to provide highly accurate computation

component predictions was identified as one of the strengths of the low-level abstraction

paradigm. Because the low-level abstraction was tested across computing systems and GPGPU

architectures, this modeling approach is expected to span architecture generations. The

regression-framework is also expected to be independent of application regularity. We asserted

that this framework will also work for complex algorithms where the algorithm complexity is

 187

accounted for by the regression coefficients. As elucidated in Chapter 7, the low-level

abstraction also allows for quick and straightforward evaluation of the GPGPU design space.

Consequently, the approach extends well to developers and researchers with limited computer

architecture knowledge. The slightly error-prone communication component predictions

constitute one of the weaknesses of the low-level abstraction paradigm. However, including

additional parameters, for example change in network protocol and implicit synchronization, can

alleviate this weakness. Additionally, the regression-based framework requires a preliminary

GPGPU device implementation and partial access to the computing systems to enable

performance predictions, an inherent weakness of this approach. The opportunities for the low-

level abstraction modeling paradigm include exploration of additional system parameters for

quality predictions and verification with other accelerators and non-regular algorithms.

Chapter 8 elucidates the high-level abstraction that consists of two primary approaches

namely, qualitative modeling and quantitative modeling. The qualitative approach employs

subjective-analytical models that define simple qualitative relations amongst the parameters to

describe the system behavior. On the contrary, the quantitative approach uses objective-

analytical models that estimate the system performance by measuring hardware-specific events.

Using these two approaches, we demonstrated the construction of prediction models for the

SIGE model computation and communication components. For the GPGPU subjective-analytical

modeling, we adapted the analytical model proposed by Schaa et al. [8] that extrapolates the

runtime on M GPGPU devices using the runtime information from a reference device. We

highlighted that this modeling approach lacks statistical rigor because it does not consider

several application features (FLOPs, bytes, the number of computational entities, etc.) that affect

the GPGPU runtime. To address this issue, we derived simple mathematical relations between

 188

element-throughput, number of computational entities, and execution time on M GPGPU

devices. For the communication component, we described the Michaelis-Menten enzyme

kinetics approach with a subjective-analytical perspective. We emphasized that mapping the data

transfer problem onto the enzyme kinetics problem is highly intuitive because the data transfer

throughput (MB/sec) corresponds to the reaction rate and the data transfer size (MB) corresponds

to substrate concentration. Using this qualitative mapping, we developed throughput equations

for the medium communications in Chapter 6.

Following the qualitative modeling approach, the quantitative modeling approach was

discussed that provides an interesting route to performance modeling via system parameter

estimation using micro-benchmarks. We discussed the GPGPU analytical model proposed by

Hong and Kim [17] that matches our definition of objective-analytical models and provided a

sub-set of analytical equations given in [17]. To study the objective-analytical modeling for

communications, we developed a variant of common communication models (logP, plogP,

logGP, etc.) called the piecewise analytical model. This approach describes the medium

communications using medium parameters including overhead, message gap, and cut-off

messages. We elucidated that medium communication performance varies across data regions,

thereby requiring piecewise modeling for each data region. Using simple micro-benchmarks, we

estimated the model parameters for Infiniband (scatter, gather, Sendrecv) and PCI-Ex bus

(download and read-back) operations. We observed that the model parameters for Sendrecv

routine were large when compared to the collective scatter and gather routines, suggesting the

avoidance of this point-to-point routine. In addition to discussing the two primary high-level

approaches, we alluded to the hybrid approach, a suitable combination of effective qualitative

and quantitative methods for high quality performance prediction.

 189

Chapter 9 provides the initial verification of the high-level abstraction models using the

SNN-ADF SIAs; this analysis was conducted on the GPGPU-augmented Palmetto cluster with

the Kepler K20 devices. Because CPU modeling is suitably performed using modeling strategies

given by [6 and 9] that resulted in the development of CPU regression equations; we emphasized

modeling the GPGPU computations and medium communications. We evaluated each of the

primary high-level abstraction approaches for acceptable performance predictions. The

subjective-analytical model for GPGPU computations yielded superior results for all of the SIA

case studies; we reported error rates less than 5% for several tested input sizes and node

configurations. Because GPGPU computations usually scale well with the number of processors,

the analytical approach is expected to provide satisfactory predictions. The objective-analytical

modeling for GPGPU computations yielded significant prediction errors. We attributed the high

error rates to the missing GPGPU parameters pertaining to instruction caches, L1/L2 caches,

shared memory, and warp schedulers. Unlike computations, the communication component

predictions were favorable with the piecewise analytical models. The Infiniband operations

observed satisfactory predictions (less than 10%) at all node configurations, barring a few

outliers. The predictions for PCI-Ex bus operations were also acceptable; however, the read-back

operation yielded error rates over 20% for a few test cases. We attributed this anomaly to the un-

measured GPGPU wait time required to service the CPU-host data request, which varies across

applications.

Based on the verification results for the high-level abstraction, we asserted that the two

primary approaches, when operated alone, are likely to yield coarse-grained application runtime

predictions, necessitating a hybrid approach. We suitably combined the subjective-analytical

model for GPGPU computations and objective-analytical models for medium communications to

 190

perform satisfactory fruitful performance predictions. The initial verification of the hybrid

approach with SNN-ADF SIAs yielded prediction error rates less than 5%, thereby establishing

the viability of this approach for precise predictions.

The SWO analysis for the high-level abstraction approach follows the initial verification. The

strengths of qualitative methods include ease-of-use and high accuracy for the computation

component. Additionally, this approach is expected to span generations of GPGPU architectures

and can also be extended to other computing architectures. However, these methods are prone to

overlooking additional system features and variations that may lead to imprecise performance

predictions. The error-prone communication component models reinforce this claim. Unlike

qualitative methods, the quantitative methods leverage highly accurate predictions for the

communication component. This approach also provides significant insight into the computing

architecture by measuring the parameters using micro-benchmarks. The quantitative models are

expected to offer varied user-friendliness and accuracy depending on the system complexity, an

in-built weakness of this modeling paradigm. We asserted that complex systems, including

GPGPU devices and CPU hosts, require precise parameter measurements for meaningful

predictions. Therefore, erroneous measurements may lead to counterproductive predictions.

Given the strengths and weaknesses of these two approaches, we asserted that the qualitative

modeling approach is highly suitable for complex systems with reproducible characteristics,

GPGPU computations for instance. On the other hand, quantitative methods are more appropriate

for less complex systems, communications for instance, which can be described using a small set

of measurable parameters. These two assertions were supported by superior performance

predictions facilitated by the hybrid approach. We discussed several opportunities to improve

the high-level abstraction paradigm that includes the use of additional parameters for qualitative

 191

models, continual revision of high-fidelity micro-benchmarks for quantitative models, and

comprehensive verification using other computing systems with larger node configurations.

Based on the performance modeling experiences shared in this section, we provide

performance model selection criteria that enable effective predictions on heterogeneous systems.

10.2 MODEL SELECTION CRITERIA

As discussed in Chapter 5, the multi-level performance modeling suite is designed with

respect to the levels of system abstraction. Given the preliminary implementation knowledge and

access to the target system, we assert that the regression-based framework (low-level abstraction)

is the most suitable performance modeling approach. This paradigm enables the formulation of

mathematical equations using statistically significant system and algorithm parameters, enabling

productive performance predictions and fined-tuned DSE. Given the relative simplicity of the

regression-based framework, we claim that it is highly suitable for non-Computer Science

researchers. Several scientific fields including but not limited to physical and life sciences often

use legacy codes to perform large-scale simulations. Because the data used by these codes is

ever-growing, constantly updated genome banks [115] for instance, these simulations necessitate

code adaptation for HPC systems including GPGPU clusters. Given the knowledge of

parallelizable code sections, performance prediction at large node configurations is reliably

facilitated by the regression-based framework. We present the first criterion as follows:

Criterion #1: Use the regression-based framework for existing codes to estimate

performance at production-scale node configurations.

Unlike low-level abstraction, the high-level abstraction models enable performance modeling

with minimum implementation knowledge and system availability. The objective-analytical

 192

model for GPGPU computations provides insight into the architecture resource usage by

measuring parameter values using micro-benchmarks; this task also enables code optimization

for optimal GPGPU resource utilization. Once an initial implementation is identified, the kernel

execution time on large computing systems can be predicted using the runtime information from

a reference device, for instance the target GPGPU device installed in a desktop machine. The

medium communication modeling however is most reliably performed using micro-benchmarks

on the target system. The second criterion follows as:

Criterion #2: Use the high-level abstraction models when the implementation details and

target system availability are limited.

Chapters 6 – 9 comprehensively study the multi-level performance modeling suite, targeting

the computation and communication components individually. The following two criteria enable

the model selection to address these components.

Criterion #3: Use legacy codes and regression-based framework to model the CPU

computations. Either the subjective-analytical model or the regression-based framework can

be used for GPGPU computations. The regression-based framework offers additional

advantages by statistically incorporating the effects of several algorithm and architecture

specific parameters.

Criterion #4: Use the objective-analytical models (piecewise analytical) for medium

communications. Although, the subjective-analytical models may also provide satisfactory

results, they may not effectively capture the system performance variation with respect to the

message size.

 193

10.3 CONTRIBUTIONS AND OUTCOMES

With the preceding discussions as summary, the key objectives addressed by this dissertation

research can be summarized as:

1) Development of the Synchronous Iterative GPGPU Execution (SIGE) model for multi-

GPGPU systems that describes the execution flow of SIAs and provides a foundation for

SIA performance analysis on multi-GPGPU systems.

2) Development of a hierarchical, multi-level performance modeling suite for heterogeneous

systems that addresses multiple levels of design space abstraction. The multi-level suite

allows developers to select a performance model that best fits their design goals. This

task is accomplished by presenting the model selection criteria.

3) Thorough verification of the performance modeling suite using SIAs with a range of

computation-to-communication requirements.

4) The demonstration of the low-level abstraction for well-rounded GPGPU design space

exploration (DSE).

5) Presentation of conclusive SWO analysis for each levels of abstraction.

6) Performance analysis of SIAs on the chosen heterogeneous systems to provide insight

into the application behavior, thereby assisting in runtime prediction. This exercise also

confirms that implementations achieve sufficient efficiency and scaling.

7) A roadmap for users to perform optimal A2A mapping (see Appendix A).

In addition to the above primary contributions, we also include our earlier research

achievements that supported this doctoral dissertation research.

1) The two highly important SNN models, namely the Hodgkin-Huxley and Izhikevich

models were implemented on several leading multi-core and GPGPU architectures. A

 194

performance analysis study was conducted that highlights the impact of optimizations on

the architecture performance for a given application. The contribution was in the form of

a conference paper [116]. A subsequent performance analysis study on single- and multi-

GPU systems culminated in the form of a Master’s Thesis [88].

2) A systematic and exhaustive performance comparison study of the two leading GPGPU

programming models, namely the CUDA framework and Open Computing Language

(OpenCL) was conducted using the four SNN models as the case studies. The

contribution, in the form of a journal paper [101], enables the scientific community to

choose the best GPGPU programming paradigm for the given application characteristics.

3) A thorough evaluation of the two leading GPGPU architectures, namely Nvidia’s Fermi

and AMD’s Radeon was performed using the OpenCL programming paradigm. The four

SNN models were used as the case studies and several inferences were drawn based on

the application-to-accelerator-to-programming model coupling. The contribution studies

the effect of the chosen programming model on architecture performance, thereby

establishing a tight accelerator-to-programming model coupling for the given application

characteristics. The contribution was in the form of a conference paper [117].

4) The above mentioned contributions assisted in the proposal of the fitness model [84 and

118] that ranks the accelerator performance for a given application prior to the actual

implementation.

10.4 FUTURE WORK

The research presented in this doctoral dissertation opens several potential research avenues

as categorized and discussed below.

 195

Performance Analysis – The SNN-ADF SIAs studied in this research were implemented on

GPGPU clusters with 1:1 host-device pairing (see Chapter 4). One area of future work includes

the exploration of other cluster configurations with different CPU core-to-GPGPU device ratios

per server and investigation of application performance at such configurations. The ADF SIA

case study was implemented using the Master-Worker paradigm; it would be interesting to

investigate the adequacy of other data partitioning strategies such as the dynamic work pool

model for massive image processing applications. Future research can also emphasize further

optimization of these SIA implementations, for instance mitigating the large communication

overhead associated with large cluster configurations. Specifically for the ADF algorithm, one

possible improvement is to require that all processes read their respective image tiles and

boundaries from the file, thereby obviating the expensive scatter and Sendrecv operations. These

new performance analysis opportunities favor further improvements in our performance

modeling approach.

Enhancing the low-level abstraction – Suggested future work for this level of modeling

includes exhaustive analysis of the network-level communications by modeling additional

network-level events such as a change in the network protocol and implicit synchronization in

collective operations. The GPGPU design space can be extended to include other GPGPU

memories such as the local memory and constant memory. The synchronous iterative model and

the regression-based framework should be verified with other accelerators and non-regular

algorithms to broaden the scope of performance modeling. New GPGPU architecture features,

dynamic parallelism in Kepler devices for instance, should be explored with the low-level

abstraction. Given the ease-of-use and generic nature of the low-level abstraction, it would be

interesting to investigate this approach with other accelerators and computing architectures.

 196

Enhancing the high-level abstraction – The micro-benchmarks used by the high-level

abstraction models to describe the GPGPU computations and medium communications require

frequent revisions. Potential future research efforts should target continual amendment of these

micro-benchmarks (objective models included) to accommodate new system features. The

piecewise analytical models developed in this research require communication modeling at each

node configuration. Future work includes the development of generic models that relate the

system parameters across the node configurations. The micro-benchmarks pertaining to the PCI-

Ex bus communications can also include estimation of the GPGPU wait time required to service

the CPU-host data request. The high-level abstraction studies can further be consolidated via

comprehensive verification using computing systems with larger node configurations. Future

work should also address GPGPU DSE facilitated by the high-level abstraction.

 197

BIBLIOGRAPHY

[1] F. T. Ulaby (2006). The Legacy of Moore’s Law. Proceedings of the IEEE, Vol. 94, No. 7,

July 2006. DOI: 10.1109/JPROC.2006.876941

[2] Many Integrated Core (MIC) Architecture – Advanced.

http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-

core/intel-many-integrated-core-architecture.html

[3] W.C. Feng, X. Feng, R. Ce (2008). Green Supercomputing Comes of Age. IT Professional,

Vol. 10, Issue 1, pp. 17-23

[4] V. Kindratenko, J. Enos, G. Shi, M. Showerman, G. Arnold, J. Stone, J. Phillips, W. Hwu

(2009). GPU Clusters for High-Performance Computing. In: Proceedings of the Workshop

on Parallel Programming on Accelerator Clusters (PPAC 2009) held in conjunction with

Cluster 2009, New Orleans, LA, pp. 1-8, August 31
st
 – September 4

th
 , 2009

[5] T. El-Ghazawi, E. El-Araby, M. Huang, K. Gaj, V. Kindratenko, D. Buell (2008). The

Promise of High-Performance Reconfigurable Computing. Computer, Vol. 41, Issue 2, pp.

69-76, 2008

[6] B.J. Barnes, B. Rountree, D.K. Lowenthal, J. Reeves, B.D. Supinski, M. Schulz (2008). A

Regression-Based Approach to Scalability Prediction (2008). In: Proceedings of the 22
nd

Annual International Conference on Supercomputing (ICS 2008), pp. 368-377, June 2008

[7] S.S. Baghsorkhi, M. Delhaye, S.J. Patel, W.D. Gropp, W.W. Hwu (2011). Adaptive

Performance Modeling Tool for GPU Architectures. In: Proceedings of the 15
th

 ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming, Vol. 45, Issue 5,

pp. 105-114, May 2011

[8] D. Schaa, D. Kaeli (2009). Exploring the Multiple-GPU Design Space (2009). In:

Proceedings of the International Symposium on Parallel and Distributed Processing (IPDPS

2009), pp. 1-12, 23
rd

 May – 29
th

 May, 2009

[9] B. Holland, A.D. George, H. Lam, M.C. Smith (2011). An Analytical Model for Multilevel

Performance Prediction of Multi-FPGA Systems. ACM Transactions on Reconfigurable

Technology and Systems, Vol. 4, Issue 3, Article 27, 28 pages, 2011

[10] Infiniband.

http://www.infinibandta.org/

http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.infinibandta.org/

 198

[11] PCI-Express.

http://www.nvidia.com/page/pci_express.html

[12] Dell NVIDIA Linux Cluster Forge.

http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware/DellNVIDIACluster/

[13] V.K. Pallipuram, M.C. Smith, N. Raut, X. Ren (2012). Exploring Multi-Level Parallelism

for Large-Scale Spiking Neural Networks. In: Proceedings of the International Conference on

Parallel and Distributed Techniques and Applications (PDPTA 2012) held in conjunction

with WORLDCOMP 2012, Las Vegas, NV, Vol. 2, pp. 773-779, July 2012

[14] V.K. Pallipuram, N. Raut, X. Ren, M.C. Smith, S. Naik (2012). A Multi-Node GPGPU

Implementation of Non-Linear Anisotropic Diffusion Filter. In: Proceedings of the

Symposium on Application Accelerators for High-Performance Computing (SAAHPC

2012), Argonne, IL, pp. 11 – 18, 10
th

 July – 11
th

 July 2012

[15] MRI: Acquisition of high-performance computing instrument for collaborative data-enabled

science.

http://nsf.gov/awardsearch/showAward.do?AwardNumber=1228312

[16] V.K. Pallipuram, M.C. Smith, N. Raut, X. Ren (2012). A Regression-Based Performance

Prediction Framework for Synchronous Iterative Algorithms on GPGPU Clusters.

Concurrency and Computation: Practice and Experience, DOI: 10.1002/cpe.3017

[17] S. Hong, H. Kim (2009). An Analytical Model for a GPU Architecture with Memory-Level

and Thread-Level Parallelism Awareness. In: Proceedings of the 36
th

 International

Symposium on Computer Architecture, Vol. 37, Issue 3, pp. 152-163, June 2009

[18] Y. Zhang, J.D. Owens (2011). A Quantitative Performance Analysis Model for GPU

Architectures. In: Proceedings of the 17
th

 International Symposium on High Performance

Computer Architecture (HPCA 2011), pp. 383-393, 12
th

 February – 16
th

 February, 2011

[19] H. Wong, M.M. Papadopoulou, M.S. Alvandi, A. Moshovos (2010). Demystifying GPU

Microarchitecture through Microbenchmarking. In: Proceedings of the IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS 2010), pp. 235-246,

28
th

 March – 30
th

 March, 2010

[20] W. Jia, K.A. Shaw, M. Martonosi (2012). Stargazer: Automated Regression-Based GPU

Design Space Exploration. In: Proceedings of the IEEE International Symposium on

http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware/DellNVIDIACluster/

 199

Performance Analysis of Systems and Software (ISPASS 2012), New Brunswick, NJ, April

1
st
 – April 3

rd
, 2012

[21] J. Lai, A. Seznec (2012). Break Down GPGPU Execution Time with an Analytical Method.

In: Proceedings of the 2012 Workshop on Rapid Simulation and Performance Evaluation:

Methods and Tools (Rapido 2012), Paris, France, pp. 33- 39, January 2012

[22] NVIDIA CUDA Programming Guide.

 http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Progra

mming_Guide.pdf

[23] S. Collange, M. Daumas, D. Defour, D. Parello (2010). Barra: A Parallel Functional

Simulator for GPGPU. In: Proceedings of the IEEE International Symposium on Modeling,

Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS 2010),

pp. 351 – 360, August 2010

[24] PTX: Parallel Thread Execution ISA version 2.3.

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/ptx_isa_2.3.pdf

[25] A. Kerr, G. Diamos, S. Yalamanchili (2009). A Characterization and Analysis of PTX

Kernels. In: Proceedings of the IEEE Symposium on Workload Characterization (IISWC

2009), pp. 3 -12, October 2009

[26] CUDA Downloads.

http://developer.nvidia.com/cuda/cuda-downloads

[27] UIUC Parboil Benchmarks.

http://impact.crhc.illinois.edu/parboil.aspx

[28] K. Kothapalli, R. Mukherjee, M. S. Rehman, S. Patidar, P. J. Narayanan, K. Srinathan

(2009). A Performance Prediction Model for the CUDA GPGPU Platform. International

Conference on High-Performance Computing (HiPC 2009), pp. 463 – 472, December 16th –

December 19th 2009, Kochi, India

[29] L.G. Valiant (1990). A Bridging Model for Parallel Computation, Communications of the

ACM 33, 9 (1990), 103 – 111

[30] S. Fortune, J. Wyllie (1978). Parallelism in Random Access Machines. In Proceedings of

the ACM STOC (1978), pp. 114 – 118

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/ptx_isa_2.3.pdf
http://developer.nvidia.com/cuda/cuda-downloads
http://impact.crhc.illinois.edu/parboil.aspx

 200

[31] P.B. Gibbons, Y. Matthias, V. Ramachandran (1999). The Queue-Read Queue-Write PRAM

Model: Accounting for Contention in Parallel Algorithms. SIAM J. Comp. 29, 2 (1999), 733 –

769

[32] H. Jia, Y. Zhang, G. Long, J. Xu, S. Yan, Y. Li (2012). GPURoofline: A Model for Guiding

Optimizations on GPUs. In: Proceedings of the 18
th

 International Conference on Parallel

Processing (Euro-Par 2012), pp. 920 – 932, Rhodes Island, Greece, August 2012

[33] S. Williams, A. Waterman, D. Patterson (2009). Roofline: An Insightful Visual Performance

Model for Multi-Core Architectures. Communications of the ACM, Vol. 52, Issue 4, pp. 65 –

76, DOI: 10.1145/1498765.1498785

[34] Z. Cui, Y. Liang, K. Rupnow, D. Chen (2012). An Accurate GPU Performance Model for

Effective Control Flow Divergence. In: Proceedings of the 26
th

 IEEE International Parallel

and Distributed Processing Symposium (IPDPS 2012), pp. 83 – 94, Shanghai, China, May

2012

[35] Y. Liang, Z. Cui, S. Zhao, K. Rupnow, Y. Zhang, D.L. Jones, D. Chen (2012). Real-time

Implementation and Performance Optimization of 3D Sound Localization on GPUs. In:

Proceedings of Design, Automation, and Testing in Europe Conference and Exhibition

(DATE) 2012, pp. 832 – 835, DOI: 10.1109/DATE.2012.6176610

[36] D. Min, J. Lu, M. Do (2011). A Revisit to Cost Aggregation in Stereo Matching: How Far

Can We Reduce its Computational Redundancy? In: Proceedings of IEEE Conference on

Computer Vision (ICCV) 2011, pp. 1567 – 1574, DOI: 10.1109/ICCV.2011.6126416

[37] E. Z. Zhang, Y. Jiang, Z. Guo, X. Shen (2010). Streamlining GPU Applications on the Fly:

Thread Divergence Elimination through Runtime Thread-Data Mapping. In: Proceedings of

the 24
th

 ACM International Conference on Supercomputing (ICS 2010), pp. 115 – 126, DOI:

10.1145/1810085.1810104

[38] K. L. Spafford, J.S. Vetter (2012). Aspen: A Domain Specific Language for Performance

Modeling. In: Proceedings of the International Conference for High-Performance

Computing, Networking, Storage and Analysis (SC 2012), pp. 1 – 11, Salt Lake City, Utah

[39] P. Guo, L. Wang (2012). Accurate CUDA Performance Modeling for Sparse Matrix-Vector

Multiplication. In: Proceedings of the 2012 International Conference on High Performance

Computing and Simulation (HPCS 2012), Madrid, Spain, 2012

[40] K. Spafford, J.S. Meredith, J.S. Vetter (2011). Quantifying NUMA Effects in Multi-GPU

Systems. In: Proceedings of the 4
th

 Workshop on General Purpose Processing on Graphical

Processing Units, Article No. 11, 2011

http://dx.doi.org/10.1145/1498765.1498785

 201

[41] A. Danalis, G. Marin, C. McCurdy, J.S. Meredith, P.C. Roth, K. Spafford, V. Tipparaju, J.S.

Vetter (2010). The Scalable Heterogeneous Computing (SHOC) Benchmark Suite. In:

Proceedings of the 3
rd

 Workshop on General Purpose Computation on Graphical Processing

Units (GPGPU 2010), pp. 63 – 74, 2010

[42] HPL – A portal implementation of the high-performance linpack benchmark for distributed-

memory computers.

www.netlib.org/benchmark/hpl/

[43] L. Chen, O. Villa, S. Krishnamoorthy, G.R. Gao (2010). Dynamic Load Balancing on

Single- and Multi-GPU Systems. In: Proceedings of the IEEE International Symposium on

Parallel and Distributed Processing (IPDPS 2010), pp. 1 – 12, April 2010

[44] S. Martin, H.W. Shen, P. McCormick (2010). Load-Balanced Isosurfacing on Multi-GPU

Clusters. In: Proceedings of Eurographics Symposium on Parallel Graphics and Visualization

(EGPGV 2010), pp. 91 – 100, May 2010

[45] D. Cederman, P. Tsigas (2008). On Sorting and Load Balancing on GPUs. ACM SIGARCH

Computer Architecture News, Vol. 36, Issue 5, pp. 11 – 18, December 2008

[46] OpenCL Khronos Group (June 2013).

http://www.khronos.org/opencl/

[47] G. Khanna, J. McKennon (2010). Numerical Modeling of Gravitational Wave Sources

Accelerated by OpenCL. Comput Phys Commun 181(9), 1605 – 1611

[48] K. Karimi, N.G. Dickson, F. Hamze (2010. A Performance Comparison of CUDA and

OpenCL. The Computing Research Repository (CoRR), arXiv:1005.2581

[49] P. Du, R. Weber, S. Tomov, G. Peterson, J. Dongarra (2010). From CUDA to OpenCL:

Towards a Performance –Portable Solution for Multi-Platform GPU Programming. Journal

of Parallel Computing, pp. 391 – 407, Vol. 38, Issue 8, DOI: 10.1016/j.parco.2011.10.002

[50] Basic Linear Algebra Sub-Programs (BLAS).

http://www.netlib.org/blas/

[51] NVIDIA’s Next Generation CUDA Compute Architecture: Fermi.

http://www.nvidia.com/object/fermi-architecture.html

http://www.khronos.org/opencl/
http://www.netlib.org/blas/
http://www.nvidia.com/object/fermi-architecture.html

 202

[52] ATI Radeon HD 5870 Graphics.

www.amd.com

[53] T.D. Han, T.S. Abdelrahman (2011). Hicuda: High-Level GPGPU Programming. IEEE

Transactions on Parallel and Distributed Systems, Vol. 22, no. 1, 78 – 90

[54] S. Lee, R. Eigenmann (2010). OpenMPC: Extended OpenMP Programming and Tuning for

GPUs. In: Proceedings of the 2010 ACM/IEEE Conference for High-Performance

Computing, Storage, Networking and Analysis, pp. 1 – 11, DOI: 10.1109/SC.2010.36

[55] PGI Accelerator.

www.pgroup.com/resources/accel.htm

[56] OpenACC Home.

http://www.openacc-standard.org/

[57] S. Lee, J.S. Vetter (2012). Early Evaluation of Directive-Based GPU Programming Models

for Productive Exascale Computing. In: Proceedings of the IEEE/ACM International

Conference on High-Performance Computing, Networking, Storage and Analysis. Article no.

23

[58] K. Spafford, J.S. Meredith, S. Lee, D. Li, P.C. Roth, J.S. Vetter (2012). The Tradeoffs of

Fused Memory Hierarchies in Heterogeneous Architectures. In: Proceedings of the ACM

Computing Frontiers (CF), Cagliari, Italy, 2012

[59] Melissa C. Smith (2003). Analytical Modeling of High Performance Reconfigurable

Computers: Prediction and analysis of system performance. Ph.D. Dissertation, The

University of Tennessee, Knoxville, 2003

[60] B. Holland, K. Nagarajan, A.D. George (2009). RAT: RC Amenability Test for Rapid

Performance Prediction. ACM Transactions on Reconfigurable Technology and Systems,

Vol. 1, Issue 4, Article 22, pp. 1 – 30, 2009

[61] A. Alexandrov, M.F. Ionescu, K.E. Schauser, C. Scheiman (1995). LogGP: Incorporating

Long Messages into the LogP Model: One Step Closer towards a Realistic Model for Parallel

Computation. Proceedings of the 7
th

 Annual ACM Symposium on Parallel Algorithms and

Architectures, DOI: 10.1145/215399.215426, pp. 95 – 105, 1995

[62] D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramonian, and

T. von Eicken (1993). LogP: Towards a Realistic Model of Parallel Computation. In:

http://www.amd.com/
http://www.openacc-standard.org/

 203

Proceedings of the 4
th

 ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, pp. 1 – 12, DOI: 10.1145/155332.155333, 1993

[63] T. Kielman, H.E. Bal, K. Verstoep (2000). Fast Measurement of LogP Parameters for

Message Passing Platforms. In: Proceedings of the 15
th

 Worskshop on Parallel and

Distributed Processing (IPDPS 2000), pp. 1176 – 1183, 2000

[64] T. Hoefler, A. Lichei, W. Rehm (2007). Low-Overhead LogGP Parameter Assessment for

Modern Interconnection Networks. In: Proceedings of the Parallel and Distributed Processing

Symposium (IPDPS 2007), pp. 1 – 8, March 2007

[65] C.A. Moritz, M.I. Frank (2001). LogGPG: Modeling Network Contention in Message-

Passing Programs. IEEE Transactions on Parallel and Distributed Systems, Vol. 2, Issue 4,

pp. 404 – 415, 2001

[66] F. Ino, N. Fujimoto, K. Hagihara (2001). LogGPS: A Parallel Computational Model for

Synchronization Analysis. In: Proceedings of the 8
th

 ACM SIGPLAN symposium on

Principles and Practices in Parallel Programming, pp. 133 – 142, 2001

[67] T. Hoefler, T. Mehlan, F. Mietke, W. Rehm (2006). LogfP: A Model for Small Messages in

Infiniband. In: 20
th

 International Symposium on Parallel and Distributed Processing (IPDPS

2006), April 2006

[68] L. Michaelis, M.L. Menten (1913). Die kinetic der invertinwirkung, Biochem. Z, Vol. 49,

pp. 333 – 369, 1913

[69] E.M. Izhikevich (2004). Which Model to Use for Cortical Spiking Neurons? IEEE

Transactions on Neural Networks. Vol. 15, Issue 5, pp. 1063-1070

[70] J.W Sohn, B.T. Zhang, B.K. Kaang (1999). Temporal Pattern Recognition Using a Spiking

Neural Network with Delays. In: Proceedings on the International Joint Conference on

Neural Networks (IJCNN 1999), Vol. 4, pp. 2590 – 2593, 1999

[71] D. Surdilovic, J. Radojicic, M. Schulze, M. Dembek (2008). Modular Hybrid Robots with

Actuators and Joint Stiffness Control. In: Proceedings of the 2
nd

 IEEE RAS & EMBS

International Conference on Biomedical Robotics and Biomechatronics (BioRob 2008), pp.

289 – 294, October 2008

[72] C.E. Johnson (2011). Spiking Neural Networks and their Applications. Ph.D. dissertation,

Missouri Institute of Science and Technology, 2011

 204

[73] C. Johansson, A. Lansner (2007).Towards Cortex Sized Artificial Neural Systems. Neural

Networks, 20(1), pp. 48-61, 2007

[74] R. Ananthanarayanan, S.K. Esser, H.D. Simon, D.S. Modha (2009). The Cat is Out of the

Bag: Cortical Simulations with 10
9
 Neurons, 10

13
 Synapses. In: Proceedings of Super-

Computing 2009, Portland OR, 2009

[75] Powerful Blue Gene/P supercomputer at Argonne to address most challenging science

problems.

www.anl.gov

[76] J.M. Nageswaran, N. Dutt, J.L. Krihmar, A. Nicolau, A.V. Veidenbauma (2009). A

Configurable Simulation Environment for the Efficient Simulation of Large-Scale Spiking

Neural Networks on Graphics Processors. Special issue of Neural Network, Elsevier, Vol. 22

(5-6), pp. 791 – 800, 2009

[77] B. Han and T.M. Taha (2010). Neuromorphic models on GPGPU cluster. In: Proceedings of

the International Joint Conference on Neural Networks (IJCNN 2010), pp. 1-8, 2010

[78] A.C. Sobieranski, L. Coser, M.A.R. Dantas, A. Wangenheim, E. Comunello (2008). An

Anisotropic Diffusion Filtering Implementation to Execute in Parallel Distributed Systems.

In: Proceedings of the 11
th

 International Conference on Computational Science and

Engineering Workshops, 2008

[79] G. Burns, R. Daoud, J. Vaigl (1994). LAM: An Open Cluster Environment for MPI. In:

Proceedings of Supercomputing Symposium, pp. 379-386, 1994

[80] L. Yuangfeng, Z. Yan (2011). Accelerating Fuzzy Adaptive Anisotropic Diffusion on GPU.

In: Proceedings of the 10
th

 International Conference on Electronic Measurement &

Instruments, 2011

[81] S. Philip, B. Summa, V. Pascucci, P.-T. Bremer (2011). Hybrid CPU-GPU Solver for

Gradient Domain Processing of Massive Images. In: Proceedings of the 17
th

 International

Conference of Parallel and Distributed Systems (ICPADS 2011), 2011

[82] GeForce 8800 Technical Briefs.

http://www.nvidia.com/page/8800_tech_briefs.html

http://www.anl.gov/
http://www.nvidia.com/page/8800_tech_briefs.html

 205

[83] Nvidia’s Next Generation CUDA Compute Architecture: Kepler GK110 – Whitepaper

http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-

Whitepaper.pdf

[84] A.L. Hodgkin, A.F. Huxley (1952). A Quantitative Description of Membrane Current and

Application to Conduction and Excitation in Nerve. Journal of Physiology, Vol. 117, pp.

500-544, 1952

[85] C. Morris, H. Lecar (1981). Voltage Oscillations in the Barnacle Giant Muscle Fiber.

Biophysical Journal, Vol. 35, Issue 1, pp. 193-213, 1981

[86] H.R. Wilson (1999). Simplified Dynamics of Human and Mammalian Neocortical Neurons.

Journal of Theoretical Biology, Vol. 200, Issue 4, pp. 375-388, 1999

[87] E.M. Izhikevich (2003). Simple Model to Use for Cortical Spiking Neurons. IEEE

Transactions on Neural Networks, Vol. 14, Issue 5, pp. 1569-1572, 2003

[88] V.K. Pallipuram (2010). Acceleration of Spiking Neural Networks on Single-GPU and

Multi-GPU Systems. Master’s Thesis, Clemson University, May 2010

[89] A. Gupta, L. Long (2007). Character Recognition Using Spiking Neural Networks. In:

Proceedings of the International Joint Conference on Neural Networks (IJCNN 2007), pp. 53

– 58, August 2007

[90] R.C. Gonzales, R.E. Woods. Digital Image Processing. 2
nd

 Edition, ISBN – 10: 0201180758

[91] H. Romeny, M. Bart. Geometry-Driven Diffusion in Computer Vision. Vol. 1, ISBN 978-0-

7923-3087-5

[92] D.M. Tsai, W.Y. Chiu, W.C. Li (2010). Anisotropic Diffusion-Based Detail-Preserving

Smoothing for Image Restoration. In: Proceedings of the 17
th

 IEEE International Conference

on Image Processing (ICIP 2010), September 2010

[93] H. Hildebrandt, K. Polthier (2004). Anisotropic Diffusion Filtering of Non-Linear Surface

Features. Computer Graphics Forum, Vol. 23, Issue 3, pp. 391 – 400, 2004

[94] J. Weickert (1998). Anisotropic Diffusion in Image Processing. B.G. Teubner, Stuttgart,

1998

http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

 206

[95] A. Dumitras (2004). An Automatic Method for Unequal and Omni-Directional Diffusion

Filtering of Video Sequences. In: Proceedings of the IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP 2004), Vol. 3, pp. 317 – 320, May 2004

[96] J. Weickert (1996).Theoretical Foundations of Anisotropic Diffusion in Image Processing.

In: Proceedings of the 7th Theoretical Foundations of Computer Vision, 1996, ISBN: 3-211-

82730-7, 1996

[97] W. Wu, H. Liu (2008). Noise Removal using Nonlinear Diffusion Filtering Based on

Statistic-Local Open System. In: Proceedings of the Congress on Image and Signal

Processing (CISP), Vol. 3, pp. 372 – 378, May 2008

[98] P. Perona, J. Malik (1990). Scale Space and Edge Detection using Anisotropic Diffusion.

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 2, Issue 7, pp. 629 –

639, July 1990

[99] Open MPI: Open Source High-Performance Computing.

http://www.open-mpi.org/

[100] Message Passing Interface (MPI) Standard.

http://www.mcs.anl.gov/research/projects/mpi/

[101] V.K. Pallipuram, M.A. Bhuiyan, M.C. Smith (2011). A Comparative Study of GPU

Programming Models and Architectures using Neural Networks. Journal of Supercomputing,

pp. 46, DOI: 10.1007/s11227-011-0631-3, 2011

[102] T.D. Han, T.S. Abdelrehman (2011). Reducing Branch Divergence in GPU Programs. In:

Proceedings of the 4
th

 Workshop on General Purpose Processing on Graphical Processing

Units. 2011

[103] MathWorks – MATLAB and Simulink for Technical Computing.

www.mathworks.com

[104] E. Parzen (1962). On Estimation of a Probability Density Function and Mode. Annals of

Mathematical Statistics, Vol. 33, No. 3, pp. 1065 – 1076, 1962

[105] S.S. Hampton, S.R. Alam, P.S. Crozier, P.K. Agarwal (2010). Optimal Utilization of

Heterogeneous Resources for Biomolecular Simulations. In: International Conference for

High Performance Computing, Networking, Storage and Analysis, pp. 1 – 11, November

2010

http://www.mathworks.com/

 207

[106] T.L. Williams, R.J. Parsons (2000). The Heterogeneous Bulk Synchronous Parallel Model.

In: Proceedings of the 15th IPDPS 2000 Workshops on Parallel and Distributed Processing

(IPDPS 2000), pp. 102 – 108, 2000

[107] D.G. Kleinbaum, L.L. Kupper, K.E. Muller, A. Nizam (1998). Applied Regression

Analysis and Other Multivariable Methods. 3
rd

 Edition, Duxbury Press, 1998

[108] W. Mendenhall, T. Sincich (2003). A Second Course in Statistics: Regression Analysis, 6
th

Edition, Pearson Education, New Jersey, 2003

[109] R core team (2012). R: A language and environment for statistical computing. R

foundation for statistical computing, Vienna, Austria, ISBN 3-900051-07-0.

http://www.R-project.org/

[110] The R manual.

http://cran.r-project.org/manuals.html

[111] M.A. Bhuiyan (2011). Performance Analysis and Fitness of GPGPU and Multi-Core

Architectures for Scientific Applications. Ph.D. Dissertation, Clemson University, December

2011

[112] N. S. Raut (2013). Statistical Regression Methods for GPGPU Design Space Exploration.

Master’s Thesis, Clemson University, August 2013

[113]V.K. Pallipuram, N. Raut, M.C. Smith (2013). Regression-Based Framework for GPGPU

Design Space Exploration. Under Preparation

[114] I. Bratko, D. Suc (2003). Learning Qualitative Models. AI Magazine. Vol. 24, No. 4

[115] National Center for Biotechnology Information (NCBI).

http://www.ncbi.nlm.nih.gov/

[116] M.A. Bhuiyan, V.K. Pallipuram, M.C. Smith (2010). Acceleration of Spiking Neural

Networks in Emerging Multi-core and GPU Architectures. In: Proceedings of the IEEE

International Workshop on High Performance Computational Biology in conjunction with

IEEE International Conference on Parallel and Distributed Systems (IPDPS 2010), pp. 1 – 8,

19
th

 April – 23
rd

 April 2010

[117] V.K. Pallipuram, M.A. Bhuiyan, M.C. Smith (2011). Evaluation of GPU Architectures

Using Spiking Neural Networks. In: Proceedings of the Symposium on Application

http://www.r-project.org/
http://cran.r-project.org/manuals.html

 208

Accelerators in High-Performance Computing (SAAHPC 2011), pp. 93 – 102, 19
th

 July –

21
st
 July 2011

[118] M.A. Bhuiyan, M.C. Smith, V.K. Pallipuram (2010). Performance, Optimization, and

Fitness: Connecting Applications to Architectures. Concurrency and Computation: Practice

and Experience. Vol. 23, Issue 10, pp. 1066 – 1100, July 2011

[119] TOP500 Supercomputer Sites.

http://www.top500.org/

[120] CAREER: Harnessing Hybrid Computing Resources in PetaScale Computing and Beyond.

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1149644&HistoricalAwards=false

http://www.top500.org/
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1149644&HistoricalAwards=false

 209

APPENDIX A

TYING-IT-ALL-TOGETHER: APPLICATION-TO-

ACCELERATOR ROADMAP

Heterogeneous systems continue to exhibit several hundred thousands of computing nodes,

each equipped with multiple accelerators and powerful host processors. Each year, the Top500

list [119] showcases new HPC systems that persistently strive to push the computational limits.

However, inefficiencies including application-to-accelerator mismatch, improper application

tuning and load-balancing result in counterproductive resource utilization, ultimately leading to

economic loss. Deployment of an optimal application on the computing system is a challenge

continuously presented to the HPC community. The common users of these HPC systems

include scientists and researchers that often require guidelines for an optimal application-to-

accelerator (A2A) mapping. The research presented in this dissertation addresses some of the

stated goals in the NSF Career Award #1149644 [120]; these research goals include coarse-

grained architecture selection, fine-grained performance prediction, and taxonomy of application

and architecture characteristics. The ultimate goal is to enable researchers and scientists to

productively optimize and maintain their codes. To address the above stated tasks, we provide a

preliminary A2A roadmap that serves as an outline for further research. Although the roadmap is

constructed with respect to the heterogeneous systems including GPGPU devices, we assert that

this philosophy can be also extended to other current and future HPC systems. Figure A.1

provides the constructed roadmap; we discuss each of the listed milestones.

 210

Figure A.1 Application-to-Accelerator Roadmap

Milestone 1 Initial A2A “Fitness” – The aim of this milestone is to identify an initial application-

to-accelerator mapping facilitated by the Fitness Model proposed by Bhuiyan [111]. This model

finds an optimal architecture match for the given algorithm by predicting the coarse-grained

application runtime. This exercise is performed by evaluating the scalar product of two vectors:

application vector and accelerator vector. The components of application vector include

application-specific parameters such as the number of single-precision floating point operations

(FLOPs), number of double-precision FLOPs, bytes required by the processing cores from the

device memory, and host-device transfer bytes. The corresponding components of accelerator

 211

vector include single-precision FLOP time, double-precision FLOP time, per byte device-to-

device transfer time, and per byte host-device transfer time. The accelerator with the minimum

scalar product value is deemed to be the best fit for the chosen algorithm. This coarse-grained

application-to-accelerator mapping is straightforward; the vector components are easily obtained

via algorithm study and accelerator specifications.

We recommend this A2A mapping prior to the algorithm testing and subsequent performance

modeling. As asserted in this dissertation, the highly-parallel nature of an algorithm is a

necessary but not sufficient condition to justify the use of massively-parallel computing systems

including GPGPU architectures. Because GPGPU devices are throughput oriented architectures,

the applications should also yield significant amount of computations to amortize the

communication latency. Using the SNN-SIA as case studies, the authors in [118] matched the

highly computation- and communication-intensive HH model with the GPGPU architecture;

whereas, the computationally-efficient Izhikevich model was appropriately mapped to the multi-

core architectures. This finding supports our claim that the massively-parallel and

computationally-intensive nature of algorithms appropriately justify the use of GPGPU-based

systems. Since these algorithm features vary across applications, the Fitness Model offers a

reliable metric to assess their impact on A2A mapping. Future work includes expansion of the

application and architecture vector space to further consolidate the initial A2A mapping.

Milestone 2 High-Level Abstraction – The research presented in this dissertation details several

high-level abstraction approaches to model the computations and communications in the given

algorithm. This level of analysis is highly recommended when knowledge of the initial

implementation and target system availability are limited. Using the appropriate qualitative and

quantitative approaches, significant performance insight can be obtained that enables developers

 212

to design an optimal implementation for the potential computing system. The readers are referred

to Chapters 8 and 9 for this detailed study.

Milestone 3 Low-Level Abstraction – Commonly, users and developers often possess significant

knowledge of their legacy codes along with the code sections that could benefit from improved

compute performance. Therefore, following an initial A2A mapping, we recommend the use of a

regression-based framework (low-level abstraction) for straightforward runtime prediction and

fine-tuned DSE. This level of analysis also follows the high-level abstraction for fine-grained

performance assessment. The low-level abstraction studies are provided in Chapters 6 and 7.

Future work pertaining to these two milestones is elaborated in Chapter 10. Finally, enhancement

of the A2A roadmap to accommodate other computing architectures and classes of algorithms is

of significant interest that creates lucrative research opportunities.

 213

APPENDIX B

LIST OF FREQUENTLY USED ACRONYMS

A2A

ADF

AMD

BSP

CPU

CUDA

CWP

D2H

DP

DSE

DSL

FFT

FLOPs

FLOPS

FPGA

GPU

GPGPU

H2D

HBSP

HH

HPC

HPL

HPRC

MIC

ML

MPI

ms

MWP

NCSA

NUMA

OpenCL

PCI-Ex

PD

Application-to-Accelerator

Anisotropic Diffusion Filter

Advanced Micro Devices

Bulk Synchronous Parallel

Central Processing Unit

Compute Unified Device Architecture

Computation Warp Parallelism

Device-to-Host

Double-Precision

Design Space Exploration

Domain Specific Language

Fast Fourier Transform

Floating-Point Operations

Floating-Point Operations per Second

Field Programmable Gate Array

Graphical Processing Unit

General Purpose Graphical Processing Unit

Host-to-Device

Heterogeneous Bulk Synchronous Parallel

Hodgkin-Huxley

High-Performance Computing

High-Performance Linpack

High-Performance Reconfigurable Computing

Many Integrated Core

Morris-Lecar

Message Passing Interface

Milliseconds

Memory Warp Parallelism

National Center for Supercomputing Applications

Non-Uniform Memory Access

Open Computing Language

Peripheral Component Interconnect Express

Probability Distribution

 214

PDE

PDF

PSNR

PTX

RC

RAT

RATSS

RCS

SHOC

SIA

SIGE

SIMD

SM

SMP

SMX

SNN

SP

SWO

TA

TEG

TF

Partial Differentiation Equation

Probability Density Function

Peak Signal-to-Noise Ratio

Parallel Thread eXeution

Reconfigurable Computing

RC Amenability Test

RC Amenability Test for Scalable Systems

Reduced Conditional Statement

Scalable Heterogeneous Computing Benchmark Suite

Synchronous Iterative Algorithm

Synchronous Iterative GPGPU Execution

Single Instruction Multiple Data

Shared Memory

Streaming Multi-Processor

Next Generation Streaming Multi-Processor

Spiking Neural Network

Software Prefetching

Strengths, Weaknesses, and Opportunities

Texture Addressing

Timing Estimation Tool

Texture Fetch

	Clemson University
	TigerPrints
	12-2013

	EXPLORING MULTIPLE LEVELS OF PERFORMANCE MODELING FOR HETEROGENEOUS SYSTEMS
	Venkittaraman Vivek Pallipuram Krishnamani
	Recommended Citation

	tmp.1391630112.pdf.S2Atc

