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ABSTRACT 

The current trend in High-Performance Computing (HPC) is to extract concurrency 

from clusters that include heterogeneous resources such as General Purpose Graphical 

Processing Units (GPGPUs) and Field Programmable Gate Array (FPGAs). Although 

these heterogeneous systems can provide substantial performance for massively parallel 

applications, much of the available computing resources are often under-utilized due to 

inefficient application mapping, load balancing, and tuning. While several performance 

prediction models exist to efficiently tune applications, they often require significant 

computing architecture knowledge for reliable prediction. In addition, they do not address 

multiple levels of design space abstraction and it is often difficult to choose a reliable 

prediction model for a given design. 

In this research, we develop a multi-level suite of performance prediction models for 

heterogeneous systems that primarily targets Synchronous Iterative Algorithms (SIAs). 

The modeling suite aims to produce accurate and straightforward application runtime 

prediction prior to the actual large-scale implementation. This suite addresses two levels 

of system abstraction: 1) low-level where partial knowledge of the application 

implementation is present along with the system specifications and 2) high-level where 

the implementation details are minimum and only high-level computing system 

specifications are given. The performance prediction modeling suite is developed using 

our proposed Synchronous Iterative GPGPU Execution (SIGE) model for GPGPU 

clusters, motivated by the RC Amenability Test for Scalable Systems (RATSS) model for 

FPGA clusters.  
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The low-level abstraction for GPGPU clusters consists of a regression-based 

performance prediction framework that statistically abstracts system architecture 

characteristics, enabling performance prediction without detailed architecture knowledge. 

In this framework, the overall execution time of an application is predicted using 

regression models developed for host-device computations and network-level 

communications performed in the algorithm. We have used a family of Spiking Neural 

Network (SNN) models and an Anisotropic Diffusion Filter (ADF) algorithm as SIA case 

studies for verification of the regression-based framework and achieved over 90% 

prediction accuracy compared to the actual implementations for several GPGPU cluster 

configurations tested. The results establish the adequacy of the low-level abstraction 

model for advanced, fine-grained performance prediction and design space exploration 

(DSE). The high-level abstraction consists of the following two primary modeling 

approaches: qualitative modeling that uses existing subjective-analytical models for 

computation and communication; and quantitative modeling that predicts computation 

and communication performance by measuring hardware events associated with 

objective-analytical models using micro-benchmarks. The performance prediction 

provided by the high-level abstraction approaches, albeit coarse-grained, delivers useful 

insight into application performance on the chosen heterogeneous system. A blend of the 

two high-level modeling approaches, labeled as hybrid modeling, is explored for 

insightful preliminary performance prediction.   

The performance prediction models in the multi-level suite are verified and compared 

for their accuracy and ease-of-use, allowing developers to choose a model that best 
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satisfies their design space abstraction. We also construct a roadmap that guides user 

from optimal Application-to-Accelerator (A2A) mapping to fine-grained performance 

prediction, thereby providing a hierarchical approach to optimal application porting on 

the target heterogeneous system. The end goal of this dissertation research is to offer the 

HPC community a thorough, non-architecture specific, performance prediction 

framework in the form of a hierarchical modeling suite that enables them to optimally 

utilize the heterogeneous resources. 
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CHAPTER 1 

INTRODUCTION 

1.1 MOTIVATION 

There is widespread speculation that the principles of the Moore’s law for increasing the 

single-core processor performance will no longer hold [1]. Because of power and memory clock 

limitations, the industrial trend has shifted to multi-core and many-core processors. Many 

vendors including IBM, AMD, and Intel are demonstrating many-core processor prototypes that 

can theoretically achieve performance over 1 Teraflops. Intel’s Many Integrated Core (MIC) 

architecture is one such initiative that claims to surpass the Exascale performance barrier using a 

combination of several MICs [2]. However, amongst these advancements, hybrid accelerators 

such as the General Purpose Graphical Processing Units (GPGPUs) and Field Programmable 

Gate Arrays (FPGAs) continue to remain effective and popular in the High-Performance 

Computing (HPC) community. These architectures have been reported to provide several orders 

of magnitude higher performance compared to traditional sequential processors. Furthermore, the 

aforementioned architectures provide high floating-point operations per second per watt 

(FLOPS/watt) performance, an increasingly important parameter in green super-computing [3]. 

With the advent of GPGPUs and FPGAs in HPC, the conventional methods of seeking 

concurrency in a homogeneous environment no longer apply. The current trend is to extract 

concurrency from heterogeneous clusters that include GPGPU and FPGA clusters [4 and 5]. 

Current state-of-the-art heterogeneous systems are composed of several thousand compute nodes 
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where each node consists of multiple CPU-cores in conjunction with one or more hybrid 

accelerators.  

Although these heterogeneous systems can provide substantial performance for massively 

parallel applications, much of their computing resources are often under-utilized due to 

inefficient application mapping, load-balancing, and tuning, ultimately leading to poor 

application speed-up and sub-optimal scaling efficiency. This inefficiency further leads to 

secondary effects such as long job queue delays and increased power consumption [6]. To 

achieve optimal utilization of heterogeneous resources, it is important to perform efficient load-

balancing between the CPU-cores and accelerators. Several performance prediction models exist 

that enable developers to efficiently tune applications via design space exploration [6, 7, and 8]. 

Typically, the performance prediction models are used to predict application runtime prior to the 

actual execution, allowing developers to further fine-tune their applications. Although existing 

performance prediction models are sufficiently accurate, they do not address multiple levels of 

design space abstraction and it is often difficult to choose a reliable prediction model for the 

given design goals. Additionally, the existing performance prediction models often require 

intricate knowledge of the underlying computing architecture for accurate prediction, making the 

modeling task difficult. With the above as motivation, we formally introduce the problem 

statement: 

Design a straightforward and accurate performance prediction framework for 

heterogeneous clusters that addresses multiple levels of design space abstraction, 

allowing developers to choose an effective performance model that best fits their design 

needs and goals.  
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1.2 DISSERTATION RESEARCH 

We develop a multi-level suite of performance prediction models for heterogeneous systems 

that primarily targets Synchronous Iterative Algorithms (SIAs). The modeling suite aims to 

accurately predict application runtime with a user-friendly approach prior to actual large-scale 

implementation. The application runtime prediction is also employed to perform Design Space 

Exploration (DSE) that enables researchers to ultimately map an optimal implementation to the 

target heterogeneous cluster, thereby facilitating high application performance. The modeling 

suite addresses two levels of system abstraction: 1) low-level where partial knowledge of the 

implementation is present along with the target system specifications and 2) high-level where the 

implementation details are minimum and only high-level computing system specifications are 

given. The multi-level performance modeling suite is developed using our proposed Synchronous 

Iterative GPGPU Execution (SIGE) model for GPGPU clusters, motivated by the existing RC 

Amenability Test for Scalable Systems (RATSS) model [9] for FPGA clusters. These execution 

models describe the execution flow of SIAs on GPGPU and FPGA clusters, respectively.  

The low-level abstraction of the modeling suite consists of a regression-based performance 

prediction framework that statistically abstracts the system architecture characteristics, thereby 

enabling performance and scalability prediction without detailed system architecture knowledge. 

The regression-based framework is broken into two primary components: the computation 

component that models the hybrid accelerator and host computations; and the communication 

component that models the network-level communications. The regression models for the 

computation component use algorithm characteristics such as the number of floating-point 

operations (FLOPs) performed and total number of bytes required as predictor variables. It is 

worth mentioning that FLOPS and FLOPs are two distinct parameters; FLOPS (floating-point 
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operations per second) is a measure of computer performance, whereas FLOPs is the number of 

floating-point operations performed in an algorithm. The regression models are trained using 

several small instrumented executions of an SIA set with a range of communication-to-

computation requirements. The communication component of the regression-based framework is 

broken into two sub-components: 1) inter-processor communication over Infiniband [10] and 2) 

CPU-host/GPGPU-device (host-device) communication over Peripheral Interconnect Express 

(PCI-Ex) bus [11]. The regression models for the communication component are developed 

using micro-benchmarks and employ data transfer size and processor count as predictor 

variables.  

The high-level abstraction of the modeling suite relies on minimum implementation details 

and high-level system specifications to model the computations and communications. The high-

level abstraction consists of the following two primary modeling approaches: Qualitative 

Modeling and Quantitative Modeling. The qualitative modeling uses subjective-analytical 

models for the computation and communication components. The quantitative modeling 

approach predicts computation and communication performance by measuring hardware events 

associated with objective-analytical models using micro-benchmarks. The measurement of 

hardware events such as arithmetic operation throughput, device memory bandwidth, latency and 

bandwidth of the network (and interconnects), etc. in conjunction with algorithm characteristics 

enables the developer to estimate the application execution time. The qualitative and quantitative 

approaches are combined to yield an intermediate hybrid approach where a few performance 

components are estimated analytically, while the remaining components are estimated by 

employing micro-benchmarks. In this dissertation research, we show that amongst the high-level 
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abstraction approaches, the hybrid approach is a viable paradigm to perform high quality 

performance prediction on the chosen computing platform.  

The two levels of the modeling suite are verified with large-scale SNN simulations and a 

non-linear anisotropic diffusion filter (ADF) algorithm for massive images as SIA case studies. 

We implemented both applications on the National Center for Supercomputing Applications 

(NCSA) Forge GPGPU cluster [12] and achieved significantly high performance versus the 

Message Passing Interface (MPI)-only implementations. The multi-GPGPU based large-scale 

SNN simulations scale up to 200 million neurons using a 32-node cluster configuration and 

achieves speed-up as high as 253x compared to an equivalent MPI-only implementation [13]. 

The multi-GPGPU implementation of the ADF is capable of processing images as large as 156 

mega-pixels and achieves 11.5x speed-up using a 32-node GPGPU cluster configuration when 

compared to an equivalent MPI-only implementation [14].  

The multi-level performance prediction models are compared for their accuracy and ease-of-

use, thereby providing model selection criteria that allow developers to choose a prediction 

model that best satisfies their design space abstraction. The verification of the low-level 

abstraction reports average prediction accuracy over 90% compared to the actual 

implementations for several tested GPGPU cluster configurations, making it practicable for 

advanced, fine-grained performance prediction and design space exploration. Predictions with 

the two high-level abstraction approaches were found to be coarse-grained; however the hybrid 

approach, a suitable combination of these two modeling strategies, is an efficacious paradigm 

that provides significant insight into application performance, ergo highly suitable for 

preliminary performance prediction on the chosen or potential heterogeneous systems.  
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The dissertation research also provides a roadmap for users to perform optimal Application-

to-Accelerator (A2A) mapping by means of appropriate architecture identification and 

performance prediction (preliminary and advanced). In this roadmap, the first milestone is A2A 

mapping that identifies an optimal accelerator for the application. The next milestone is 

preliminary performance prediction, facilitated by the high-level abstraction approach, to obtain 

an insight into application performance on the selected accelerator platform. This task also 

enables the identification of plausible optimization techniques for high application performance. 

The last milestone is constituted by the low-level abstraction that determines the best 

implementation for the target system via DSE. The A2A roadmap facilitates a hierarchical 

approach to optimal application porting on the heterogeneous system. It is worth mentioning that 

we follow a bottom-up approach to construct the performance modeling suite (low-level 

abstraction to high-level abstraction). However, the A2A roadmap seeks a top-down approach 

(high-level abstraction to low-level abstraction) for application performance prediction that is 

most useful for developers. 

The end goal of this dissertation research is to offer the HPC community a thorough 

performance prediction framework in the form of a hierarchical modeling suite that enables them 

to optimally utilize the heterogeneous resources without requiring intricate knowledge of the low 

level architectures or restricting the specific architectures or accelerators used. The outcomes and 

contributions of this doctoral dissertation research are summarized below. 

1) Development of synchronous iterative execution model (SIGE) for GPGPU clusters. 

2) Development of a multi-level performance modeling suite for heterogeneous systems 

encompassing multiple levels of system abstraction. 
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3) Verification of the modeling suite using Synchronous Iterative Algorithms (SIAs) with a 

range of computation-to-communication requirements.  

4) Application of the low-level abstraction for Design Space Exploration (DSE).  

5) Performance analysis of SIAs on the chosen heterogeneous systems (to confirm the 

implementations achieve sufficient efficiency and scaling).  

6) Tying-it-all-Together: A roadmap for users to perform optimal A2A mapping.  

1.3 METHOD OF STUDY 

The set of highly biologically accurate SNN models and ADF algorithm, both SIAs, offer a 

range of communication and computation requirements, making them valuable case studies to 

verify the hierarchical performance model for this algorithm domain; these algorithms are used 

to perform large-scale SNN and image filtering simulations, respectively.   

The planned experiments are conducted on available heterogeneous clusters by varying the 

problem size (neural network size, image size, etc.) and scaling the number of nodes in the 

cluster. The heterogeneous resources include NCSA Forge GPGPU cluster [12] and GPGPU-

augmented Palmetto cluster [15]. In addition to verifying the performance prediction models for 

accurate runtime prediction, performance and scalability studies are also conducted on the NCSA 

Forge cluster to confirm the implementations achieve sufficient efficiency and scaling. Initial 

verification of the regression-based framework (low-level abstraction) for GPGPU clusters using 

the SNN models and ADF algorithm [16] is completed on the NCSA Forge GPGPU cluster. The 

GPGPU DSE using low-level abstraction and high-level abstraction studies are performed on the 

GPGPU-augmented Palmetto cluster.  
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1.4 DISSERTATION OUTLINE 

Chapter 2 provides a literature review of important work done in the field of heterogeneous 

performance modeling. Following the literature survey, Chapter 3 provides the background on 

the base GPGPU architectures and the SNN and ADF algorithms. Chapter 4 details the 

experimental set-up, SIA mapping methodology and multi-node orchestration. This chapter also 

provides the performance analysis study of SNN-ADF SIAs on the NCSA Forge cluster. The 

development of SIGE model and multi-level performance prediction suite is explained in 

Chapter 5. The low-level abstraction approach is elaborated in Chapter 6 followed by the 

verification results provided in Chapter 7. The high-level abstraction approach is elucidated in 

Chapter 8 and verified in Chapter 9. The dissertation is concluded in Chapter 10 with 

conclusions and directions for future research.  Appendix A provides the A2A roadmap.  
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CHAPTER 2 

LITERATURE REVIEW 

Systematic architecture studies conducted on heterogeneous systems including GPGPU- and 

FPGA-based clusters are widely documented in the literature. Several research activities have 

focused on important performance modeling aspects that include runtime prediction, architecture 

parameter study, load-balancing, programming models for HPC, and network-level modeling; 

making them relevant to this dissertation research. The two SIA case studies discussed, namely 

Spiking Neural Networks (SNNs) and Anisotropic Diffusion Filtering (ADF) have been 

implemented on several leading architectures. In this chapter, we examine some of the prominent 

heterogeneous performance modeling efforts targeting GPGPU- and FPGA-based systems and 

several architecture studies using SNNs and ADF. The chapter is structured as follows. Section 

2.1 examines performance modeling studies conducted on GPGPU-based systems, the primary 

heterogeneous platform investigated in this research. We also review load-balancing studies, 

performance tuning for applications, and programming models for GPGPU architectures. The 

discussion of performance models for FPGA-based systems, influential in this research, follows 

in Section 2.2. Section 2.3 reviews some of the important network-level modeling research. 

Section 2.4 highlights the architecture studies conducted using SNNs and ADF. The chapter is 

concluded with a summary in Section 2.5.  
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2.1 PERFORMANCE MODELING: GPGPU-BASED SYSTEMS 

In [17], the authors proposed an analytical model that estimates the execution time of 

GPGPU kernels for massively parallel applications by estimating the number of memory 

requests (memory-warp parallelism) and the number of computations (computation-warp 

parallelism). Based on these warp-level parallelisms, the analytical model estimates the costs of 

memory requests and computations, thereby estimating the overall execution time of the 

application. The authors achieved geometric mean error rate of 5.4% for micro-benchmarks and 

13.3% for other GPGPU applications. Although sufficiently accurate, the model proposed in [17] 

requires meticulous evaluation of the warp-level parallelism for accurate runtime prediction. 

Additionally, their analytical model is tightly-coupled to the Nvidia Tesla architecture used in the 

GeForce-8 series, which is significantly different from subsequent GPGPU architectures.  

In [7], the authors designed an analytical model to provide performance information to an 

auto-tuning compiler, thereby assisting the fine-tuning of GPGPU implementations. The 

analytical model interprets the GPGPU kernel as an abstract work-flow graph to estimate the 

execution time. The authors used micro-benchmarks to characterize GPGPU micro-architecture 

events such as incoherent memory accesses, shared memory bank conflicts, and control flow 

divergence. The authors validated their model using commonly used benchmarks and observed 

good agreement between the predicted and observed measurements. Similar to the research work 

presented in [17], the model requires significant GPGPU micro-architecture knowledge for 

accurate runtime prediction for complex applications.  

In [18], the authors proposed a performance model for the Nvidia GeForce 200-series 

GPGPUs using micro-benchmarks. The proposed model targets three major components of the 

GPGPU execution time: instruction pipeline, shared memory accesses, and global memory 
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accesses. Using real-world matrix problems, the authors achieved prediction performance with 5-

15% error rate. While the approach is expected to satisfactorily predict the aforementioned 

architecture components, quantitative modeling of other micro-architecture events such as thread 

block synchronization may not be trivial. A similar quantitative approach is presented in [19] 

where the authors developed a micro-benchmark suite that measures CUDA-visible architectural 

characteristics of the Nvidia GTX 280. The suite also measures several undisclosed architectural 

features that impact program performance and correctness. Although the proposed suite is very 

thorough with respect to the Nvidia GTX 280 architecture, continual revision of the micro-

benchmark suite is required to accommodate new architectural features as the GPGPU 

architecture evolves. 

In [8], the authors developed a methodology to predict the execution time of GPGPU 

applications using runtime information from a single GPGPU implementation while varying the 

number and configuration of GPGPU devices. The authors define per-element average as the 

average time taken by the reference GPGPU device to execute a single computational entity in a 

given algorithm. The authors then use the per-element average information to extrapolate the 

algorithm execution time on M GPGPU devices, where M is the number of devices. The authors 

estimate the performance of the PCI-Ex bus and network-level transactions using micro-

benchmarked throughput values and peak theoretical network bandwidth, respectively. The 

authors used their prediction framework on six applications and achieved 11% average error rate. 

Although straightforward, this approach to predicting the GPGPU execution time lacks statistical 

rigor. Several algorithm parameters, including but not limited to floating-point operations 

(FLOPs) and computational bytes, affect the GPGPU execution time. Therefore, it is extremely 

important to characterize the relationship between GPGPU execution time and algorithm 
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parameters. A similar argument can be used for predicting the performance of the PCI-Ex bus 

and network-level transactions, where the data transaction behavior can be characterized using 

statistical analysis.   

Regression-based methods have been previously investigated for GPGPU design space 

exploration. In [20], the authors proposed an automated tool developed using step-wise 

regression modeling to evaluate the GPGPU performance. The tool randomly samples parameter 

values from the GPGPU design space and simulates regression designs. The tool then selects the 

most significant architecture parameters and their interactions to construct an estimator. The 

authors reported less than 1.1% error rate for 11 GPGPU applications. Unlike the statistical 

approach described in [20], the low-level abstraction of our proposed multi-level performance 

modeling suite relies on easily accessible algorithm parameters such as FLOPs and 

computational bytes for runtime prediction, thereby statistically capturing the architectural 

behavior. 

In [21], the authors developed an analytical tool called TEG (Timing Estimation tool for 

GPU) to estimate the GPGPU device performance. The inputs to TEG are constituted by kernel 

binary code and instruction trace obtained using cuobjdump [22] and Barra simulator [23], 

respectively. TEG analyzes the binary code and instruction trace to generate information 

regarding the type of instructions and operands used in the GPGPU kernel. The analytical tool 

then uses instruction latency information obtained from micro-benchmarks [19] to evaluate the 

total number of execution cycles. The authors used dense matrix multiplication as a case study 

and achieved less than 10% error rate in execution cycle prediction. The authors admit that TEG 

does not model other important parameters such as instruction pipeline stages and memory 



 13 

behavior. Additionally, their modeling methodology only supports a specific Nvidia GPGPU 

device.  

Similar to the work described in [21], Parallel Thread eXecution (PTX) kernels [24] have 

been analyzed to solidify the understanding of GPGPU architectures. As mentioned in [24], PTX 

defines a virtual machine and instruction set architecture (ISA) for parallel thread execution on 

GPGPU devices. In [25], the authors proposed a set of metrics for GPGPU workloads to analyze 

the behavior of GPGPU programs. The authors analyzed over 50 CUDA kernels from Nvidia 

CUDA SDK [26] and UIUC’s Parboil benchmark suite [27]. The analysis was conducted to 

study control flow, data flow, and memory behavior of CUDA programs using a PTX functional 

emulator developed by the same authors. The authors also used the PTX functional emulator to 

quantify the effects of common CUDA optimizations such as branch divergence reduction, 

synchronization, etc. However, as mentioned in [21], direct PTX analysis is not always desirable 

since resource allocations occur at the compiling stage from PTX to binary code. In [21], the 

authors claim that since binary code is the native code that executes on the GPGPU device, this 

level of analysis is more suitable for performance modeling and related studies. 

In [28], the authors proposed a performance prediction model for GPGPU-based systems that 

incorporates various components of the GPGPU architecture including warp scheduling, memory 

hierarchy, and pipelining. The model is developed with a combination of the BSP model of 

Valiant [29], the PRAM model of Fortune and Wyllie [30], and the extension to the PRAM 

model proposed by Gibbons et al. called the QRQW model [31]. The proposed model derives a 

relationship among the various components of the GPGPU architecture including the number of 

cores, effects of memory latency, memory access conflicts, computing cost, scheduling, and 

pipelining to analyze pseudo-code for a CUDA kernel and finally predicts the performance of an 
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application. Unlike the regression-based framework developed in this research, the model in [28] 

does not consider the performance of texture memory along with global and shared memories, 

thereby providing limited insight into the GPGPU design space exploration (DSE). 

In [32], the GPGPURoofline model was proposed to empirically guide the optimizations on 

GPGPU devices with limited knowledge of the GPGPU architecture. The model explores the 

potential performance bottlenecks and evaluates the impact of specific optimization techniques 

on the overall kernel performance. The authors optimized representative applications, namely 

matrix transpose, Laplace transform, and face detection on NVIDIA and AMD GPGPU devices 

and achieved 3.74 to 14.8 times speed-up compared to the naïve implementations. The modeling 

approach, similar to the popular Roofline model by Williams et al. [33] for multi-core 

architectures, is primarily intended to evaluate the GPGPU performance optimizations. Unlike 

the low-level abstraction methods developed in this dissertation research, the performance 

prediction facilitated by the GPURoofline model is expected to be coarse-grained, hence of 

limited value for accurate runtime and scalability predictions.  

  In [34], the authors introduced a metric that accurately estimates the effect of control flow 

divergence on application performance. The metric targets computation-bound GPGPU kernels 

with control flow divergence and is used as a value function for thread re-grouping algorithms to 

eliminate the divergence. The authors claim that their metric enables performance modeling 

more efficiently versus the previous control flow divergence metrics such as divergent warps and 

divergent branches. The authors tested the proposed metric on CUDA SDK examples [26] and 

two real-world applications including 3D sound localization [35] and stereo-matching [36]. The 

authors reported application performance improvement up to 3.19x using thread re-grouping [37] 
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guided by the proposed metric. Similar to the study presented in [32], the research in [34] solely 

aims at guiding users to perform kernel optimizations that improve the overall performance.  

In [38], the authors presented an approach to analytical modeling by constructing a domain 

specific language (DSL) called Aspen. Aspen includes a formal specification of an application’s 

performance behavior and an abstract machine model. The DSL allows scientists to write 

structured models of their applications and architecture, thereby describing the application 

behavior and abstract machine model. The authors demonstrated the use of Aspen to express a 

performance model for 3D Fast Fourier Transform (FFT), in addition, showed how Aspen allows 

model composition by incorporating 3D FFT model for use in molecular dynamics. Although an 

efficient tool for quick performance estimation, the proposed DSL is based on analytical models 

that often provide coarse-grained predictions.    

Recently, application specific performance models have been proposed to predict the 

application execution time on GPGPU devices. In [39], the authors proposed an integrated 

analytical and profile-based performance model to predict the CUDA kernel execution time for 

Sparse Matrix Vector Multiplication (SpMV). The modeling approach involves two phases. In 

the first phase, benchmark matrices are generated based on the GPGPU architectural features. 

These benchmark matrices are then executed on the target GPGPU device to obtain the execution 

time. In the second phase, the authors derive an analytical model that establishes a relationship 

between the maximum number of rows that the target GPGPU device can execute at a time, the 

number of non-zero elements per row in the target matrix, and execution times of the benchmark 

matrices. Although the authors report less than 10% error rate for 32 test cases, the prediction 

approach is tightly coupled to the SpMV application and must be revised as the GPGPU 

architecture changes.   
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The literature also reports multi-GPGPU studies that assist in the characterization and 

performance modeling of GPGPU clusters. In [40], the authors studied Non-Uniform Memory 

Access (NUMA) contention effects for shared system resources, quantified the contention 

effects, and presented guidelines to maximize the performance. The authors conducted their tests 

using the Scalable Heterogeneous Computing (SHOC) benchmark suite [41] and High-

Performance Linpack (HPL) [42] and concluded that significant NUMA contention effects 

prevail in dual-IO hub multi-GPGPU systems. The authors claim that the severity of the 

contention penalty depends on several factors such as computational density, number of kernel 

executions per PCI-Ex transfer, and the fraction of the application ported to the GPGPU devices. 

The authors suggest that sharing GPGPU devices among a small number of MPI tasks or threads 

can increase GPGPU device utilization. The authors also suggest splitting MPI communication 

and GPGPU traffic into different threads to alleviate the contention penalties and promote 

maximum GPGPU bandwidth. The SHOC benchmark [41] proposed by the same authors is a 

valuable tool to measure throughput values for several device related operations such as 

arithmetic computations, host-device transfers, and hierarchical memory transactions (global, 

shared, texture, and constant). The throughput values of the above mentioned parameters in turn 

assist with the quantitative analysis of GPGPU performance.   

In addition to performance modeling and GPGPU architecture studies, several research 

activities have focused on load-balancing issues for GPGPU systems. These studies are 

interesting since optimal performance is achieved only with efficient application tuning that 

further aides in consolidated performance analysis. In [43], the authors presented a task-based 

dynamic load-balancing solution in the form of a task queue scheme for single- and multi-

GPGPU systems. The authors assert that their scheme provides a load-balancing solution at a 
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finer granularity compared to the Nvidia CUDA SDK [26]. The authors verified their scheme 

using micro-benchmarks and a molecular dynamics application and achieved significant 

performance improvement over other implementations. In [44], the authors proposed a technique 

that distributes iso-surfacing load (used for scientific visualization) to GPGPU devices in a 

cluster. The load-balanced implementation by the same authors is reported to exhibit strong 

scalability and yield performance as high as 250 million triangles per second on 24 GPGPUs. In 

[45], the authors studied different load-balancing schemes including: static task list, blocking 

dynamic task queue, lock-free dynamic task queue, and task stealing to improve the performance 

of GPGPU quicksort algorithm. The authors concluded that lock-free methods achieve better 

scaling and higher performance over blocking methods for the quicksort algorithm on GPGPUs.  

The programming models for GPGPU devices, such as the Compute Unified Device 

Architecture (CUDA) [22] and Open Computing Language (OpenCL) [46], are integral for high 

application performance. Although programming models are not commonly incorporated into 

performance modeling, their study provides useful insight into application-on-accelerator 

behavior. In what follows, we mention important programming model comparison studies and 

recent programming paradigms developed for GPGPU devices. In [47], the authors accelerated 

an EMRI modeling application using Nvidia’s C1060 as one of the accelerators and achieved 

similar performance for both CUDA and OpenCL. In [48], the authors used the Adiabatic 

Quantum Algorithms (AQUA), which are Monte Carlo simulations, to compare CUDA and 

OpenCL on Nvidia’s GTX-260 (Compute capability 1.3). They compared the programming 

models for data transfer time, kernel execution time and end-to-end runtime. They concluded 

that CUDA implementations perform consistently better than the OpenCL implementations. In 

[49], the authors studied the performance portability of OpenCL and concluded that the 
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performance is not portable. They implemented TRSM and GEMM (both SGEMM and 

DGEMM) from the BLAS library [50] for their studies on both Nvidia Fermi [51] and AMD 

Radeon [52] architectures. Based on the above literature review for CUDA and OpenCL 

programming paradigms, we conclude that CUDA programming model is an optimal choice for 

high application performance on Nvidia GPGPU architectures.  

Recently, directive-based programming models have emerged that provide different levels of 

abstraction and require different levels of programming effort to port and optimize applications 

on GPGPU devices. The examples of directive-based programming models include Hicuda [53], 

OpenMPC [54], PGI Accelerator [55], and OpenACC [56]. In [57], the authors evaluated these 

directive-based programming models by porting thirteen application kernels from various 

scientific fields on CUDA GPGPU devices. Their evaluation reported that the directive-based 

models can achieve reasonable performance versus the traditional hand-written GPGPU kernel 

codes. They also concluded that the high-level abstraction provided by the directive-based 

programming models will better assist in code portability for future architectures that combine 

GPUs and CPUs onto the same die [58].  

In this sub-section, some of the prominent GPGPU performance modeling and architecture 

studies documented in the literature were discussed. Although the performance modeling 

schemes discussed are sufficiently accurate, they present a number of shortcomings. Both the 

analytical and quantitative models discussed require intricate GPGPU architecture knowledge for 

viable performance prediction. The accuracy of qualitative models is highly sensitive to the 

precise evaluation of model parameters. The quantitative models are prone to miss non-

measurable architecture parameters, leading to imprecise predictions. Additionally, the 

quantitative approach is often tightly coupled to a specific GPGPU architecture, rendering them 
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invalid/incomplete for future generations. Therefore, it is not always a clear choice for 

developers to select a reliable prediction model for a given application. Unlike the performance 

modeling approaches discussed in this sub-section, our research aims to provide a user-friendly 

performance prediction framework that addresses multiple levels of design space abstraction, 

thereby allowing developers to choose the best model for the given design goals and the level of 

knowledge regarding the algorithm and architecture(s).  

2.2 PERFORMANCE MODELING: FPGA-BASED SYSTEMS 

Several research activities have focused on performance modeling of High-Performance 

Reconfigurable Computing (HPRC) systems. Although our research does not include FPGA-

based systems, we mention relevant HPRC modeling studies that inspired the research work in 

this dissertation. In [59], the author proposed a model for shared resource load imbalance, 

dedicated resource imbalance, and communications in distributed applications utilizing shared 

resources. The author validated the model using four implementations: Boolean Satisfiability, 

Matrix-Vector Multiplication, Encryption, and CHAMPION demo algorithms. In [60], the 

authors proposed the RC Amenability Test (RAT) model that provides a framework to predict 

speed-up of applications on single-node FPGA-based systems. In [9], the authors extended the 

RAT model for multi-node FPGA systems. The RATSS (RC Amenability Test for Scalable 

Systems) model proposed in [9] predicts the application runtime by separately modeling the node 

computations using the RAT model and inter-node communications using LogGP model [61]. 

The authors validated the RATSS model using 2D Probability Density Function (PDF) 

estimation and image processing algorithms. The research presented in this dissertation is 

motivated by the multi-FPGA-based system modeling studies presented in [9]. 
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2.3 NETWORK-LEVEL MODELING 

In addition to performance analysis of node-level computations (device kernels, host 

computations, and host-device transactions), it is imperative to perform efficient analysis of the 

network-level transactions to accurately predict the application runtime on heterogeneous 

clusters. In this sub-section, we discuss some of the important network-level modeling 

techniques documented in the literature. In [62], the authors proposed the logP model that 

attempts to capture important bottlenecks in parallel computing with a limited number of 

parameters that include latency, overhead, bandwidth of communication, and the number of 

processors. The authors claim that the logP model can sufficiently describe the performance 

characteristics of several parallel machines. An extension to the logP model, parameterized logP 

(plogP), provided in [63], incorporates the message size for measurements. The plogP model 

defines five parameters, namely the number of processors, end-to-end latency, sender overhead, 

receiver overhead, and bandwidth for a given message size. Although logP and plogP models are 

state-of-the-art parallel machine models, the logGP model [61] is currently the most popular and 

widely used parallel machine model. The logGP model adds the gap term, G for long messages 

to the logP model. The experimental data collected by the authors in [61] shows that the logGP 

model can accurately predict the communication performance for both long and short messages. 

In [64], the authors derived a new logGP parameter assessment technique, netgauge that does not 

saturate the network for measurements. The authors also proposed a methodology to detect 

network protocol changes in the underlying communication system. 

While the logP, PlogP, and logGP models constitute the foundation of any network-level 

performance analysis, several other derivatives of the logP model exist that explain the 

secondary network characteristics. The logGPG model [65] adds a network contention parameter 
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to the traditional logGP model. The logGPS model [66] captures the synchronization needed 

prior to sending long messages by high-level communication libraries. As mentioned in [66], the 

logGPS model adds the parameter S that defines the threshold for message length above which 

the synchronous messages are sent. In [67], the authors developed the logfP model that 

characterizes the small message performance over Infiniband. The logfP model adds the 

parameter f to the logP model, which indicates the number of messages where a small message 

gap has not been accounted.           

In our research, we develop a variant of the above mentioned performance models for 

network communication, specifically in the high-level abstraction of the modeling suite. 

Although the above mentioned models adequately describe the network characteristics, 

communication transactions in heterogeneous systems often exhibit randomness in their behavior 

as explored ahead in Chapter 7. Therefore, regression analysis of communications (both PCI-Ex 

and network-level) enables us to capture the data transaction behavior statistically, thereby 

abstracting high-level architecture details. Regression-based techniques for modeling the 

communications using Michaelis-Menten kinetics [68] are expounded in Chapter 7.  

2.4 SNNs and ADF 

2.4.1 SNNs 

Spiking Neural Networks (SNNs) are very popular in the neuroscience community for 

modeling the mammalian brain to understand its functional and operational principles. The 

ability of spiking neurons to reproduce most of the neuronal properties with high accuracy makes 

them amenable for brain related studies [69]. Biologically inspired SNNs are popular in other 

fields such as pattern recognition [70], artificial intelligence [71], and smart control of power 
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grids [72]. In this section, we discuss some of the prominent architecture studies conducted using 

large-scale SNN simulations.  

In [73], the authors studied the mammalian brain neo-cortex and simulated a rat-size cortex 

in 42% of real-time and a cat-size cortex in 23% of real-time on a 442-node Dell Xeon cluster.  

In [74], the authors successfully utilized the Izhikevich SNN model to simulate a cat-size cortical 

model with 10
9
 neurons and 10

13
 synapses using the BlueGene/P machine [75] with 147,456 

processors and 144 TB of main memory. The authors claim their simulation scale is roughly 1-2 

orders of magnitude smaller than the human cortex and 2-3 orders of magnitude slower than real-

time.  

Heterogeneous architectures such as GPGPUs are now being investigated for biologically 

realistic simulations. In [76], the authors implemented Izhikevich’s random network on Nvidia’s 

GTX-280 with 1 GB memory and achieved a speed-up for a 100K neuron network simulation. 

They also discussed mapping strategies on the GPGPU to efficiently utilize the memory 

bandwidth and parallelism. In [77], the authors investigated GPGPU cluster-based 

implementations of the Hodgkin-Huxley (HH) and Izhikevich SNN models using a two-level 

character recognition network. They reported GPGPU speed-ups of 24.6x and 177x for the 

Izhikevich and HH models, respectively. Their 16 GPGPU-based MPI implementation on a 32-

node Tesla S1070 NCSA cluster was successful in scaling the network up to 150 million neurons 

and achieved 17910 millisecond runtime for the HH model.  

2.4.2 ADF 

The non-linear anisotropic diffusion filter (ADF) investigated in this research belongs to the 

class of stencil-based algorithms for image processing. Several research activities have been 

motivated by the cluster and grid computing paradigms for stencil-based image processing 
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applications. In [78], the authors implemented an anisotropic diffusion filter for parallel and 

distributed systems. Their implementation was parallelized with point-to-point and collective 

communications using LAM-MPI [79] on a heterogeneous cluster of workstations. The 

anisotropic filtering technique adopted by the authors used 30 iterations and a neighborhood 

factor of 15. Their point-to-point and collective communication implementations achieved 

performance gains of 81.9% and 93.8%, respectively, when compared to the execution time on a 

single computing node. The authors observed that their collective communication 

implementation was 21% more efficient when compared to the point-to-point communication 

implementation. 

The CUDA and hybrid CUDA/MPI paradigms have recently gained interest for stencil-based 

image processing applications. In [80], the authors proposed a new method to remove Rician 

noise from magnetic resonance images using GPGPU devices. The authors designed an 

anisotropic diffusion filter that characterizes the direction of diffusion and pixel properties using 

Eigen-values and Eigen-vectors. To preserve the edges, the authors coupled the proposed 

anisotropic diffusion filter with a shock filter based on fuzzy sets. The authors compared their 

filter implementation with the traditional anisotropic diffusion filter and wavelet based methods 

and reported an average gain of 0.01 dB in PSNR values. Additionally, their GPGPU 

implementation (kernel computation only) performed approximately 9 times faster than the 

CPU-only implementation. 

In [81], the authors implemented the gradient domain processing technique for massive 

images using MPI, threading, and a GPGPU-based component. The authors successfully stitched 

giga-pixel size panoramas and demonstrated performance and scalability on two GPGPU 
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clusters. The authors achieved over 60% scaling efficiency for both clusters even when scaled 

beyond 60 nodes. 

2.5 SUMMARY 

In this chapter, we discussed some of the recent performance modeling studies targeting 

GPGPU- and FPGA-based heterogeneous systems. While the GPGPU performance prediction 

models discussed are accurate, they require significant knowledge of the underlying system 

architecture. In addition, they do not address the multiple levels of design space abstraction, 

making the model selection and implementation task difficult. Unlike the modeling efforts 

discussed in this chapter, our research addresses two levels of design space abstraction in the 

form of a multi-level performance modeling suite: low-level where some implementation details 

are present along with the system specifications; and high-level where the implementation details 

are minimum and only high-level system specifications are available. The proposed multi-level 

suite aims to provide straightforward and accurate runtime prediction, allowing developers to 

choose a performance prediction model that best satisfies their design space.  

In addition to performance models for heterogeneous systems, we also discussed several 

architecture studies conducted using SNNs and ADF. Since our current research focuses on 

GPGPU-based systems, the next chapter provides additional details on the base GPGPU 

architectures and SNN-ADF SIA case studies.  
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CHAPTER 3 

BACKGROUND 

In this chapter, we provide background on Nvidia’s Fermi and Kepler GPGPU architectures 

and the Compute Unified Device Architecture (CUDA) framework, and discuss the algorithmic 

details of the SNN-ADF SIAs studied in this research. The chapter is structured as follows. 

Section 3.1 describes the Fermi and Kepler GPGPU architectures and the CUDA framework for 

general purpose graphics computing. Section 3.2 provides background on the Spiking Neural 

Network (SNN) models along with the large-scale SNN simulation performed in the form of a 

two-level character recognition network. The non-linear anisotropic diffusion filtering (ADF) is 

described in Section 3.3. The chapter is concluded in Section 3.4 with a summary.  

3.1 GPGPU ARCHITECTURE  

The GPU architecture, initially intended as a fixed many-core processor dedicated to 

transforming 3D scenes to a 2D image composed of pixels, has undergone several innovations to 

meet the computationally demanding needs of the supercomputing research community. The 

traditional GPU pipeline came with several disadvantages for HPC including limited data reuse 

in the pipeline, excessive variations in hardware usage, and lack of integer instructions coupled 

with weak floating-point precision. In November 2006 [82], NVIDIA introduced the GeForce 

8800 GTX with a novel unified pipeline and shader architecture. In addition to overcoming the 

limitations of the traditional GPU pipeline, the GeForce 8800 GTX architecture added the 

concept of a streaming processor (SMP) architecture that is highly pertinent to current GPGPU 
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programming. SMPs can work together in close proximity with extremely high parallel 

processing power. The outputs produced can be stored in fast cache and used by other SMPs. 

SMPs have instruction decoder units and execution logic performing similar operations on the 

data. This architecture allows SIMD instructions to be efficiently mapped across groups of 

SMPs. The streaming processors are accompanied by units for texture fetch (TF), texture 

addressing (TA), and caches. The structure is maintained and scaled up to 128 SMPs in the 

GeForce 8800 GTX. The SMPs operate at 2.35 GHz in the GeForce 8800 GTX, which is 

separate from core clock operating at 575 MHz. Several GPGPUs used thus far for HPC 

applications have architectures that are concurrent with the GeForce 8800 GTX. However, 

introduction of the Fermi architecture by Nvidia in September 2009 [51] has radically changed 

the contours of the GPGPU architecture, as discussed in this section. 

3.1.1 Nvidia Fermi GPGPU Architecture 

The Compute Unified Device Architecture (CUDA) programming framework [22] views the 

GPGPU architecture as an array of streaming multi-processors (SMPs), each containing a set of 

scalar processors (referred to as CUDA cores), a double-precision (DP) unit, shared memory for 

thread cooperation, and texture addressing and texture fetch units. The GPGPU functionality in 

CUDA is expressed by writing GPGPU user-defined functions, referred to as kernels, that are 

executed by all threads created in an application. While a single thread is executed on a CUDA 

core, a group of threads called a thread block is executed on the SMPs. The thread blocks are 

further divided into warps (a group of 32 concurrent threads) and half-warps (a group of 16 

concurrent threads). Threads in a thread block can synchronize with each other using shared 

memory.  
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The 20-series architecture, codenamed Fermi [51], has brought numerous innovations versus 

previous architectures. The 512 CUDA cores are organized as 16 SMPs with 32 cores each 

gathered around an L2 cache. A Gigathread scheduler dispatches thread blocks to the SMP 

thread schedulers. The GPGPU has the capability of supporting 6 GB of GDDR 5 DRAM 

memory. SMPs in Fermi have an instruction cache, dual warp schedulers and dispatch units, two 

sets of 16 CUDA cores, 4 special function units for transcendental functions, 16 load/store units, 

a hefty register file, and most importantly, a configurable 64 KB of shared memory/L1 cache. 

The SMPs share a second level L2 cache. More information about the architecture can be found 

in [51]. The Fermi-based Tesla M2070 used for this research can theoretically offer 1.03 

Teraflops of single-precision floating-point performance and 515 Gigaflops of double-precision 

floating-point performance. This GPGPU architecture is used for the verification and Strengths, 

Weaknesses, and Opportunities (SWO) analysis of the regression-based framework (low-level 

abstraction). 

3.1.2 Kepler GK110 (K20) Architecture  

The GK110 Kepler GPGPU devices [83] have 5 GB of GDDR5 memory, 64 KB L1 

cache/shared memory, 48KB read-only cache, 1536 KB L2 cache, and a quad warp scheduler. 

The Kepler GPGPU device family introduces new features such as the Next Generation 

Streaming Multiprocessor (SMX) that includes 192 CUDA cores, for a total of 1536 cores in the 

entire GPGPU, providing tremendous performance boost at lower power consumption when 

compared to the earlier GPGPUs. The Kepler GPGPU devices also feature Dynamic Parallelism 

that enables dynamic spawning of new threads from the device kernel without returning to the 

host CPU. Furthermore, the Hyper-Q technology enables multiple CPU-cores to launch work on 

a single GPGPU device simultaneously, thereby increasing the GPGPU device utilization and 
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reducing the CPU idle time. Figure 3.1 shows the SMX of the Kepler GK110 GPGPU 

architecture [83]. We use the Kepler architecture for SWO analysis of the regression-based 

framework and high-level abstraction studies.  

 
Figure 3.1 An SMX in Kepler GK110 Architecture [83] 

 

3.1.3 Compute Unified Device Architecture (CUDA) Framework  

In CUDA for C [22], the GPGPU functionality is defined by writing device functions, which 

are called kernels. A thread, which is a sequence of instructions, is instantiated several thousands 

of times. When a kernel is called, N threads execute the kernel in parallel. Threads are accessed 

inside kernels using built-in variables: threadIdx, blockIdx, and blockDim. Collections of threads 
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called thread blocks are executed on the SMPs. The blocks are further divided into SIMD groups 

of 32 threads called warps, which are further divided into groups of 16 threads called half-warps. 

The memory hierarchy in CUDA is comprised of a set of registers (on-chip) and local memory 

(residing in an off-chip DRAM) for each thread, private shared memory for thread blocks, global 

memory for all threads created, and read-only texture cache and constant memory. CUDA offers 

three primary optimization strategies, namely the Memory Optimization, Execution 

Configuration Optimization, and Instruction Optimization. 

Several memory optimization strategies can be found in [22]; here we discuss the prominent 

ones used in this research. One memory optimization strategy is to reduce the frequent transfers 

between the host and the device since the host-to-device bandwidth is usually an order of 

magnitude lower than the device-to-device bandwidth. It is highly beneficial to transfer all of the 

relevant data to the device memory for processing and later transfer the data back to the host 

memory once all of the operations are finished. The device-host bandwidth can be most 

efficiently utilized by overlapping the kernel execution with data transfers using Zero Copy (Z). 

This feature is available only in devices with compute capability greater than or equal to 1.1. In 

this technique, the data transfers are performed implicitly as needed by the device kernel code. 

For the operation described, it is required that the device should support the host mapped 

memory.  

Compute capability devices 2.0 and beyond introduce L1 and L2 caches for improving the 

global memory performance. These architectures allow the user to configure the amount of L1 

cache and shared memory used. From the 64 KB of on-chip memory, 48 KB can be configured 

either as L1 cache or shared memory. The user is also allowed to cache the global memory either 

in L2 cache alone, or both in L1 and L2 caches [22]. Caching the intermediate data can promote 
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performance improvement in applications that involve frequent global memory data accesses or 

those that suffer from register pressure.  

Software Pre-fetching (SP) is another useful memory optimization technique for avoiding 

frequent accesses to the device global memory. The technique involves the use of on-chip 

Registers and/or Shared Memory (SM) to cache and operate on the data. Once all of the 

operations are finished, the data is transferred back to the device memory. Registers are more 

commonly used for such scenarios since they do not involve bank conflicts that can occur with 

shared memory accesses. Bank conflicts occur when threads in a half-warp access the same 

shared memory bank. These conflicting accesses are serialized and therefore negatively impact 

the performance.  

Execution Configuration Optimization is an effective method for hiding latency on the 

memory bound kernels. Execution configuration is related to the number of threads per block. 

Varying the number of threads per block changes the multiprocessor occupancy: the ratio of the 

number of warps running on the multiprocessor to the maximum number of warps that can 

physically run on the multiprocessor. The CUDA profiler [22] provides information about the 

multiprocessor occupancy. The number of threads per block should also remain a multiple of 32 

and sufficiently large, typically greater than or equal to 192. Keeping the number of threads per 

block a multiple of 32 facilitates coalescing, meaning all threads in a warp complete the data 

access in one or more transactions.  

The Instruction-level Optimization technique utilized in this research with CUDA involves 

the use of fast math functions and Reduced Conditional Statements (RCS). The use of fast math 

results in fewer clock cycles for the instruction at the expense of reduced accuracy. The compiler 

optimization –use_fast_math forces compiling arithmetic functions as fast math functions. RCS 
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reduces divergent paths taken within a warp. Divergent paths are serialized, which results in 

reduced performance. 

3.2 SPIKING NEURAL NETWORKS (SNNs) AND LARGE-SCALE SNN 

SIMULATIONS 

SNNs constitute the third generation of neural networks and are considered highly 

biologically accurate. A spiking neuron fires an electric pulse, commonly referred to as spike, at 

certain time intervals. The amplitude of the spike is irrespective of the input, but the timing of 

the spike is a function of the input. This type of time encoding is useful for many signal-

processing applications. Several models have been proposed for SNNs, ranging from very 

computationally efficient and moderately accurate, to compute intensive and highly accurate. In 

[69], Izhikevich lists the 20 most prominent features of biological neurons and ranks several 

models based on their ability to mimic these neuron features. Four models, namely, the Hodgkin-

Huxley (HH) model [84], Morris-Lecar model [85], Wilson model [86], and Izhikevich model 

[87] were found to satisfy the requirements of accurately modeling the neuron dynamics, and 

hence were used in this research not only for their validity, but also for their range of 

computation and communication requirements. In what follows, we provide a brief chronological 

overview of these four SNN models. 

3.2.1. Four SNN Models 

The Hodgkin-Huxley (HH) model is considered to be the most accurate and the most 

important model in the neuroscience community till date. As mentioned in [69], the model 

involves four equations and ten parameters describing neuron current activation and deactivation. 



 32 

The model takes 1200 FLOPs per millisecond to the complete neuron update. In our research, we 

have used a 0.01 milliseconds time-step for the neuron update. 

The Morris-Lecar (ML) model is another biophysically meaningful model, replicating almost 

all of the spiking neuron properties. The relevant equations found in [85] include hyperbolic 

functions, making this model the second most complex SNN model used in this study. The 

model takes 600 FLOPs per millisecond time-step for the neuron update. For our experiments, 

we have used a plausible 0.01 milliseconds time-step for the neuron update.  

Wilson [86] attempted to model cortical neurons with a system of polynomial equations. This 

model introduces a few additional conduction channels compared to the HH model as reported in 

[86]. With proper tuning of the channel parameters, the Wilson model can mimic all 

characteristics of spiking neurons. A time-step of 0.01 milliseconds was used to evaluate the 

polynomial equations describing neuron dynamics. The model in general takes 180 FLOPs per 

millisecond for the neuron update. 

In [87], Izhikevich developed a simple and very computationally efficient spiking neuron 

model that is almost as plausible as the most accurate HH model. Izhikevich was successful in 

reducing the complex HH model equations to a 2D system of ordinary equations. Izhikevich’s 

model requires only 13 FLOPs per neuron update and still sufficiently reproduces a majority of 

the neuronal properties with the equations found in [87]. In our research, we have used a 1 

millisecond time-step (13 FLOPS per millisecond) for neuronal dynamics update. 

 The time-step values used in our research for the SNN models discussed are in the range 

deemed sufficient for reproducing biologically relevant neuron dynamics [69]. More detailed 

description of the four SNN models can be found in [88]. In Table 3.1, we summarize the 

FLOPs/Byte ratio for the four SNN models, which provides an algorithmic analysis of the 



 33 

aforementioned SNN models used in this study. The FLOPs/Byte ratio is an algorithm specific 

value and is defined as the ratio of the number of floating-point operations required for a 

complete neuron update (level-1 and level-2 of the two-level network) to the overall bytes 

requested (all model parameters and supporting data structures) for all of the neuron updates 

[88]. 

Table 3.1 FLOPs/Byte Ratio for SNN Models 

Model FLOPs required for the  

complete neuron update 

Bytes required for the 

complete neuron update 

FLOPs/Byte 

Ratio 

HH 246 25 9.84 

ML 147 17 8.65 

Wilson 38 25 1.52 

Izhikevich 13 13 1 

3.2.2. The Two-Level Network 

We use the SNN models discussed in the previous section for the large-scale SNN 

simulations. These simulations are performed using a two-level character recognition network 

based on [89] shown in Figure 3.2. The task of the network is to identify images from a training 

data set of 48 images. The level-1 neurons act as an input collection layer and the level-2 neurons 

act as output collection layer. Each neuron in level-1 corresponds to a pixel in the input image; 

hence the number of neurons in the input level is equal to the total number of pixels in the test 

image (image-size
2
), making it the most compute-intensive layer of the two-level network. The 

number of neurons in the output layer, level-2, is equal to the number of images in the database, 

making it less computationally dense. When an input image is presented to level-1, each neuron 

evaluates its membrane potential based on the pixel level presented and the neuron model 

chosen. This process is referred to as the evaluation of neuron dynamics. If the pixel is “on,” a 

constant current is supplied to the neuron for membrane potential evaluation. The input current 

equation for a level-2 neuron is: 



 34 

*j ij iI w f           (3.1) 

In Equation 3.1, Ij is the net input current to the neuron j in level-2, wij is the weight of the 

synapse connecting neuron i in level-1 with the neuron j in level-2. A neuron in any level is said 

to have “fired” if its membrane potential crosses the threshold value for the selected neuron 

model. In our research, we accelerate the recognition phase of the network by implementing all 

of the level-1 neurons on the GPGPU devices since they are highly compute-intensive, while the 

less computationally dense level-2 neurons (input current accumulation and dynamics) are 

implemented on the host processors. 

 

Figure 3.2 Two-level Character Recognition Network 

3.3 NON LINEAR ANISOTROPIC DIFFUSION FILTER (ADF) 

The quality of an image is highly critical for image processing applications such as machine 

vision, surveillance, medical imaging, etc. Even the most sophisticated image capturing devices 

are prone to noise signals from the surroundings including but not limited to Gaussian noise, 

Poisson noise, and Salt-and-Pepper noise. The literature reports the existence of several noise 

removal schemes, some of which are computationally efficient but prone to boundary errors [90], 
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while others require an excessively large number of iterations [91]. Some of the proposed 

filtering schemes such as the median filtering and hybrid median filtering (bidirectional linear 

median filter) preserve the edge information at the expense of fine image details ultimately 

leading to streak and blotched effects in the final image [92]. Out of several proposed noise 

removal schemes, non-linear anisotropic diffusion filtering has been reported to yield superior 

results [78, 93, and 94]. The anisotropic diffusion filtering scheme effectively improves the 

quality of noised images via piecewise smoothing and immediate localization. In piecewise 

smoothing of an image, the intra-region smoothing is preferred over inter-region smoothing at all 

scales. The immediate localization property requires the region boundaries to be sharp and 

coincide with the “semantically meaningful” boundaries at a given resolution. These properties 

of anisotropic diffusion filtering preserve the inter-region edges and fine details of the image. 

Therefore, it is widely used in real-time video processing [95]. 

The theoretical aspects of anisotropic diffusion filtering are well documented in the literature 

[96]. In this research, we discuss and implement a novel non-linear anisotropic diffusion filter 

based on the statistic-local open system proposed in [97].  In the proposed filtering scheme, only 

the estimated noised pixels are processed to reduce any unnecessary blurring caused by pure 

pixel energy diffusion. The filtering scheme also incorporates a newly designed conduction 

coefficient to avoid energy flow from neighboring noised pixels.  

In [97], the authors assert that the traditional order-statistic filter has two shortcomings. First, 

the order-statistic filter tends to ignore the texture information in edges. Second, the order-

statistic filter cannot efficiently filter the impulse noise in high-level noised images. In what 

follows, we describe the steps proposed in [97] to alleviate these problems. To address the first 

problem, the proposed filter only processes the estimated noised pixels in a single iteration, 
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thereby only allowing for local diffusion. The proposed scheme then compares the real value of 

the center pixel with the pixel value after the order-statistic filtering. If the difference in the 

values is above a threshold level Knoise, only then will the pixel be declared a noised pixel, 

otherwise it is declared a pure pixel.  

To address the second problem associated with the traditional order-statistic filter, the 

authors in [97] propose an anisotropic diffusion system based on a local open system, where part 

of the pixels are labeled as convergences and others as origins. The convergence pixels represent 

the energy flowing in, whereas the origin pixels represent the energy flowing out. The neighbors 

of noised pixels are declared as either convergences or origins and their values remain 

unchanged. The authors claim if the above two labels are properly chosen, the image details can 

be well preserved. The authors also propose a new conduction coefficient sgni (med(ui))*ci, to 

avoid the effects of neighboring noise energy as shown in Equation 3.2. 

sgni(med(ui))*ci = 0 if Knoise ≤ | med(ui) – ui| 

    
ig(|| u||) Otherwise

                                


      (3.2) 

where, ui represents the pixel in the i
th

 direction (i = N, S, E, W), med(ui) represents the median 

filter pixel value in the i
th

 direction, and ci represents the conduction coefficient in the i
th

 

direction. As suggested in [97], the conduction coefficient ci can be selected as the gradient of 

the image in the i
th

 direction. The new conduction coefficient in Equation 3.2 is zero if ui is 

estimated as a noised pixel; otherwise the conduction coefficient follows the gradient of ui. The 

proposed filter is then modeled as shown in Equation 3.3. 
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To achieve sufficiently accurate filter output, we have chosen 30 iterations for the 

implementation as suggested in [98]. The quality of the filter is evaluated using the Peak Signal-

to-Noise Ratio (PSNR) criteria as shown in Equation 3.4 where, MSE stands for mean squared 

error, u represents the original noise-free image, and v represents the filtered output image. 

10*log(255*255 / )

[ ( ( , ) ( , )) ^ 2] / 256 ^ 2
i j

PSNR MSE

MSE u i j v i j



         (3.4) 

 The anisotropic diffusion filtering scheme used in this research is summarized as follows: 

1) Estimate the noised pixels. If the difference between the real center pixel value and the 

value of pixel after the order-statistic filtering is above a threshold Knoise, the pixel is 

declared as a noised pixel and will be processed. The threshold Knoise for our 

implementation is 40. 

2) Evaluate the new conduction coefficient using Equation 3.2.  

3) Perform the anisotropic diffusion filtering using Equation 3.3. 

4) Repeat steps 1 through 3 for 30 iterations.  

3.4 SUMMARY 

In this chapter, we discussed the base GPGPU architectures utilized in this research, namely 

Nvidia’s Fermi architecture and Kepler K20 architecture and the CUDA framework for general 

purpose graphics computing. We also discussed the four SNN models, the two-level character 

recognition network for large-scale simulations, and the anisotropic diffusion filter (ADF) for 

massive images. In the next chapter, we describe the experimental set-up, mapping and 

orchestration of the SIA algorithms on GPGPU clusters. We also provide the performance 
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analysis study for the SNN-ADF SIA implementations to confirm their applicability for the 

verification of the multi-level modeling suite.    
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CHAPTER 4 

EXPERIMENTAL SET-UP, MAPPING, ORCHESTRATION, 

AND PERFORMANCE ANALYSIS STUDY 

In this chapter, we provide the details of the experimental set-up, SNN-ADF SIA mapping, 

and multi-GPGPU orchestration. We also provide a performance analysis study for the SNN-

ADF SIA implementations conducted on the NCSA Forge cluster. The contents of this chapter 

are focused toward the verification of the performance modeling suite. Section 4.1 details the 

layout of the NCSA’s Forge GPGPU cluster and GPGPU-augmented Palmetto cluster. Sections 

4.2 and 4.3 describe the mapping and orchestration of SNN and ADF simulations, respectively. 

The performance analysis study for the SNN-ADF SIAs follows in Sections 4.4 and 4.5. The 

chapter is summarized in Section 4.6. 

4.1 EXPERIMENTAL SET-UP 

4.1.1 NCSA Forge Cluster 

Our research uses the Forge GPGPU cluster at the National Center for Super-Computing 

Applications (NCSA) [12] for the large-scale SNN and ADF simulations. The 153 Teraflop 

cluster is composed of 36 Dell PowerEdge C6145 servers; each server is connected to six Fermi-

based Tesla M2070 GPGPUs via three PCI-Ex Gen2x16 slots. Each server is equipped with two 

2.4 GHz AMD Opteron Magny-Cours 6136 processors, eight cores each. The network 

interconnect is comprised of Infiniband QDR. Our implementations were developed using 

CUDA 4.0 and OpenMPI version 1.4.3 [99] on Red Hat Enterprise Linux 6. More information 
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on the Forge GPGPU cluster can be obtained from [12].  Figure 4.1 provides an example layout 

of a server in the Forge cluster. 

 
Figure 4.1 An Example Layout of a server in the NCSA Forge Cluster [12] 

4.1.2 GPGPU-augmented Palmetto Cluster 

The research also uses the GPGPU-augmented Palmetto cluster at Clemson University [15] 

for the SNN-ADF SIA implementations, GPGPU Design Space Exploration (DSE) study using 

low-level abstraction, and the development of the high-level abstraction prediction models. The 

Palmetto Cluster includes 12 GPGPU HP SL250 servers, with each server connected to two 

Fermi-based Nvidia Tesla M2075 [51] GPGPU devices via Peripheral Component Interconnect 

Express (PCI-Ex) bus. Recently, the cluster acquired an additional 96 nodes equipped with 

Nvidia Kepler GK110 (K20) GPGPU devices [83]. Each server is composed of two 2.4 GHz 

Intel E5-2665 processors with 8 cores each and 64 GB RAM. The servers are connected via 

Infiniband [10]. For our implementations, we used CUDA 4.2 [26] and MPI version 2.2 [100] on 
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Scientific Linux 6. Additional details on the Palmetto Cluster can be found in [15]. The low-level 

abstraction DSE studies were performed on the Kepler devices. Both the Fermi and Kepler 

GPGPU architectures were employed for the Strengths, Weaknesses, and Opportunities (SWO) 

analysis of the regression-based framework (low-level abstraction). This analysis shows the 

ability of the framework to span generations of the GPGPU architecture. The high-level 

abstraction modeling and analysis were completed using Kepler devices.  

4.2 SNN MAPPING AND ORCHESTRATION 

In this sub-section, we first provide details of the network mapping for the single-GPGPU 

implementation that is subsequently extended to a multi-GPGPU implementation. 

As discussed in Chapter 3, level-1 is the most compute-intensive layer of the network since 

the number of neurons is equal to the number of pixels in the input image; therefore these 

operations are performed on the GPGPU device. Each GPGPU thread evaluates the dynamics of 

a single level-1 neuron. Therefore, the number of GPGPU threads created is equal to the number 

of level-1 neurons. The GPGPU device then provides the host processor with the level-1 neuron 

firing information, the global firing vector, which is used by the host processor to obtain the 

level-2 neuron currents and dynamics. The level-2 computations (current accumulation and 

dynamics) are implemented on the host processor since the level-2 neuron computations 

constitute less than 5% of the total computation overhead and, implementing the level-2 

dynamics on the GPGPU would require transfer of the weight matrix (matrix-size = level-2 

neurons * level-1 neurons) to the GPGPU device memory. Hence any computational 

improvement obtained by implementing level-2 neuron dynamics will be insufficient to amortize 

the communication overhead involved in transferring the large weight matrix to the GPGPU 
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device. The single-GPGPU implementation was optimized with memory-level, instruction-level, 

and execution configuration level optimizations as mentioned in [101].  

The host-device bandwidth was further optimized using a block firing vector concept 

introduced in [88]. The block firing vector is implemented in the device shared memory to avoid 

transferring the global firing vector in each algorithmic time-step. The block firing vector is 

similar to the global firing vector but instead acts as a collection of flags for thread blocks. Since 

the threads are collected in thread blocks of size: blocksize, the block firing vector is blocksize 

magnitude smaller than the global firing vector, and hence can be transferred from the device to 

host in each time-step with minimal overhead. If at any time-step the block firing vector contains 

information of a firing event, only then will the entire global firing vector be transferred from the 

device to host and then read by the host. Figure 4.2 illustrates the block firing vector concept. 

 
Figure 4.2 The Concept of Block Firing Vector 

The single-GPGPU implementation is then extended to a multi-GPGPU implementation. The 

MPI ranks were assigned in node-packing fashion, meaning the ranks are packed into nodes. The 

nodes were configured with a maximum of six MPI processes per node allowing for a 1:1 CPU-

core/GPGPU-device ratio at each node and potentially reducing long distance inter-node 

communication. The GPGPU devices were allotted to the CPU cores using modulo rule where an 
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MPI process with rank n is coupled with the GPGPU device number, n modulo 6 [4]. Future 

work beyond this dissertation will investigate the impact of other CPU-core/GPGPU-device 

ratios on application performance. 

The multi-GPGPU orchestration follows the Master-Worker Paradigm as shown in Figure 

4.3. MPI rank 0 acts as the master process that scatters the level-1 neuron inputs to all other 

processes. The level-1 neuron parameters are initialized to the SNN model specific constant 

values at each MPI process, and hence require no MPI communication. Each CPU-GPGPU pair 

works as an independent unit where the GPGPU device evaluates the partial level-1 neuron 

dynamics and the host processor evaluates the partial level-2 currents using the firing vector 

obtained from its designated GPGPU device. The partial level-2 currents from each MPI process 

are then accumulated at MPI rank 0 where the complete level-2 neuron dynamics are evaluated 

and the image detection decision is made. The level-2 neuron computations on the hosts were 

accelerated using OpenMP.  

As discussed later in this chapter, we successfully scaled the neural network size from 5.7 

million to over 200 million neurons.  
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Figure 4.3 Multi-GPGPU Orchestration using Master-Worker Paradigm 

4.3 ADF MAPPING AND ORCHESTRATION 

4.3.1 ADF Mapping Methodology 

The steps involved in the anisotropic diffusion scheme are described in Chapter 3. The 

algorithm involves the evaluation of two computationally intensive tasks: 1) median filtering of 

the input image to evaluate the conduction coefficient as shown in Equation 3.2; and 2) 

evaluation of the partial differential equation (PDE) to perform the anisotropic diffusion filtering 

as shown in Equation 3.3. Since these operations are highly data-parallel, they are performed on 

the GPGPU devices using two separate GPGPU kernels, namely the median_kernel and 

PDE_kernel, whereas the CPU host processor(s) only perform communication operations (row 

exchange) and serial processing (image padding).   

In each of the GPGPU kernels, a single CUDA thread operates on a single pixel. Therefore, 

the number of threads created for each kernel is equal to the number of pixels in the input image. 
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The GPGPU kernels were optimized with CUDA optimization techniques including execution 

configuration optimization, memory optimization, and branch divergence reduction. The 

execution configuration optimization involves the selection of an optimal thread-block 

configuration to maximize the multiprocessor occupancy: the ratio of the number of warps (a 

group of 32 concurrent threads) running on the multi-processor to the maximum number of 

warps that can physically run on the multi-processor. In our implementation, we chose a thread-

block configuration of 256 threads per block to maximize the multiprocessor occupancy. The 

Software-Prefetching (SP) memory optimization technique was used to fetch the neighboring 

pixel values into the GPGPU registers, reducing frequent incoherent accesses to the device 

global memory and promoting performance. Divergent branches, due to conditional statements, 

lead to warp serialization and low execution unit utilization, ultimately impeding performance 

[102]. The conditional statements were replaced with ternary operators to reduce divergent 

branches. Detailed information on CUDA optimization techniques used in this research is 

presented in Chapter 3.  

4.3.2 Multi-GPGPU Orchestration 

The network set-up and multi-GPGPU orchestration for ADF is similar to that of the SNN 

simulations described in Section 4.2.   

The orchestration for ADF is divided into four stages. In the first stage, the master process 

MPI rank 0 reads the input image and scatters the image tiles in row-wise fashion to all other 

processes. In the second stage, each of the individual processes pads its respective image tile to 

avoid any out-of-bound conditions. The adjacent processes then exchange the boundary rows, 

labeled as ghost rows, to avoid any boundary errors. The MPI point-to-point routine Sendrecv is 

used to accomplish the exchange operation. Once the above serial processing and 
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communication operations are completed, the implementation proceeds to the third stage where 

each CPU-GPGPU pair works as an independent unit. The CPU host transfers the image tile to 

the GPGPU device memory and the GPGPU device performs the filtering iterations on the image 

tile as described in Chapter 3. Once the GPGPU device completes the iterations, it transfers the 

output image tile to its respective CPU host. The CPU host then un-pads the output image tile to 

remove unnecessary ghost rows and pad-boundaries. In the fourth and final stage, the master 

process (MPI rank 0) gathers the output image tiles from all other processes, constructs the final 

output image, and performs the PSNR check using Equation 3.4.  Figure 4.4 elucidates the four 

stages of the multi-GPGPU implementation. 

As will be discussed in detail in Section 4.5, our ADF implementation successfully scaled up 

to 156 mega-pixels. In the next section, we present the SIA performance analysis study 

conducted on the Forge GPGPU cluster. We investigate the scaling behavior of the SIAs by 

varying configuration from 2- to 32-nodes. As elaborated in Chapter 5, a node consists of a 

single CPU-host tightly coupled with a GPGPU device to perform computations and data 

exchange. For a few specific SIAs, we provide the speed-up achieved by the multi-GPGPU 

implementations over equivalent MPI-only implementations. 
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Figure 4.4 Four Stages in Multi-GPGPU Implementation 

4.4 PERFORMANCE ANALYSIS STUDY: SNNs 

In this section, we present the performance analysis study of the four SNN models conducted 

on the Forge GPGPU cluster. We discuss the application runtime values for all of the tested node 

configurations and show the overall runtime breakdown in terms of GPGPU time, CPU time, and 

communication time for a 32-node configuration. For the HH and Izhikevich models, we 

compare the multi-GPGPU implementation with an equivalent MPI-only implementation. The 

HH and Izhikevich models are particularly interesting since they represent the two ends of the 



 48 

computation-to-communication spectrum for the SNN models. First, we present the results for 

the compute-intensive HH model and then proceed to the compute-efficient Izhikevich model. 

4.4.1 Performance Analysis Study: HH Model 

The statistical-average runtime values for different node configurations versus the neural 

network size are given in Table 4.1. These runtimes correspond to those measured by the master 

process, MPI rank 0, which distributes the tasks and makes the final image detection decision. 

The implementation for the HH model successfully scaled the two-level network to 200 million 

neurons using a 32-node configuration with a statistical-average runtime of 3315.4 milliseconds. 

The dashes in the table indicate problem sizes that do not fit in the GPGPU device memory, 

resulting in a configuration failure for that particular neural network size.  

Table 4.1 HH model: Statistical-Average Runtime Values (in milliseconds) 

Node 

Configuration 

Network Size (in millions) 

12.96 51.8 92.16 207.36 

2 1946.99 - - - 

4 1123.4 4172.82 - - 

8 725.8 2492.45 4443.04 - 

16 512.68 1568.03 2663.6 - 

32 360.63 922.37 1529.23 3315.4 

 

As seen in Table 4.1, the scalability of the implementation generally improves with an 

increase in network size. We define the runtime improvement ratio as the ratio of runtimes of 

two successive node configurations for a given network size. For a network size of 12.96 million 

neurons, the runtime improvement ratio is 1.8 for 2- vs. 4-node, 1.63 for 4- vs. 8-node, 1.5 for 8- 

vs. 16-node, and 1.6 for 16- vs. 32-node configuration. However, for a larger network size, 51.8 

million neurons, the improvement ratios are better with values 1.67, 1.6, and 1.7 for 4 vs. 8, 8 vs. 

16, and 16 vs. 32-node configuration, respectively. The above scaling behavior is expected since 

the amount of computations per GPGPU device decreases with the CPU-host/GPGPU-device 
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pair (node) scaling. Consequently, for smaller network sizes, the GPGPU computations are not 

sufficient to amortize the necessary CPU computations and MPI communications.   

Figure 4.5 further supports the observed scaling. The figure provides the runtime broken into: 

GPGPU time (kernel time and host-device transfer time), CPU time (level-2 currents and 

dynamics), and MPI communication time for a 32-node configuration versus the network size. 

As the network size increases, the number of computations per GPGPU device increases 

significantly, thereby making the computations highly dominant with respect to the overall 

runtime. Because GPGPU computations generally scale well, their dominance with respect to the 

application runtime is highly amenable to the overall scalability. 

 
Figure 4.5 HH model: Runtime Breakdown for 32-node Configuration 

 

Table 4.2 provides the speed-up of the multi-GPGPU implementation over an equivalent 

MPI-only implementation for many of the intermediate network sizes tested. As shown in Table 

4.2, the speed-up over the equivalent MPI implementation increases with the increase in network 
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size for all of the node configurations. The increased speed-up is due to the amortization of MPI 

communication by GPGPU computations due to the increased number of GPGPU computations 

required by the increasing network size. The speed-up values are particularly large for the HH 

model due to its high FLOPs/Byte ratio requirements (see Table 3.1). This data supports the 

claim that applications with high FLOPs/Byte ratios are particularly suited for GPGPU-based 

implementations [88]. Further inspection of Table 4.2 reveals that for a fixed network size, the 

speed-up of the multi-GPGPU implementation over the equivalent MPI-only implementation 

declines with the node scaling due to fewer computations per GPGPU device. As explained 

previously, a significant number of computations are required to fully utilize the compute 

capabilities of the GPGPU device; hence large node configurations observe lower speed-up 

values for smaller network sizes. 

Table 4.2 HH model: multi-GPGPU vs. MPI-only Implementation 

Node 

Configuration 

Network Size (in millions) 

1.44 9.73 25.4 92.2 

2 187x 340x - - 

4 146x 288x 374x - 

8 75x 220x 264x 355x 

16 44x 162x 233x 306x 

32 20x 90x 120x 253x 

 

4.4.2 Performance Analysis Study: ML Model 

The statistical average runtime values for the ML model are given in Table 4.3. As seen in the 

same table, for a given network size, the improvement ratio drops with node scaling due to 

decreasing GPGPU device computations. For the network size 25.4 million neurons, the 

improvement ratios are 1.76, 1.70, 1.46, and 1.40 for 2- vs. 4-node, 4- vs. 8-node, 8- vs. 16-node, 

and 16- vs. 32-node configurations, respectively. For a large network size, 51.8 million for 

instance, the improvement ratios are better with values: 1.75, 1.58, and 1.54 for 4- vs. 8-node, 8- 
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vs. 16-node, 16-node vs. 32-node configurations, attributed to the increased GPGPU device 

computations. Additionally, for a given node configuration, the improvement ratio improves with 

the network size due to increasing computations that amortize the communication overhead. As 

seen in the same table, the improvement ratios for a 32-node configuration are 1.40, 1.54, and 

1.61 for network sizes 25.4, 51.8, and 92.16 million, respectively. Figure 4.6 provides the 

runtime broken into: GPGPU time, CPU time, and MPI communication time.  

Table 4.3 ML model: Statistical-Average Runtime Values (in milliseconds) 

Node 

Configuration 

Network Size (in millions) 

25.4 51.8 92.16 207.36 

2 2064 - - - 

4 1169 2309 - - 

8 691 1319 2316 - 

16 472 831 1383 - 

32 340 540 859 1768 

 

 
Figure 4.6 ML model: Runtime Breakdown for 32-node Configuration 
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Unlike the HH model, the ML model with low FLOPs, bytes, and FLOPs/Byte ratio 

requirement (see Table 3.1) exhibits relatively short GPGPU execution time, while the CPU time 

and MPI communication time dominate the overall runtime. Consequently, the improvement 

ratios are relatively weak for the ML model compared to the HH model. However, the scalability 

is preserved due to dominant CPU computations that scale better compared to the MPI 

communications.  

4.4.3 Performance Analysis Study: Wilson Model 

The statistical-average runtime values for the Wilson model are presented in Table 4.4. 

Similar to the previously discussed SNN models, the improvement ratio drops for a given neural 

network size with the node scaling. Also seen in Table 4.4, the improvement ratio is slightly 

weaker compared to the ML model. For 16- vs. 32-node configuration, the improvement ratios 

are 1.27, 1.44, and 1.53 versus 1.40, 1.54, and 1.61 for the ML model. As seen in Table 3.1, the 

FLOPs/Byte ratio for the Wilson model is low compared to the ML model, thereby resulting in 

relatively weak scaling behavior. Figure 4.7 provides the overall runtime breakdown for a 32-

node configuration. As seen in the same figure, the Wilson model is less computationally dense 

compared to the previously discussed SNN models. Consequently, the MPI communication time 

contributes significantly to the overall runtime, leading to relatively weak scaling behavior for 

the Wilson model. 

Table 4.4 Wilson model: Statistical-Average Runtime Values (in milliseconds) 

Node 

Configuration 

Network Size (in millions) 

25.4 51.8 92.16 207.36 

2 1827 - - - 

4 1200 2334 - - 

8 679 1256 2152 - 

16 485 815 1328 - 

32 381 564 865 1735 
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Figure 4.7 Wilson model: Runtime Breakdown for 32-node Configuration 

4.4.4 Performance Analysis Study: Izhikevich Model 

The statistical-average runtime values for different node configurations versus the network 

size using the Izhikevich model are given in Table 4.5. Unlike the high FLOPs/Byte ratio 

models, strong scaling is not observed for the low FLOPs/Byte ratio Izhikevich model as seen in 

Table 4.5. In addition to the lower number of computations in the Izhikevich model (see Table 

3.1), the lower number of computations per GPGPU device further impedes the scaling 

performance. Figure 4.8 provides the overall runtime breakdown for the 32-node configuration in 

terms of CPU time, GPGPU time, and communication time.  

Table 4.5 Izhikevich model: Statistical-Average Runtime Values (in milliseconds) 

Node 

Configuration 

Network Size (in millions) 

25.4 51.8 92.16 207.36 

2 1425    

4 829 1637   

8 499 945 1669 - 

16 332 583 963 - 

32 254 392 614 1260 
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Figure 4.8 Izhikevich model: Runtime Breakdown for 32-node Configuration 

 

As seen in Figure 4.8, the MPI communication time continues to dominate the GPGPU time 

as the network size increases, leading to sub-optimal performance for the Izhikevich model. 

Although computations per GPGPU device also increase with an increase in network size, the 

increase is marginal due to nominal number of computations in the Izhikevich model.  

Table 4.6 presents the performance comparison of the multi-GPGPU implementation and 

MPI-only implementation. The 32-node configuration attained a speed-up of 2.87x versus the 

32-processor MPI-only implementation. As seen in Table 4.6, the increase in speed-up with the 

increase in network size is marginal for the node configurations examined. The explanation for 

the decline in the speed-up with the increase in node configuration for fixed network size is the 

same as was given for the HH model.  
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Table 4.6 Izhikevich model: multi-GPGPU vs. MPI-only Implementation 

Node 

Configuration 

Network Size (in millions) 

1.44 9.73 25.4 92.2 

2 3.9x 4.0x 4.0x - 

4 2.8x 3.0x 3.2x - 

8 2.3x 2.0x 2.4x - 

16 1.5x 2.5x 1.6x 2.7x 

32 1.2x 1.1x 2.4x 2.5x 

 

The Izhikevich model is an interesting case for multi-GPGPU implementation. Although the 

application itself is massively-parallel, it involves only a nominal amount of computations per 

byte accessed. Therefore, the GPGPU computations cannot amortize the increased CPU 

computation and MPI communication overhead as the SNN network size increases. The 

Izhikevich model explored in this research serves well to highlight the importance of an optimal 

application-to-accelerator cluster match. It is claimed that applications should not only expose 

sufficient parallelism, but should also yield enough computations to fully utilize the compute 

capabilities of heterogeneous clusters. Nonetheless, our multi-GPGPU implementations 

produced performance advantages versus the equivalent MPI-only implementations as shown in 

this section. A thorough analysis of the impact of GPGPU kernel optimizations on SNN 

implementations is given in [88]. 

In this section, we presented the performance analysis study of the four SNN models 

conducted on the Forge GPGPU cluster. The two-level character recognition network (see Figure 

3.2) based on the four SNN models successfully scaled to 200 million neurons using a 32-node 

(CPU-host/GPGPU-device pairs) configuration. In addition to providing significant speed-ups, 

as high as 282x over an equivalent MPI-only implementation, the multi-GPGPU implementation 

for the HH model scaled well with the SNN network size. Although the scaling behavior was 

found to be satisfactory for other SNN models, the runtime improvement ratios were found to 

fall with the decrease in FLOPs/Byte ratio requirements (HH to Izhikevich models). The 
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implementation for the Izhikevich model highlighted the importance of an optimal application-

to-accelerator cluster match for maximum application performance. It is claimed that 

applications should not only expose sufficient parallelism, but should also yield enough 

computations to fully utilize the compute capabilities of heterogeneous clusters. 

4.5 PERFORMANCE ANALYSIS STUDY: ADF 

In this section, we present the performance results for the multi-GPGPU implementation of 

the non-linear anisotropic diffusion (ADF) filter. First, we compare the runtime performance of 

the optimized and un-optimized versions of the GPGPU kernels. Second, we present the filter 

output quality evaluation using the PSNR criteria as discussed in Section 3.3. Third, we discuss 

the application runtime for different node configurations and the scalability analysis. Fourth, to 

assist with the scalability analysis, we provide the application runtime breakdown in terms of 

GPGPU time, CPU time, and communication time for intermediate node configurations. The 

section concludes by comparing the multi-GPGPU implementation with an equivalent MPI-only 

implementation.   

As mentioned in Section 4.3, the ADF scheme requires two separate GPGPU kernels, namely 

the median_kernel and PDE_kernel. Table 4.7 provides the statistical-average runtimes of the 

optimized and un-optimized kernel versions versus the test image size. The optimized kernel 

version employs all of the CUDA optimization techniques mentioned in Section 4.3 and 

performs approximately 4.5 times faster than the un-optimized version for all the test image sizes 

as shown in the same table. The un-optimized kernel version lags in runtime performance due to 

frequent incoherent global memory accesses and divergent branches resulting from conditional 

statements. The frequent incoherent global memory accesses waste the GPGPU device’s memory 
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bandwidth and the divergent branches lead to warp serialization, both of which are highly 

detrimental to performance.   

Table 4.7 ADF: Statistical-Average Kernel Runtimes (ms) 

 

Kernel Version 

Image Size 

4096x4096 5120x5120 7680x7680 10240x10240 12800x12800 

Optimized  669.23 1073.8 2468.031 4363.16 7083.01 

Un-Optimized 3030.50 4973.13 11285.24 19873.33 31957.10 

 

The multi-GPGPU implementation of the ADF algorithm was tested using multi-GPGPU 

node configurations varying from 2- to 32-nodes. The standard Lenna test images were used to 

evaluate the filter operation. The following Lenna test image sizes were obtained using the 

MATLAB imresize command: 4096x4096, 5120x5120, 7680x7680, 10240x10240, and 

12800x12800.  The Salt-and-Pepper noise was added to each of the above Lenna test image sizes 

with 30% noise density using the MATLAB imnoise command. More information on the 

MATLAB commands is available in [103]. 

Table 4.8 provides the PSNR values for noised test images of varying sizes used for the filter 

implementation. Table 4.9 provides the final output PSNR values for different node 

configurations versus the image size. A careful inspection of Equation 3.4 in Chapter 3 suggests 

that since PSNR is inversely related with the mean square error (MSE), a high value of PSNR 

implies a good quality output image. As seen in Table 4.9, the final output images attain high 

PSNR, thereby indicating good noise removal quality of the implemented filter. The output 

PSNR values are also consistent across all node configurations. The output PSNR value for any 

node configuration is observed to decrease with the test image size due to different initial PSNR 

values for the test images as seen in Table 4.9.  
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Table 4.8 PSNR Values (in dB) for Varying Test Image Sizes 

Noised Image Size PSNR Value 

4096 x 4096 10.67 

5120 x 5120 10.67 

76280 x 7680 12.633 

10240 x 10240 12.74 

12800 x 12800 12.70 

 

Table 4.9 Final output PSNR Values (in dB) for Varying Images Sizes  

and Node Configurations 

 

Node 

Configuration 

Image Size 

4096x4096 5120x5120 7680x7680 10240x10240 12800x12800 

1 37.01 37.10 27.25 24.62 22.71 

2 37.007 37.09 27.25 24.62 22.71 

4 36.99 37.08 27.25 24.61 22.71 

8 36.96 37.06 27.24 24.61 22.70 

16 36.91 37.02 27.22 24.60 22.70 

32 36.79 36.93 27.20 24.58 22.68 

 

Table 4.10 provides the statistical-average runtime values for different node configurations 

versus the test image size. These values correspond to those measured by the master process, 

MPI rank 0, which distributes the tasks and gathers the final filtered output image. As seen in the 

table, a 32-node configuration achieves a statistical-average runtime of 1404.34 milliseconds for 

the image size, 12800 x 12800, which corresponds to 156 mega-pixels. Table 4.11 presents the 

scaling efficiency values (η) for successive host-device pair configurations. The scaling 

efficiency is calculated using: 

2

0.5*
*100%  a 1

a

a

T

T
            (4.1) 

where Ta and T2a represent the time required to complete a unit of work on a and 2a processors, 

respectively. 
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Table 4.10 ADF: Statistical-Average Runtime Values (ms) 

 

Node 

Configuration 

Image Size 

4096x4096 5120x5120 7680x7680 10240x10240 12800x12800 

1 1153.3 1776.02 4114.62 7181.89 12118.54 

2 734.90 1145.92 2568.81 4570.64 7121.68 

4 430.35 661.38 1505.34 2673.46 4146.87 

8 316.77 486.96 1028.70 1979.80 3147.98 

16 207.76 318.64 643.78 1238.33 2104.50 

32 154.26 230.52 515.26 904.85 1404.34 

 

Table 4.11 ADF: Scaling Efficiency Values, η (%) 

 

Node 

Configuration 

Image Size 

4096x4096 5120x5120 7680x7680 10240x10240 12800x12800 

1 - - - - - 

2 78.5 77.49 80.08 78.56 85.08 

4 85.4 86.63 85.32 85.48 85.86 

8 67.92 67.90 73.16 67.51 65.86 

16 76.23 76.41 79.90 79.94 74.8 

32 67.34 69.11 62.47 68.42 74.93 

 

As seen in Table 4.11, the scaling efficiency for all node configurations generally improves 

with the increase in test image size. Additionally, for a given test image size, the scaling 

efficiency decreases with node scaling. This behavior is expected since the amount of 

computations per GPGPU device decreases with node scaling. Consequently, for smaller test 

image sizes, the GPGPU computations are not sufficient to amortize the necessary CPU 

computations and MPI communications. Also seen in Table 4.11, the scaling efficiency values do 

not reach the maximum value of 100%, which is largely due to the MPI communications 

overhead. 

Figure 4.9 further supports the scalability explanation given above, justifying the low scaling 

efficiency values for a 32-node configuration. The figure provides the overall runtime broken 

into: GPGPU time (kernel time and host-device transfer time), CPU time, and MPI 

communication time for a 32-node configuration versus the test image size. The figure highlights 
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that the application is largely communication bound for a 32-node configuration due to the 

expensive scatter and gather operations. While the MPI communication time dominates the 

overall runtime for all of the test image sizes, for small test image sizes, the GPGPU time is 

insignificant due to a small number of computations per GPGPU device. As the test image size 

increases, the GPGPU time increases due to increased computations per GPGPU device, 

providing marginal improvement in scaling efficiency. Nonetheless, the dominating MPI 

communication overhead results in low scaling efficiency for the 32-node configuration. 

 
Figure 4.9 Overall Runtime Breakdown for 32-node Configuration 

 

Figure 4.10 provides the overall runtime breakdown for a 4-node configuration. In this case, 

unlike the 32-node configuration, the CPU and GPGPU computation times dominate the overall 

runtime. Since the amount of computation generally scales well with the number of processors, 

dominant CPU-GPGPU computation times are highly amenable to strong-scaling behavior as 

shown in Table 4.11. Unlike computation, the amount of MPI communication scales differently 
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and depends on the application [6]. Since the GPGPU and CPU computation times significantly 

influence the overall runtime, high scaling efficiency values are observed for the 4-node 

configuration.  

 
Figure 4.10 Overall Runtime Breakdown for 4-node Configuration 

 

Table 4.12 provides the speed-up values for all node configurations versus the test image 

size. As seen in the table, the 32-node configuration achieves a speed-up of 11.5x over the 

equivalent MPI-only implementation. The speed-up values reach a plateau for all node 

configurations and fall with the node scaling for a given test image size. This behavior confirms 

the previously provided scalability explanation. With the node scaling, GPGPU and CPU 

communications do not amortize the dominant MPI communication overhead, which ultimately 

degrades the overall performance. 
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Table 4.12 Speed-up Values: Multi-GPGPU Implementation vs. MPI-only Implementation 

 

Node 

Configuration 

Image Size 

4096x4096 5120x5120 7680x7680 10240x10240 12800x12800 

1 32.02x 33.80x 32.26x 32.27x 26.73x 

2 27.51x 28.01x 27.44x 28.07x 29.14x 

4 16.67x 17.04x 17.02x 15.75x 15.36x 

8 15.13x 15.91x 16.76x 16.10x 15.10x 

16 10.07x 10.80x 11.80x 11.50x 11.50x 

32 32.02x 33.80x 32.26x 32.27x 26.73x 

 

In this section, we provided the performance analysis study for the ADF algorithm on the 

Forge GPGPU cluster. Our implementation of the ADF algorithm was successful in processing 

images as large as 156 mega-pixels and achieved a speed-up, as high as 29x, over an equivalent 

MPI-only implementation for the same test image size. The multi-GPGPU implementation 

demonstrated reasonable scaling behavior with nearly 86% scaling efficiency for a 4-node 

configuration. The scaling efficiency for all node configurations generally improved with the test 

image sizes. However, the scaling efficiency dropped with the node (CPU-host/GPGPU-device 

pair) scaling. Analysis of the application runtime broken down in terms of GPGPU time, CPU 

time, and MPI communication time for intermediate node configurations demonstrated the 

dominance of MPI communication overhead in the application runtime for large node 

configurations. Subsequently, large node configurations observed low scaling efficiency values.  

Conversely, smaller node configurations observed higher scaling efficiency values since GPGPU 

and CPU computations dominate the application runtime. The multi-node GPGPU 

implementation speed-up over the equivalent MPI implementation followed the scaling behavior. 

4.6 SUMMARY 

In this chapter, we discussed the Forge and Palmetto GPGPU clusters used for the 

verification of the multi-level performance modeling suite. We also discussed in detail the 
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mapping methodology and orchestration of the large-scale SNN simulations and ADF algorithm 

for massive images. The scaling behavior of the SIA case studies was studied to ensure that the 

implementations used for the preliminary verification of the multi-level suite were optimal. In 

the next chapter, we describe the development of the Synchronous Iterative GPGPU Execution 

(SIGE) model and multi-level performance modeling suite.  
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CHAPTER 5 

SIGE MODEL AND MULTI-LEVEL PERFORMANCE 

MODELING SUITE 

In this chapter, we define and describe the Synchronous Iterative GPGPU Execution (SIGE) 

model that serves as the backbone for the multi-level performance modeling suite. The SIGE 

model describes the execution flow of synchronous iterative algorithms (SIAs) on multi-GPGPU 

systems by providing a set of equations for estimating the total runtime; these equations are 

evaluated using the multi-level suite. This chapter also provides a prelude to the proposed multi-

level performance modeling suite. The individual performance modeling methodologies (low-

level and high-level abstractions) are discussed in detail in Chapters 6 and 8, respectively. The 

rest of this chapter is structured as follows. Section 5.1 describes the SIGE model in detail. The 

multi-level performance modeling suite is discussed in Section 5.2, where we introduce the low-

level and high-level abstraction approaches. The chapter concludes in Section 5.3 with a 

summary. 

5.1 SYNCHRONOUS ITERATIVE GPGPU EXECUTION (SIGE) MODEL 

5.1.1 The Definition and Description 

Figure 5.1 (a) elucidates the Synchronous Iterative GPGPU Execution (SIGE) model that 

serves as the backbone for the proposed multi-level performance modeling suite. The SIGE 

model describes the execution flow of a special class of deterministic algorithms on multi-

GPGPU systems: synchronous iterative algorithms (SIAs). Some examples that fall in the 
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category of SIAs include: neural network simulations (SNNs), stencil-based image processing 

(e.g. ADF), 2D Probability Density Function (PDF) estimation [104], and bio-molecular 

dynamics [105]. Prior to describing the SIGE model operation in detail, we first define the 

following important terms pertinent to the model: node, network, stage, synchronous, and 

iterative.  

A node in the SIGE model consists of a single CPU-host tightly coupled with a GPGPU 

device to perform computations and data exchange. The CPU-host/GPGPU-device coupling is 

referred to as a host-device pair and is shown in Figure 5.1 (b). The nodes communicate data and 

synchronize with each other using the communication medium: network. It should be noted that 

both Infiniband and PCI-Ex bus constitute communication mediums; they serve as channels to 

perform data communication.  

A stage in the SIGE model is a collection of hardware operations pertinent to the algorithm. 

Some examples that constitute a stage include: inter-node synchronizing data transfers, pre-/post-

processing, intra-node computations and communications, etc.  A stage is executed by either one 

node or a combination of nodes. 

The synchronous property of the SIGE model implies that computations occur concurrently 

on the nodes. The synchronizing inter-node communications occur prior to and after the node 

computations as shown in Figure 5.1 (a). 

The iterative property of the SIGE model implies that a single stage or a combination of 

stages can be repeated multiple times as required by the algorithm. 
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Figure 5.1 (a) SIGE Model Figure 5.1 (b) 1:1 Host-Device 

Pairing 

In what follows, we describe the SIGE model operation used to develop the multi-level suite. 

The SIGE model assumes deterministic SIA execution flow, meaning the algorithm behavior is 

predictable. Unless specified otherwise, the SIAs studied are assumed deterministic. The SIA 

execution flow begins with the master MPI process rank 0 disseminating tasks to all other MPI 

processes via a synchronizing data transfer. Once the tasks are distributed, the MPI processes act 

as independent nodes and perform the assigned computations. At each node, the CPU-host 

transfers the data to the GPGPU device for computationally intensive operations. The CPU-host 

performs serial processing operations and waits for the GPGPU device operations to complete. 

Once the GPGPU device operations are completed, the GPGPU device transfers the data back to 

the CPU-host. The host-device computations and communications constitute an algorithm stage 

that can be iterated several times as required by the algorithm. Once the host-device stage 

finishes, the MPI processes synchronize in the form of data transfer, typically at MPI rank 0, to 

evaluate the final/partial result or to terminate the SIA with post-processing. 
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The overall execution time of a deterministic SIA executing on the SIGE model is the 

summation of runtimes of all the stages. Mathematically, the execution time of a SIA is 

expressed as shown in Equation 5.1: 

. . .

1 2

1 1 1

...
stage iter stage iter stage iter

execution time stage stage stage N

i i i

T T T T
  

   

  

          (5.1) 

where, the individual summation terms represent the accumulation of the longest completion 

times (Tstage) for that particular stage over the given stage iterations. Equation 5.1 assumes that 

none of the stages overlap during the course of SIA execution. However, recent GPGPU 

architectures allow for concurrent stages including but not limited to asynchronous data 

transfer(s) from CPU-host(s) to the GPGPU device(s), host-device computation overlap, and 

host-device communication overlap with the kernel computation. These overlapping stages are 

accommodated by introducing the max function as elucidated by Equation 5.2. The max function 

returns the largest value amongst the parameters in the function’s list.  

max( , ,...)execution time stage a stage bT T T           (5.2) 

In Equation 5.2, the parameters in the max function represent the overlapping SIA stages and 

the total execution time is equal to the sum of disjoint max functions. The overall execution time 

evaluation involves identification of appropriate stages pertinent to the SIA. As mentioned 

previously, these stages represent the hardware operations required by the algorithm. In our 

research, we perform a two-level stage classification for straightforward execution time 

evaluation: 1) computation-level stage that includes pre-/post-processing (Tpre-proc. and Tpost-proc.), 

CPU-host/GPGPU-device computations (TCPU-Host and TGPU-Kernel), host-to-device and device-to-

host communications (TH2D and TD2H), and 2) network- or communication-level transfers that 

include all of the inter-node network-level transactions (scatter, gather, send-receive, etc. 

denoted by ∑TTransactions) pertaining to the algorithm. Throughout the rest of the dissertation, we 



 68 

use the terms execution time and runtime interchangeably. Equation 5.3 summarizes the SIGE 

model:  

. .

1 1

computation iter communication iter

execution time computation communication

i i

T T T
 



 

    

. . .computation pre proc post proc compT T T T     

.comp CPU Host GPUT T T      (5.3) 

2 2GPU GPU Kernel H D D HT T T T    

communication TransactionsT T  

Using the SIGE model explained in this sub-section, we construct the multi-level 

performance modeling suite to predict the overall execution time of SIAs on multi-GPGPU 

systems.  

5.1.2 SIGE Model Usefulness 

Several parallel machine models have been proposed such as the Bulk Synchronous Parallel 

(BSP) model [29] and Heterogeneous Bulk Synchronous Parallel (HBSP) model [106] that aim 

to guide the design of applications for optimal performance on a given machine. Unlike these 

parallel models, the goal of the SIGE model is to generalize the execution flow of deterministic 

synchronous iterative algorithms (SIAs) on multi-GPGPU systems. Although the SIGE model 

does not provide guidelines for optimal performance, it is useful for straightforward design space 

exploration (DSE) via runtime prediction. The SIGE model breaks the application runtime into a 

number of stages (see Equations 5.1 and 5.2) that are dependent on the SIA studied and the 

corresponding application mapping. The stages, classified as a computation- or communication-

stage, are estimated either using statistical techniques provided by the low-level abstraction or 

the high-level abstraction models (existing qualitative models, quantitative models, or hybrid 
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models). The overall runtime breakdown into multiple stages allows the developer to weigh the 

effects of optimizations on the overall application behavior, enabling a thorough survey of the 

design space. For instance, optimizing the CUDA kernel (labeled stage-k for instance) may lead 

to increased host execution time (labeled stage-n) or device-host communications (labeled stage-

m). Our framework allows developers to identify such problems and take preventative measures.  

Using the SIGE model explained in this sub-section, we construct the multi-level 

performance modeling suite to predict the overall execution time of the SNN-ADF SIAs on 

multi-GPGPU systems. In the following sections, we introduce the low-level and high-level 

abstractions of the modeling suite. As mentioned previously, the low-level abstraction is 

constituted by the regression-based framework that is broken into two primary components: 

computation that models the computation-level stage of the SIA and communication that seeks to 

model the network- or communication-level stage of the SIA. The high-level abstraction uses the 

qualitative, quantitative, or hybrid approach to evaluate the components of the SIGE model.  

5.2 MULTI-LEVEL MODELING SUITE: LOW-LEVEL ABSTRACTION 

The low-level abstraction of the modeling suite uses limited implementation details and 

system information for the application runtime prediction. Therefore, partial details of the 

implementation such as the legacy code, preliminary device kernel, and system specifications 

must be available. The regression-based analysis best fits the low-level abstraction since it 

enables the determination of mathematical models that describe the application behavior on the 

given computing system with a certain degree of confidence [107]. In performance modeling 

studies, such as the one conducted in this dissertation research, application runtime adequately 

represents the dependent variable for the statistical regression analysis. Furthermore, to assist 

with the user-friendly analysis, the application runtime can be further broken into host-device 
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runtime, host-device data transfer time, and inter-processor data transfer time. Selection of the 

independent variables depends on analysis of the algorithm. For SIAs such as those mentioned 

previously, common algorithm parameters that can adequately represent the set of independent 

variables to characterize the application runtime with a high degree of confidence include but are 

not limited to the number of floating-point operations (FLOPs) performed, number of bytes 

required for computation, data transfer size, number of data transactions, and processor count. It 

is worth reiterating that FLOPS and FLOPs are two distinct parameters; FLOPS (floating-point 

operations per second) is a measure of computer performance, whereas FLOPs is the number of 

floating-point operations performed in an algorithm. In addition, one can adjust the independent 

variable space by adding/removing the parameters based on their statistical significance 

(contribution to the overall regression model).  

The primary goal of the low-level abstraction of the multi-level performance modeling suite 

is to statistically abstract the system architecture characteristics, thereby enabling performance 

prediction without detailed knowledge of the underlying computing architecture. The low-level 

abstraction constituted by the regression-based framework is broken into two components: 

computation and communication. The computation component models the CPU-host and 

GPGPU device computations using algorithm characteristics such as the number of FLOPs and 

computational bytes as predictor variables. The regression models for the computation 

component are trained using several small, instrumented executions of an SIA set with a range of 

computation-to-communication requirements. These instrumented executions are conducted 

using a set of selected problem sizes (neural network size, image size, etc.) that constitute the 

sample for the regression analysis. For any statistical study, it is imperative to choose a sample 

large enough to satisfactorily estimate/model the behavior of the entire population. In our 
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research, we choose a set of problem sizes that adequately fit on a single GPGPU device as the 

sample to typify the behavior of the entire population (other problem sizes including those 

executing on larger GPGPU cluster configurations). The communication component of the 

regression-based framework is further divided into two sub-components: 1) inter-processor 

communication over the network (Infiniband) and 2) CPU-host/GPGPU-device (host-device) 

communication over the PCI-Ex bus. The regression models for the communication component 

are developed using micro-benchmarks that measure transaction throughput and employ data 

transfer size and processor count as predictor variables. The sample for the communication 

component is constituted by a set of representative data transfer sizes (e.g. 8 KB – 128 MB).  

We assert that the low-level abstraction is expected to provide fine-grained runtime 

predictions because the performance models are developed using instrumented executions of the 

SIA on the chosen system. Consequently, it is a viable approach to DSE where the goal is to 

identify an optimal implementation from the design space for the target heterogeneous system. 

We substantiate the above claim in Chapter 7 by verifying the low-level abstraction for accurate 

runtime prediction and productive GPGPU DSE. In the roadmap for optimal A2A mapping 

(Appendix A), the low-level abstraction is the last milestone that identifies the best 

implementation for the target system through DSE.  

5.3 MULTI-LEVEL MODELING SUITE: HIGH-LEVEL ABSTRACTION 

The high-level abstraction of the performance modeling suite aims to predict the runtime of 

SIAs on multi-GPGPU systems using minimum implementation details and high-level system 

specifications. The high-level abstraction does not assume existence of significant 

implementation knowledge and largely relies on the algorithm characteristics (floating-point 

operations, bytes consumed, number of computational elements, etc.) and system specifications 
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(device computation bandwidth, PCI-Ex bandwidth, network bandwidth, etc.). The SIGE model 

described in Section 5.1 is applicable to the high-level abstraction modeling approach where the 

computation and communication components are estimated either analytically or using micro-

benchmarks (or augmented micro-benchmarks). Consequently, the high-level abstraction is 

broken into two primary components: Qualitative Modeling and Quantitative Modeling. The 

qualitative modeling approach uses existing subjective-analytical models for device 

computations, host-device communications, and network-level communications. The subjective-

analytical models describe the system using simple mathematical analytic functions, avoiding 

minute estimation of the large number of parameters pertaining to the system. These analytical 

models are developed based on those discussed in Chapter 2. The quantitative modeling 

approach predicts computation and communication performance by measuring hardware-specific 

events associated with objective-analytical models using micro-benchmarks. A hybrid modeling 

approach is derived using the above two high-level approaches where some of the SIGE model 

components are estimated analytically, and the remaining components are analyzed 

quantitatively. We assert that the predictions enabled by the high-level abstraction models are 

expected to be coarse-grained; accordingly the models are better suited for preliminary 

performance prediction. As elaborated by the A2A roadmap (Chapter 10), the high-level 

abstraction is an intermediate milestone that provides an initial insight into the application 

performance.      

Figure 5.2 summarizes the multi-level performance modeling suite and highlights the 

performance modeling space. Based on the given design goals and the level of knowledge 

regarding the algorithm and architecture(s), the multi-level performance modeling suite provides 
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an appropriate modeling strategy from the modeling space that enables straightforward and 

accurate application runtime prediction.  

 

 
Figure 5.2 The Multi-level Performance Modeling Suite 

5.4 SUMMARY 

In this chapter, we introduced the multi-level performance prediction modeling suite 

proposed in the dissertation research. We explained the development of the SIGE model and 

described the SIA execution flow on the SIGE model. We also provided a prelude to the multi-

level performance modeling suite and summarized the performance modeling space in Figure 

5.2. The next chapter details the low-level abstraction of the performance modeling suite. We 

elucidate the development of regression models for the computation and communication 

components that are ultimately used to estimate the overall SIA execution time (Equations 5.1 - 
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5.3). It is re-iterated that we follow a bottom-up approach to construct the performance modeling 

suite (low-level abstraction to high-level abstraction); whereas the A2A roadmap seeks a top-

down approach (high-level abstraction to low-level abstraction) for application performance 

prediction.    
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CHAPTER 6 

THE LOW-LEVEL ABSTRACTION 

In the foregoing chapter, we explained the SIGE model that describes the execution flow of 

SIAs on multi-GPGPU systems. We also provided an overview of the multi-level performance 

modeling suite that includes two-levels of abstraction: low-level and high-level. In this chapter, 

we discuss the low-level abstraction in detail. The low-level abstraction consists of the 

regression-based framework that is broken into two primary components: computation and 

communication. In Section 6.1, we provide a brief background on the multiple regression 

analysis theory and mention pertinent mathematical terms used throughout the analysis. The low-

level abstraction is expounded in Section 6.2 where we construct the regression models for SNN-

ADF SIAs. In Section 6.3, we demonstrate the application of the low-level abstraction for 

GPGPU DSE for the chosen SIAs. Section 6.4 concludes the chapter with a summary.  

6.1 MULTIPLE REGRESSION ANALYSIS 

Multiple regression analysis is a popular statistical tool used to obtain a relationship between 

the dependent variable and a set of independent variables with a certain degree of confidence 

[107 and 108].  Mathematically, the regression analysis is concerned with relating the response, 

y, with a set of independent variables, xi. The mathematical literature defines population as an 

entire set of data-points that may be collected for a given problem. The size of the population is 

usually very large and it is difficult to draw any statistical inference using all of the data-points in 

that population. Instead, a valid statistical inference is made by selecting a subset of data-points, 

termed as sample, from the population. Multiple regression analysis is concerned with obtaining 
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a predictor equation or regression model using a sample that adequately represents the entire 

population. A multiple regression model can take several mathematical forms, either it can be 

linear with respect to the independent variables or may involve interaction and higher-order 

terms. An example multiple regression model is elucidated by Equation 6.1: 

 1 1 2 3 1 2y x x x x x              (6.1) 

where the coefficients αi represent the estimates of the model parameters, ε represents the error 

due to the difference between the actual response and the estimated response, and the term x1x2 

represents the interaction between independent variables x1 and x2, respectively. The commonly 

used model estimation criterion is the least square method, which must satisfy two important 

conditions: 1) The sum of errors must be zero and 2) the sum of the squares of errors is the 

minimum. Additionally, as described in [107], the error ε must satisfy the following four 

conditions for reliable prediction. First, the mean of the probability distribution (PD) of ε is zero. 

Second, the variance of PD is constant irrespective of xi. Third, the PD of ε is normal and lastly, 

the errors associated with any two observations are independent.  

Once an initial model is constructed, it is important to evaluate the validity of the model. 

Several criteria exist to evaluate the model’s validity, in this research we rely on the R-squared 

and p-values of the regression model, p-values of the individual estimates, and visual inspection 

of the residual plots. Typically, a model is considered reliable if the R-squared value is greater 

than 0.95 and p-values are less than 0.05. A detailed background on the regression theory can be 

found in [107]. In this research, we use the statistical package R [109] to perform all regression 

analysis. 

 

 



 77 

6.2 LOW-LEVEL ABSTRACTION: REGRESSION-BASED FRAMEWORK 

In this section, we describe the regression model construction for the computation and 

communication components of the regression-based framework using two SIA case studies: 

large-scale SNN simulations based on the four SNN models and ADF for massive images. These 

SIA implementations were performed on the NCSA Forge GPGPU cluster, subsequently the 

regression models developed correspond to this computing system.  

6.2.1 The Computation Component 

The computation component of the regression-based framework models the CPU-host and 

GPGPU device computations. The regression model for CPU-host computations is trained using 

instrumented runs of the legacy code on a small set of processors. This method has been adapted 

from [6] where the authors develop the regression model for CPU computations using a set of 

processors to predict the performance of large cluster configurations. In our research, we profile 

the sections of code executing on the CPU-host and develop the regression model for the CPU 

execution time, TCPU-Host, with the following predictor variables: the number of processors P, 

number of floating-point operations FLOPs, and the total number of bytes involved in 

computations, BYTES.  

The regression model for CPU computations can take several forms depending on the 

number of FLOPs performed (computation-bound) and bytes accessed (communication-bound). 

However, for our chosen SIA case studies, the CPU-host computations are predominantly 

communication-bound (data structure access/ look-up); therefore P and bytes constitute the 

significant parameters in the regression model for CPU computations. The regression models for 

TCPU-Host for the four SNN models and ADF are elucidated by equations 6.2 – 6.6. These 
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regression models were selected based on their high R
2
 values (greater than 0.95) and low p-

values (less than 0.05).  

HH model: 

CPU- HostT = -126.35+ 256.72* + 25.016* +12.19*( -2.55)*( -4.6)GBYTES P GBYTES P   

            (6.2) 

ML model: 

CPU- HostT = -147.85+1486.12* + 28.8* +51.14*( -0.581)*( -4.57)GBYTES P GBYTES P   

   (6.3) 

Wilson model: 

CPU- HostT = -62.65+944.8* +11.86* + 23.56*( -0.70)*( -4.5)GBYTES P GBYTES P   

   (6.4) 

Izhikevich model: 

CPU- HostT = -100.832+10240.5* +18.76* + 484.97*( -0.0581)*( -4.48)GBYTES P GBYTES P   

            (6.5) 

ADF: 

CPU-HostT  = -36.57 + 4.28*  + 5.11*  +0.206*(  - 27.215)*(  - 7.13)MBYTES P MBYTES P   

            (6.6)  

Unlike the CPU computations, the GPGPU computations for SNN-ADF SIAs significantly 

depend on the FLOPs and BYTES variables, which increase with the problem size (SNN size and 

image size). First, we describe the derivation of the regression models for the SNN SIAs. To 

obtain reliable regression models (high R
2
 and low p-values) for the SNN SIAs, the four SNN 

models are grouped either as computation-bound or communication-bound models based on the 

FLOPs/Byte ratio values in Table 3.1. The regression models are then developed separately for 
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the computation-bound or communication-bound SNN models. As seen in Table 3.1, the HH and 

ML models have high FLOPs/Bytes ratio, hence they are grouped as computation-bound models, 

whereas the Izhikevich and Wilson models have low FLOPs/Byte ratio, consequently they are 

grouped as communication-bound models. For each of the SNN models, we perform 

instrumented executions of the GPGPU kernel using several network sizes to construct the 

regression models. These network sizes adequately fit on a single GPGPU device, hence fittingly 

constitute the sample for regression testing. The regression models for computation- and 

communication-bound SNN models are shown in Equations 6.7 and 6.8.  

Computation-Bound: 

GPU KernelT 85.25 19.2* 177.6* 0.0028*( 363.34)*( 35.9)GFLOPs GBYTES GFLOPs GBYTES         

   (6.7) 

Communication-Bound: 

GPU KernelT 8.3 23.53* 42.6* 0.0133*( 13.35)*( 8.54)GFLOPs GBYTES GFLOPs GBYTES        

   (6.8) 

The ML and Wilson models present an interesting situation where both models are 

moderately computation-bound and communication-bound with moderate FLOPs and bytes 

requirement as shown in Table 3.1. In addition to the above regression models for computation-

bound and communication-bound SNNs, we also develop regression models for the special case 

of moderately computation- and communication-bound SNN models as shown in Equation 6.9.  

Moderately Computation- and Communication-Bound: 

GPU- KernelT =10.083-0.275* +5.43*GFLOPs GBYTES    (6.9) 

To demonstrate the cost of constructing the regression models for GPGPU device 

computations, Table 6.1 shows the GPGPU kernel execution time for selected neural network 
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sizes from the chosen test sample. As seen in Table 6.1, the execution times are fairly short and 

easily obtainable based on the system/device availability. The regression models are derived 

using the sample data fed to a regression engine, R [109] for instance. 

Table 6.1 GPGPU Kernel Execution Time for SNN Models 

Network 

Size (in 

millions) 

GPGPU Kernel Execution Time (milliseconds) 

HH Model ML Model Wilson Model Izhikevich 

Model 

12.7 2315.31 70.79 183.1 32.6 

10.5 1868.85 57.41 148.38 26.56 

8.1 1499.56 46.54 119.01 21.67 

4.8 934.5 29.29 74.25 13.97 

2.88 588.97 18.78 46.71 9.29 

0.72 206.1 7.34 16.41 4.23 

 

To obtain the GPGPU computation regression model for the ADF algorithm, we paired the 

ADF algorithm with the Izhikevich SNN model. Table 6.2 shows the FLOPs-to-Byte and 

FLOPs/Byte ratio information per data element for the two algorithms. For the ADF-Izhikevich 

SIA pair, we define FLOPs/Byte ratio as the ratio of the number of floating-point operations 

performed in the algorithm to the overall bytes requested by the algorithm for computations. As 

seen in Table 6.2, both Izhikevich SNN and ADF algorithms have similar FLOPs-to-Byte 

requirements with FLOPs/Byte ratio close to 1, therefore we classify them together as 

communication-bound algorithms with a common regression model for GPGPU device 

computations. Similar to the SNN case studies, we perform several small, instrumented 

executions of the GPGPU kernels for different problem sizes to construct the ADF-Izhikevich 

GPGPU regression model given by Equation 6.10.  

GPU-KernelT  = 2.212 +490.63*  - 509.7012*  +0.246*( -1.53)*(  - 1.09) GFLOPs GBYTES GFLOPs GBYTES  

            (6.10) 
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Table 6.2 FLOPs, Bytes, and FLOPs/Byte ratio per Data Element 

Algorithm FLOPs Bytes FLOPs/Byte ratio 

Izhikevich SNN 13 13 1.00 

ADF 16 12 1.33 

6.2.2 The Communication Component 

The communication component of the regression-based framework is broken into two sub-

components: 1) Inter-node communication over Infiniband and 2) CPU-host/GPGPU-device 

communication over PCI-Ex bus. Although mentioned here as a part of the communication 

component, we also include the host-device communications over PCI-Ex bus in the 

computation stage of the SIGE model for straightforward analysis. First, we develop the 

regression models for the inter-node communication.  

A. Inter-node Communications 

The inter-node communication over Infiniband can be comprised of several network-level 

transactions such as scatter, gather, reduce, etc. We separately model the network-level 

operations as a function of the message size, MBYTES (message size in megabytes) and the 

number of processors, P. We perform micro-benchmarks on the aforementioned network-level 

transactions using typical data-size range (8 KB - 128 MB) to obtain an initial sketch of the 

transaction throughput. Figures 6.1 and 6.2 show the scatter and gather throughputs for different 

node configurations versus the message size.  As seen in the same figures, the scatter and gather 

throughput curves saturate at different levels for different node configurations and resemble the 

Michaelis-Menten kinetics [68]. The development of a single regression model for transaction 

throughput with this behavior is non-trivial; therefore we choose to perform a separate regression 

analysis for the network-level transactions at all node configurations. The equation for the 

Michaelis-Menten kinetics adapted to model the scatter/gather throughput is: 
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max[ ]

[ ]m

V S
v

K S



          (6.11) 

where, v represents the reaction rate, Vmax represents the maximum rate achieved by the system, 

and Km represents the substrate concentration where the reaction rate is half of Vmax [68]. 

Correspondingly, for the scatter/gather throughput over Infiniband, v and [S] correspond to the 

scatter/gather throughput and message size in megabytes, respectively. The terms Km and Vmax 

for the scatter/gather throughput, expressed in megabytes and MB/sec respectively, are obtained 

by performing non-linear regression analysis (using the nls command in R [109 and 110]) on the 

training dataset. Table 6.3 provides the Km and Vmax values corresponding to the Michaelis-

Menten kinetics (Equation 6.11) for the scatter and gather network-level operations. For the 

reduce operation performed in the SNN multi-GPGPU orchestration, we use the micro-

benchmark throughput values, since data size is constant (48 neurons x 4 bytes = 192 bytes) and 

is reduced at MPI rank 0 irrespective of the neural network size and cluster configuration. The 

regression models for scatter/gather throughput presented in Table 6.3 have satisfactory R
2
 and 

p-values, making them reliable for prediction. 

In Chapter 8, we explain this intuitive mapping of the network-level transaction problem onto 

the Michaelis-Menten kinetics with a perspective of subjective-analytical models.  
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Figure 6.1 Scatter Throughput vs. Message Size 

 
Figure 6.2 Gather Throughput vs. Message Size 
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Table 6.3 Vmax (MB/sec) and Km (MB) for Scatter and Gather Operations 

Network 

Operation 

2 Proc. 4 Proc. 8 Proc. 16 Proc. 32 Proc. 

Scatter Vmax Km Vmax Km Vmax Km Vmax Km Vmax Km 

1867 -0.14 1386 -0.03 1399 0.03 1947 0.65 2253 2.42 

Gather Vmax Km Vmax Km Vmax Km Vmax Km Vmax Km 

1801 -0.06 1953.9 0.43 1788.5 -0.34 1774.5 -0.22 1669.7 -1.4 

 

To obtain the regression models for the sendrecv operation, we perform micro-benchmarks 

on configurations ranging from 4- to 32-nodes. The sendrecv times obtained for the 2-node 

configuration were very short (in fractions of milliseconds) for any reasonable data size 

compared to the other node configurations; therefore we do not show the regression analysis for 

the 2-node case. The sendrecv micro-benchmark replicates the sendrecv communication pattern 

used in the ADF algorithm for different test image sizes. Figure 6.3 shows the sendrecv 

throughput values versus data exchange size for different node configurations. 

 
Figure 6.3 Sendrecv Throughput vs. Data Exchange Size 
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As seen in Figure 6.3, the sendrecv throughput exponentially decays with the data exchange 

size for all of the specified node configurations. A visual inspection of the same figure suggests 

regression of the logarithm of throughput on the data exchange size to obtain a linear model. 

Table 6.4 summarizes the regression models for the sendrecv operation. In the equations shown 

below, the sendrecv variable corresponds to the sendrecv throughput and Kbytes represents the 

data exchange size in KB. 

Table 6.4 Regression Models for sendrecv Operation in ADF Algorithm 

Node Configuration Regression Model 

4 log( ) 6.98 0.039*Sendrecv Kbytes   

8 log( ) 6.90 0.049*Sendrecv Kbytes   

16 log( ) 7.01 0.045*Sendrecv Kbytes   

32 log( ) 6.86 0.035*Sendrecv Kbytes   

 

B. PCI-Ex Bus Communications 

As discussed in Section 4.1, each server in the Forge GPGPU cluster consists of 6 GPGPU 

devices interfaced with the NUMA nodes via PCI-Ex bus using PCI-Ex switches (see Figure 

4.1). As mentioned in Section 4.2, the MPI ranks are assigned in node packing fashion with 1:1 

CPU-host/GPGPU-device ratio at each server. Consequently, at node configurations greater than 

4 host-device pairs, up to 6 host-device pairs may be packed in a single server leading to PCI-Ex 

bus congestion in that server. Therefore, the regression models for PCI-Ex download (host-to-

device) and read-back (device-to-host) throughputs are developed for different host-device 

pairings in a single server.  

We perform micro-benchmarks for download and read-back throughputs using typical 

message sizes (8 KB to 32 MB) for 2, 4, and 6 host-device pairs in a single server. The 

intermediate host-device pairs (1, 3, and 5 host-device pairs) are not included since our test node 

configurations are multiples of 2. Figures 6.4 and 6.5 show the download and read-back 
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throughput curves for different per-server host-device pair configurations. Similar to the 

Infiniband performance, the PCI-Ex bus performance resembles the Michaelis-Menten kinetics. 

Also seen in the figures, the throughput values drop with host-device pair scaling, confirming the 

hypothesis that host-device pair scaling in a server leads to PCI-Ex traffic congestion, leading to 

reduced download and read-back throughput values. Table 6.5 provides the Vmax and Km values 

corresponding to Equation 6.11 for download and read-back throughput. The subjective-

analytical modeling perspective of this analysis is elaborated in Chapter 8.  

 
Figure 6.4 Download Throughput vs. Message Size 
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Figure 6.5 Read-back Throughput vs. Message Size 

 

Table 6.5 Vmax (MB/sec) and Km (MB) for PCI-Ex Download and Read-back 

PCI-Ex Operation 2 Proc. 4 Proc. 6 Proc. 

Download Vmax Km Vmax Km Vmax Km 

1759 0.0012 1682.8 -0.02 1108.9 0.48 

Readback Vmax Km Vmax Km Vmax Km 

1567.86 0.43 1385.12 0.7 501.12 0.8 

 

In the foregoing discussion, the Michaelis-Menten kinetics equation was intuitively applied 

to model the download and read-back operations over the PCI-Ex bus. However, additional 

mathematical techniques can be employed to fit regression models that may provide higher 

prediction accuracy. As seen in Figures 6.4 and 6.5, the relationship between the throughput 

values and message size is highly non-linear, thereby requiring a variable transformation. We 

apply a logarithm transformation, henceforth log-transformation, on the message size and 

perform regression of the PCI-Ex throughput on log-transformed message size to obtain a simple 

linear relation. Table 6.6 provides the regression models for the download and read-back 
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operations obtained using the log-transformation. These regression models were selected based 

on high R
2
 and low p-values. 

Table 6.6 Regression Models for Download and Read-back Throughput (MB/sec) 

Host-

Device 

Pair 

PCI-Ex Download PCI-Ex Read-back 

2 1269.34 284.11*log( )Download Mbytes   1022.21 218.81*log( )Read -back Mbytes   

4 1021.36 255.06*log( )Download Mbytes   794.12 193.43*log( )Read -back Mbytes   

6 720.73 179.63*log( )Download Mbytes   290.25 74.24*log( )Read -back Mbytes   

 

In this section, we elucidated the low-level abstraction constituted by the regression-based 

framework that aims to provide analysis of the following components of the SIGE model: 

computation and communication. The computation components were developed using algorithm 

characteristics such FLOPs and bytes, whereas the communication component regression models 

were developed with micro-benchmarks of the Infiniband and PCI-Ex bus performance. In 

addition to intuitively applying the Michaelis-Menten kinetics for PCI-Ex bus performance 

modeling, the variable transformation technique was also applied to develop alternate regression 

models. We performed log-transformations on the message size to obtain a simple linear relation 

between the PCI-Ex throughput (download and read-back) and log-transformed message size. 

The resulting simple linear models for download and read-back throughputs were accepted based 

on their high R
2
 and low p-values. In simple linear regression analysis, a high R

2
 value signifies 

that the chosen regression model adequately explains the variation of the independent variable 

with respect to the dependent variable, whereas a low p-value signifies the validity of the simple 

linear model. Although the variable transformation analysis can be applied for the network-level 

transactions, our log-transformation analysis for the network-level yielded regression models 

with low R
2
 values, hence not suitable for predictions. We surmise that a larger sample for the 

network-level can better aide the regression analysis (both Michaelis-Menten and log-
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transformation). To justify this claim, Figures 6.6 and 6.7 show the scatter throughput prediction 

capability of the Michaelis-Menten and log-transformation methods when a large sample is 

chosen. These figures show the predicted and actual scatter throughput values for an 8-node 

configuration on the Palmetto multi-GPGPU cluster [15]. As seen in the same figures, the scatter 

throughput is approximated reasonably by both Michaelis-Menten and log-transformation 

methods due to the selection of a large sample for analysis. The Michaelis-Menten kinetics better 

approximates the scatter throughput compared to the log-transformation method given its high R
2 

value (0.99 vs. 0.93). In the next chapter, we employ the regression models developed in this 

section to perform runtime predictions for SNN-ADF SIAs.  

The authors assert that these regression-based techniques can be extended to other computing 

systems as well. In the next section, we present the GPGPU DSE leveraged by the low-level 

abstraction. This analysis was conducted on the GPGPU-augmented Palmetto cluster with latest 

Kepler K20 devices.  
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Figure 6.6 Scatter Throughput Prediction for 8-node Configuration using  

Michaelis-Menten Kinetics 
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Figure 6.7 Scatter Throughput Prediction for 8-node Configuration using Log-

Transformation 

 

6.3 GPGPU DSE USING LOW-LEVEL ABSTRACTION 

Design Space Exploration (DSE) studies offer an interesting way to perform application 

tuning and mapping by exploring several possible implementations (the design space) of an 

application on the target computing system. The GPGPU DSE aims to analyze the runtime 

performance of several functionally equivalent implementations of an algorithm, thereby ranking 

the GPGPU design space. This ranking enables developers to choose the best implementation for 

optimal algorithm performance on GPGPU-based systems. The GPGPU devices have a 
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specialized architecture with a memory hierarchy comprising of global, local, shared, constant, 

and texture memories, each with distinct properties that influence the application performance, 

thereby requiring prudent use of these memories. An application can employ several plausible 

optimizations pertaining to the GPGPU memory hierarchy, creating a large design space. As 

mentioned in Chapter 5, the low-level abstraction (regression-based framework) is anticipated to 

provide fine-grained runtime predictions, providing a viable approach to GPGPU DSE. Using the 

regression-based framework, we explore the GPGPU design space featuring optimizations of the 

GPGPU memory hierarchy for optimal application performance. The regression-based 

framework models the GPGPU kernel performance using minimum application and accelerator 

details such as the number of floating-point operations (FLOPs), number of bytes consumed, and 

parameters pertaining to the GPGPU memory hierarchy including global, texture, and shared 

memories. Additional algorithm parameters that influence the runtime performance can also be 

included in the regression analysis. For instance, the number of non-zero rows in a sparse matrix 

problem can be used as an independent variable for the analysis. The kernel runtime predictor 

equations are developed with the kernel runtime data collected using several small, instrumented 

executions of SIAs with a range of computation-to-communication requirements. The kernel 

runtime predictions for candidate implementations are then compared to ultimately rank the 

GPGPU design space for a given application. In Section 6.3.1, we discuss the three GPGPU 

design space implementations for the SNN-ADF SIAs studied in this research. These 

implementations employ GPGPU-CPU task division identical to the one described in Section 

4.2. The GPGPU kernels for implementations differ with respect to the type of memory 

optimizations employed. These functionally identical implementations are executed on the 

GPGPU-augmented Palmetto cluster with Kepler K20 devices. The development of regression 
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equations for evaluating the GPGPU design space is given in Section 6.3.2. The verification of 

the low-level abstraction for GPGPU DSE is performed in the next chapter.    

6.3.1 Design Space Implementations 

A. Global Memory 

Implementation 1 uses the GPGPU device DRAM (the largest memory), the global memory, 

to store the entire input data pertaining to an application. The GPGPU device fetches the data 

from the global memory for computations; once all of the computations are finished, the GPGPU 

device writes the output back to the global memory for reading by the host processor. As the 

global memory is off-chip memory, frequent accesses result in higher memory latency, thereby 

impeding the overall application performance. All memory accesses for the SNN and ADF 

implementations use the global memory. We chose a constant thread block configuration of 256 

threads per block to maximize the multiprocessor occupancy for the SNN and ADF 

implementations using the global memory.   

B. Shared Memory 

Implementation 2 uses the shared memory, which is an on-chip read/write memory local to a 

given thread block. All the threads in a thread block have access to the same shared memory, 

thereby enabling synchronization of the threads within a thread block. Additionally, being an on-

chip memory, the use of shared memory reduces the frequent accesses to the off-chip global 

memory, improving the application performance. For our chosen SIAs, the size of the shared 

memory depends on the BLOCKSIZE (number of threads in a block). Therefore, to obtain the 

kernel runtimes using various BLOCKSIZES, we vary the BLOCKSIZE parameter in the kernel 

from 32 threads to 1024 threads. Additionally, for the SNN models, Implementation 1 is 
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equivalent to Implementation 2 using a BLOCKSIZE of 256, as they have same number of 

global memory accesses; whereas for the ADF algorithm, the neighboring pixels in the noised 

image are fetched from the shared memory, making Implementation 2 distinct from 

Implementation 1.  

C. Texture Memory 

For Implementation 3, we use the texture memory designed for high-speed data reading. The 

texture memory is cached and therefore allows for faster accesses to the data, reducing the 

frequent high latency accesses to the global memory. The CUDA framework provides techniques 

for using 1D, 2D, or 3D textures. We use the read-only 1D texture memory to read the level-1 

currents for the SNN implementation. For the ADF implementation, we use the read-only 2D 

texture memory to fetch the neighboring pixels in the noised image. 

The next section discusses the low-level design space abstraction where we develop the 

kernel runtime regression models for these implementations.  

6.3.2 Regression-Based Framework for GPGPU DSE 

In this section, we explain the regression-based framework for GPGPU design space 

exploration. The regression-based framework constitutes the low-level abstraction of the design 

space where partial knowledge of the implementation is present along with the system 

specifications. We first explain the low-level design space abstraction, followed by the 

development of regression equations for the three GPGPU design space implementations of the 

SNN-ADF SIAs.  
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A. Low-Level Design Space Abstraction 

As mentioned previously, the GPGPU design space consists of a specialized memory 

hierarchy comprising of global, local, shared, constant, and texture memories, each with distinct 

properties that influence the application performance. Motivated by the modeling concepts 

developed in [16], we introduce the low-level design space abstraction that aims to statistically 

encapsulate the characteristics of the aforementioned GPGPU device memories, enabling DSE 

via kernel runtime prediction using limited implementation details and system information. The 

regression-based framework, which constitutes the low-level design space abstraction, enables 

the formulation of mathematical models that assist in the kernel runtime prediction for the given 

GPGPU architecture with a certain degree of confidence [107]. In this framework, the GPGPU 

kernel runtime satisfactorily typifies the dependent variable for the regression analysis. The 

choice of independent variables depends on the algorithm studied and the implementation 

selected from the design space. For the SIAs used in this research, parameters that can 

adequately represent the set of independent variables include: the number of floating-point 

operations (FLOPs), number of bytes required for computation, and memory types employed 

from the GPGPU device memory hierarchy.  

The regression models for GPGPU computations are trained using several instrumented 

executions of an SIA set with a range of computation-to-communication requirements. To 

perform the regression analysis, we choose a set of nominal test sizes as samples to characterize 

the behavior of the entire population that includes larger input sizes. The regression models were 

selected based on their high R
2
 values (greater than 0.95) and low p-values of the regression 

coefficients and overall model (less than 0.05). 
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B. Regression Models for Implementation 1 

For Implementation 1, we group the four SNN models either as computation-bound or 

communication-bound SNN models based on the FLOPs/Byte ratio values mentioned in Table 

3.1. Therefore, the HH and ML models are grouped as computation-bound models, whereas the 

Izhikevich and Wilson models are grouped as communication-bound models. Additionally, to 

obtain the prediction models for algorithms that have FLOPs/Byte ratios between the ML and 

Wilson models, we present a case where both the models are moderately computation-bound and 

communication-bound with moderate FLOPs and bytes requirements. The GPGPU kernel 

regression models are developed separately for the computation-bound, communication-bound, 

and moderately computation-bound and communication-bound SNN models. These regression 

models use algorithm characteristics such as the number of floating-point operations, MFLOPs 

(in megaflops) and the number of computational bytes, MBYTES (in megabytes) as predictor 

variables. For each of the SNN models, we perform several instrumented executions of the 

GPGPU kernel using several network sizes to construct the regression models for the 

aforementioned bounds. The SNN regression models for all of the aforementioned bounds are 

shown in Equations 6.12, 6.13, and 6.14. 

Computation-Bound: 

4.821375 0.008194 0.065055GPU KernelT MFLOPs MBYTES      
     (6.12) 

        

Communication-Bound: 

2.2410263 0.0405150 0.0678999GPU KernelT MFLOPs MBYTES     
         (6.13)            
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Moderately Computation- and Communication-Bound: 

3.449 3.649 04 6.669 03GPU KernelT e MFLOPs e MBYTES       
     (6.14) 

We now explain the development of the GPGPU kernel runtime regression model for the 

ADF algorithm. Table 6.2 shows the FLOPs, Bytes, and FLOPs/Byte ratio information per data 

element for the ADF algorithm and the Izhikevich SNN model. As seen in Table 6.2, both the 

Izhikevich SNN and ADF algorithms have similar FLOPs-to-Byte requirements with 

FLOPs/Byte ratio close to 1, therefore we group them together as communication-bound 

algorithms with a common regression model for the GPGPU device computations, given by 

Equation 6.15. 

Communication-Bound (ADF and Izhikevich):  

5.304158 0.126048 0.107107GPU KernelT MFLOPs MBYTES      
     (6.15) 

C. Regression Models for Implementation 2 

As mentioned in Section 6.3.1, shared memory utilizes locality to reduce the frequent 

accesses to the global memory. As shared memory is allocated per thread block and all threads in 

the block have access to the same shared memory, we consider the hardware parameter 

BLOCKSIZE (number of threads in a thread block), as one of the independent variables for 

developing the GPGPU kernel runtime regression model, in addition to the parameters MFLOPs 

and MBYTES. Due to hardware constraints on the algorithm correctness, the SNN 

implementations were limited to BLOCKSIZES: 128, 256, and 512. Consequently, we define two 

indicator variables, A and B, to index the above BLOCKSIZES and analyze each of the four SNN 

models individually. The indicator variables are commonly used to incorporate the categorical 
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effects of independent variables in the regression analysis [107]. The indexing of BLOCKSIZES 

is elucidated as: 

 128: A=1, B=0

 256: A=0, B=1

 512: A=0, B=0 

BLOCKSIZE

BLOCKSIZE

BLOCKSIZE

 

 

The regression models for the four SNN models are shown in Equations 6.16, 6.17, 6.18, and 

6.19. It should be noted that MBYTES is not included in the regression models due to its weak 

statistical significance. Unlike the SNN models, the shared memory implementation of the ADF 

algorithm was not limited by the choice of BLOCKSIZE. Consequently for the ADF 

Implementation 2, we consider the BLOCKSIZE parameter as a quantitative variable along with 

MFLOPs and MBYTES for developing the regression model given in Equation 6.20. These 

regression models statistically capture the effects of shared memory usage on the GPGPU kernel 

runtime, in addition to the FLOPs performed and BYTES consumed by the GPGPU kernel. 

HH:                 

129 0.001796 120.3 107.2GPU KernelT MFLOPs A B        
     (6.16) 

ML:                

2.502 0.0004477 0.1879 0.2645GPU KernelT MFLOPs A B       
     (6.17) 

Wilson:                

4.320 0.003955 0.02133 0.2126GPU KernelT MFLOPs A B       
     (6.18) 

Izhikevich:               

1.800584 0.0287466 0.9955 0.567GPU KernelT MFLOPs A B       
    (6.19) 
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ADF:               

244.25560 208.47496 580.82102 0.15345GPU KernelT MFLOPs MBYTES BLOCKSIZE        
   

            (6.20) 

D. Regression Models for Implementation 3 

Texture memory is a fast, read-only cache between the GPGPU Streaming Multiprocessors 

(SMPs) and device memory that provides high bandwidth by reducing memory requests to the 

off-chip global memory. The four SNN models represent a wide-range of computation 

requirements; therefore the amount of texture memory and global memory accessed varies for 

each of the four SNN models. Unlike Implementation 1, we model the kernel runtime of the four 

SNN models algorithm individually. The kernel runtime regression models for the four SNN 

models observed significant collinearity between the predictor variables: global memory 

(GLOBAL) and the texture memory (TEXTURE). To mitigate the collinearity between the 

predictor variables, we use the texture memory as an indicator variable for developing the kernel 

runtime regression models. The predictor variables used for the kernel runtime regression models 

are the number of floating-point operations (MFLOPs) and the number of bytes accessed from 

the global memory (GLOBAL) as quantitative variables, and the texture memory (TEXTURE) as 

an indicator variable. The regression models for the SNN models are shown in Equations 6.21, 

6.22, 6.23, and 6.24. The texture memory implementation of the ADF algorithm did not observe 

any collinearity amongst the predictor variables. Consequently, GLOBAL, MFLOPS, and 

TEXTURE are used as quantitative variables. Equation 6.25 gives the regression equation for the 

ADF algorithm. 
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HH:               

57.02 7.589 03 2.383 01 56.66GPU KernelT e MFLOPs e GLOBAL TEXTURE          
   (6.21) 

  

ML:             

1.775 6.655 04 7.221 03 2.138 01GPU KernelT e MFLOPs e GLOBAL e TEXTURE          
  (6.22)  

Wilson:             

3.5580964 6.4678 03 1.48080 02 3.98392 02GPU KernelT e MFLOPs e GLOBAL e TEXTURE          
  (6.23) 

Izhikevich:                          

1.1830696 0.0316368 0.0016329 0.0144303GPU KernelT MFLOPs GLOBAL TEXTURE       
  (6.24) 

ADF:                                      

65.90 57.08 3415.26GPU KernelT MFLOPs TEXTURE     
      (6.25) 

6.4 SUMMARY 

In this chapter, we discussed the low-level abstraction of the multi-level performance 

modeling suite in detail. We explained the development of regression models to estimate the 

computation and communication components of the SNN-ADF SIAs using the NCSA Forge 

GPGPU cluster. Profiles of the CPU sections of the parallel algorithm were used to develop the 

CPU computation regression models. These regression models were constructed using the 

number of processors (P) and data accessed (BYTES) as predictor variables. Unlike the CPU-host 

computations, the GPGPU device computation regression models were developed using the 

number of floating-point operations (FLOPs) and bytes consumed (BYTES) as predictor 

variables. The SIAs were grouped either as computation-bound, communication-bound, or 

moderately computation- and communication-bound models to obtain reliable predictor 



 101 

equations. For the communication component of the SIAs, micro-benchmarks were used to train 

the transaction throughput regression equations. The throughput equations were developed using 

the Michaelis-Menten kinetics equation and log-transformation method. We also demonstrated 

the use of low-level abstraction for design space exploration. We discussed three design space 

implementations of the SNN-ADF SIAs, namely global memory, shared memory, and texture 

memory, and developed the kernel runtime regression equations for these implementations. The 

construction of the kernel runtime regression equations included parameters pertaining to the 

GPGPU device memory hierarchy, in addition to FLOPs and BYTES. In the next chapter, we 

employ the regression equations developed in this chapter to verify the low-level abstraction for 

fine-grained runtime prediction and GPGPU DSE.  
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CHAPTER 7 

VERIFICATION OF THE LOW-LEVEL ABSTRACTION 

In this chapter, we present the verification results for the low-level abstraction using all of the 

SIA case studies employed in this dissertation research. We report error rates for the computation 

component, communication component, and the overall application runtime. We also verify the 

use of low-level abstraction for optimal design space exploration. A Strengths, Weaknesses, and 

Opportunities (SWO) analysis study is also conducted to identify the merits and demerits of the 

low-level abstraction methodology, identifying avenues for further improvement. The 

verification of the low-level abstraction for accurate runtime prediction of SIAs on multi-

GPGPU systems is provided in Section 7.1. As mentioned in the previous chapters, this analysis 

is performed on the NCSA Forge GPGPU cluster. Section 7.2 presents the results and analysis of 

GPGPU DSE using the low-level abstraction. This study was conducted on the GPGPU-

augmented Palmetto cluster with Kepler K20 devices. The SWO analysis is performed in Section 

7.3 with both the Fermi and Kepler architectures, highlighting the framework’s ability to span 

GPGPU architecture generations. The chapter concludes in Section 7.4 with a summary.      

7.1 VERIFICATION RESULTS: SNNs 

In this section, we present the verification results for the regression-based framework using 

the four SNN models. As mentioned in Chapter 5, we scaled the two-level network from 5.7 

million neurons to 207 million neurons and varied the node configuration from 2- to 32-nodes. 

We present the prediction errors for the computation and communication components of the 

regression-based framework for all of the node configurations using a set of selected SNN 
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network sizes at each node configuration. First, we discuss the computationally intensive HH 

model, followed by the ML model, Wilson model, and the Izhikevich model. 

7.1.1 HH Model 

Table 7.1 shows the total estimated and experimental computation times for the computation 

component of the node configurations varying from 2- to 32-nodes. As shown in Equation 5.3, 

the computation time, Tcomp., is the sum of CPU computation time, TCPU-Host and GPGPU 

computation time, TGPU. The GPGPU computation time includes GPGPU kernel time and host-

device transfer times as shown by the same equation.  In our experiments, we do not account for 

pre-/post-processing operations since they are only data structure initializations. Consequently, 

the equation for the computation component takes the form: 

. .

.

1 1

computation iter computation iter

computation comp

i i

T T
 

 

         (7.1) 

Equations 6.2 and 6.7 give the regression models for the computation component of the HH 

model. As seen in Table 7.1, the computation component regression models provide good 

prediction results for the tested node configurations and SNN network sizes with maximum error 

rate of 8.3%.  
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Table 7.1 HH model: Estimated and Experimental Time Values for Computation Component 

Configuration Computation Component (∑Tcomp.=∑TCPU-Host + ∑TGPU) (in ms) 

2-Node Network Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp. 

Exp.  

Error in 

Tcomp.  

4800x4800 1144.16 2393.84 3538 3402.96 -3.96% 

5040x5040 1260.96 2581.88 3842.84 3708.05 -3.64% 

4-Node Network Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp. 

Exp.  

Error in 

Tcomp.  

5040x5040 688.62 1467.47 2156.1 2031.89 -6.11% 

7200x7200 1413.27 2629.52 4042.8 4026.05 -0.42% 

8-Node Network Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp. 

Exp.  

Error in 

Tcomp.  

7200x7200 817.27 1541.29 2358.57 2342.29 -0.69% 

9600x9600 1477.86 2484.35 3962.22 4100.45 3.37% 

16-Node Network Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp. 

Exp.  

Error in 

Tcomp.  

7200x7200 482.6 847.75 1330.35 1450.3 8.27% 

9600x9600 920.92 1393.08 2313.99 2455.62 5.76% 

32-Node Network Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp. 

Exp.  

Error in 

Tcomp.  

12480 x12480 1085.12 1204.602 2289.72 2165.78 -5.72% 

14400x14400 1503.92 1541.3 3045.21 2883.80 -5.59% 

 

Table 7.2 shows the communication times involved in a single scatter operation and multiple 

reduction operations. As discussed in Chapter 4, the input image is scattered by the master MPI 

process rank 0 to all the other MPI processes at the beginning of the algorithm. Once the 

algorithm begins, at each time-step (472 times-steps for the HH model), the MPI processes 

synchronize at the master process to accumulate the partial level-2 currents (reduce at MPI rank 

0) required for the level-2 neuron dynamics computation. Consequently, the equation for the 

communication component reduces to: 

. .

1 1

communication iter communication iter

communication scatter reduce

i i

T T T
 

 

         (7.2) 

The regression models for the communication component yield satisfactory results with few 

outliers for large node configurations. The error rates are approximately 24% for 8-node and 

16% for 32-node configurations at the respective largest SNN network sizes. Table 7.3 provides 
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the estimated runtime, experimental runtime, and the error rate in overall runtime prediction, 

where the largest error is 8.44%. 

Table 7.2 HH model: Estimated and Experimental Time Values for Communication Component 

Configuration Communication Component (∑Tcomm.=TScatter + ∑TReduce) (in ms) 

2-Node Network Size TScatter 

Est.  

TReduce 

Est. 

Tcomm. 

Est.  

Tcomm.  

Exp.  

Error in 

Tcomm.  

4800x4800 46.98 1.156 48.14 49.25 2.25% 

5040x5040 51.81 1.156 52.96 53.98 1.87% 

4-Node Network Size TScatter 

Est.  

TReduce 

Est. 

Tcomm. 

Est.  

Tcomm.  

Exp.  

Error in 

Tcomm.  

5040x5040 69.88 2.675 72.56 74.207 2.21% 

7200x7200 142.65 2.675 145.33 149.381 2.71% 

8-Node Network Size TScatter 

Est.  

TReduce 

Est. 

Tcomm. 

Est.  

Tcomm.  

Exp.  

Error in 

Tcomm.  

7200x7200 141.3447 11.68 153.028 154.965 1.25% 

9600x9600 251.26 11.68 262.94 347.6 24.35% 

16-Node Network Size TScatter 

Est.  

TReduce 

Est. 

Tcomm. 

Est.  

Tcomm.  

Exp.  

Error in 

Tcomm.  

7200x7200 101.88 9.87 111.76 124.8 10.43% 

9600x9600 180.87 9.87 190.75 214.771 11.2% 

32-Node Network Size TScatter 

Est.  

TReduce 

Est. 

Tcomm. 

Est.  

Tcomm.  

Exp.  

Error in 

Tcomm.  

12480 x12480 264.7 14.65 279.35 290.5 3.82% 

14400x14400 352.05 14.65 366.70 439.86 16.63% 

 

Table 7.3 HH model: Estimated Runtime, Experimental Runtime, and Error Rate 

Configuration TExecution =∑Tcomputation + ∑Tcommunication (in ms) 

2-Node Network Size TExecution Est.  TExecution Exp.  Error (%) 

4800 x 4800 3586.15 3452.207 -3.87% 

5040 x 5040 3895.81 3762.025 -3.55% 

4-Node Network Size TExecution Est.  TExecution Exp.  Error (%) 

5040 x 5040 2228.66 2106.1 -5.81% 

7200 x 7200 4188.12 4175.43 -0.30% 

8-Node Network Size TExecution Est.  TExecution Exp.  Error (%) 

7200 x 7200 2511.6 2497.25 -0.57% 

9600 x 9600 4225.164 4448.044 5.07% 

16-Node Network Size TExecution Est.  TExecution Exp.  Error (%) 

7200 x 7200 1442.11 1575.1 8.44% 

9600 x 9600 2504.741 2670.4 6.2% 

32-Node Network Size TExecution Est.  TExecution Exp.  Error (%) 

12480 x 12480 2554.417 2447.751 -4.35% 

14400 x 14400 3397.265 3315.4 -2.46% 
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7.1.2 ML Model 

Tables 7.4 and 7.5 provide the experimental and estimated runtime values for the 

computation and communication components, respectively. Equations 7.1 and 7.2 apply for the 

evaluation of computation and communication components. Since the ML model is moderately 

computation- and communication-bound, we use Equation 6.9 for the GPGPU kernel time 

estimation. Equation 6.3 applies for the CPU-host computation time estimation. The estimations 

for the computation component are observed to be generally satisfactory; however the prediction 

errors are high for 32-node configuration for large SNN network sizes. Although our results 

achieve high prediction accuracy for the GPGPU time estimation (3-5%), the CPU-host 

estimation time observed high error rates. The authors attribute the high error rate to variability 

in the level-1 firing event. The slightly non-deterministic nature of the level-1 firing leads to 

imprecise CPU-host time estimation. Additionally, unlike the HH model, the ML model is CPU 

computation-bound as seen in Table 7.4. The regression models for the communication 

components yield satisfactory results with high prediction accuracy (error rate < 11%) as seen in 

Table 7.5.  

Table 7.6 shows the estimated runtime, experimental runtime, and overall error rate in the 

runtime prediction. While the error estimates for most of the node configurations are in 

acceptable ranges, the 32-node configuration observes only about 80% prediction accuracy due 

to inaccurate CPU-host time predictions as previously explained in this sub-section. 
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Table 7.4 ML model: Estimated and Experimental Time Values for Computation Component 

Configuration Computation Component (∑Tcomp.=∑TCPU-Host + ∑TGPU) (in ms) 

2-Node Network Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp.  

Exp.  

Error in 

Tcomp.  

4800x4800 1657.55 183.6 1841.15 1734.43 -6.15% 

5040x5040 1828.87 200.51 2029.38 1911.42 -6.17% 

4-Node Network Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp.  

Exp.  

Error in 

Tcomp.  

5040x5040 975.22 112.05 1087.26 1231.92 -11.74% 

7200x7200 2006.61 209.3 2215.89 2498.84 -11.32% 

8-Node Network Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp.  

Exp.  

Error in 

Tcomp.  

7200x7200 545.64 82.03 627.67 625 -0.42% 

9600x9600 1133.75 146.15 1279.9 1244.67 -2.83% 

16-Node Network Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp.  

Exp.  

Error in 

Tcomp.  

7200x7200 691.82 83.3 775.1 703.88 -10.12% 

9600x9600 1250.68 132.19 1382.86 1246.85 -10.9% 

32-Node Network Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp.  

Exp.  

Error in 

Tcomp.  

9600 x9600 849.71 77.44 927.15 742.24 -25% 

12480x12480 1464.56 116.07 1580.63 1250.83 -26.4% 

 

Table 7.5 ML model: Estimated and Experimental Time Values for Communication Component 

Configuration Communication Component (∑Tcomm.=TScatter + ∑TReduce) (in ms) 

2-Node Network Size TScatter 

Est.  

TReduce 

Est. 

Tcomm. 

Est.  

Tcomm.  

Exp.  

Error in 

Tcomm.  

4800x4800 46.98 0.27 47.26 48.63 2.81% 

5040x5040 51.81 0.27 52.08 53.04 1.8% 

4-Node Network Size TScatter 

Est.  

TReduce 

Est. 

Tcomm. 

Est.  

Tcomm.  

Exp.  

Error in 

Tcomm.  

5040x5040 69.88 0.63 70.52 77.95 9.53% 

7200x7200 142.65 0.63 143.28 153.772 6.82% 

8-Node Network Size TScatter 

Est.  

TReduce 

Est. 

Tcomm. 

Est.  

Tcomm.  

Exp.  

Error in 

Tcomm.  

7200x7200 69.27 2.76 72.02 74.15 2.86% 

9600x9600 141.35 2.76 144.1 144.84 0.51% 

16-Node Network Size TScatter 

Est.  

TReduce 

Est. 

Tcomm. 

Est.  

Tcomm.  

Exp.  

Error in 

Tcomm.  

7200x7200 101.88 2.33 104.22 113.6 8.26% 

9600x9600 180.86 2.33 183.2 200.85 8.78% 

32-Node Network Size TScatter 

Est.  

TReduce 

Est. 

Tcomm. 

Est.  

Tcomm.  

Exp.  

Error in 

Tcomm.  

9600x9600 157.06 3.46 160.52 176.33 8.96% 

12480x12480 264.7 3.46 268.15 299.1 10.35% 
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Table 7.6 ML model: Estimated Runtime, Experimental Runtime, and Error Rate 

Configuration TExecution =∑Tcomputation + ∑Tcommunication (in ms) 

2-Node Network Size TExecution Est.  TExecution Exp.  Error (%) 

4800 x 4800 1888.412 1783.06 -5.9% 

5040 x 5040 2081.46 1964.45 -5.96% 

4-Node Network Size TExecution Est.  TExecution Exp.  Error (%) 

5040 x 5040 1157.78 1309.87 11.6% 

7200 x 7200 2359.17 2652.6 11.06% 

8-Node Network Size TExecution Est.  TExecution Exp.  Error (%) 

7200 x 7200 1424 1389.5 -2.5% 

9600 x 9600 2528.6 2549.85 -0.83% 

16-Node Network Size TExecution Est.  TExecution Exp.  Error (%) 

7200 x 7200 879.32 817.5 -7.56% 

9600 x 9600 1566.06 1447.7 -8.17% 

32-Node Network Size TExecution Est.  TExecution Exp.  Error (%) 

9600x9600 1087.67 918.56 -18.41% 

12480x12480 1848.78 1549.94 -19.28% 

7.1.3 Wilson Model 

Table 7.7 provides the experimental and estimated times for the computation components. To 

predict the computation performance, we use Equation 6.4 for the CPU-host computations and 

Equation 6.8 for the GPGPU kernel time estimation. The prediction error values for most of the 

test cases are less than 10% as seen in the same table.  

Table 7.8 provides the estimated time, experimental time, and prediction error values for the 

communication component of the regression-based framework. The equations for the 

communication components are given in Tables 6.3 and 6.6. For the Wilson model, the 

communication component prediction models yielded slightly higher error values that are 

between 10-15%. Table 7.9 provides the estimated runtime, experimental runtime, and overall 

prediction error values for all of the node configurations versus the SNN network size where the 

maximum error is 12.2%.  
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Table 7.7 Wilson model: Estimated and Experimental Time Values for Computation Component 

Configuration Computation Component (∑Tcomp.=∑TCPU-Host + ∑TGPU) (in ms) 

2-Node Network Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp.  

Exp.  

Error in 

Tcomp.  

4800x4800 1218.6 340.24 1558.84 1444.03 -7.95% 

5040x5040 1343.3 370.8 1714.14 1587.4 -7.98% 

4-Node Network Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp.  

Exp.  

Error in 

Tcomp.  

5040x5040 699.3 204.26 903.56 976.46 7.46% 

7200x7200 1434.45 385.08 1819.52 1972.15 7.74% 

8-Node Network Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp.  

Exp.  

Error in 

Tcomp.  

7200x7200 768.45 256.25 1024.71 959.921 -6.74% 

9600x9600 1385.65 430.75 1816.4 1687.07 -7.66% 

16-Node Network Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp.  

Exp.  

Error in 

Tcomp.  

7200x7200 408.36 139.46 547.82 617.165 11.23% 

9600x9600 773.58 235.4 1004.20 1085.95 7.52% 

32-Node Network Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp.  

Exp.  

Error in 

Tcomp.  

9600x9600 413.377 126.25 539.63 550.1 1.91% 

12480x12480 790.70 198.57 989.25 899.4 -9.98% 

Table 7.8 Wilson model: Estimated and Experimental Time Values for Communication 

Component 

Configuration Communication Component (∑Tcomm.=TScatter + ∑TReduce) (in ms) 

2-Node Network Size TScatter 

Est.  

TReduce 

Est. 

Tcomm. 

Est.  

Tcomm.  

Exp.  

Error in 

Tcomm.  

4800x4800 46.98 0.306 47.29 48.643 2.77% 

5040x5040 51.81 0.306 52.11 52.93 1.53% 

4-Node Network Size TScatter 

Est.  

TReduce 

Est. 

Tcomm. 

Est.  

Tcomm.  

Exp.  

Error in 

Tcomm.  

5040x5040 69.88 0.708 70.59 76.76 8.02% 

7200x7200 142.65 0.708 143.36 161.673 11.32% 

8-Node Network Size TScatter 

Est.  

TReduce 

Est. 

Tcomm. 

Est.  

Tcomm.  

Exp.  

Error in 

Tcomm.  

7200x7200 69.27 3.09 72.36 83.31 13.13% 

9600x9600 141.34 3.09 144.44 166.06 13.02% 

16-Node Network Size TScatter 

Est.  

TReduce 

Est. 

Tcomm. 

Est.  

Tcomm.  

Exp.  

Error in 

Tcomm.  

7200x7200 101.88 2.61 104.5 125.56 16.76% 

9600x9600 180.87 2.61 183.5 217.41 15.6% 

32-Node Network Size TScatter 

Est.  

TReduce 

Est. 

Tcomm. 

Est.  

Tcomm.  

Exp.  

Error in 

Tcomm.  

9600x9600 157.06 3.88 160.95 181.90 11.52% 

12480x12480 264.7 3.88 268.57 301.86 11.02% 
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Table 7.9 Wilson model: Estimated Runtime, Experimental Runtime, and Error Rate 

Configuration TExecution =∑Tcomputation + ∑Tcommunication 

2-Node Network Size TExecution Est.  TExecution Exp.  Error (%) 

4800 x 4800 1606.131 1492.675 -7.6% 

5040 x 5040 1766.26 1640.307 -7.67% 

4-Node Network Size TExecution Est.  TExecution Exp.  Error (%) 

5040 x 5040 974.155 1053.214 7.5% 

7200 x 7200 1962.883 2133.82 8.01% 

8-Node Network Size TExecution Est.  TExecution Exp.  Error (%) 

7200 x 7200 1169.15 1125.98 -3.83% 

9600 x 9600 2070.75 2057.14 -0.66% 

16-Node Network Size TExecution Est.  TExecution Exp.  Error (%) 

7200 x 7200 652.33 741.8 12.17% 

9600 x 9600 1187.69 1303.36 8.87% 

32-Node Network Size TExecution Est.  TExecution Exp.  Error (%) 

9600x9600 700.57 732.07 4.3% 

12480x12480 1257.83 1201.27 -6.82% 

7.1.4 Izhikevich Model 

Tables 7.10 and 7.11 provide the estimated and experimental time values for the computation 

and communication components, respectively, along with the prediction error values.  

The prediction error values for the computation component are high compared to previously 

studied SNN models. As mentioned in Section 6.2.1, the Wilson and Izhikevich models are 

communication-bound SNN models; therefore the communication-bound regression model is 

trained using execution times from both SNN models. However, any deviation produced by the 

resulting regression model may cause large errors for short execution times. The Izhikevich 

model, with its nominal FLOPs and bytes requirements (see Table 3.1), has a relatively short 

execution time and consequently results in high prediction error rates [111] compared to the 

more complex SNN models with longer execution times. The regression models for the 

communication component yielded satisfactory results with one outlier (15% error) for the 32-

node configuration. Table 7.12 provides the estimated and experimental runtime values along 
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with the overall prediction error values for all of the node configurations where the maximum 

error is 14.8%. 

Table 7.10 Izhikevich model: Estimated and Experimental Time Values for Computation 

Component 

Configuration Computation Component (∑Tcomp.=∑TCPU-Host + ∑TGPU) (in ms) 

2-Node Network Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp.  

Exp.  

Error in 

Tcomp.  

4800x4800 1073.16 112.31 1185.5 1201.75 1.35% 

5040x5040 1182.48 123.03 1305.52 1296.83 -0.67% 

4-Node Network Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp.  

Exp.  

Error in 

Tcomp.  

5040x5040 638.76 65.38 704.14 735.15 4.21% 

7200x7200 1316.41 125.38 1441.8 1491.53 3.33% 

8-Node Network Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp.  

Exp.  

Error in 

Tcomp.  

7200x7200 743.12 66.55 809.7 857.23 5.55% 

9600x9600 1360.1 112.31 1472.32 1557.75 5.5% 

16-Node Network Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp.  

Exp.  

Error in 

Tcomp.  

7200x7200 399.92 58.21 458.13 545.42 16% 

9600x9600 808.52 97.5 906 963.91 6% 

32-Node Network Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp.  

Exp.  

Error in 

Tcomp.  

9600x9600 419.65 33.86 453.52 390.46 -16.15% 

14400x14400 1289.55 66.55 1356.10 1162.63 -16.64% 
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Table 7.11 Izhikevich model: Estimated and Experimental Time Values for Communication 

Component 

 Configuration Communication Component (∑Tcomm.=TScatter + ∑TReduce) (in ms) 

2-Node Network Size TScatter 

Est.  

TReduce 

Est. 

Tcomm. 

Est.  

Tcomm.  

Exp.  

Error in 

Tcomm.  

4800x4800 46.98 0.026 47.01 48.58 3.22% 

5040x5040 51.81 0.026 51.83 53.90 3.82% 

4-Node Network Size TScatter 

Est.  

TReduce 

Est. 

Tcomm. 

Est.  

Tcomm.  

Exp.  

Error in 

Tcomm.  

5040x5040 69.88 0.06 69.95 77.65 9.92% 

7200x7200 142.65 0.06 142.71 148.66 4% 

8-Node Network Size TScatter 

Est. 

TScatter 

Est.  

TReduce 

Est. 

Tcomm. 

Est.  

Tcomm.  

Exp.  

7200x7200 69.27 0.27 69.54 69.93 0.57% 

9600x9600 141.35 0.27 141.61 142.35 0.53% 

16-Node Network Size TScatter 

Est.  

TReduce 

Est. 

Tcomm. 

Est.  

Tcomm.  

Exp.  

Error in 

Tcomm.  

7200x7200 101.89 0.25 102.11 111.85 8.7% 

9600x9600 180.86 0.25 181.1 198.02 8.56% 

32-Node Network Size TScatter 

Est.  

TReduce 

Est. 

Tcomm. 

Est.  

Tcomm.  

Exp.  

Error in 

Tcomm.  

9600x9600 157.06 0.33 157.4 176.75 8.93% 

14400x14400 352.05 0.33 352.4 418.327 15.76% 

 

Table 7.12 Izhikevich model: Estimated Runtime, Experimental Runtime, and Error Rate 

Configuration TExecution =∑Tcomputation + ∑Tcommunication 

2-Node Network Size TExecution Est.  TExecution Exp.  Error (%) 

4800 x 4800 1232.5 1250.3 1.42% 

5040 x 5040 1357.35 1350.32 -0.5% 

4-Node Network Size TExecution Est.  TExecution Exp.  Error (%) 

5040 x 5040 774.1 812.8 4.76% 

7200 x 7200 1584.5 1640.2 3.4% 

8-Node Network Size TExecution Est.  TExecution Exp.  Error (%) 

7200 x 7200 951.29 999.59 4.83% 

9600 x 9600 1723.85 1872.995 7.96% 

16-Node Network Size TExecution Est.  TExecution Exp.  Error (%) 

7200 x 7200 560.24 657.27 14.76% 

9600 x 9600 1087.1 1161.9 6.44% 

32-Node Network Size TExecution Est.  TExecution Exp.  Error (%) 

9600x9600 610.6 567.2 -7.8% 

14400x14400 1708.16 1580.23 -8.1% 

 

In this section, we presented the preliminary verification results for the regression-based 

framework (low-level abstraction) using the four SNN models as SIA case studies. The 
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regression models for the computation and communication components demonstrated high 

prediction accuracy (over 90%), barring a few test cases. It was observed that the regression 

models yielded better results for the complex SNN models, HH model for instance, which have 

longer execution times. The complex SNN models with longer execution times have relatively 

small deviations from the predicted values compared to the deviations observed for simple SNN 

models with shorter execution times. Additionally, the regression models for the computation 

components were generally more accurate compared to the communication component models. 

One theory to explain these deviations is that additional unaccounted for network characteristics, 

such as change in the protocol, can affect the network-level transactions and hence the prediction 

accuracy. Additionally, implicit synchronization in collective operations including scatter and 

reduce may affect the prediction accuracy. Future work beyond this dissertation research will 

include exploring these network effects on communication performance and prediction.  

7.2 VERIFICATION RESULTS: ADF 

As mentioned in Section 6.2.1, we paired the ADF algorithm with the Izhikevich SNN model 

to obtain a common GPGPU computation regression model, given their similar FLOPs, bytes, 

and FLOPs/Byte ratio requirements (see Table 6.2). First, we provide the prediction error rates 

for the Izhikevich SNN model followed by the discussion of the ADF algorithm. 

7.2.1 Izhikevich Model 

The computation component of the Izhikevich model follows Equation 7.1. While Equation 

6.5 applies for the CPU computations, we use the combined GPGPU computation regression 

model given by Equation 6.10 for the GPGPU device computations. Table 7.13 shows the total 

estimated and experimental computation times for the computation component with node 
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configurations varying from 2- to 32-nodes. The lower FLOPs/Byte ratio requirements of the 

Izhikevich SNN (see Table 6.2) and small number of algorithm iterations (12 vs. 30 in ADF) 

results in shorter execution times, which ultimately leads to higher prediction errors (small 

execution time deviations result in larger errors for shorter execution times).  Table 7.14 shows 

the communication times involved in a single scatter operation and multiple reduction 

operations. As discussed in Chapter 4, the input image is scattered by the master MPI process 

rank 0 to all the other MPI processes at the beginning of the algorithm. Once the algorithm 

begins, at each time-step (12 times-steps for the Izhikevich SNN model), the MPI processes 

synchronize at the master process to accumulate the partial level-2 currents (reduce at MPI rank 

0) required for the level-2 neuron dynamics computation. The reduced equation for the 

communication component is given by Equation 7.2.  

Table 7.13 Izhikevich model: Estimated and Experimental Time Values for Computation 

Component 

Configuration Computation Component (∑Tcomp.=∑TCPU-Host + ∑TGPU) 

2-Node Network Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp.  

Exp.  

Error in 

Tcomp.  

4800 x 4800 1073.16 113.97 1187.15 1201.75 1.21 

5040 x 5040 1182.48 125.35 1307.85 1296.83 -0.85 

4-Node Network Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp.  

Exp.  

Error in 

Tcomp.  

5040 x 5040 638.76 64.28 703.09 735.15 4.36% 

7200 x 7200 1316.41 127.85 1444.3 1491.53 3.16% 

8-Node Network Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp.  

Exp.  

Error in 

Tcomp.  

7200 x 7200 743.12 66.52 808.73 857.23 5.65% 

9600 x 9600 1360.1 113.96 1474.05 1557.75 5.37% 

16-Node Network Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp.  

Exp.  

Error in 

Tcomp.  

7200 x 7200 399.92 55.57 458.65 545.42 16.45% 

9600 x 9600 808.52 96.1 904.7 963.91 6.13% 

32-Node Network Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp.  

Exp.  

Error in 

Tcomp.  

9600 x 9600 419.65 31.05 451.03 390.46 -15.51% 

14400 x 14400 1289.55 65.52 1355.4 1162.63 -16.6% 
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Table 7.14 Izhikevich model: Estimated and Experimental Time Values for Communication 

Component 

Configuration Communication Component (∑Tcomm.=TScatter + ∑TReduce) 

2-Node Network Size TScatter 

Est.  

TReduce 

Est. 

Tcomm. 

Est.  

Tcomm.  

Exp.  

Error in 

Tcomm.  

4800 x 4800 46.98 0.026 47.01 48.58 3.22% 

5040 x 5040 51.81 0.026 51.83 53.90 3.82% 

4-Node Network Size TScatter 

Est.  

TReduce 

Est. 

Tcomm. 

Est.  

Tcomm.  

Exp.  

Error in 

Tcomm.  

5040 x 5040 69.88 0.06 69.95 77.65 9.92% 

7200 x 7200 142.65 0.06 142.71 148.66 4% 

8-Node Network Size TScatter 

Est.  

TReduce 

Est. 

Tcomm. 

Est.  

Tcomm.  

Exp.  

Error in 

Tcomm.  

7200 x 7200 69.27 0.27 69.54 69.93 0.57% 

9600 x 9600 141.35 0.27 141.61 142.35 0.53% 

16-Node Network Size TScatter 

Est.  

TReduce 

Est. 

Tcomm. 

Est.  

Tcomm.  

Exp.  

Error in 

Tcomm.  

7200 x 7200 101.89 0.25 102.11 111.85 8.7% 

9600 x 9600 180.86 0.25 181.1 198.02 8.56% 

32-Node Network Size TScatter 

Est.  

TReduce 

Est. 

Tcomm. 

Est.  

Tcomm.  

Exp.  

Error in 

Tcomm.  

12480 x 12480 157.06 0.33 157.4 176.75 8.93% 

14400 x 14400 352.05 0.33 352.4 418.327 15.76% 

 

Table 7.15 provides the estimated and experimental runtime values along with the overall 

prediction error values for all of the node configurations for maximum image size tested at that 

configuration. 

Table 7.15 Izhikevich model: Estimated Runtime, Experimental Runtime, and Error Rate (%) 

Configuration TExecution =∑Tcomputation + ∑Tcommunication 

2-Node Network Size TExecution Est.  TExecution Exp.  Error (%) 

5040 x 5040 1359.67 1350.32 -0.67 

4-Node Network Size TExecution Est.  TExecution Exp.  Error (%) 

7200 x 7200 1586.95 1640.2 3.23 

8-Node Network Size TExecution Est.  TExecution Exp.  Error (%) 

9600 x 9600 1725.32 1872.995 7.86 

16-Node Network Size TExecution Est.  TExecution Exp.  Error (%) 

9600 x 9600 1085.65 1161.9 6.52 

32-Node Network Size TExecution Est.  TExecution Exp.  Error (%) 

14400x14400 1707.45 1580.23 -8.1 
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7.2.2 ADF 

As mentioned previously, the test images for ADF were scaled up to 156 mega-pixels and the 

node configurations varied from 2- to 32-nodes. Equation 7.1 also applies for the ADF 

computation component since pre-processing only involves image read operations at rank 0. As 

described in Chapter 4, the network-level operations (scatter, gather, and sendrecv) occur only 

once in the algorithm. Consequently, the communication component for ADF algorithm reduces 

to: 

.

1

communication iter

communication scatter sendrecv gather

i

T T T T




  
      (7.3) 

Tables 7.16 and 7.17 (a-b) provide the experimental and estimated values for the computation 

and communication components, respectively for selected image sizes.  As seen in these tables, 

the error rates for the predictions are less than 10% for the computation component for several of 

the test cases, whereas the communication component observes slightly higher error rates, 

contributing to higher error rates in the overall execution time prediction. Table 7.18 provides the 

estimated and experimental runtime values along with the prediction error rates.  
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Table 7.16 ADF: Estimated and Experimental Time Values for Computation Component 

Configuration Computation Component (∑Tcomp.=∑TCPU-Host + ∑TGPU) (in ms) 

2-Node Image Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp.  

Exp.  

Error in 

Tcomp.  

10240 x 10240 969.5 2854.1 3802.5 4069.95 6.57% 

12800 x 12800 1513.5 4547 5954.5 6575.52 9.45% 

4-Node Image Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp.  

Exp.  

Error in 

Tcomp.  

10240 x 10240 546.91 1411.86 1975.38 1901.3 -3.9% 

12800 x 12800 853.7 2226.74 3094.02 2970.6 -4.15% 

8-Node Image Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp.  

Exp.  

Error in 

Tcomp.  

10240 x 10240 334.13 738.8 1194.74 1258.1 5.03% 

12800 x 12800 522.32 1158.17 1871.7 1957.34 4.37% 

16-Node Image Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp.  

Exp.  

Error in 

Tcomp.  

10240 x 10240 224.8 369.4 638.11 618.01 -3.25% 

12800 x 12800 353.8 576.8 990.82 957.21 -3.51% 

32-Node Image Size TCPU-Host 

Est.  

TGPU  

Est.  

Tcomp. 

Est.  

Tcomp.  

Exp.  

Error in 

Tcomp.  

10240 x 10240 164.4 185.87 371.52 307.9 17.1% 

12800 x 12800 263.7 289.03 616.35 661.7 6.85% 

 

Table 7.17 (a) ADF: Estimated and Experimental Time Values for Communication Component 

2-Node Image Size TScatter Est.  TGather  Est.  Tsendrecv Est.  

10240 x 10240 428.3 222.02 0 

12800 x 12800 669.24 346.95 0 

4-Node Image Size TScatter Est.  TGather  Est.  Tsendrecv Est.  

10240 x 10240 577.16 204.94 177.17 

12800 x 12800 901.83 320.1 327.1 

8-Node Image Size TScatter Est.  TGather  Est.  Tsendrecv Est.  

10240 x 10240 571.73 223.46 286.35 

12800 x 12800 893.32 349.26 584.24 

16-Node Image Size TScatter Est.  TGather  Est.  Tsendrecv Est.  

10240 x 10240 411.23 225.3 218.6 

12800 x 12800 642.36 352.1 428.5 

32-Node Image Size TScatter Est.  TGather  Est.  Tsendrecv Est.  

10240 x 10240 356.03 234.51 170.2 

12800 x 12800 555.7 366.89 201.93 
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Table 7.17 (b) ADF: Prediction Error in Communication Component 

Node 

Configuration 

Communication Component 

(∑Tcomm.=Tscatter + Tgather + Tsendrecv) (in ms) 

2-Node Image Size Tcomm.  

Est.  

Tcomm. 

 Exp.  

Error (%) 

10240 x 10240 650.31 732.53 11.22 

12800 x 12800 1016.17 1131.4 10.2 

4-Node Image Size Tcomm.  

Est.  

Tcomm. 

 Exp.  

Error (%) 

10240 x 10240 959.28 981.93 2.3 

12800 x 12800 1549.02 1529.32 -1.28 

8-Node Image Size Tcomm.  

Est.  

Tcomm. 

 Exp.  

Error (%) 

10240 x 10240 1081.54 1225.37 11.73 

12800 x 12800 1826.83 2118.93 13.8 

16-Node Image Size Tcomm.  

Est.  

Tcomm. 

 Exp.  

Error (%) 

10240 x 10240 855.1 907.98 5.8 

12800 x 12800 1422.95 1421.1 -0.133 

32-Node Image Size Tcomm.  

Est.  

Tcomm. 

 Exp.  

Error (%) 

10240 x 10240 760.77 854.6 10.97 

12800 x 12800 1224.53 1482.4 17.4 

 

Table 7.18 ADF: Estimated Runtime, Experimental Runtime, and Error Rate 

Configuration TExecution =∑Tcomputation + ∑Tcommunication (in ms) 

2-Node Image Size TExecution Est.  TExecution Exp. Error (%) 

10240 x 10240 4494.9 4802.5 6.4 

12800 x 12800 7111.8 7706.9 7.7 

4-Node Image Size TExecution Est.  TExecution Exp. Error (%) 

10240 x 10240 2935.4 2883.3 -1.8 

12800 x 12800 4657.13 4499.9 -3.5 

8-Node Image Size TExecution Est.  TExecution Exp. Error (%) 

10240 x 10240 2214.96 2483.5 10.8 

12800 x 12800 3598.5 4076.3 11.72 

16-Node Image Size TExecution Est.  TExecution Exp. Error (%) 

10240 x 10240 1497.8 1526 1.85 

12800 x 12800 2419.3 2378.3 -1.7 

32-Node Image Size TExecution Est.  TExecution Exp. Error (%) 

10240 x 10240 1170.85 1162.55 -0.71 

12800 x 12800 1847.8 2144.04 13.81 
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In this section, we provided the preliminary verification results for the regression-based 

framework using the Izhikevich-ADF SIA pair. The regression models for the computation and 

communication components demonstrated high prediction accuracy (over 90%), discounting a 

few test cases. It was observed that the regression models for computation yielded better results 

for the computationally intensive ADF algorithm. The ADF algorithm with its longer execution 

time observes relatively small deviations from the predicted values compared to the deviations 

observed for relatively less computationally intensive Izhikevich SNN. The regression models 

for the computation components were generally more accurate compared to the communication 

component models, a similar behavior was also observed for the SNN-SIA case studies.  

7.3 RESULTS AND ANALYSIS FOR DSE 

We present the results and analysis for GPGPU DSE study using the regression-based 

performance prediction framework. The study was conducted on the GPGPU-augmented 

Palmetto cluster with Kepler K20 devices. Section 7.3.1 provides the design space exploration 

results using the SNN models and ADF algorithm.   

7.3.1 Design Space Exploration 

First, we discuss the kernel runtime values and the prediction error rates for the four SNN 

models and ADF algorithm to further consolidate the efficacy of the prediction framework and 

facilitate the DSE analysis. Second, the GPGPU design space for the chosen SIAs is explored 

using the intermediate SNN network sizes ranging from 3120x3120 to 4800x4800. Similarly, we 

use the image sizes ranging from 8960x8960 to 10240x10240 for the ADF algorithm.  
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A. Prediction Results for Implementation 1 

Implementation 1 relies on global memory for all of the input data accesses and uses a fixed 

thread BLOCKSIZE equal to 256. Table 7.19 presents the observed statistical-average kernel 

runtime values, predicted kernel runtime values, and the prediction error rates obtained using 

Equations 6.12, 6.13, 6.14, and 6.15 for the four SNN models and ADF algorithm. For the 

compute-intensive HH model, the regression-based framework predicts the kernel runtime with 

error rate 7.59% for the largest test data size, with overall prediction error rates less than 10% for 

all the other test data sizes. The ML, Wilson, and the Izhikevich models observe error rates of 

9.27%, 3.2%, and 4.48%, respectively for their largest test input size. The ADF algorithm also 

observes less than 10% prediction error rate for all of the test input sizes.  

Table 7.19 Observed and Predicted Runtime Values (in ms) for Implementation 1 

Algorithms Test Data Size Observed 

Time 

Predicted 

Time 

Error Rate 

(%) 

HH 3360x3360 960.5499 958.4288 0.22 

3840x3840 1361.244 1253.415 7.92 

4800x4800 2184.25 2018.444 7.59 

ML 3120x3120 39.04656 35.33421 9.50 

3240x3240 41.37167 37.83408 8.55 

3360x3360 44.56183 40.4283 9.27 

Wilson 3120x3120 96.72402 94.97815 1.80 

3240x3240 104.8952 102.1543 2.61 

3360x3360 113.2308 109.6012 3.20 

Izhikevich 3120x3120 32.84 32.27 1.73 

3240x3240 39.19 38.17 2.60 

3360x3360 51.48 49.17 4.48 

ADF 8960x8960 1804.638 1674.823 7.20 

9728x9728 2078.855 1975.189 4.98 

10240x10240 2218.426 2189.148 1.32 

B. Prediction Results for Implementation 2 

For Implementation 2, we use the best performing BLOCKSIZE for the four SNN models 

and the ADF algorithm: 512 for the HH model, 256 for the ML model, and 128 for the Wilson, 
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Izhikevich, and ADF algorithms, respectively. The observed statistical-average kernel runtime 

values, predicted kernel runtime values, and prediction error rates are given in Table 7.20. The 

predicted kernel runtime values are obtained using Equations 6.16 through 6.20. All case studies 

observe error rates below 10%, barring the HH model where the highest error rate of 11% is 

observed for an intermediate test data size.  

Table 7.20 Observed and Predicted Runtime Values (in ms) for Implementation 2 

Algorithms Test Data Size Observed 

Time 

Predicted 

Time 

Error Rate 

(%) 

HH 3840x3840 1267.877 1340.383 -5.72 

4080x4080 1467.17 1628.807 -11.02 

4200x4200 2237.872 2166.912 3.17 

ML 3120x3120 39.12896 37.36777 4.50 

3240x3240 40.73593 40.12207 1.50 

3360x3360 44.99906 42.9803 4.48 

Wilson 3120x3120 96.87 94.311 3.04 

3240x3240 103.89 101.3665 2.62 

3360x3360 110.97 108.6883 2.78 

Izhikevich 3120x3120 32.57 32.33 0.73 

3240x3240 38.44 38.52 -0.21 

3360x3360 49.85 50.07 -0.44 

ADF 8192x8192 2190.834 2151.443 1.80 

8488x8488 2359.41 2238.716 5.12 

8704x8704 2426.996 2302.402 5.13 

C. Prediction Results for Implementation 3 

Implementation 3 uses the texture memory as discussed in Section 6.3.2. Table 7.21 presents 

the observed statistical-average kernel runtime values, predicted kernel runtime values and the 

error rate obtained using the Equations 6.21 through 6.25 for the SNN-ADF SIAs. The prediction 

error rates are below 5% for all of the SNN models and less than 11% for the ADF algorithm. 

The largest data size used to verify the prediction framework for the HH model is 4800x4800 

with an observed error rate of 1.61%. For the ML model, the largest data size used to verify the 

framework is 3360x3360 with error rate 0.2%. The Wilson and Izhikevich models observe error 
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rates 0.97% and 2.1%, respectively for the largest data size as seen in Table 7.21. Finally, for the 

ADF algorithm the largest image size used for verification is 10240x10240 with an error rate of 

10.78%. 

Table 7.21 Observed and Predicted Values for Implementation 3 

Algorithms Test Data Size Observed 

Time 

(ms) 

Predicted 

Time 

(ms) 

Error Rate 

(%) 

HH 3360x3360 1671.249 1602.441 4.11 

3840x3840 2114.976 2127.784 -0.60 

4800x4800 3444.07 3388.607 1.61 

ML 3120x3120 41.55399 41.86467 -0.75 

3240x3240 44.51993 45.02456 -1.13 

3360x3360 48.4023 48.30368 0.20 

Wilson 3120x3120 105.8983 105.5538 0.32 

3240x3240 114.7781 113.5537 1.06 

3360x3360 123.0514 121.8554 0.97 

Izhikevich 3120x3120 32.64 32.72 -0.24 

3240x3240 39.23 38.92 -0.79 

3360x3360 51.58 50.48 2.1 

ADF 8960x8960 5115.432 4975.186 2.74 

9728x9728 6306.859 5939.77 5.82 

10240x10240 7432.2 6630.527 10.80 

D. Design Space Exploration: Comparing Implementations  

Sections 7.3.1.A, 7.3.1.B, and 7.3.1.C provided the kernel runtime values for the three design 

space implementations. In this sub-section, we first compare the observed kernel runtime values 

of the implementations in Table 7.22, followed by the predicted kernel runtime values 

comparison in Table 7.23. We discuss the comparison results for the four SNN models first and 

then discuss the results for the ADF algorithm.   

As mentioned in Section 7.3.1.B, the SNN Implementation 2 employs a BLOCKSIZE of 512 

for the HH model, 256 for the ML model, and 128 for the Wilson and Izhikevich SNN models 

based on the best observed kernel runtime values. Based on the test input sizes given in Table 

7.22 and other inspected inputs, the design space Implementations 1 and 2 perform similarly for 
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the HH, ML, and Wilson models. Implementation 2 however, outperforms the rest in the case of 

the Izhikevich model. As mentioned in Section 6.3.2, Implementation 1 uses the global memory 

for all the data accesses. Since the latest GPGPU devices including Tesla M2075 and Kepler K20 

have cached global memory, the memory access latencies are reduced, improving performance. 

Implementation 2 is identical to Implementation 1, except for the choice of thread BLOCKSIZE. 

For our experiments with SNN SIAs on the Kepler K20, a significant difference in performance 

was not observed across the BLOCKSIZES. As seen in Table 7.22, for the HH, ML, and Wilson 

SNN models, the difference in the kernel timing between Implementations 1 and 2 is nominal. 

Therefore either of the two implementations can be a viable candidate for the GPGPU device. 

The use of texture memory did not provide performance improvement versus the use of cached 

global memory as seen in Table 7.22.   

Table 7.22 Observed Kernel Runtime Values for Three Design Space Implementations 

Algorithms Data Size Impl. 1 

(ms) 

Impl. 2 

 (ms) 

Impl. 3 

 (ms) 

Best 

Implementation 

HH 3840x3840 1361.244 1267.877 2114.976  

Impl. 1 

Impl. 2 
4200x4200 1778.395 1467.17 2514.61 

4800x4800 2184.25 2237.872 3444.07 

ML 3120x3120 39.04656 39.12896 41.55399  

Impl. 1 

Impl. 2 
3240x3240 41.37167 40.73593 44.51993 

3360x3360 44.56183 44.99906 48.4023 

Wilson 3120x3120 96.72402 96.87869 105.8983  

Impl. 1 

Impl. 2 
3240x3240 104.8952 103.8904 114.7781 

3360x3360 113.2308 110.9705 123.0514 

Izhikevich 3840x3840 32.84272 32.57381 32.63963  

Impl. 2 4200x4200 39.19225 38.44291 39.23024 

4800x4800 51.48266 49.85226 51.57866 

ADF 7680x7680 1378.762 1980.202 3468.152  

Impl. 1 8192x8192 1581.421 2190.834 4169.742 

8704x8704 1657.688 2426.996 4964.6 

 

Table 7.23 shows that the regression-based framework predicts Implementation 1 of the four 

SNN models as the best candidate for the GPGPU device. Except for the Izhikevich model, the 

design space ranking matches for all of the other SNN models. Additionally for the Izhikevich 
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model, the difference in the kernel runtime values of the observed design space Implementation 2 

and the predicted design space Implementation 1 is small (less than 3% difference) for the tested 

data sizes. Therefore, the prediction framework satisfactorily maps the appropriate design space 

implementations and gives expected prediction results for all of the SNN models.  

Unlike the SNN implementations, Implementations 1 and 2 for the ADF algorithm are 

distinct as they use the global memory and shared memory, respectively for fetching the 

neighboring pixels in an image. Additionally, we use 2D read-only texture memory for fetching 

the neighboring pixels for Implementation 3. As seen in Tables 7.22 and 7.23, Implementation 1 

decisively outperforms Implementations 2 and 3. Since the Kepler GPGPUs are equipped with 

global memory cache, accesses to the global memory are optimized.    

Table 7.23 Predicted Kernel Runtime Values for Three Design Space Implementations 

Algorithms Test Data 

Size 

Impl. 1 

(ms) 

Impl. 2 

 (ms) 

Impl. 3 

 (ms) 

Best 

Implementation 

HH 3840x3840 1290.068 1340.383 2127.784  

Impl. 1 4200x4200 1544.241 1628.807 2567.759 

4800x4800 2018.444 2166.912 3388.607 

ML 3120x3120 35.33421 37.36777 41.86467  

Impl. 1 3240x3240 37.83408 40.12207 45.02456 

3360x3360 40.4283 42.9803 48.30368 

Wilson 3120x3120 94.97815 94.311 105.5538  

Impl. 1 3240x3240 102.1543 101.365 113.5537 

3360x3360 109.6012 108.688 121.8554 

Izhikevich 3840x3840 32.27884 32.33651 32.72586  

Impl. 1 4200x4200 38.17493 38.52579 38.9202 

4800x4800 49.17511 50.07294 50.4768 

ADF 7680x7680 1229.075 2000.484 3558.344  

Impl. 1 8192x8192 1399.145 2151.443 4096.461 

8704x8704 1580.187 2302.402 4672.737 

 

In this section, we performed the GPGPU Design Space Exploration (DSE) study to map an 

optimal implementation to the target GPGPU architecture, promoting high application 

performance. We explored the GPGPU design space for Synchronous Iterative Algorithms 
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(SIAs) featuring optimizations of the GPGPU memory hierarchy using a regression-based 

performance prediction framework. The implementations were ranked based on application 

runtime predictions that were facilitated by the regression-based framework. 

From the design space exploration results based on the observed kernel runtime, we conclude 

that the global memory implementation performs the best for most of the case studies used in this 

research. In recent GPGPU architectures such as the Tesla M2075 and Kepler K20, the device 

global memory is cached, which aids in faster data accesses and promoting performance. The 

predicted kernel runtime also ranks the global memory implementation as the best 

implementation for the four SNN models and ADF algorithm. The regression-based framework 

appropriately ranks the design space implementations for 4 out of 5 case studies, although there 

is a deviation in the predicted and observed design space ranking for the Izhikevich SNN case 

study. The difference in the kernel runtime values of the observed design space Implementation 2 

and the predicted design space Implementation 1 is small (less than 3%) for the tested data sizes. 

Therefore, our prediction framework ranks the best design space implementation for an 

application as expected for 4 out 5 cases and provides acceptable results for the Izhikevich SNN 

case study. Future work includes extension of the GPGPU design space by including other 

GPGPU memories such as the local memory and constant memory. 

7.4 SWO ANALYSIS OF THE REGRESSION-BASED FRAMEWORK 

In this sub-section, we perform the Strengths, Weaknesses, and Opportunities (SWO) 

analysis of the regression-based framework for multi-GPGPU systems proposed in [16]. This 

study is conducted on the GPGPU-augmented Palmetto cluster with multiple Tesla M2075 and 

Kepler K20 devices. The host-device pairs are varied from 2-node up to 16-node configuration. 

The SWO analysis enables one to study a framework or model, discussing its strengths and 
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weaknesses for further improvements. To perform the SWO analysis, we provide the predicted 

overall runtime, observed runtime, and overall error rate for the HH, ML, Wilson, and Izhikevich 

models in Tables 7.24-7.27 (Fermi) and Tables 7.28-7.31 (Kepler). An in-depth SWO analysis of 

the regression-based framework can be found in [112 and 113]. 

Table 7.24 HH Model on Fermi: Observed and Predicted Values for Total Execution Time (ms) 

Configuration Texecution-time=Tcomputation+Tcommunication 

Test Data Size Observed 

Time 

(ms) 

Predicted 

Time 

(ms) 

Error Rate 

(%) 

2-Node 3360x3360 2377.918 2375.387 -0.10 

3600x3600 2722.044 2688.843 -1.23 

4-Node 4940x4940 2979.75 2998.08 0.61 

5040x5040 3098.522 3118.508 0.64 

8-Node 5200x5200 2163.648 2218.991 2.49 

5280x5280 2227.842 2251.59 1.05 

16-Node 5040x5040 1519.719 1518.377 -0.08 

5200x5200 1609.402 1606.104 -0.20 

 

Table 7.25 ML Model on Fermi: Observed and Predicted Values for Total Execution Time (ms) 

Configuration Texecution-time=Tcomputation+Tcommunication 

Test Data Size Observed 

Time 

(ms) 

Predicted 

Time 

(ms) 

Error Rate 

(%) 

2-Node 3360x3360 377.1141 363.7835 -3.66 

3600x3600 432.8445 414.3471 -4.46 

4-Node 4800x4800 766.701 803.5798 4.59 

5040x5040 843.8928 879.417 4.04 

8-Node 6960x6960 1659.5 1678.35 1.12 

7200x7200 1772.969 1792.154 1.07 

16-Node 10080x10080 3463.262 3487.739 0.70 

10120x10120 3490.021 3722.942 6.26 
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Table 7.26 Wilson Model on Fermi: Observed and Predicted Values for 

 Total Execution Time (ms) 

Configuration Texecution-time=Tcomputation+Tcommunication 

Test Data Size Observed 

Time 

(ms) 

Predicted 

Time 

(ms) 

Error Rate 

(%) 

2-Node 3360x3360 491.8691 478.0189 -2.90 

3600x3600 563.9396 549.4184 -2.64 

4-Node 4800x4800 882.9638 914.9215 3.50 

5040x5040 971.7063 1004.55 3.27 

8-Node 7140x7140 1870.148 1891.293 1.12 

7200x7200 1900.98 1931.365 1.57 

16-Node 9840x9840 3419.897 3444.12 0.70 

10080x10080 3584.07 3621.075 1.02 

 

Table7.27 Izhikevich Model on Fermi: Observed and Predicted Values for  

Total Execution Time (ms) 

Configuration Texecution-time=Tcomputation+Tcommunication 

Test Data Size Observed 

Time 

(ms) 

Predicted 

Time 

(ms) 

Error Rate 

(%) 

2-Node 3360x3360 315.995 296.9556 -6.41 

3600x3600 362.2265 346.1223 -4.65 

4-Node 4940x4940 735.2246 769.96 4.51 

5040x5040 765.0101 807.8265 5.30 

8-Node 6960x6960 1564.886 1574.407 0.60 

7200x7200 1673.528 1692.217 1.10 

16-Node 10080x10080 3327.271 3338.222 0.33 

10120x10120 3353.455 3362.771 0.28 

 

Table 7.28 HH Model on Kepler: Observed and Predicted Values for Total Execution Time (ms) 

Configuration Texecution-time=Tcomputation+Tcommunication 

Test Data Size Observed 

Time 

(ms) 

Predicted 

Time 

(ms) 

Error Rate 

(%) 

2-Node 3360x3360 975.905 1020.044 -4.52 

3720X3720 1191.36 1250.501 -4.96 

4-Node 4200X4200 1723.866 171.609 0.362 

4800X4800 2220.83 2228.33 -0.34 

8-Node 5040x5040 1713.93 1696.42 1.02 

6840x6840 2765.74 2753.45 0.44 

16-Node 7200x7200 2860.74 2832.107 1 

8400x8400 3911 3786.04 3.2 
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Table 7.29 ML Model on Kepler: Observed and Predicted Values for Total Execution Time (ms) 

Configuration Texecution-time=Tcomputation+Tcommunication 

Test Data Size Observed 

Time 

(ms) 

Predicted 

Time 

(ms) 

Error Rate 

(%) 

2-Node 5040x5040 1903.7 1555.6 18.3 

5420x5420 2218.85 1791.33 19.3 

4-Node 4080x4080 1712.8 1367.98 20.13 

5040x5040 2447.1 2099.95 14.2 

8-Node 6840x6840 2227.8 2233.115 -0.24 

7140x7140 2599.8 2435.1 6.31 

16-Node 4800x4800 1209.22 1164.033 3.73 

6840x6840 2555.6 2303.842 9.85 

 

Table 7.30 Wilson Model on Kepler: Observed and Predicted Values for  

Total Execution Time (ms) 

Configuration Texecution-time=Tcomputation+Tcommunication 

Test Data Size Observed 

Time 

(ms) 

Predicted 

Time 

(ms) 

Error Rate 

(%) 

2-Node 3720x3720 614.05 637.99 -3.89 

4800x4800 1032.1 1050.723 -1.81 

4-Node 3600x3600 516.7 448.2 13.26 

4080x4080 630.26 573.445 9.01 

8-Node 5040x5040 893.67 877.1 1.86 

6840x6840 1640.26 1592.4 2.92 

16-Node 6840x6840 2050.63 1797.4 12.35 

7200x7200 1792.633 1978.45 -10.36 

 

Table 7.31 Izhikevich Model on Kepler: Observed and Predicted Values for 

 Total Execution Time (ms) 

Configuration Texecution-time=Tcomputation+Tcommunication 

Test Data Size Observed 

Time 

(ms) 

Predicted 

Time 

(ms) 

Error Rate 

(%) 

2-Node 4480x4480 458.9 453.3 1.22 

4800x4800 528.18 521.42 1.28 

4-Node 3600x3600 369.32 365.95 0.91 

4080x4080 530.52 469.422 11.52 

8-Node 6840x6840 1441.5 1439.13 0.17 

7200x7200 1589.87 1567.023 1.44 

16-Node 6840x6840 1493.1 1694.7 -13.5 

7200x7200 1677.44 1868.31 11.4 
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Strengths – In [16], the authors proposed the SIGE model for developing the regression-

based framework for predicting the runtime of Synchronous Iterative Algorithms (SIAs) on 

multi-GPGPU systems. The authors used the Forge GPGPU cluster at the National Center for 

Super-Computing Applications (NCSA) [12], which consists of the Fermi-based Tesla M2070 

GPGPUs for implementing the SIAs. For the SWO analysis, we use the Palmetto cluster that has 

a mix of Fermi-enabled and Kepler-enabled GPGPU nodes; each of these nodes is equipped with 

two GPGPU devices. From Tables 7.24 – 7.27 for the Fermi GPGPU device, we observe that the 

prediction framework developed using the SIGE model gives good prediction results with very 

low error rates. The HH model yields a prediction error rate below 3% for all test data sizes and 

all node configurations. The ML model provides an overall prediction error rate below 5%. The 

Wilson model also yields a prediction error rate below 5%. The Izhikevich model gives error 

rates up to 6.5% for the given test data sizes and all node configurations. Similarly for the Kepler 

architecture, we observe less than 5% error rates for the HH model (see Table 7.28). The 

prediction error rates for the ML model (Table 7.29) agree with those mentioned in [16]. 

Although the framework provides high accuracy for GPGPU time estimation, the CPU-host 

estimation time observed high error rates due to variability in the level-1 firing event. Both the 

Wilson and Izhikevich models (Tables 7.30 and 7.31) observe satisfactory prediction error rates 

that are less than 12%. The high prediction error rates for the low complexity SNN models are 

attributed to low prediction accuracy in the communication component, which significantly 

contributes to the overall execution time [16 and 112]. The regression-based framework is 

deemed satisfactory for runtime prediction for other clusters consisting of other GPGPU 

architectures, thereby establishing its efficacy to span architecture generations. The regression-

based framework enables runtime prediction for SIAs without actual large-scale 
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implementations; therefore the framework can be used for obtaining runtime values for larger-

node configurations and larger data sizes.  

The regression-based framework for DSE targets researchers and developers that lack the 

expertise to use complex analytical models, which require architecture knowledge beyond 

CUDA programming paradigm. The framework allows for quick and straightforward evaluation 

of the SIA design space with limited architecture knowledge. We expect the framework to be 

independent of application regularity. The authors assert that the regression-based framework 

will also work for other complex algorithms where the algorithm complexity is accounted for by 

the regression coefficients.  

Weaknesses – The regression-based framework is broken into two components: computation 

and communication. Although this component division provides sufficient insight into the 

algorithm performance, the behavior of the individual components may vary across computing 

systems. Albeit the regression-based framework provides satisfactory prediction results for the 

communication component [112], we observed a few outliers that are attributed to the missing 

predictor variables in the regression equations, for instance, network protocol changes and 

implicit synchronization effects. In addition to the above mentioned shortcomings, the 

regression-based framework requires a preliminary GPGPU kernel implementation; therefore it 

is imperative to possess knowledge of the sections of algorithm appropriate for implementation 

on GPGPU devices.   

Opportunities – Considering the weaknesses mentioned above, other predictor variables, in 

addition to the ones used in this research, can be employed to obtain better prediction results. 

The synchronous iterative model and the regression-based framework should be verified with 

other accelerators and non-regular algorithms to broaden the scope of performance modeling. 
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Additional features of the Kepler architecture, dynamic parallelism for instance, should also be 

explored. 

In this section, we performed a SWO analysis study of the regression-based framework for 

multi-GPGPU systems. In research beyond this dissertation, other predictor variables such as 

network protocols will be explored for the communication component performance modeling. 

The synchronous iterative scheme coupled with regression-based framework will also be verified 

using non-regular algorithms and other accelerators to broaden the scope of performance 

modeling. The regression-based framework employed for GPGPU DSE constitutes the low-level 

abstraction of the design space, where partial knowledge of the implementation is present along 

with system specifications. The next step is to address the high-level abstraction of the design 

space where the implementation knowledge is less and only high-level system specifications are 

known. The high-level design space abstraction consists of qualitative, quantitative, and hybrid 

(mix of qualitative and quantitative approaches) performance modeling approaches. The two 

levels of design space abstractions will be compared for the ease-of-use and accuracy, allowing 

the developers to select a suitable DSE method that best satisfies their design goals. 

6.5 SUMMARY 

In this chapter, we presented the verification results for the low-level abstraction (regression-

based framework) of the modeling suite using the four SNN models and ADF algorithm as SIA 

case studies. The regression models for the computation and communication components 

demonstrated satisfactory prediction accuracy (less than 10-12%), barring a few test cases. The 

computation component yielded high prediction accuracy, given the high reproducible nature of 

the computing devices in general. The communication component (network-level) observed 

larger errors compared to the computation component. The authors assert that additional network 
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characteristics such as change in network protocol can affect the network-level transactions and 

hence the prediction accuracy.  

We also performed the GPGPU DSE to map an optimal implementation to the target GPGPU 

architecture. The design space was explored for SIAs featuring optimizations of the GPGPU 

memory hierarchy including global, shared, and texture memories. The implementations in the 

design space were ranked based on the runtime predictions facilitated by the low-level 

abstraction (regression-based framework). The SWO analysis was conducted that enunciates the 

strengths and weaknesses of the prediction framework. Additionally, the analysis identifies the 

scope for further improvement. In the next chapter, we discuss the high-level abstraction of the 

modeling suite.  
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CHAPTER 8 

THE HIGH-LEVEL ABSTRACTION 

In this chapter, we discuss the high-level abstraction that consists of two principal 

approaches: Qualitative Modeling and Quantitative Modeling. The former employs subjective-

analytical models to estimate the computation and communication components of the SIGE 

model; whereas, the latter predicts these components by measuring hardware events associated 

with the objective-analytical models using micro-benchmarks. The classification of analytical 

models into subjective and objective categories is explained in this chapter. These two modeling 

techniques are coupled to yield an intermediate hybrid approach where some SIGE model 

components are estimated qualitatively, while the remaining components are analyzed 

quantitatively. This analysis is demonstrated in the next chapter. The high-level abstraction study 

is conducted on the GPGPU-augmented Palmetto cluster with Kepler GPGPU devices. It should 

be noted that we follow the same CPU computation modeling strategies given by [6 and 9], 

which resulted in the construction of CPU regression equations in Chapter 6. Therefore, the 

emphasis is on modeling the GPGPU computations, network-level and PCI-Ex bus 

communications. Sections 8.1 and 8.2 discuss the qualitative and quantitative modeling 

approaches, respectively. The chapter concludes with a summary in Section 8.3.  

8.1 QUALITATIVE MODELING  

In [114], the authors claim that the accuracy of quantitative models largely depends on the 

precise estimation of several parameters pertaining to the system under investigation. They also 

assert that the determination of precise parameter values is not always feasible; however it is 
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usually possible to state some qualitative relations that sufficiently describe the system behavior. 

Qualitative models avoid numerical complexities by specifying minimum essential qualitative 

relations amongst the system parameters, thereby providing straightforward insight into the 

system characteristics. To facilitate qualitative modeling, we study subjective-analytical models 

that describe the system behavior using simple analytical equations. For the heterogeneous 

systems studied, these analytical models relate the target variables (GPGPU kernel runtime and 

communication throughput) to algorithm characteristics (computation elements, data size, etc.) 

and system specifications (computation throughput, peak communication bandwidth, etc.). The 

following sections illustrate how the subjective-analytical models are developed for estimating 

the SIGE model components.  

8.1.1 Qualitative Modeling of GPGPU Computations 

We study the subjective-analytical modeling for GPGPU computations by adapting the 

analytical model proposed by Schaa et al. [8], which predicts the application execution time on 

multi-GPGPU systems using runtime information from a reference GPGPU implementation 

while varying the number and configuration of GPGPU devices. The authors define per-element 

average (Tper_element_average) as the average time taken by the reference GPGPU device to execute a 

single computational element (total Nelements) in the given algorithm. This information is used to 

extrapolate the algorithm execution time on M GPGPU devices, where M is the number of 

devices. The per-element average evaluation and execution time extrapolation is elucidated by 

Equations 8.1 and 8.2, respectively.  

_ _
ref GPGPU

per element average

elements

T
T

N


        (8.1) 
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_ _ *
elements

M GPGPU per element average
N

T T
M

        (8.2) 

As highlighted in Chapter 2, the performance modeling approach in [8] lacks statistical rigor. 

Several algorithm parameters, including but not limited to floating-point operations (FLOPs), 

computational bytes, and the number of computational entities affect the per-element average 

time. To verify this claim, we define element-throughput as the number of elements processed by 

the GPGPU device per unit time (mathematical inverse of per-element average). For the chosen 

SIA case studies, this throughput corresponds to either the number of neurons (SNN models) or 

pixels (ADF) processed per unit time by the GPGPU device. Figures 8.1 through 8.4 show the 

non-linear variation of element-throughput with respect to the number of elements (SNN 

network size) for the SNN models using a 4-node configuration. It is worth mentioning that 1- 

and 2-node configurations yielded substantially different results that do not reflect the 

application behavior at larger configurations, therefore we chose the 4-node configuration as the 

reference in this analytical modeling. As seen in these figures, the GPGPU device utilization 

increases with the SNN network size, thereby resulting in an initial rise of element-throughput 

values. Beyond a threshold SNN network size, the GPGPU device is fully occupied with 

computations, ultimately leading to element-throughput saturation. This observation confirms the 

claim that per-element average should be expressed as a function of algorithm parameters 

(number of elements in this case) for accurate runtime estimation.   
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Figure 8.1 HH Model: Element Throughput vs. Number of Elements 

 
Figure 8.2 ML Model: Element Throughput vs. Number of Elements 
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Figure 8.3 Wilson Model: Element Throughput vs. Number of Elements 

 
Figure 8.4 Izhikevich Model: Element Throughput vs. Number of Elements 
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To address the non-linear relationship between element-throughput and the number of 

elements processed by the GPGPU device, we provide a new set of equations for the multi-

GPGPU subjective-analytical model shown below. 

_ ( )
elements

elements

ref GPGPU

N
Element Throughput N

T 

        (8.3) 

( )

_ (( ))

elements

M GPGPU
elements

N

MT
N

Element Throughput
M

         (8.4) 

The accurate runtime estimation on M GPGPU devices highly depends on the precise 

description of element-throughput as a function of the number of elements (Nelements). The initial 

sketches of element-throughput (Figures 8.1 – 8.4) strongly resemble the Michaelis-Menten 

kinetics [68]; therefore, we apply the regression technique developed in Chapter 6 to obtain a 

relation between element-throughput and Nelements. Equations 8.5 through 8.8 provide the 

element-throughput equations for the HH, ML, Wilson, and the Izhikevich SNN models. The 

terms Km and Vmax expressed in elements and elements/millisecond, respectively are obtained 

using non-linear regression analysis explained in Chapter 6.  

HH Model: 

3993.23*
_

160014.3

3993.23

160014.3

elements

elements

max

m

N
element throughput

N

V =  elements / ms

K =  elements




       (8.5) 

ML Model: 

279435.6*
_

58294.5

279435.6

58294.5

elements

elements

max

m

N
element throughput

N

V =  elements / ms

K =  elements




       (8.6) 
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Wilson Model: 

51490.83*
_

140027.1

51490.83

140027.1

elements

elements

max

m

N
element throughput

N

V =  elements / ms

K =  elements


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       (8.7) 

Izhikevich Model: 

272022.6*
_

343499.3

272022.6

343499.3

elements

elements

max

m

N
element throughput

N

V =  elements / ms

K =  elements




       (8.8) 

For the ADF algorithm, we follow the same approach and plot element-throughput with 

respect to the number of elements shown in Figure 8.5. Unlike the SNN models, the throughput 

sketch initially resembles the Michaelis-Menten kinetics, however after a particular image size, 

the throughput values drop and saturate to a distinct level. Consequently, the mathematical 

equation for element-throughput takes the form shown by Equation 8.9. 

ADF: 

14682.8*
*( ( ) ( 802816))

8766.999

(9.254 5* 8247)* ( 802816)

elements
elements elements

elements

elements elements

N
element throughput u N u N

N

e N u N

   


   

  

 ( ) 1  if 

                     0  elsewhere

elements elementsu N a N a 


         (8.9) 
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Figure 8.5 ADF: Element Throughput vs. Number of Elements 

 

For the chosen SIAs, we elucidated the multi-GPGPU subjective-analytical modeling by 

relating the kernel execution time on M GPGPU devices with element-throughput using simple 

analytical functions. We established that element-throughput largely depends on the number of 

computational entities and provided mathematical equations for element-throughput using the 

regression analysis developed in Chapter 6. This level of modeling avoided complex numerical 

estimations of architecture specific parameters and facilitated the development of intuitive and 

simple qualitative relations that explain the application behavior on GPGPU devices. The next 

section describes the qualitative modeling of communications.  

8.1.2 Qualitative Modeling of Communications (Network-level and PCI-Ex Bus) 

In Chapter 2, we discussed some of the important network-level modeling techniques 

including logP, plogP, and logGP models that provide significant insight into the network 
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characteristics. However, these models require accurate measurement of network parameters 

such as latency, overhead, small and large message gaps; a task that may not be straightforward 

on all heterogeneous systems. Additionally, the network simulators [64] that estimate these 

parameters provide overly elaborate numerical output, making the analysis more complex. As 

discussed in the previous section, subjective-analytical models evade numerical complexities by 

describing the system behavior intuitively. In Chapter 6, we mapped the data transfer problem 

onto the well-known Michaelis-Menten enzyme kinetics [68], which relates the reaction rate, ν, 

with the substrate concentration, [S], using a first-order equation (see Equation 6.11). Mapping 

the data transfer problem onto the enzyme kinetics problem is highly intuitive because the data 

transfer throughput (MB/sec) corresponds to the reaction rate and the data transfer size (MB) 

corresponds to the substrate concentration, [S]. In Chapters 6 and 7, this qualitative mapping is 

demonstrated for high prediction accuracy whilst avoiding any complex network parameter 

estimation. The readers are referred to Sections 6.2.2, 7.1, 7.2, and 7.4 for the qualitative analysis 

of communication performance.      

8.2 QUANTITATIVE MODELING 

In the foregoing section, we discussed the subjective-analytical models that derive qualitative 

relations amongst the parameters to represent the system behavior. The quantitative methods also 

provide an interesting route to performance modeling where the performance/behavior of the 

target system is estimated by measuring several associated parameters using micro-benchmarks. 

For instance, one can measure the number of execution cycles involved in computations and 

DRAM communications to estimate the overall GPGPU kernel execution time [17]. Similarly, 

the performance of data transfer operations over Infiniband and PCI-Ex bus (henceforth referred 

to as communication mediums or simply mediums) can be estimated by measuring overhead, 
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latency, and message gap on these mediums [61]. These system parameters often constitute the 

variables of analytical equations, which we refer to as objective-analytical models. Formally, the 

objective-analytical models are defined as a class of analytical models that express target 

variable(s) as function(s) of hardware events estimated using micro-benchmarks. The following 

sections elucidate the objective-analytical models for GPGPU computations and medium 

communications.  

8.2.1 Quantitative Modeling of GPGPU Computations 

Amongst the several GPGPU analytical models discussed in Chapter 2, the model proposed 

by Hong and Kim [17] aligns well with our definition of objective-analytical models, which we 

describe in this section. The authors claim that their analytical model is the first for the GPGPU 

architecture that can also be extended to other multi-threaded architectures. The analytical model 

estimates the total number of execution cycles in an application by estimating the number of 

parallel memory requests (memory warp parallelism) and computation requests (computation 

warp parallelism). These metrics are evaluated by measuring GPGPU-specific hardware events 

such as the number of coalesced/uncoalesced accesses, memory access latency, global memory 

bandwidth, number of memory and computation instructions, and the number of warps (groups 

of 32 concurrent threads) active on a streaming multiprocessor (SM). 

In [17], Hong and Kim assert that active warps execute on SMs in a time sharing fashion; 

when a warp issues a memory request, the computations from ready warps are serviced. This 

warp-level parallelism is expressed using two metrics: memory warp parallelism (MWP) and 

computation warp parallelism (CWP). The authors define MWP as the maximum number of 

warps that can simultaneously access the memory during the period when a memory request has 

been issued from a warp. The waiting warp is referred to as the memory warp and the waiting 
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period is labeled as the memory waiting period. CWP, a parameter of less significance in this 

model, is defined as the number of warps that are ready for computations during the memory 

waiting period. MWP is strongly related to the peak DRAM (global) memory bandwidth and 

number of active warps per SM. The authors express peak MWP as shown by Equation 8.10.   

_

_ _ * _

* _ _ _
_ _

_

peak
Memory Bandwidth

MWP
Bandwidth per warp Active SMs

Frequency load bytes per warp
Bandwidth per warp

Mem Latency





    (8.10) 

The variables in this equation are defined as follows. 

 Memory_Bandwidth: Peak DRAM (global memory) bandwidth 

 Bandwidth_per_warp: Peak DRAM bandwidth for a single warp 

 Active_SMs: Number of active SMs in the device 

 Frequency: Operation frequency of a SM 

 Load_bytes_per_warp: Number of bytes loaded/stored by the warp 

 Mem_Latency: The round-trip time to the device DRAM  

Unlike MWPpeak, MWPnot-peak (MWP without the peak device bandwidth) is related to the 

number of coalesced and uncoalesced accesses in an application. Hong and Kim claim that active 

warps accessing the global memory concurrently are skewed with respect to each other by 

departure_delay time. Because MWPnot-peak is the number of warps that can access memory in a 

memory warp period (Mem_Latency) simultaneously, this metric is evaluated as: 

_

_
not peak

Mem Latency
MWP

departure delay
          (8.11) 

The actual MWP is the minimum of MWPpeak, MWPnot-peak, and the number of active warps 

on SMs, N. Because recent GPGPU devices have relaxed memory access coalescing rules, in 
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most cases the MWP is equal to N as discussed in the next chapter. The authors provide several 

equations in [17] that evaluate the total number of execution cycles in the given application. 

Equation 8.12 shows the two most commonly occurring scenarios including: 1) MWP is equal to 

the number of active warps, N and 2) computation cycles are greater than memory cycles. This 

equation also includes any execution costs associated with the thread synchronization. The 

equation parameters are evaluated using micro-benchmarks and PTX assembly [24] inspection.  
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# _

_ _

if MWP N

Comp cycles
Exec cycles app Mem cycles Comp cycles MWP Reps

Memory Insts

if Comp cycles Mem cycles

N Comp cycles
Exec cycles app Mem cycles MWP Reps

MWP Memory Insts

Thread Sync cost



   



  

_ *( 1)* _ * _ _ _ *

_ _ _ _Total

departure delay MWP sync insts Active blocks per SM Reps

Exec Exec cycles app Thread Sync cost

 
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            (8.12) 

The variables in the above equation are summarized as follows. 

 Mem_cycles: Execution cycles per thread to execute memory instructions 

 Comp_cycles: Execution cycles per thread to execute computation instructions 

 #Memory_Insts: The number of memory instructions 

 Reps: The number of repetitions for SMs to execute all of the assigned warps in the 

application 

 Thread_Sync_cost: Execution cycles due to synchronizing threads in a block 

 Sync_insts: Number of __syncthreads() calls 

 Active_blocks_per_SM: Total number of active blocks assigned to a single SM 
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The objective-analytical model described in this section is used in the next chapter to predict 

the GPGPU kernel execution time for the SNN-ADF SIAs, highlighting the potential merits, 

challenges, and pitfalls associated with this modeling paradigm. 

8.2.2 Qualitative Modeling of Communications (Network-level and PCI-Ex Bus) 

To study the objective-analytical modeling for communications, we develop a variant of the 

communication models discussed in Chapter 2. We propose piecewise analytical model that 

describes the performance of communication operations (scatter, gather, sendrecv, device-to-

host, host-to-device, etc.) over different data regions (e.g. 1 KB – 256 KB, 256 KB – 512 KB, 

etc.) using two medium parameters: overhead (oT) and message gap (G). Any two data regions 

are separated by the cut-off message size, kcutoff.  The parameters pertaining to the piecewise 

analytical model are summarized below: 

 Overhead (oT): The estimated time taken by the processor to initiate the operation  

 Message gap (G): The estimated transfer time per byte for a message in a given data 

region; consequently, G varies across data regions 

 Message cut-off (kcutoff-n): The message size that separates data regions, n and n+1 

The runtime performance of data operations over Infiniband and PCI-Ex bus is given by 

Equation 8.13. The numbers in the subscript denote the data regions. 

 

 

 

            (8.13) 

In what follows, we illustrate the piecewise-analytical modeling for the two communication 

mediums.  
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A. Infiniband Operations: Scatter, Gather, and Sendrecv 

As mentioned previously, SIAs fit well with the Master-Worker paradigm where the Master 

process disseminates tasks to all the other processes and gathers the final result when all of the 

computations are finished. Albeit not recommended, the processes may also engage in 

intermediate data exchange during the course of SIA execution using the point-to-point Sendrecv 

routine. We elaborate our communication modeling methodology for the two most commonly 

used and runtime intensive message passing routines namely, scatter and gather. We briefly 

discuss the Sendrecv routine and provide the relevant model parameters. The piecewise 

analytical modeling approach can be easily extended to other communication routines as well.  

We perform micro-benchmarks for the communication medium operations at different node 

configurations and select the data regions based on the initial sketches of data transfer time. 

Typically, these data regions can be classified into short, medium, and long message regions. In 

our experiments for Infiniband operations, message sizes 1 B – 512 KB constitute the short 

message region, 512 KB – 1024 KB constitute the medium message region and lastly, 1 MB and 

above belong to the long message region. Thereafter, the message gap (G) parameter is 

determined for each of these regions via curve fitting. It is worth mentioning that overhead (oT) 

is the one-time cost required to initiate the operation and is relevant in region 1 only. Equation 

8.13 implicitly accounts for the overhead parameter in all the other data regions. Figures 8.6 – 

8.8 show the scatter operation time and corresponding message gap (G) in different data regions 

for the 4-node configuration, justifying the piecewise modeling approach. This technique also 

overcomes any inaccuracies introduced by the subjective-analytical model, which considers all 

messages in a single data region and fits a single curve for communication throughput.  
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Figure 8.6 4-node Scatter Time vs. Message Size: Data Region 1 KB – 512 KB 

 
Figure 8.7 4-node Scatter Time vs. Message Size: Data Region 512 KB-1024 KB 
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Figure 8.8 4-node Scatter Time vs. Message Size: Data Region Over 1024 KB 

 

  Tables 8.1 and 8.2 show the overhead and message gap parameters for scatter and gather 

operations at 2-node, 4-node, 8-node, and 16-node configurations. The dashes in the table signify 

that the parameter is either irrelevant or statistically insignificant in that data region. Table 8.3 

provides the model parameters for the Sendrecv routine at different node configurations. The 

training data-set for the Sendrecv routine is obtained using micro-benchmarks that resemble the 

ADF operations. As seen in the same table, the overhead and message gap parameters for this 

point-to-point routine are large when compared to the collective scatter and gather routines. 

Therefore, programmers are advised to avoid frequent point-to-point communications and 

instead use collective operations for optimal performance. 
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Table 8.1 Overhead (ms) and Message Gap (ms/KB) for Scatter Time 

Node 

Configuration 

Region 1 

 (1 KB – 512 KB) 

Region 2 

 (512 KB – 1024 KB) 

Region 3 

 (over 1024 KB) 

oT G oT G oT G 

2-Node - 9.57e-5 - 9.39e-5 - 2.6e-4 

4-Node 2.771e-3 4.13e-3 - 3.66e-3 - 4.43e-3 

8-Node 6.86e-3 6.21e-3 - 6.03e-3 - 6.43e-3 

16-Node 5.6e-3 7.27e-3 - 7.03e-3 - 7.5e-3 

 

Table 8.2 Overhead (ms) and Message Gap (ms/KB) for Gather Time 

Node 

Configuration 

Region 1 

 (1 KB – 512 KB) 

Region 2 

 (512 KB – 1024 KB) 

Region 3 

 (over 1024 KB) 

oT G oT G oT G 

2-Node 9e-4 6.15e-5 - 1.53e-5 - 2.65e-4 

4-Node 4.52e-3 4.13e-3 - 4.2e-3 - 4.26e-3 

8-Node 2.93e-3 6.20e-3 - 6.17e-3 - 6.32e-3 

16-Node 0.59 1e-2 - 1.03e-2 - 7.36e-3 

 

Table 8.3 Overhead (ms) and Message Gap (ms/KB) for Sendrecv Time 

Node 

Configuration 

Model Parameters 

oT G 

2-Node 0.58 0.02 

4-Node 1.1 0.086 

8-Node 1.98 0.186 

16-Node 3.77 0.43 

B. PCI-Ex Bus Operations: Download and Read-back 

As discussed in Chapter 4, the Palmetto cluster [15] includes GPGPU-enabled servers 

equipped with two Nvidia Kepler GK110 devices each. Consequently, up to two MPI ranks (two 

host-device pairs) can be packed in a single server for node configurations greater than two 

nodes. Therefore, we perform micro-benchmarks for download (host-to-device) and read-back 

(device-to-host) operations using two host-device pairs in a single server. We define the 

following data regions: 1 B – 8 KB (small message region), 8 KB – 512 KB and 512 KB – 1024 

KB (medium message region), and 1024 KB – 8 MB and 8 MB – 256 MB (long message 

regions). Figures 8.9 through 8.13 provide the initial sketches of download time and 

corresponding message gap (G), justifying the constructed data regions.  
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Figure 8.9 Download Time vs. Message Size 

1 B – 8 KB 

Figure 8.10 Download Time vs.  

Message Size 8 KB – 512 KB 

  
Figure 8.11 Download Time vs.  

Message Size 512 KB – 1024 KB 

Figure 8.12 Download Time vs.  

Message Size 1 MB – 8 MB 
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Figure 8.13 Download Time vs. Message Size 8 MB – 256 MB 

 

Table 8.4 gives the overhead and message gap parameters for download and read-back 

operations. Similar to the Infiniband operations, the dashes in the table are due to irrelevance or 

statistical insignificance of the parameter values.  

 Table 8.4 Overhead (ms) and Message Gap (ms/KB) for Download and Read-back Time 

PCI-Ex 

Bus 

Operation 

Region 1 

 (1 KB  

– 8 KB) 

Region 2 

 (8 KB – 

512 KB) 

Region 3 

 (512 KB – 

1024 MB) 

Region 4 

 (1 MB – 

8 MB) 

Region 5 

 (8 MB –  

256 MB) 

oT G oT G oT G oT G oT G 

Download 0.014 - - 5.8e-4 - 8.5e-4 - 4.76e-4 - 4.2e-4 

Readback 0.017 - - 4.95e-4 - 5.4e-4 - 3.41e-4 - 3.6e-4 

8.3 SUMMARY 

In this chapter, we discussed the high-level abstraction for modeling the GPGPU 

computations and medium communications. The high-level abstraction approaches, namely 

qualitative and quantitative methods, were described using subjective-analytical and objective-

analytical models, respectively. The subjective-analytical models avoid numerical complexities 
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by describing the system using minimum qualitative relations amongst the system parameters, 

providing user-friendly approach to performance modeling. To model the GPGPU computations, 

we derived simple mathematical relations between element-throughput, number of computational 

entities, and the execution time on M GPGPU devices. For the communication medium 

modeling, we explained the Michaelis-Menten kinetics approach with a subjective-analytic 

perspective.  

Unlike qualitative methods, the quantitative approach is described by objective-analytical 

models that employ micro-benchmarks to measure system parameters, thereby estimating the 

target variable. We adapted the GPGPU analytical model proposed by Hong and Kim [17] and 

provided a sub-set of relevant equations for measuring the GPGPU architecture performance. 

The parameters associated with this objective-analytical model are estimated using micro-

benchmarks and PTX assembly inspection. For the communication component, we proposed a 

variant of the analytical models described in Chapter 2 called the piecewise-analytical model. 

This approach estimates the data transfer time by defining data regions determined by cut-off 

messages and using two medium parameters: overhead (oT) and message gap (G). The overhead 

parameter is the estimated time taken by the processor to initiate the operation; whereas the 

message gap parameter is the transfer time per byte for a message in a given data region. We 

elucidated the piecewise-analytical model construction for the two most commonly used, runtime 

intensive network-level routines (scatter and gather) and interconnect operations (download and 

read-back). A brief discussion on the Sendrecv routine was provided along with the model 

parameter values. This point-to-point routine observed significantly high overhead and message 

gap parameter values, suggesting the avoidance of this point-to-point routine. In the next chapter, 

we verify the high-level abstraction models for their prediction efficacy, keeping the emphasis on 
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GPGPU computations and medium communications. We also explore a suitable combination of 

qualitative and quantitative methods, the hybrid approach, for performance predictions on 

heterogeneous system.       
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CHAPTER 9 

VERIFICATION OF THE HIGH-LEVEL ABSTRACTION 

This chapter presents the verification results for the high-level abstraction using the SNN-

ADF SIAs studied in this dissertation research. The primary focus is verifying the prediction 

models for GPGPU computations and medium communications; we report prediction error rates 

for these SIGE model components. A Strengths, Weaknesses, and Opportunities (SWO) study 

for the high-level abstraction is also presented. The rest of the chapter is structured as follows. 

Section 9.1 verifies the subjective-analytical model for GPGPU computations. Because 

qualitative models for communications were comprehensively studied in Chapters 6 and 7, we do 

not show this analysis. Section 9.2 verifies the objective-analytical models for GPGPU 

computations and medium communications (Infiniband and PCI-Ex bus) including scatter, 

gather, sendrecv, download, and read-back. A combination of effective qualitative and 

quantitative methods, the hybrid approach, is discussed in Section 9.3. The SWO analysis for the 

high-level abstraction models follows in Section 9.4. The chapter concludes with a summary in 

Section 9.5.    

9.1 VERIFICATION RESULTS: QUALITATIVE MODELING     

9.1.1 GPGPU Computations 

This section provides the verification results for the GPGPU subjective-analytical model 

using the SNN-ADF SIA case studies. We present the values for observed kernel runtime, 

estimated kernel runtime, and prediction error rate using selected SNN network and noised 
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image sizes. The SIAs were executed on the Kepler GPGPU-augmented Palmetto cluster using 

node configurations varying from 4- to 16-nodes.  

We use Equations 8.3 through 8.8 for estimating the GPGPU kernel execution time for the 

four SNN models. Tables 9.1 through 9.4 provide the observed and estimated kernel runtime 

values along with the prediction error rates for the HH, ML, Wilson, and Izhikevich models. All 

of the SNN models observe high prediction accuracy (less than 10%) for several SNN network 

sizes across the tested node configurations. The ML model, however observes a few outliers with 

error rates distinctively high compared to the other SNN models. As explained in Chapter 8, the 

subjective-analytical model extrapolates the execution time on M GPGPU devices using runtime 

information from the reference GPGPU device (see Equation 8.3). Because GPGPU 

computations usually scale well with the number of processors, the analytical approach is 

expected to yield highly accurate predictions as shown by these tables.  

Table 9.5 provides the values of observed kernel runtime, estimated kernel runtime, and 

corresponding error rate for the ADF algorithm. Similar to the SNN models, the ADF algorithm 

also observes high prediction accuracy (error less than 5%).   

Table 9.1 HH Model: Observed and Estimated Kernel Runtime Values (ms) 

Node 

Configuration 

Input Size  Observed 

Kernel Time 

Estimated 

Kernel Time 

Error Rate 

(%) 

4-Node 4200x4200 1144.58 1144.44 0.01 

4800x4800 1472.32 1482.5 -0.7 

8-Node 6480x6480 1349.07 1354.5 -0.41 

7200x7200 1681.24 1662.82 1.1 

16-Node 8400x8400 1145.26 1144.44 0.072 

9600x9600 1474.214 1482.51 -0.6 
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Table 9.2 ML Model: Observed and Estimated Kernel Runtime Values (ms) 

Node 

Configuration 

Input Size  Observed 

Kernel Time 

Estimated 

Kernel Time 

Error Rate 

(%) 

4-Node 4080x4080 18.24 18.16 0.41 

4800x4800 20.87 20.82 0.22 

8-Node 4800x4800 11.78 10.51 10.73 

5040x5040 12.91 11.57 10.4 

16-Node 6840x6840 11.97 10.67 10.83 

7140x7140 12.81 11.61 9.36 

 

Table 9.3 Wilson Model: Observed and Estimated Kernel Runtime Values (ms) 

Node 

Configuration 

Input Size  Observed 

Kernel Time 

Estimated 

Kernel Time 

Error Rate 

(%) 

4-Node 3600x3600 63.83 65.64 -2.83 

4080x4080 83.7 83.5 0.2 

8-Node 4800x4800 57.06 58.7 -2.8 

5040x5040 63.53 64.4 -1.35 

16-Node 4800x4800 30.11 30.68 -1.9 

7200x7200 63.83 65.64 -2.85 

 

Table 9.4 Izhikevich Model: Observed and Estimated Kernel Runtime Values (ms) 

Node 

Configuration 

Input Size  Observed 

Kernel Time 

Estimated 

Kernel Time 

Error Rate 

(%) 

4-Node 3600x3600 13.04 13.17 -1.04 

4080x4080 16.50 16.56 -0.41 

8-Node 4800x4800 11.72 11.85 -1.14 

5040x5040 12.72 12.93 -1.7 

16-Node 4800x4800 6.45 6.56 -1.7 

7200x7200 13.01 13.17 -1.26 

 

Table 9.5 ADF: Observed and Estimated Kernel Runtime Values (ms) 

Node 

Configuration 

Input Size  Observed 

Kernel Time 

Estimated 

Kernel Time 

Error Rate 

(%) 

4-Node 5120x5120 897 857.74 4.38 

6400x6400 1380.18 1402.86 -1.65 

8-Node 6400x6400 686.5 658.7 4.06 

7168x7168 852.3 839.26 1.53 

16-Node 7168x7168 391.18 374.62 4.23 

7680x7680 468.6 466.3 0.5 
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9.2 VERIFICATION RESULTS: QUANTITATIVE MODELING 

In this section, we verify the objective-analytical models for GPGPU computations and 

medium communications. For the GPGPU analysis, we only show the prediction results for the 

SNN models using a 4-node configuration; the kernel runtime can be extrapolated for predictions 

at larger node configurations. The SNN models, with their wide range of computation-to-

communication requirements, are highly suitable case studies for the model verification. The 

communication component prediction models are verified across a range of data sizes; these 

models are later included in the hybrid approach where we investigate their efficacy for overall 

application runtime prediction.  

9.2.1 GPGPU Computations 

The objective-analytical model for GPGPU computations is discussed in Chapter 8 along 

with the relevant equations. We performed micro-benchmarks on the Kepler GPGPU device to 

estimate the values of global memory bandwidth, memory access latency, and departure delays. 

We specifically adapted the micro-benchmarks given in the SHOC suite [41] to obtain these 

values. Additional hardware parameters including multi-processor (SMX) frequency, instruction 

issue cycles, and the number of SMXs were obtained using CUDA programming guide [22] and 

deviceQuery routine from the CUDA SDK [26]. The hardware parameters relevant to the Kepler 

architecture are summarized in Table 9.6. The application specific parameters including the 

number of active warps per SMX (related to occupancy), number of load/store bytes per warp, 

and the number of computation and memory instructions were obtained via PTX assembly 

analysis [24] and CUDA profile generation [22]. These parameter values are given in Table 9.7 
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Table 9.6 Kepler (K20) GPGPU Device Parameter Values 

Parameter Value Method 

Global Memory Bandwidth 144 GB/sec SHOC Benchmark 

Memory Access Latency  Coalesced Uncoalesced Adapted SHOC Benchmark 
133 cycles 572 cycles 

Departure Delays 

 

Coalesced Uncoalesced Adapted SHOC Benchmark 
1 cycle 38 cycles 

# SMX 13 deviceQuery 

SMX Frequency 0.71 GHz deviceQuery 

Instruction Issue Cycles SP* Trans.*  

Device Specifications 32

192
 cycles 

32

32
 cycles 

*SP: Single-Precision Floating Point; Trans.: Transcendental Functions; cycles: SMX cycles 

.  

Table 9.7 SNN Models: Application Specific Parameters 

SNN Model Application Specific Parameters 

 

HH 

#Active_Warps 24 

#load/store_bytes_per 

Warp 

56 

#Comp_Insts 71 SP + 13 Trans. 

#Mem_Insts 14 

 

ML 

#Active_Warps 32 

#load/store_bytes_per 

Warp 

40 

#Comp_Insts 58 SP + 9 Trans. 

#Mem_Insts 10 

 

Wilson 

#Active_Warps 32 

#load/store_bytes_per 

Warp 

52 

#Comp_Insts 49 SP + 5 Trans. 

#Mem_Insts 13 

 

Izhikevich 

#Active_Warps 32 

#load/store_bytes_per 

Warp 

32 

#Comp_Insts 19 SP 

#Mem_Insts 8 

 

Prior to providing the prediction results for the four SNN models, we first demonstrate the 

objective-analytical model for HH model kernel runtime prediction using the 4-node 

configuration and a SNN network size of 4200 x 4200. The runtime analysis is based on the 
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multi-GPGPU orchestration for the SNN models given in Chapter 4. The parameters pertaining 

to Equations 8.10 through 8.12 are summarized in Table 9.8.  

Table 9.8 HH Model: Objective-Analytical Model Parameter Values; 4-Node Configuration 

Parameter Value Obtained Using 

Input Size Per GPGPU 4200*4200
4.41 6

4
e  

Algorithm Specification 

Threads per Block 256 CUDA User-Defined Specification 

#Blocks 17227 Input Size

Threads per Block
 

#Active_blocks_per_SM 3 # _

Threads per Block
( )

Warp Size

Active Warps
 

Reps 442 Equation 8.12 

Mem_cycles (cycles) 1862  _ * _Mem Insts Mem Latency  

Comp_cycles (cycles) 28  _ *

_ _

Comp insts

instruction issue cycles
 

Exec_cycles_app (cycles) 8.56e5  Equation 8.12 

Thread_Sync_cost (cycles) 6.1e4  Equation 8.12 

ExecTotal 9.17e5  Equation 8.12 

Execution time per kernel 

(milliseconds) 

1.29  TotalExec

Frequency
 

Algorithm Iterations 472 Algorithm Specification 

Total Execution Time 

(milliseconds) 

608.8  Execution time per kernel * 

Algorithm Iterations  

 

The kernel runtime predictions for the four SNN models at the 4-node configuration using 

selected SNN sizes are given in Table 9.9. The error rates for all test cases are high (40-60%), 

suggesting several missing components in the objective-analytical model. The prediction model 

yielded significantly high error values for the ML model that are beyond 100%; this observation 

is under investigation. Although the model provides significant insight into the GPGPU 

architecture, a comprehensive study of several device parameters pertaining to instruction 

caches, quad warp schedulers, and multi-level L1/L2 caches should to be incorporated in the 

modeling approach in future work. The future work also includes the use/development of 
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effective PTX assembly parsing software to obtain precise counts of memory and computation 

instructions. 

Table 9.9 SNN Models: Observed and Estimated Kernel Runtime Values (ms) 

SNN Model Network Size Observed 

Kernel Time 

Estimated 

Kernel Time 

Error  

HH 4200x4200 1144.58 608.88 -47% 

4800x4800 1472.32 791.1 -47% 

ML 4080x4080 18.24 83.22 356% 

5040x5040 12.91 127.7 889% 

Wilson 3600x3600 63.83 89.22 -40% 

4080x4080 83.7 114.56 37% 

Izhikevich 3600x3600 13.04 5.03 -61% 

4080x4080 16.5 6.5 -61% 

The values marked in red are under investigation 

9.2.2 Medium Communications: Infiniband and PCI-Ex Bus 

A. Infiniband: Scatter, Gather, and Sendrecv 

The piecewise analytical models for medium communications were discussed in the previous 

chapter. Figures 9.1 through 9.3 provide the bar graph representation of the observed and 

predicted scatter time values versus the data size for 4-node, 8-node, and 16-node configurations. 

The prediction analysis is performed using Equation 8.13 and model parameters given in Table 

8.1. The predicted scatter time values match the observed time values closely for multiple test 

cases. The 4-node and 8-node configurations observed satisfactory predictions with error rates of 

2.06% and 0.9% for their respective largest test data size. Although the prediction model yielded 

acceptable predictions for the 16-node configuration using several test cases, a few outliers with 

over 15% error rate were observed. Overall, the scatter time predictions were found to be 

satisfactory; the objective-analytical model captures the network behavior effectively by 

analyzing the data regions separately.     
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Figure 9.1 Scatter Time Prediction for 4-Node Configuration 

 
Figure 9.2 Scatter Time Prediction for 8-Node Configuration 
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Figure 9.3 Scatter Time Prediction for 16-Node Configuration 

 

Figures 9.4 through 9.6 provide the observed and predicted gather time bar graphs using data 

sizes typically employed by the ADF algorithm. The predictions are performed using Equation 

8.13 and model parameter values given in Table 8.2. All node configurations observed 

satisfactory gather time predictions with error rate less than 6% for several tested data sizes. The 

sendrecv time predictions were also acceptable as shown in Figures 9.7 – 9.9, verifying the 

adequacy of objective-analytical models for productive communication component prediction.   
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Figure 9.4 Gather Time Prediction for 4-Node Configuration 

 
Figure 9.5 Gather Time Prediction for 8-Node Configuration 



 164 

 
Figure 9.6 Gather Time Prediction for 16-Node Configuration 

 

 
Figure 9.7 Sendrecv Time Prediction for 4-Node Configuration 
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Figure 9.8 Sendrecv Time Prediction for 8-Node Configuration 

 
Figure 9.9 Sendrecv Time Prediction for 16-Node Configuration 

B. PCI-Ex Bus: Download and Read-back 

We assert that the performance impact of download and read-back operations are most 

suitably studied in conjunction with the GPGPU kernel execution time as elucidated in Chapters 
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6 and 7. Equation 5.3 combines the GPGPU kernel time with host-to-device (download) and 

device-to-host (read-back) transfer times to facilitate user-friendly analysis. To demonstrate the 

prediction capabilities of the PCI-Ex bus objective-analytical model, we only show the selected 

cases of the HH model and ADF algorithm at 8-node configuration for the download and read-

back operations, respectively. These two case studies sufficiently represent the chosen SIA set 

for inter-connect medium communications. The analytical model parameters are given in Table 

8.4. Figures 9.10 and 9.11 show the download and read-back prediction performances, 

respectively.  

The download prediction accuracy was found to be satisfactory with less than 10% error rate 

for most of the test cases. Moderately high prediction errors were observed only for smaller data 

sizes; small deviations in predictions result in high error rates for numerically small runtimes. 

Unlike the download operation, the read-back predictions were imprecise with few test cases 

yielding error rates between 20 to 25%. The authors surmise that the GPGPU device may require 

additional time to service the data request from the host processor, which may vary across 

applications. The additional time may be attributed to the inter-connect protocol execution [11].  

Consequently, the model parameters generated using micro-benchmarks may not completely 

represent the read-back characteristics in an application. These claims require additional 

investigation and are left for future work beyond this dissertation.    
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Figure 9.10 HH model: Overall Download Time Prediction for 8-Node Configuration 

 
Figure 9.11 ADF: Overall Read-back Time Prediction for 8-Node Configuration 
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9.3 HYBRID MODELING 

The high-level abstraction verification results in the preceding sections suggest that these 

models, when used alone, are likely to yield coarse-grained application runtime prediction, 

thereby necessitating a mixed approach. While several combinations of qualitative and 

quantitative methods can be explored to yield an optimal hybrid modeling approach, our 

selection of the high-level abstraction model framework is as follows. To perform the GPGPU 

kernel runtime predictions, we employ the subjective-analytical model because it is user-friendly 

and offers high prediction accuracy. Unlike the objective-analytical models, the subjective 

modeling approach avoids complex numerical estimations of hardware events by determining 

simple and intuitive relations amongst the system variables. Additionally, since the GPGPU 

computations are highly reproducible and generally scale well with data and the number of 

processors, the subjective modeling approach is expected to yield superior results. However for 

the medium communications (Infiniband and PCI-Ex bus), we select the objective-analytical 

models for performance prediction. As discussed in the previous chapter, the proposed piecewise 

analytical model describes the communication performance across different data regions using 

medium specific parameters namely, overhead and message gap. This objective-analytical model 

overcomes any inaccuracies introduced by the subjective modeling approach, which fits a single 

qualitative relation for the data transfer throughput regardless of varying medium performance 

over multiple data regions.    

In what follows, we present the preliminary prediction results for the computation and 

communication components of the SIGE model for the SNN-ADF SIAs. The predictions are 

performed using a set of selected input sizes and node configurations varying from 4- to 16-

nodes. We also provide error rates for the overall runtime prediction. It should be noted that the 
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high-level abstraction analysis for the computation component only comprises the GPGPU 

computations, which includes kernel time, host-to-device time, and device-to-host time (see 

Equation 5.3). Similar to the low-level abstraction modeling, the communication component 

analysis comprises of all the network-level transactions performed in the algorithm.  

9.3.1 HH Model 

Tables 9.10 and 9.11 provide the observed and predicted runtime values for computations 

and communication components, respectively. All of the SIGE model equations employed to 

verify the regression-based framework (Chapter 7) also apply for this analysis. The computation 

component yielded satisfactory prediction results with error rates less than 2%, barring a single 

test case where 11% error rate was observed. The communication component observed 

satisfactory prediction results using the piecewise-analytical model with error rates less than 2%, 

owing to the highly accurate scatter time predictions. Given the high prediction accuracies of the 

computation and communication components, error rates for the overall execution time 

predictions were also low as seen in Table 9.12.  

Table 9.10 HH Model: Observed and Predicted Time Values for Computation Component  

Configuration Tcomputation=TGPGPU-kernel+TH2D + TD2H 

Test Data Size Observed 

Time 

(ms) 

Predicted 

Time 

(ms) 

Error Rate 

(%) 

4-Node 4200x4200 1229.25 1249.03 -1.6 

4800x4800 1574.52 1401.8 10.96 

8-Node 6480x6480 1444.5 1453.7 -0.64 

7200x7200 1788.72 1776.4 0.7 

16-Node 8400x8400 1232.4 1233.9 -0.13 

9600x9600 1575.5 1587.73 -0.77 
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Table 9.11 HH Model: Observed and Predicted Time Values for Communication Component  

Configuration Tcommunicatation=∑TTransactions 

Test Data Size Observed 

Time 

(ms) 

Predicted 

Time 

(ms) 

Error Rate 

(%) 

4-Node 4200x4200 307.3 304.7 0.84 

4800x4800 401.5 398.16 0.83 

8-Node 6480x6480 1066.35 1054.37 1.12 

7200x7200 1312.6 1301.8 0.83 

16-Node 8400x8400 2066.4 2066.84 -0.02 

9600x9600 2692.07 2699.65 -0.28 

 

Table 9.12 HH Model: Observed and Predicted Execution Time Values  

Configuration TExecution = Tcomputatiom + Tcommunication 

Test Data Size Observed 

Time 

(ms) 

Predicted 

Time 

(ms) 

Error Rate 

(%) 

4-Node 4200x4200 1536.53 1553.74 -1.12 

4800x4800 1976.02 1799.97 8.9 

8-Node 6480x6480 2630.53 2508.14 4.65 

7200x7200 3101.32 3078.16 0.75 

16-Node 8400x8400 3298.8 3300.807 -0.06 

9600x9600 4267.61 4287.37 -0.46 

9.3.2 ML Model 

The computation and communication component predictions are given in Tables 9.13 and 

9.14, respectively. The computation predictions were not as accurate as the HH model; error rate 

values as high as 7% and 11% were observed. Although the GPGPU computation predictions 

were acceptable, the download and read-back operations yielded large error values. Because the 

ML model is moderately computationally intensive, the host-device transfer times match the 

GPGPU kernel time, thereby significantly contributing to the overall prediction error. Similar to 

the HH model, the communication component predictions were satisfactory as seen in Table 

9.14.  The overall execution time prediction results are given in Table 9.15.  
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Table 9.13 ML Model: Observed and Predicted Time Values for Computation Component  

Configuration Tcomputation=TGPGPU-kernel+TH2D + TD2H 

Test Data Size Observed 

Time 

(ms) 

Predicted 

Time 

(ms) 

Error Rate 

(%) 

4-Node 4080x4080 44.99 48.22 -7.17 

4800x4800 59.33 66.17 -11.55 

8-Node 4800x4800 33.87 35.02 -3.4 

5040x5040 39.3 38.33 2.46 

16-Node 6840x6840 33.922 35.5 -4.65 

7140x7140 37.47 38.44 -2.6 

 

Table 9.14 ML Model: Observed and Predicted Time Values for Communication Component 

Configuration Tcomputation=∑TTransactions 

Test Data Size Observed 

Time 

(ms) 

Predicted 

Time 

(ms) 

Error Rate 

(%) 

4-Node 4080x4080 283.52 287.52 -1.41 

4800x4800 393.95 398.16 -1.07 

8-Node 4800x4800 581.67 578.38 0.6 

5040x5040 637.12 637.7 -0.1 

16-Node 6840x6840 1370.65 1370.32 0.024 

7140x7140 1491.74 1493.2 -0.1 

 

Table 9.15 ML Model: Observed and Predicted Execution Time Values 

Configuration TExecution = Tcomputatiom + Tcommunication 

Test Data Size Observed 

Time 

(ms) 

Predicted 

Time 

(ms) 

Error Rate 

(%) 

4-Node 4080x4080 328.52 335.75 -2.2 

4800x4800 453.28 464.33 -2.44 

8-Node 4800x4800 615.54 613.411 0.35 

5040x5040 676.43 676.04 0.06 

16-Node 6840x6840 1404.57 1405.82 -0.1 

7140x7140 1529.209 1531.632 -0.16 

9.3.3 Wilson Model 

Similar to the previous SNN model, the Wilson model is also moderately computationally 

intensive. Consequently, error rates between 5-10% were observed for the computation 

component shown in Table 9.16. The communication component predictions were fair with error 
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rates less than 2%, albeit with an outlier at SNN network size 4080x4080 for the 4-node 

configuration (see Table 9.17). Given the high prediction accuracies for the computations and 

communications, the overall execution time predictions observed error values less than 6% (see 

Table 9.18).  

Table 9.16 Wilson Model: Observed and Predicted Time Values for Computation Component  

Configuration Tcomputation=TGPGPU-kernel+TH2D + TD2H 

Test Data Size Observed 

Time 

(ms) 

Predicted 

Time 

(ms) 

Error Rate 

(%) 

4-Node 3600x3600 100.76 103.94 -3.15 

4080x4080 129.83 132.34 -1.93 

8-Node 4800x4800 90.22 95.45 -5.81 

5040x5040 100.47 104.55 -4.1 

16-Node 6840x6840 101.1 94.25 6.78 

7200x7200 111.27 103.97 6.55 

 

Table 9.17 Wilson Model: Observed and Predicted Time Values for Communication Component  

Configuration Tcomputation=∑TTransactions 

Test Data Size Observed 

Time 

(ms) 

Predicted 

Time 

(ms) 

Error Rate 

(%) 

4-Node 3600x3600 220.95 223.72 -1.25 

4080x4080 315.31 287.52 8.81 

8-Node 4800x4800 586.06 578.4 1.31 

5040x5040 645.84 637.7 1.26 

16-Node 6840x6840 1376.14 1370.32 0.42 

7200x7200 1515.67 1521.99 -0.42 

 

Table 9.18 Wilson Model: Observed and Predicted Execution Time Values  

Configuration TExecution = Tcomputatiom + Tcommunication 

Test Data Size Observed 

Time 

(ms) 

Predicted 

Time 

(ms) 

Error Rate 

(%) 

4-Node 3600x3600 321.7 327.66 -1.85 

4080x4080 445.14 419.85 5.7 

8-Node 4800x4800 676.27 673.85 0.36 

5040x5040 746.3 742.26 0.54 

16-Node 6840x6840 1477.24 1464.56 0.86 

7200x7200 1626.94 1625.97 0.06 
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9.3.4 Izhikevich Model 

The prediction results for the computation component, communication component, and 

overall execution time are given in Tables 9.19 – 9.21. The subjective-analytical model for the 

GPGPU kernel computations coupled with the objective-analytical models for the medium 

communications yielded high prediction accuracy as seen in these tables.  

Table 9.19 Izhikevich Model: Observed and Predicted Time Values for Computation Component  

Configuration Tcomputation=TGPGPU-kernel+TH2D + TD2H 

Test Data Size Observed 

Time 

(ms) 

Predicted 

Time 

(ms) 

Error Rate 

(%) 

4-Node 3600x3600 30.15 31.33 -3.9 

4080x4080 37.43 39.88 -6.52 

8-Node 4800x4800 27.834 27.99 -0.57 

5040x5040 30.26 30.73 -1.55 

16-Node 6840x6840 28.61 28.40 0.74 

7200x7200 32 31.33 2.1 

 

Table 9.20 Izhikevich Model: Observed and Predicted Time Values for Communication 

Component  

Configuration Tcomputation=∑TTransactions 

Test Data Size Observed 

Time 

(ms) 

Predicted 

Time 

(ms) 

Error Rate 

(%) 

4-Node 3600x3600 218.45 223.73 -2.41 

4080x4080 338.435 287.52 15.04 

8-Node 4800x4800 576.2 578.4 -0.4 

5040x5040 638.55 637.7 0.132 

16-Node 6840x6840 1356.84 1370.32 -1 

7200x7200 1527.26 1518.4 0.6 
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Table 9.21 Izhikevich Model: Observed and Predicted Execution Time Values  

Configuration TExecution = Tcomputatiom + Tcommunication 

Test Data Size Observed 

Time 

(ms) 

Predicted 

Time 

(ms) 

Error Rate 

(%) 

4-Node 3600x3600 248.6 255.056 -2.6 

4080x4080 375.87 327.4 12.89 

8-Node 4800x4800 604.034 606.4 -0.4 

5040x5040 668.81 668.44 0.056 

16-Node 6840x6840 1385.45 1398.72 -0.95 

7200x7200 1559.27 1549.73 0.61 

9.3.5 ADF 

Similar to the SNN models, the ADF algorithm also observed high prediction accuracy for all 

of the SIGE model components. The prediction values are provided in Tables 9.22 through 9.24. 

The computation component observed slightly high prediction error rates (values up to 4.5% 

versus 1.6% for the HH model) due to the error-prone download and read-back predictions. 

Owing to the high prediction accuracy of objective-analytical models for scatter, gather, and 

sendrecv operations, the communication component for the ADF algorithm yielded error rates 

less than 1.5%. The results confirm the applicability of the piecewise analytical models for 

highly accurate communication performance prediction. The overall execution time predictions 

are nearly 98% accurate, verifying the viability of the hybrid approach for satisfactory 

performance prediction. 

Table 9.22 ADF: Observed and Predicted Time Values for Computation Component  

Configuration Tcomputation=TGPGPU-kernel+TH2D + TD2H 

Test Data Size Observed 

Time 

(ms) 

Predicted 

Time 

(ms) 

Error Rate 

(%) 

4-Node 5120x5120 918.83 881.22 4.1 

6400x6400 1463.5 1439.1 1.67 

8-Node 6400x6400 708.83 677.05 4.48 

7168x7168 881.98 862.3 2.23 

16-Node 7168x7168 406.52 415.75 -2.3 

7680x7680 486.4 479.8 1.36 
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Table 9.23 ADF: Observed and Predicted Time Values for Communication Component 

Configuration Tcomputation=∑TTransactions 

Test Data Size Observed 

Time 

(ms) 

Predicted 

Time 

(ms) 

Error Rate 

(%) 

4-Node 5120x5120 1330.78 1345.13 -1.08 

6400x6400 2085.56 2101.27 -0.74 

8-Node 6400x6400 3082.7 3074.7 0.26 

7168x7168 3867.05 3855.94 0.29 

16-Node 7168x7168 4471.5 4506.3 -0.78 

7680x7680 5136.7 5171.16 -0.7 

 

Table 9.24 ADF: Observed and Predicted Execution Time Values  

Configuration TExecution = Tcomputatiom + Tcommunication 

Test Data Size Observed 

Time 

(ms) 

Predicted 

Time 

(ms) 

Error Rate 

(%) 

4-Node 5120x5120 2255.31 2226.77 1.27 

6400x6400 3510.26 3540.32 -0.85 

8-Node 6400x6400 3791.51 3751.73 1.05 

7168x7168 4749.02 4718.22 0.65 

16-Node 7168x7168 4878.02 4922.05 -1 

7680x7680 5623.11 5650.95 -0.5 

 
In the foregoing section, we discussed the hybrid approach as a suitable combination of 

qualitative and quantitative models for highly accurate application performance prediction. The 

initial verification of this approach with the SNN-ADF SIAs yielded high quality prediction 

results for both the computation and communication components of the SIGE model. The 

presented results satisfactorily establish the hybrid approach as a viable paradigm for precise 

runtime estimations. In the next section, we provide the Strengths, Weaknesses, and 

Opportunities (SWO) analysis of the high-level abstraction models, based on the verification 

results given in Sections 9.1 – 9.3.  
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9.4 STRENGTHS, WEAKNESSES, AND OPPORTUNITIES (SWO) ANALYSIS 

Strengths – The qualitative models are described using subjective-analytical models that define 

qualitative relations amongst the system variables to describe the overall system behavior. This 

intuitive approach is easy to understand and straightforward to apply; consequently, these models 

can also be used by developers and researchers with limited computer architecture knowledge. In 

this dissertation research, the subjective-analytical models were shown to provide quality 

performance predictions for GPGPU computations. Similar to the regression-based framework, 

the subjective-analytical modeling approach is expected to span generations of GPGPU 

architectures. 

Unlike qualitative modeling, the quantitative approach is described by objective-analytical 

models that estimate the system behavior by measuring hardware-specific events using micro-

benchmarks. We developed piecewise analytical models for the medium communications that 

leveraged accurate communication time predictions. These models also avoid any inaccuracies 

introduced by the subjective-analytical models that provide a single qualitative relation for 

communications regardless of varying system behavior across message sizes.  

Weaknesses – The simplified qualitative methods are prone to overlooking additional system 

features, ultimately leading to imprecise performance predictions. The proposed subjective-

analytical model (Michaelis-Menten approach) for medium communications does not include 

additional network parameters, such as change in network protocol for instance. Consequently, 

these models observed high error rates for the communication component as elucidated in 

Chapter 7. We assert that the qualitative models are better suited for systems with reproducible 

characteristics, GPGPU devices computations for instance. Owing to the reproducible scalability 

of GPGPU computations, the subjective-analytical model was shown to effectively extrapolate 
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the execution time on M GPGPU devices using runtime information from the reference device. 

Unlike computations, the medium communications are prone to randomness in the system; 

consequently, simple qualitative relations with minimum parameters may not suffice for accurate 

performance predictions. 

The quantitative methods provide an elaborate route to performance prediction via system 

parameter estimation using micro-benchmarks. Depending on the system complexity, this 

approach offers varied user-friendliness and accuracy. Complex systems including CPU and 

GPGPU architectures necessitate precise parameter estimation for accurate performance 

prediction.  The GPGPU architecture, expounded in Chapter 3, has significantly developed since 

the introduction of programmable-shader architecture in GeForce 8800 device [82]. The 

computer architects have unfailingly addressed the ever-growing demands of HPC programmers 

by offering performance enhancing features including relaxed memory access coalescing rules, 

L1/L2 caches, large shared memory, dual-warp and quad-warp schedulers, and increased number 

of double-precision (DP) units. Consequently, the quantitative methods require comprehensive 

micro-benchmark suites that address these architecture features for precise performance 

predictions. The accuracy of micro-benchmarks is also highly critical because even the slightest 

miscalculations may lead to ineffective predictions. We claim that the quantitative methods are 

better suited for less complex systems, communication mediums for instance, which can be 

represented using a small set of measurable system parameters. The piecewise analytical models 

proposed in Chapter 8 were shown to effectively represent the medium behavior using 

parameters including overhead, message gap, and cut-off messages.  

Opportunities – The qualitative models can include additional parameters to obtain a better 

insight into the system behavior. The quantitative methods also provide significant research 
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opportunities; architecture specific micro-benchmarks need continual revision with the evolving 

architecture. The piecewise analytical models proposed in this dissertation require 

communication medium characterization at each node configuration, thereby yielding varying 

model parameter values across the node configurations. The proposed future work includes the 

development of generic model(s) that relate(s) the system parameters across the node 

configurations. The high-level abstraction studies conducted in this dissertation research were 

limited to a single computing system with limited number of host-device pairs. To broaden the 

scope of performance modeling, the future work also includes comprehensive verification using 

other computing systems with larger node configurations. The high-level abstraction approach 

can also be explored for effective design space exploration (DSE).   

9.5 SUMMARY 

    In this chapter, we verified the high-level abstraction of the multi-level performance 

modeling suite using the SNN-ADF SIA case studies. The qualitative and quantitative modeling 

approaches were verified for satisfactory estimation of computation and communication 

components of the SIGE model. The qualitative approach, described by the subjective-analytical 

models, provided highly accurate predictions for the GPGPU device computations. However in 

Chapter 7, this approach was shown to be error-prone for communication component modeling, 

given their inability to accommodate additional medium parameters.  

Unlike qualitative models, the quantitative approach described by objective-analytical 

models yielded high prediction error rates for the GPGPU computations. Because the GPGPU 

device architecture is rapidly evolving, these prediction methods often miss several hardware 

parameters that ultimately lead to imprecise predictions. The quantitative modeling approach 

provided satisfactory prediction results for the communication component. Relatively less 
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complex systems, including Infiniband and PCI-Ex bus, can be effectively characterized using 

limited number of measurable parameters. 

We suitably combined the subjective-analytical model for GPGPU computations and 

objective-analytical models for communications to produce the hybrid approach, which provided 

high quality predictions as discussed in Section 9.3. With this chapter, we conclude the 

construction and verification of the multi-level performance modeling suite for heterogeneous 

systems with GPGPU devices. In the next chapter, we summarize the research findings and 

provide model selection criteria based on the performance modeling efforts presented in this 

dissertation research. We also highlight the dissertation research contributions and discuss future 

work directions. The A2A roadmap construction is given in Appendix A.  
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CHAPTER 10 

CONCLUSIONS AND FUTURE RESEARCH 

In this final chapter, we summarize the dissertation findings, provide model selection criteria 

for effective performance modeling, highlight the important contributions made, and provide 

directions for future research. The chapter organization is as follows. Section 1 provides chapter-

wise summaries, highlighting the key dissertation research findings. This section also serves as 

an epilogue that connects all of the major developments in this doctoral dissertation research. 

Based on our performance modeling efforts, we outline the model selection criteria in Section 2. 

The primary contributions and research outcomes are listed in Section 3. The chapter closes with 

directions for future work in Section 4.  

10.1 DISSERTATION SUMMARY 

The research presented in this doctoral dissertation seeks to address one of the major 

challenges faced by the HPC community today: user-friendly and accurate heterogeneous 

performance modeling. Chapter 1 highlights the widespread popularity of heterogeneous 

architectures such as GPGPU- and FPGA-based clusters in HPC. As asserted in Chapter 1, 

although these heterogeneous systems offer tremendous performance gains for highly parallel 

applications, their resources may be under-utilized due to inefficient application mapping, load-

balancing, and tuning. These inefficiencies lead to secondary effects including long job queue 

delays and increased power consumption. Although performance prediction models exist to fine-

tune applications, they are seldom easy-to-use and do not address multiple levels of design space 

abstraction. Due to the above mentioned factors, application developers ultimately face difficulty 
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in choosing a reliable model for the given design goals. This dissertation research aims to bridge 

the gap between reliable performance model selection and user-friendly performance analysis. 

More formally, the doctoral dissertation research goal is to design a straightforward and 

accurate performance prediction framework for heterogeneous systems that addresses multiple 

levels of design space abstraction, thereby allowing developers to choose an optimal 

performance model that best fits their design goals. The dissertation research also provides a 

roadmap for users to perform optimal Application-to-Accelerator (A2A) mapping via appropriate 

architecture selection and performance prediction (preliminary and advanced). This roadmap is 

given in Appendix A. 

Chapter 2 surveyed the literature, discussing several performance prediction modeling 

efforts, GPGPU architecture studies, and load-balancing issues. Several qualitative and 

quantitative performance models were discussed that provide reasonable runtime prediction 

accuracy. However, it was asserted that these modeling approaches are accompanied with 

numerous shortcomings. First, the qualitative models require significant knowledge of the 

computing architecture for accurate runtime prediction. Consequently, this approach can 

potentially be inaccessible to developers or researchers with limited knowledge of the computer 

architecture. Second, the quantitative approach relies heavily on micro-benchmarks that measure 

hardware events, making them prone to miss non-measurable architecture features. Third, the 

quantitative approach is often tied to a specific GPGPU device. The aim of this dissertation 

research is to address the above mentioned issues in the form of a multi-level performance 

modeling suite that provides an optimal performance modeling strategy for the given design 

goals and architecture knowledge. Chapter 2 also examines some of the important analytical 

models that characterize the network-level behavior. It was highlighted that communication 
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transactions in heterogeneous systems often exhibit randomness in their behavior, making them 

non-compliant with the network-level analytical models. To address this problem, we 

recommended the use of regression-based approaches to model the network-level transactions. 

The regression analysis of the network-level transactions can either be performed intuitively by 

mapping the transaction problem to the well-known Michaelis-Menten enzyme kinetics or by 

employing traditional regression methods such as the log-transformation. We also alluded to the 

proposal of a simple quantitative model motivated by the existing analytical models for 

communications.  

 Chapter 3 acquaints readers with Nvidia’s GPGPU architecture (Fermi and Kepler) and 

CUDA framework used in this dissertation research. The chapter also provides background on 

the case studies, namely the spiking neural networks (SNNs), large-scale SNN simulations, and 

non-linear anisotropic diffusion filter (ADF) for massive images. Chapter 4 describes the tested 

GPGPU clusters: NCSA Forge and GPGPU-augmented Palmetto cluster. The chapter also 

provides a detailed discussion of the SNN-ADF mapping methodology and orchestration on 

these clusters. To verify the applicability of SNN-ADF implementations, a thorough 

performance analysis study was conducted on the Forge GPGPU cluster. This performance 

analysis was supplemented with the application runtime values, speed-up versus the equivalent 

MPI-only implementations, and overall runtime breakdown into CPU time, GPGPU time, and 

MPI communication time for intermediate node configurations. The scalability of the SNN 

models correlated with their FLOPs/Byte ratio requirements. The most compute-intensive HH 

model scaled well compared to the lower FLOPs/Byte ratio models. The performance of the 

SNN models was found to improve generally with both problem size and node scaling. A similar 

scaling characteristic was observed for the ADF implementation. The performance analysis 
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exercise establishes high-data parallelism as necessary but not sufficient condition for GPGPU 

system usage. The applications should also yield enough computations to the amortize 

communication latency for optimal performance.  

Chapter 5 describes the Synchronous Iterative GPGPU Execution (SIGE) model that serves 

as the backbone for the proposed modeling suite. The SIGE model describes the execution flow 

of the synchronous iterative algorithms (SIAs) on multi-GPGPU systems by providing a set of 

equations for estimating the total application runtime. These equations are evaluated using 

modeling techniques provided by the multi-level suite. The chapter also highlights the goals and 

usefulness of the SIGE model. The aim of the SIGE model is to generalize the execution flow of 

deterministic SIAs on multi-GPGPU systems. We asserted that although the SIGE model does 

not provide explicit optimization guidelines, it is useful for straightforward and insightful design 

space exploration (DSE). The SIGE model breaks the SIA execution flow into a number of 

stages, which allows developers to selectively and progressively optimize their applications. In 

addition to discussing the SIGE model, the chapter also provides a prelude to the multi-level 

performance modeling suite that is broken into two levels of abstraction, namely the low-level 

abstraction and high-level abstraction. The low-level abstraction uses limited implementation 

details and system information for the application runtime prediction; therefore, partial details of 

the implementation such as the legacy code, preliminary device kernel, and system specifications 

must be available. The regression-based analysis best fits the low-level abstraction since it 

enables the determination of mathematical models that describe the application behavior on the 

given computing system with a certain degree of confidence. On the contrary, the high-level 

abstraction seeks to predict the application runtime using algorithm characteristics and system 

specifications whilst minimizing the reliance on implementation details. This level of abstraction 
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predicts the computation and communication components of the SIGE model using qualitative 

and quantitative modeling approaches. The qualitative approach estimates the SIGE model 

components using subjective-analytical models that employ simple analytical functions, thereby 

avoiding meticulous evaluation of parameters pertaining to the system; whereas the quantitative 

approach is based on objective-analytical models, which predicts these components by 

measuring system parameters using micro-benchmarks. These two approaches are expounded in 

Chapters 6 through 9.  

Chapter 6 elaborates on the low-level abstraction of the modeling suite. This level of 

abstraction is composed of the regression-based framework, which aims to model the 

computations (host and device) and medium communications (network-level and PCI-Ex). The 

regression model development for the SNN-ADF SIAs was described in detail. It was 

highlighted that simple algorithm parameters, including but not limited to the number of floating-

point operations (FLOPs) and computational bytes, can be used to model the host-device 

computations with a high degree of confidence. We elucidated two regression-based approaches 

for the network-level and PCI-Ex bus performance modeling: 1) intuitive mapping of the 

transaction problem to the well-known Michaelis-Menten enzymatic kinetics and 2) log-

transformation method. To demonstrate their prediction efficacy, we presented the prediction 

results for an 8-node scatter throughput problem on the Palmetto cluster using these approaches. 

It was observed that the Michaelis-Menten kinetics approach better approximates the scatter 

throughput versus the log-transformation method given its high R
2
 value (0.99 vs. 0.93).  

We also demonstrated the use of a low-level abstraction approach to perform straightforward 

and productive GPGPU design space exploration (DSE). This exercise offers an interesting 

method to perform application tuning and mapping by exploring several possible 
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implementations (the design space) of an application on the target or potential computing 

systems. The GPGPU DSE analyzes the runtime performance of several functionally equivalent 

implementations of an algorithm, thereby ranking the GPGPU design space. This ranking 

enables developers to select the best implementation for optimal algorithm performance on 

GPGPU-based systems. Using the low-level abstraction, we exemplified the GPGPU DSE for 

SNN-ADF SIAs by developing kernel runtime regression equations for three design space 

implementations; each implementation features an optimization of the GPGPU memory 

hierarchy.   

Chapter 7 provides the preliminary verification results for the low-level abstraction using the 

SNN-ADF SIAs. This analysis was conducted on the NCSA Forge GPGPU cluster. The 

regression models for the SNN computation and communication components demonstrated 

reasonable prediction accuracies (10-12% error rate), discounting a few test cases. Analysis of 

the results revealed that the complex SNN models with longer execution times have relatively 

small deviations from the predicted values compared to the deviations observed for simple SNN 

models with shorter execution times. The computation component regression models were found 

to be more accurate compared to the communication component models, given the high 

reproducibility of computations versus the communications. Additional network-level 

characteristics, such as change in network protocols, may affect the network-level transactions 

and hence the prediction accuracy. Future work beyond this dissertation includes expansion of 

the independent variables space for the network-level transactions and inclusion of the protocol 

parameters for superior performance modeling. The joint regression analysis of the Izhikevich-

ADF pair yielded results similar to the four SNN SIAs. We observed high prediction accuracies 

for the computation component, communication component, and overall runtime prediction. 
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Chapter 7 also presents the results and analysis for GPGPU DSE using the regression-based 

framework. This study was conducted on the GPGPU-augmented Palmetto cluster with Kepler 

K20 devices using the four SNN models and ADF algorithm as case studies. The design space 

included implementations that feature optimizations of the GPGPU memory hierarchy including 

global, shared, and texture memories. These implementations were ranked based on the runtime 

predictions facilitated by the regression-based framework. The GPGPU DSE for the Kepler K20 

devices ranked the global memory implementation as the best implementation for the SNN-ADF 

SIA set. The regression-based framework ranked the design space implementations appropriately 

for the HH, ML, Wilson, and ADF algorithms, while providing acceptable results for the 

Izhikevich SNN model. 

The Strengths, Weaknesses, and Opportunities (SWO) study follows the comprehensive 

verification of the low-level abstraction. This level of analysis cogently identifies the merits and 

demerits of any structured methodology (heterogeneous performance modeling in this research), 

opening avenues for further refinement and inquiry. We highly recommend SWO studies to the 

academic community for effective strengths and limitation analysis of any recently developed 

methodology/theory. The SWO analysis was conducted on the Palmetto cluster using multiple 

Tesla 2075 and Kepler K20 devices (two GPGPU generations) with host-device pairs varying 

from 2-node up to 16-node configuration. The ability to provide highly accurate computation 

component predictions was identified as one of the strengths of the low-level abstraction 

paradigm. Because the low-level abstraction was tested across computing systems and GPGPU 

architectures, this modeling approach is expected to span architecture generations. The 

regression-framework is also expected to be independent of application regularity. We asserted 

that this framework will also work for complex algorithms where the algorithm complexity is 
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accounted for by the regression coefficients. As elucidated in Chapter 7, the low-level 

abstraction also allows for quick and straightforward evaluation of the GPGPU design space. 

Consequently, the approach extends well to developers and researchers with limited computer 

architecture knowledge. The slightly error-prone communication component predictions 

constitute one of the weaknesses of the low-level abstraction paradigm. However, including 

additional parameters, for example change in network protocol and implicit synchronization, can 

alleviate this weakness. Additionally, the regression-based framework requires a preliminary 

GPGPU device implementation and partial access to the computing systems to enable 

performance predictions, an inherent weakness of this approach. The opportunities for the low-

level abstraction modeling paradigm include exploration of additional system parameters for 

quality predictions and verification with other accelerators and non-regular algorithms.  

Chapter 8 elucidates the high-level abstraction that consists of two primary approaches 

namely, qualitative modeling and quantitative modeling. The qualitative approach employs 

subjective-analytical models that define simple qualitative relations amongst the parameters to 

describe the system behavior. On the contrary, the quantitative approach uses objective-

analytical models that estimate the system performance by measuring hardware-specific events. 

Using these two approaches, we demonstrated the construction of prediction models for the 

SIGE model computation and communication components. For the GPGPU subjective-analytical 

modeling, we adapted the analytical model proposed by Schaa et al. [8] that extrapolates the 

runtime on M GPGPU devices using the runtime information from a reference device. We 

highlighted that this modeling approach lacks statistical rigor because it does not consider 

several application features (FLOPs, bytes, the number of computational entities, etc.) that affect 

the GPGPU runtime. To address this issue, we derived simple mathematical relations between 
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element-throughput, number of computational entities, and execution time on M GPGPU 

devices. For the communication component, we described the Michaelis-Menten enzyme 

kinetics approach with a subjective-analytical perspective. We emphasized that mapping the data 

transfer problem onto the enzyme kinetics problem is highly intuitive because the data transfer 

throughput (MB/sec) corresponds to the reaction rate and the data transfer size (MB) corresponds 

to substrate concentration. Using this qualitative mapping, we developed throughput equations 

for the medium communications in Chapter 6.  

Following the qualitative modeling approach, the quantitative modeling approach was 

discussed that provides an interesting route to performance modeling via system parameter 

estimation using micro-benchmarks. We discussed the GPGPU analytical model proposed by 

Hong and Kim [17] that matches our definition of objective-analytical models and provided a 

sub-set of analytical equations given in [17]. To study the objective-analytical modeling for 

communications, we developed a variant of common communication models (logP, plogP, 

logGP, etc.) called the piecewise analytical model. This approach describes the medium 

communications using medium parameters including overhead, message gap, and cut-off 

messages. We elucidated that medium communication performance varies across data regions, 

thereby requiring piecewise modeling for each data region. Using simple micro-benchmarks, we 

estimated the model parameters for Infiniband (scatter, gather, Sendrecv) and PCI-Ex bus 

(download and read-back) operations. We observed that the model parameters for Sendrecv 

routine were large when compared to the collective scatter and gather routines, suggesting the 

avoidance of this point-to-point routine. In addition to discussing the two primary high-level 

approaches, we alluded to the hybrid approach, a suitable combination of effective qualitative 

and quantitative methods for high quality performance prediction.     
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Chapter 9 provides the initial verification of the high-level abstraction models using the 

SNN-ADF SIAs; this analysis was conducted on the GPGPU-augmented Palmetto cluster with 

the Kepler K20 devices. Because CPU modeling is suitably performed using modeling strategies 

given by [6 and 9] that resulted in the development of CPU regression equations; we emphasized 

modeling the GPGPU computations and medium communications. We evaluated each of the 

primary high-level abstraction approaches for acceptable performance predictions. The 

subjective-analytical model for GPGPU computations yielded superior results for all of the SIA 

case studies; we reported error rates less than 5% for several tested input sizes and node 

configurations. Because GPGPU computations usually scale well with the number of processors, 

the analytical approach is expected to provide satisfactory predictions. The objective-analytical 

modeling for GPGPU computations yielded significant prediction errors. We attributed the high 

error rates to the missing GPGPU parameters pertaining to instruction caches, L1/L2 caches, 

shared memory, and warp schedulers. Unlike computations, the communication component 

predictions were favorable with the piecewise analytical models. The Infiniband operations 

observed satisfactory predictions (less than 10%) at all node configurations, barring a few 

outliers. The predictions for PCI-Ex bus operations were also acceptable; however, the read-back 

operation yielded error rates over 20% for a few test cases. We attributed this anomaly to the un-

measured GPGPU wait time required to service the CPU-host data request, which varies across 

applications.    

Based on the verification results for the high-level abstraction, we asserted that the two 

primary approaches, when operated alone, are likely to yield coarse-grained application runtime 

predictions, necessitating a hybrid approach. We suitably combined the subjective-analytical 

model for GPGPU computations and objective-analytical models for medium communications to 
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perform satisfactory fruitful performance predictions. The initial verification of the hybrid 

approach with SNN-ADF SIAs yielded prediction error rates less than 5%, thereby establishing 

the viability of this approach for precise predictions.  

The SWO analysis for the high-level abstraction approach follows the initial verification. The 

strengths of qualitative methods include ease-of-use and high accuracy for the computation 

component. Additionally, this approach is expected to span generations of GPGPU architectures 

and can also be extended to other computing architectures. However, these methods are prone to 

overlooking additional system features and variations that may lead to imprecise performance 

predictions. The error-prone communication component models reinforce this claim. Unlike 

qualitative methods, the quantitative methods leverage highly accurate predictions for the 

communication component. This approach also provides significant insight into the computing 

architecture by measuring the parameters using micro-benchmarks. The quantitative models are 

expected to offer varied user-friendliness and accuracy depending on the system complexity, an 

in-built weakness of this modeling paradigm. We asserted that complex systems, including 

GPGPU devices and CPU hosts, require precise parameter measurements for meaningful 

predictions. Therefore, erroneous measurements may lead to counterproductive predictions. 

Given the strengths and weaknesses of these two approaches, we asserted that the qualitative 

modeling approach is highly suitable for complex systems with reproducible characteristics, 

GPGPU computations for instance. On the other hand, quantitative methods are more appropriate 

for less complex systems, communications for instance, which can be described using a small set 

of measurable parameters. These two assertions were supported by superior performance 

predictions facilitated by the hybrid approach. We discussed several opportunities to improve 

the high-level abstraction paradigm that includes the use of additional parameters for qualitative 
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models, continual revision of high-fidelity micro-benchmarks for quantitative models, and 

comprehensive verification using other computing systems with larger node configurations.   

Based on the performance modeling experiences shared in this section, we provide 

performance model selection criteria that enable effective predictions on heterogeneous systems.  

10.2 MODEL SELECTION CRITERIA 

As discussed in Chapter 5, the multi-level performance modeling suite is designed with 

respect to the levels of system abstraction. Given the preliminary implementation knowledge and 

access to the target system, we assert that the regression-based framework (low-level abstraction) 

is the most suitable performance modeling approach. This paradigm enables the formulation of 

mathematical equations using statistically significant system and algorithm parameters, enabling 

productive performance predictions and fined-tuned DSE. Given the relative simplicity of the 

regression-based framework, we claim that it is highly suitable for non-Computer Science 

researchers. Several scientific fields including but not limited to physical and life sciences often 

use legacy codes to perform large-scale simulations. Because the data used by these codes is 

ever-growing, constantly updated genome banks [115] for instance, these simulations necessitate 

code adaptation for HPC systems including GPGPU clusters. Given the knowledge of 

parallelizable code sections, performance prediction at large node configurations is reliably 

facilitated by the regression-based framework. We present the first criterion as follows: 

Criterion #1: Use the regression-based framework for existing codes to estimate 

performance at production-scale node configurations. 

Unlike low-level abstraction, the high-level abstraction models enable performance modeling 

with minimum implementation knowledge and system availability. The objective-analytical 
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model for GPGPU computations provides insight into the architecture resource usage by 

measuring parameter values using micro-benchmarks; this task also enables code optimization 

for optimal GPGPU resource utilization. Once an initial implementation is identified, the kernel 

execution time on large computing systems can be predicted using the runtime information from 

a reference device, for instance the target GPGPU device installed in a desktop machine. The 

medium communication modeling however is most reliably performed using micro-benchmarks 

on the target system. The second criterion follows as: 

Criterion #2: Use the high-level abstraction models when the implementation details and 

target system availability are limited.  

Chapters 6 – 9 comprehensively study the multi-level performance modeling suite, targeting 

the computation and communication components individually. The following two criteria enable 

the model selection to address these components. 

Criterion #3: Use legacy codes and regression-based framework to model the CPU 

computations. Either the subjective-analytical model or the regression-based framework can 

be used for GPGPU computations. The regression-based framework offers additional 

advantages by statistically incorporating the effects of several algorithm and architecture 

specific parameters.  

Criterion #4: Use the objective-analytical models (piecewise analytical) for medium 

communications. Although, the subjective-analytical models may also provide satisfactory 

results, they may not effectively capture the system performance variation with respect to the 

message size.   
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10.3 CONTRIBUTIONS AND OUTCOMES 

With the preceding discussions as summary, the key objectives addressed by this dissertation 

research can be summarized as: 

1) Development of the Synchronous Iterative GPGPU Execution (SIGE) model for multi-

GPGPU systems that describes the execution flow of SIAs and provides a foundation for 

SIA performance analysis on multi-GPGPU systems. 

2) Development of a hierarchical, multi-level performance modeling suite for heterogeneous 

systems that addresses multiple levels of design space abstraction. The multi-level suite 

allows developers to select a performance model that best fits their design goals. This 

task is accomplished by presenting the model selection criteria.   

3) Thorough verification of the performance modeling suite using SIAs with a range of 

computation-to-communication requirements.  

4) The demonstration of the low-level abstraction for well-rounded GPGPU design space 

exploration (DSE). 

5) Presentation of conclusive SWO analysis for each levels of abstraction. 

6) Performance analysis of SIAs on the chosen heterogeneous systems to provide insight 

into the application behavior, thereby assisting in runtime prediction. This exercise also 

confirms that implementations achieve sufficient efficiency and scaling.  

7) A roadmap for users to perform optimal A2A mapping (see Appendix A).  

In addition to the above primary contributions, we also include our earlier research 

achievements that supported this doctoral dissertation research. 

1) The two highly important SNN models, namely the Hodgkin-Huxley and Izhikevich 

models were implemented on several leading multi-core and GPGPU architectures. A 
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performance analysis study was conducted that highlights the impact of optimizations on 

the architecture performance for a given application. The contribution was in the form of 

a conference paper [116]. A subsequent performance analysis study on single- and multi-

GPU systems culminated in the form of a Master’s Thesis [88]. 

2) A systematic and exhaustive performance comparison study of the two leading GPGPU 

programming models, namely the CUDA framework and Open Computing Language 

(OpenCL) was conducted using the four SNN models as the case studies. The 

contribution, in the form of a journal paper [101], enables the scientific community to 

choose the best GPGPU programming paradigm for the given application characteristics.  

3) A thorough evaluation of the two leading GPGPU architectures, namely Nvidia’s Fermi 

and AMD’s Radeon was performed using the OpenCL programming paradigm. The four 

SNN models were used as the case studies and several inferences were drawn based on 

the application-to-accelerator-to-programming model coupling. The contribution studies 

the effect of the chosen programming model on architecture performance, thereby 

establishing a tight accelerator-to-programming model coupling for the given application 

characteristics. The contribution was in the form of a conference paper [117].  

4)  The above mentioned contributions assisted in the proposal of the fitness model [84 and 

118] that ranks the accelerator performance for a given application prior to the actual 

implementation. 

10.4 FUTURE WORK 

The research presented in this doctoral dissertation opens several potential research avenues 

as categorized and discussed below. 
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Performance Analysis – The SNN-ADF SIAs studied in this research were implemented on 

GPGPU clusters with 1:1 host-device pairing (see Chapter 4). One area of future work includes 

the exploration of other cluster configurations with different CPU core-to-GPGPU device ratios 

per server and investigation of application performance at such configurations. The ADF SIA 

case study was implemented using the Master-Worker paradigm; it would be interesting to 

investigate the adequacy of other data partitioning strategies such as the dynamic work pool 

model for massive image processing applications. Future research can also emphasize further 

optimization of these SIA implementations, for instance mitigating the large communication 

overhead associated with large cluster configurations. Specifically for the ADF algorithm, one 

possible improvement is to require that all processes read their respective image tiles and 

boundaries from the file, thereby obviating the expensive scatter and Sendrecv operations. These 

new performance analysis opportunities favor further improvements in our performance 

modeling approach. 

Enhancing the low-level abstraction – Suggested future work for this level of modeling 

includes exhaustive analysis of the network-level communications by modeling additional 

network-level events such as a change in the network protocol and implicit synchronization in 

collective operations. The GPGPU design space can be extended to include other GPGPU 

memories such as the local memory and constant memory. The synchronous iterative model and 

the regression-based framework should be verified with other accelerators and non-regular 

algorithms to broaden the scope of performance modeling. New GPGPU architecture features, 

dynamic parallelism in Kepler devices for instance, should be explored with the low-level 

abstraction. Given the ease-of-use and generic nature of the low-level abstraction, it would be 

interesting to investigate this approach with other accelerators and computing architectures.  
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Enhancing the high-level abstraction – The micro-benchmarks used by the high-level 

abstraction models to describe the GPGPU computations and medium communications require 

frequent revisions. Potential future research efforts should target continual amendment of these 

micro-benchmarks (objective models included) to accommodate new system features. The 

piecewise analytical models developed in this research require communication modeling at each 

node configuration. Future work includes the development of generic models that relate the 

system parameters across the node configurations. The micro-benchmarks pertaining to the PCI-

Ex bus communications can also include estimation of the GPGPU wait time required to service 

the CPU-host data request. The high-level abstraction studies can further be consolidated via 

comprehensive verification using computing systems with larger node configurations. Future 

work should also address GPGPU DSE facilitated by the high-level abstraction.  
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APPENDIX A 

TYING-IT-ALL-TOGETHER: APPLICATION-TO-

ACCELERATOR ROADMAP 

Heterogeneous systems continue to exhibit several hundred thousands of computing nodes, 

each equipped with multiple accelerators and powerful host processors. Each year, the Top500 

list [119] showcases new HPC systems that persistently strive to push the computational limits. 

However, inefficiencies including application-to-accelerator mismatch, improper application 

tuning and load-balancing result in counterproductive resource utilization, ultimately leading to 

economic loss. Deployment of an optimal application on the computing system is a challenge 

continuously presented to the HPC community. The common users of these HPC systems 

include scientists and researchers that often require guidelines for an optimal application-to-

accelerator (A2A) mapping. The research presented in this dissertation addresses some of the 

stated goals in the NSF Career Award #1149644 [120]; these research goals include coarse-

grained architecture selection, fine-grained performance prediction, and taxonomy of application 

and architecture characteristics. The ultimate goal is to enable researchers and scientists to 

productively optimize and maintain their codes. To address the above stated tasks, we provide a 

preliminary A2A roadmap that serves as an outline for further research. Although the roadmap is 

constructed with respect to the heterogeneous systems including GPGPU devices, we assert that 

this philosophy can be also extended to other current and future HPC systems. Figure A.1 

provides the constructed roadmap; we discuss each of the listed milestones. 
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Figure A.1 Application-to-Accelerator Roadmap 

 

Milestone 1 Initial A2A “Fitness” – The aim of this milestone is to identify an initial application-

to-accelerator mapping facilitated by the Fitness Model proposed by Bhuiyan [111]. This model 

finds an optimal architecture match for the given algorithm by predicting the coarse-grained 

application runtime. This exercise is performed by evaluating the scalar product of two vectors: 

application vector and accelerator vector. The components of application vector include 

application-specific parameters such as the number of single-precision floating point operations 

(FLOPs), number of double-precision FLOPs, bytes required by the processing cores from the 

device memory, and host-device transfer bytes. The corresponding components of accelerator 
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vector include single-precision FLOP time, double-precision FLOP time, per byte device-to-

device transfer time, and per byte host-device transfer time. The accelerator with the minimum 

scalar product value is deemed to be the best fit for the chosen algorithm. This coarse-grained 

application-to-accelerator mapping is straightforward; the vector components are easily obtained 

via algorithm study and accelerator specifications.  

We recommend this A2A mapping prior to the algorithm testing and subsequent performance 

modeling. As asserted in this dissertation, the highly-parallel nature of an algorithm is a 

necessary but not sufficient condition to justify the use of massively-parallel computing systems 

including GPGPU architectures. Because GPGPU devices are throughput oriented architectures, 

the applications should also yield significant amount of computations to amortize the 

communication latency. Using the SNN-SIA as case studies, the authors in [118] matched the 

highly computation- and communication-intensive HH model with the GPGPU architecture; 

whereas, the computationally-efficient Izhikevich model was appropriately mapped to the multi-

core architectures. This finding supports our claim that the massively-parallel and 

computationally-intensive nature of algorithms appropriately justify the use of GPGPU-based 

systems. Since these algorithm features vary across applications, the Fitness Model offers a 

reliable metric to assess their impact on A2A mapping. Future work includes expansion of the 

application and architecture vector space to further consolidate the initial A2A mapping. 

Milestone 2 High-Level Abstraction – The research presented in this dissertation details several 

high-level abstraction approaches to model the computations and communications in the given 

algorithm. This level of analysis is highly recommended when knowledge of the initial 

implementation and target system availability are limited. Using the appropriate qualitative and 

quantitative approaches, significant performance insight can be obtained that enables developers 
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to design an optimal implementation for the potential computing system. The readers are referred 

to Chapters 8 and 9 for this detailed study. 

Milestone 3 Low-Level Abstraction – Commonly, users and developers often possess significant 

knowledge of their legacy codes along with the code sections that could benefit from improved 

compute performance. Therefore, following an initial A2A mapping, we recommend the use of a 

regression-based framework (low-level abstraction) for straightforward runtime prediction and 

fine-tuned DSE. This level of analysis also follows the high-level abstraction for fine-grained 

performance assessment. The low-level abstraction studies are provided in Chapters 6 and 7. 

Future work pertaining to these two milestones is elaborated in Chapter 10. Finally, enhancement 

of the A2A roadmap to accommodate other computing architectures and classes of algorithms is 

of significant interest that creates lucrative research opportunities.   

 

 

 

 

 

 

 

 

 

 

 

 



 213 

APPENDIX B 

LIST OF FREQUENTLY USED ACRONYMS 

A2A 

ADF 

AMD 

BSP 

CPU 

CUDA 

CWP 

D2H 

DP 

DSE 

DSL 

FFT 

FLOPs 

FLOPS 

FPGA 

GPU 

GPGPU 

H2D 

HBSP 

HH 

HPC 

HPL 

HPRC 

MIC 

ML 

MPI 

ms 

MWP 

NCSA 

NUMA 

OpenCL 

PCI-Ex 

PD 

Application-to-Accelerator 

Anisotropic Diffusion Filter 

Advanced Micro Devices 

Bulk Synchronous Parallel 

Central Processing Unit 

Compute Unified Device Architecture 

Computation Warp Parallelism 

Device-to-Host 

Double-Precision 

Design Space Exploration 

Domain Specific Language 

Fast Fourier Transform 

Floating-Point Operations 

Floating-Point Operations per Second 

Field Programmable Gate Array 

Graphical Processing Unit 

General Purpose Graphical Processing Unit 

Host-to-Device 

Heterogeneous Bulk Synchronous Parallel 

Hodgkin-Huxley 

High-Performance Computing 

High-Performance Linpack 

High-Performance Reconfigurable Computing 

Many Integrated Core 

Morris-Lecar 

Message Passing Interface 

Milliseconds 

Memory Warp Parallelism 

National Center for Supercomputing Applications 

Non-Uniform Memory Access 

Open Computing Language 

Peripheral Component Interconnect Express 

Probability Distribution 
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PDE 

PDF 

PSNR 

PTX 

RC 

RAT 

RATSS 

RCS 

SHOC 

SIA 

SIGE 

SIMD 

SM 

SMP 

SMX 

SNN 

SP 

SWO 

TA 

TEG 

TF 

Partial Differentiation Equation 

Probability Density Function 

Peak Signal-to-Noise Ratio 

Parallel Thread eXeution 

Reconfigurable Computing 

RC Amenability Test 

RC Amenability Test for Scalable Systems 

Reduced Conditional Statement 

Scalable Heterogeneous Computing Benchmark Suite 

Synchronous Iterative Algorithm 

Synchronous Iterative GPGPU Execution 

Single Instruction Multiple Data 

Shared Memory 

Streaming Multi-Processor 

Next Generation Streaming Multi-Processor 

Spiking Neural Network 

Software Prefetching 

Strengths, Weaknesses, and Opportunities 

Texture Addressing 

Timing Estimation Tool 

Texture Fetch 
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