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Task of the Thesis

The subject matter of this diploma thesis is an optimized implementation of the col-
lective operatiorMPI_Bcast()which is part of theMessage Passing Interfa¢®IPI)
standard. This special: n communication function sends a given message from one
process to all other processes of the same group. A possible implementation of this
operation could use the nativaulticastcapability of the underlying interconnection
network if this is supported (e.gethernetandInfiniBand. Contrary to the specified
reliable data delivery oMPI1_Bcast() multicastdoes normally only support unreliable
data delivery. Many different algorithms are possible to ensure this reliability.

A theoretical analysis and practical investigations should lead to an efficient strategy
to solve this problem. The work will focus its attention on massive-parallel applications
for High Performance Computin@gdPC)cluster. A resulting implementation, based on
IP multicast for a recent version of th@pen MPllibrary will be used to compare this
algorithm with existing solutions. Importance should be attached especially towards
stability, portability andhardware independence
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Theses

) It is possible to create a broadcast operation whose running time is
(in practice) independent of the number of involved processes.

i) Multicast is suited to use the intermediate phase of the broadcast op-
eration more efficiently than point-to-point communication.

i) There cannot exist a non-adaptive general broadcast algorithm which
Is always superior to all other broadcast algorithms in all imaginable
scenarios.

iv) Balanced collective operations are a prerequisite to prevent addi-
tional process skew in parallel applications.

v) For each scenario, there exists a message size threshold value so that
for all larger messages tlimgmented chaimlgorithm is always the
fastest broadcast method based on point-to-point communication.

vi) The preceding work does not take into account the theoretical foun-
dations properly.



Abstract

According to long-term studies iHigh Performance Computing Centdisee
e.g. [Rab99), almost all parallel applications are using collective communica-
tion operations. The broadcast functidPl_Bcasf), which is a part of the
MPI-1.1standard, is one the most heavily used collective operations for the widely
used message passing programming paradigm. Inefficient implementations of this
function can therefore cause a disastrous performance loss of the whole applica-
tion. This thesis will try to make use of a feature calfedlticast which is sup-
ported by several network technologies (Ik#hernetor InfiniBand) and notwith-
standing often goes to waste, to create a more effidi?it Bcasf) implemen-
tation, especially for large communicators and small to medium sized messages.
Several problems in conjunction with this feature (like re-establishment of reli-
ability) needs to be solved to comply with the semantics of the target function.
Existing solutions will be analysed, and new solutions will be proposed based
on theoretical deductions and conclusions. The analysis of existing real-world
applications (theHPL benchmark and\binit) as well as a generalization of the
broadcast behaviour using statistical assumptions lead to a solution which does
not only perform well for synthetical benchmarks but also even better for a wide
class of parallel applications. The finally derived broadcast algorithm has been im-
plemented for the open sourb&PI library Open MPlusinglP multicast Instead
of creating just another "experimental” prototype, special care has been taken to
make the implementation portable and stable enough for productive utilization.
The achieved microbenchmark results prove that the new broadcast is usually al-
ways better than existing point-to-point implementations when the numib&e bf
processes exceeds tRenode boundary. For as little d8 nodes, the broadcast
of a4 KiB message need®).1% longer when the original implementation of
Open MPlis used instead of the new broadcast. WighMPI processes the same
message can be transferred twice as fast. Since the the new broadcast scales inde-
pendently of the number of involved processes, the performance (compared with
point-to-point algorithms) differs more and more when the communicator size in-
creases further. F@42 nodes and a8 KiB message, the difference amounts
a factor 0f4.896! Real-world applications can benefit even more from this new
implementation, because it uses the intermediate phase of the broadcast operation
more efficiently and because it achieves a pretty balanced behaviour. These addi-
tional improvements will be exemplarily verified with th°L benchmark, which
achieves a higheGFLOPSrate with the new and general broadcast algorithm,
than with the supplied and purpose-built broadcasts.
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1 Introduction

An optimal implementation of collective communication will take advan-
tage of the specifics of the underlying communication network (such as
support for multicast, which can be used for MPI broadcast), and will use
different algorithms, according to the number of participating processes
and the amount of data communicated.

1.1 Discussion of the Problem

The above citation from "MPI - The Complete ReferencelgD98 p. 194] suggests
to use themulticastfeature (of course only when it is supported by the underlying
communication network) to create an optimal implementation of\ifd broadcast
operation. Even eight years after this well-known publication, merely a handful of
rather "experimental” implementations by various people have been created. A couple
of problems need to be solved to make thalticastfeature useful for a broadcast
implementation which conforms to tiMPI standard - and many existing solutions are
often so expensive that the performance gain of the final implementation is pretty small.
MPICH, a commonMPI implementation, gives the following statement in H&Q
(http:/lwww-unix.mcs.anl.gov/mpi/mpichl/fag.html):

"Does MPICH use IP Multicast for MP1_Bcast?”

"No. In principle, MPICH could use multicast, but in practice this would
be very difficult. [...] There is a fairly easy way to replace any collective
routine in MPI, but no-one has offered us a multicast-based MPI_Bcast

yet...

This diploma thesis deals with the problematic aspectauwfticast presents exist-
ing and new solutions to these problems, and shows how a well-chosen subset of these
solutions can be combined to create an efficient implementation fdviihie Bcasf)
operation. It is mainly targeted at developers and users of (massively) parallel applica-
tions and libraries (including but not limited to tMP1 library), especially in conjunc-
tion with high-grade networked cluster systemskaiogh Performance Computing.e.
switch-based interconnection networks).

1.2 Outline of this Work

The rest of this first chapter gives an introduction tofel standard and its broadcast
function, as well as a short overview of existing implementations for that. It gives a
general description of th@ulticastfeature with its advantages and disadvantages, and
also a survey of a very promisingP| implementation, which will be used as the target
library for the final solution.

The second chapter analyses two parallel applications with respect to their broadcast
behaviour, before trying to cover a wide range of different usage scenarios with the
help of some statistical assumptions and properties.

Christian Siebert 1



1 Introduction

After giving those fundamentals, the third chapter refers to this knowledge and sug-
gests a complete broadcast algorithm which usesrthiéicastfeature. The pros and
cons of alternative solutions (existing and new ones) are evaluated before arriving at a
decision. The more general description of the algorithm will be completed with some
more implementation details.

Microbenchmark results and the effects on the application show the actual achieved
performance of this new broadcast implementation in the fourth chapter. Some theoret-
ical boundary values for certain decision functions will derived from (or strengthened
by) those results too.

The last chapter gives a conclusion of this diploma thesis, and proposes some addi-
tional work for possible future improvements. It gives some hints to developers which
want to port this algorithm to other interconnection network, and it also gives some
useful advices to users of this implementation.

1.3 MPI Standard

Message passing is a widely used programming paradigm on parallel computers, espe-
cially with distributed memory. At the beginning of this era, many different (mainly
proprietary) message passing libraries were available, which limited the portability of
written code. Hence, thBlessage Passing Interface (MPI) Foruned to define the
syntax as well as the semantics of a standard core of library routines that would be
useful to a wide range of users. Special care has been taken to allow efficient imple-
mentations on a wide range of computers.

The official documents of thelPl Forum, including the standard, are available from
the MPI Forum Welpage at

http://www.mpi-forum.org

The first version oMPI was publicly released in May 1994, and versioh[For95
(released in June 1995) made some clarifications and corrections. All the fundamental
functionality, like point-to-point communication or collective operations, are already
covered by this first version of the standard. A second version oMk standard
[For97 was completed by the Forum in July 1997, and includes several extensions like
dynamic process management or one-sided operations.

1.3.1 The MPI_Bcast() operation

MPI_Bcas() broadcasts a message from a special process called "root” to all processes
of the group, itself included. So initially, just this single origin process contains the
data, but after the broadcast all processes contain it. The argume&ninust have
identical values on all processes, atthm must represent the same intragroup com-
munication domain. This collective operation can (but is not required to) return as soon
as the content ofoot’s communication buffer has been copied to all processes. The
completion of a call indicates that the caller is now free to access the data within the
communication buffer. This also means that this operation is blocking - the current

2 Christian Siebert
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official standard does not specify any non-blocking collective operations. The local
completion does not indicate that other processes in the group have completed or even
started the operation (contrary to the synchronizing collective operstiRinBarrier).
General, derived datatypes are alloweddatatype. The only restriction is that the
type signature of count antlitatype on any process must be equal to the type signature
of count anddatatype at the root. This implies that the amount of data sent must be
equal to the amount received, pairwise between each process and the root. Distinct type
maps between sender and receiver are still allowed.
This broadcast operation is "in place” because there is only a single buffer argument,
which indicates that data is not moved at the root node.
The standard itself does not suppormhalticastfunction, where a broadcast executed
by a root can be matched by regular receives at the remaining processes. It justifies this
decision with the statement:

Such a function is easy to implement if the root directly sends data to each
receiving process. However, there is little to be gained, as compared to ex-
ecuting multiple send operations. An implementation where processes are
used as intermediate nodes in a broadcast tree is hard, since only the root
executes a call that identifies the operation as a multicast. In contrast, in a
collective call to MPI_BCAST all processes are aware that they participate
in a broadcast.

1.3.2 An Example Using MPI_Bcast()

Assume the root node gets some new input values from the user and wants to send
those values to all othéviPl processes. The following example @will broadcast
100 integers from the process with rank numbeo every process in the group.

MPI_Comm comm;

int array[100];

int root=0;

/[~ let the "root’ node fill the "array’ */
MPI|_Bcast(array, 100, MPI_INT, root, comm);

/+ now all nodes obtained the data from ’'root’ =/

Listing 1: example which uses MPI_Bcast()

Figurel shows an example of a runnifdPI_Bcasf) operation or8 nodes. To be
more precise: Itis the improved version of the linear broadcast algorithm, which can be
found in chapted.5.1, where all participating nodes are delayed by a random amount
of time. This diagram serves as a perfect example to show how the duration of the
broadcast operation can be subdivided into phases.

SinceMPI_Bcasf) is a blocking collective operation, it starts as soon as the first MPI
process entefdPl_Bcas() and it ends when the last MPI process finiski#d_Bcasf).

But there are two other important moments during this operation: The root node is the
only node which contains the message data at the beginning. Therefore "useful” com-
munications can only be started after the root node ¢dP$ Bcasf). The second
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Figure 1:MPI_Bcasf) operation can be split into 3 phases

important point in time occurs when the last node finally joins this operation. Alto-
gether, the time frame of this collective can be subdivided into three phases: Within
the "startup phase” the first MPI processes enter this operation, but need to wait for the
arrival of the root node. The "intermediate phase” can be used for communication but
cannot be completed because not all nodes are already present. The "final phase” starts
as soon as all processes have joined the collective operation and lasts until all processes
have completed the operation.

Most synthetical benchmarks let all MPI processesi&ll_Bcasf) simultaneously,
making the first two phases collapsing into a non-existing time frame. Unfortunately,
many broadcast algorithms (especially in the past) have been constructed upon this
assumption, which is naturally not valid for most real-world applications.

1.4 LogGP Model of Parallel Computation

The performance of each broadcast algorithm depends on many parameters, like the
number of nodes, message size, time of node arrival, network topology and parameters,
application behaviour, number of network interfaces, communication library, and many
more. There are several models for estimating the performance of parallel algorithms,
for example the?RAMmodel, theBSPmodel, theHockneymodel and th&éogPmodel.

We have decided to give a performance estimation for each algorithm using the more
realisticLogGP[AISS97 model of parallel computation, which is an extension of the
LogPmodel. The parameters for this model can be summarized as follows:

4 Christian Siebert
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L: the Latencyof the interconnection network (the time it takes a single bit to
travel from the source processor to its target processor)

o: theoverheaddefined as the time that a processor needs to inject or retrieve a
message to or from the network (during this time the processor cannot perform
other operations)

g: the gap between messages, defined as the minimum time interval between
consecutive message transmissions or receptions

G: the Gap per byteor time per byte for long messages (the reciprocaGof
characterizes the available communication bandwidth)

P: the number of participatinBrocessorgwhich equals the size of the commu-
nicator in ourMPI_Bcastscenarios)

Sending am byte message from one processor to another takes—1)- G+ L+o
time units under thifogGPmodel. Itis possible to measure BigGPparameters for a
given platform [TKV0O0]. We assume a full-duplex network which allows simultaneous
message transfers of an initiated send and receive operation. Note that this model does
not consider any form of network congestion.

1.5 Existing Techniques

There are several possibilities to implemé&f®l_Bcas(). Most implementations are
using simple point-to-point communication because this is the basis of each communi-
cation library and therefore always present as well as working properly. This section
gives a short overview of the most common techniques. There are many other imple-
mentations which are usually based on one of the here presented algorithms. Often
they are slightly modified to make use of special additional knowledge or properties
(like network topology).

Since there is no single number to express the performance of a collective algorithm,
this section will give the estimated minimum, average and maximum completion time
of a node according to theogGP model, after presenting the description of each al-
gorithm, some pseudo-code, and the advantages as well as disadvantages compared
to the alternatives. For simplicity, we mainly assume that all nodesvfall Bcasf)
simultaneously, and that each pair of nodes has the same communication parameters.
The parameten holds the size of the broadcast messagearepresents the number
of involved MPI processe® (= 1 can be ignored because it is'a-operation sop is
defined to be larger thal). f contains the number of fragments amgdtheir size.

1.5.1 Linear Algorithm

The most simplest algorithm is derived from the definition of broadcast, and sends
an individual message from the root node to all participating nodes. Therefore it is
sometimes also called "simple” or "flat-tree” algorithm.

Christian Siebert 5
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int MPI_Bcast_linearyoid » buffer , int count, ...)

{

MPI_Comm_size (comm, &nodes);
MPI_Comm_rank (comm, &myrank);

if (myrank == root) {
[+ root node sendsto all other nodes x/
for (dest = 0; dest < root; dest++) {

MPI_Send(buffer , count, dtype, dest, ...);
}
for (dest = (root+1); dest < nodes; dest++) {
MPI_Send(buffer , count, dtype, dest, ...);
}
}
else {
/+ non—-root nodes receive from root */
MPI_Recv(buffer , count, dtype, root, ...);
}

Listing 2: linear MPI1_Bcast() implementation

Although this linear implementation (contrary to e.g. an implementation with a loga-
rithmic worst case running time) usually does not scale well when used with large com-
municators, it achieves acceptable performance for smaller communicators. Replac-
ing thoseMPI_Send) by non-blockingMPI_Isend) calls and adding a corresponding
MPI1_Waitall(), improves this algorithm, especially in the case when the MPI processes
enter this collective operation in a deferred but unknown chronological order. Unfor-
tunately, when all processes call this function simultaneously (which is for instance
the case when running a synthetical benchmark), the average completion time per MPI
process is

ﬁﬂinear(n;p) = ]1? ’ TSend(n) ’ ((p - 1) + Zl> = TSend(n) ’ (1%1 - 1)

=1 p
Using theLogGPmodel, ranki receives the message after time
2-0+L+i-(n—1)-G+(i—1)-g
The maximum completion time is therefore
T=L+2-0+(p—-1)-(n—1)-G+(p—2)-9g

One node receives the message (and therefore completes MPI_Bcast) after the first
send operation from root and one node receives the messagg afterounds, giving

6 Christian Siebert
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the following extreme performance numbers:

TSend(n) S Einear(n>p) S (p - 1) : TSend(”)

time (seconds)

node 7 node 6 node 5 node 4 node 3 node 2 node 1

node 8

. Wait . MPI_Send() . MPI_Recv()

Figure 2:linear broadcast running on 8 nodes

Figure2 shows howMPI_Bcast_lineaf) broadcasts & /i B message t8 nodes on
a Fast Ethernet network. For a better understanding, the tinMPbrRecy) has been
divided into the time it waits for the first byte and the actual transmission time. The
broadcast duration per node ws641, 0.103,0.195, 0.284, 0.376, 0.468, 0.560, 0.651}
seconds, giving a real average duratio dfl0 seconds per node.

1.5.2 Chain Algorithm

Another implementation with a similar "bad” performance lets each node send and
receive at most one message. This effectively creates a kind of ring topology where
each node has one predecessor from which it receives the message, and one successor to
which it sends the message (for that reason it is also sometimes called "ring” algorithm).
Since the root node does not need to receive the message, the ring is reduced to a chain
where the last node skips the send part.

Christian Siebert 7
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int MPI_Bcast_chainyoid = buffer , int count, ...)

{

MPI_Comm_size (comm, &nodes);
MPI_Comm_rank (comm, &myrank);

pred = (nodes + myrank— 1) % nodes;
succ = (myrank + 1) % nodes;

if (myrank !'= root) {

MPI_Recv(buffer , count, dtype, pred, ...);
}
if (succ !'= root) {

MPI_Send(buffer , count, dtype, succ, ...);
}

Listing 3: chain implementation

Listing 3 uses a simple modular addition/subtractiori &b determine the successor
and predecessor of the own node. A better way to support other network topologies
(like meshes) is to uddPI_Cart_creat€) with a single dimension to embed the virtual
chain topology into the real underlying topology. The actual neighbours can then be
determined with a call tMPI1_Cart_shiff).

Usually this algorithm is even slightly worse than the linear algorithm because the
MPI processes are served in a predefined chronological order. A single late node is
enough to stall the whole chain algorithm (contrary to the improved version of the
linear algorithm). When there are no delays, the average completion time per MPI
process is

1 [ p+1 1
chhazﬁ(”,p) = 5 ) (ZZ o 1) ’ TSend(n) = TSend(n) ’ (T - 5)
=1

The root node completes the broadcast after a single send, and the last node in the
chain needs to wajt — 1 rounds until it receives the message. This gives the following
extreme performance numbers:

Tsena(n) < Tenain(n, p) < (p— 1) - Tsena(n)
The maximum time of thehainalgorithm, according to theogGPmodel is
T=@E-1)-(L+2-04+n;=1)-G)+(f=1)-(g+(ny—1)-G)
The "stairs” in figure3 show how the nodes get the message from their neighbours.

The broadcast duration w#8.090, 0.194, 0.297, 0.399, 0.503, 0.607, 0.709, 0.721} sec-
onds, giving a real average duration0ot40 seconds per node.
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w
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| | |
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node 8

. Wait . MPI_Send() . MPI_Recv()

Figure 3:chain broadcast running on 8 nodes

If this chain algorithm has no obvious advantages (except the good support for
"cheaper” network topologies - even without any switches at)althen why should
we care about this algorithm? Because there is an optimization possibility, which turns
this "bad” algorithm into the best algorithm for large messagésormally, each node
waits until the message has been received completely before sending it to the next node.
When we split this message into several fragments, each node can start sending as soon
as it received the first fragment: A trivial implementation could b&HI_Bcast_chain()
for each fragment. This introduces an overlapping of send and receive requests and
leads to the principle of pipelining.

When thel MiB message gets splitintd K'i B fragments, the fragmented chain al-
gorithm achieves an overwhelming performance compared to the non-fragmented ver-
sion. Figure4 shows this behaviour. Note that the optimal size of the fragments de-
pends on several parameters (number of nodes, message size and network parameters)
and might need to be recalculated for every new broadcast operation. The broadcast
duration per node wa).097,0.104,0.110,0.116,0.123,0.130, 0.136, 0.142} seconds,
giving an astounding real average duration of jus20 seconds per node. The non-
fragmented version is therefore by a factoBdf7 slower than this fragmented version.

lExample: Several modern mainboards are equipped with two Gigabit Ethernet ports on-board. Con-
nect such cluster nodes in a real ring topology and you have created a very cheap cluster without any
switches. The (fragmented) chain broadcast is always the optimal algorithm for such a network.

2For a discussion of fragmented tree versus fragmented chain algorithm see the appendix.
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Figure 4:fragmented chain broadcast running on 8 nodes

The next large class of broadcast algorithms use virtual tree topologies to limit the
number of rounds to some logarithmic function. This reduces the average and maxi-
mum broadcast duration per node and is therefore very useful for medium and large-
sized communicators. The broadcast messages traverse the trees starting from the root
node, and going towards the leaf nodes through intermediate nodes.

1.5.3 Binary Tree Algorithm

A binary treeis a well-known data structure in computer science. Nodes, which rep-
resent MPI processes, are connected by directed edges, which indicate the direction of
the message transfer. To get a good performance, we require that each parent node has
two children - except the leave nodes which are allowed to have only a single or no
children (this is often calledomplete binary tree

10 Christian Siebert
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int MPI_Bcast_binaryyvoid = buffer , int count, ...)
{

[+ assumption root == * [
MPI_Comm_size (comm, &nodes);
MPI_Comm_rank (comm, &myrank);

Ichild = (myrank << 1) + 1;
rchild (myrank << 1) + 2;
parent = (myrank— 1) >> 1;

if (parent >=0) {
MPI_Recv(buffer , count, dtype, parent, ...);
}
/+ send messageto both children «/
if (lchild < nodes) {

MPI_Send(buffer , count, dtype, lIchild , ...);
}
if (rchild < nodes) {

MPI_Send(buffer , count, dtype, rchild , ...);

Listing 4: binary tree implementation

A trivial binary tree implementation can be found in listidg Note that this algo-
rithm assumes that the broadcast root has always(amke usual way to circumvent
this restriction is to introduce virtual rank numbers, so that the root node gets the virtual
rank 0. A rank rotation, e.g. using the modular arithmetic trick from the chain algo-
rithm, can be used to create such a mapping between real and virtual rank numbers.

Although 8 nodes create a nearly-balanced (and symmetric) binary tree (with the
exception of a single node in an additional level), diagfamemonstrates that the
broadcast duration per nodg) (184, 0.287,0.377,0.298, 0.298, 0.299, 0.390, 0.320}) is
not very balanced when a binary tree is used as a broadcast topology. Nevertheless, the
average broadcast duration @B07 seconds per node is already better than the non-
fragmented algorithms of the linear-scaling class.

The maximum time of théinary treebroadcast, according to the®@gGPmodel is

T = ([log2lp+1)]—=1)-(L+2-(0+(n—=1)-G+g)+2-((n—1)-G+g)

The reason for this imbalance is that each node usually serves two children but can
not send two messages simultaneously over a single network interface. So instead of
thinking of an "usual” balanced binary tree, the real tree structure - when used as a
broadcast topology - can be seen in figére

When the communicator size increases, the imbalance will get even worse, because
the root node in a binary tree finishes always after two rounds, whereas all leave nodes

Christian Siebert 11
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Figure 5:binary tree broadcast running on 8 nodes

(and there arg0.5 - p| of them) have to waiflog, p| rounds. Fortunately, there is
another tree structure which takes care of this issue.

1.5.4 Binomial Tree Algorithm

A binomial treeis a more sophisticated tree structure, and can be defined recursively:
» a binomial tree of ordel is a single node

* a binomial tree of ordek has a root of degreg and its children are roots of
binomial trees of orders — 1,k —2,...,2,1,0

A binomial treeof orderk has at mos2”* nodes and heiglit. Figure7 shows a possible
structure of a binomial tree for a broadcast operation on 8 nodes.

The different communication pattern results in a much more balanced broadcast be-
haviour compared to the simple binary tree structure (see fR)ure

The broadcast duration on this binomial tree u§ed74, 0.285, 0.286, 0.285, 0.297,
0.297, 0.297, 0.308} seconds per node, which is all very close to the average value of
0.291 seconds. An application where all (especiatty nodes are callingylPl_Bcasf)
simultaneously, can expect that all nodes complete this collective operation in a similar
amount of time. This very useful feature and the slightly better overall performance
of this binomial tree algorithm makes it the favourite tree-based broadcast algorithm,
despite the slightly more complicated handling. Fig@rshows a binomial tree for

12 Christian Siebert
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!

Figure 6:binary tree structure for an 8-node broadcast

16 nodes, where the rank numbers are ordered in a way which makes computation of
parent and child nodes easier than the originally suggested ordering, and they are pre-
sented in binary notation to make it easier for the reader to follow the bit manipulation
description.

To find the parent of a nodgin a such a binomial tree structure, clear the least
significant set bit of the rank number. For all (valid) least significant clear bits, there
is one children whose rank number can be figured out by setting this corresponding bit
within the node’s rank number. Note that is is important to send the broadcast message
in the correct order to the children - start with the highest such clear bit and proceed up
to the lowest such clear bit.

The maximum duration of théinomial treebroadcast, according to tHeogGP
model is

T = [logep] - (L+2-0+(n—1)-G)

The performance chart of all four basic algorithms (frorio 32 MPI processes) in
figure 10 shows that the two algorithms of the first class (linear and chain algorithm)
scale linearly with the number of involved MPI nodes (but the linear algorithm usually
has a better gradient). The tree algorithms of the second class scale logarithmically with
the number of the involved MPI processes. As expected, the binomial tree algorithm
performs somewhat better than the simple binary tree algorithm.

3Note that rank) is always root and therefore has no parent node. See also the previous discussion
about virtual ranks.
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Figure 7:binomial tree structure for an 8-node broadcast

1.5.5 Other Algorithms

Many additional broadcast algorithms have been proposed in the literature.

The Splitted-binary treealgorithm PGAB'05] splits the original message into two
parts, and then sends the "left” half of the message down the left half of the binary tree,
and the "right” half of the message down the right half of the tree. In the final phase of
the algorithm, every node exchanges messages with its "pair” node from the opposite
side of the binary tree.

It is also possible to build a broadcast algorithm out of other collective operations:
MPI_Scatte() followed by anMPI_Allgathel) [PMG9] distributes the message in
parts over all nodes, and subsequently collects all parts using for exampdetingive
doublingalgorithm (seeGDBCO0J or [RTGO0T).

This "splitting” of messages can be generalized for any arbitrary broadcast algo-
rithm: A larger message can be seen as a collection of several fragments, and each
fragment can be delivered independently of the others. If a node sends a message to
several destinations, then the communication can be done interleaved, which involves
other nodes much earlier. Succeeding communications can be started as soon as the
first fragment has been received and therefore before the complete message has been
received. This transmission scheme leads to the well-known pipelining effect. The best
usage example for this property is tliagmented chaimlgorithm for large messages.

1.5.6 Limits Of Those Algorithms

The most limiting parameter for all presented algorithms so far, comes from the usage
of point-to-point communication and the fact that a single MPI process can not inject or
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Figure 8:binomial tree broadcast running on 8 nodes

retrieve several messages simultaneously into or from the network ("unicast”). For any
broadcast operation t@ nodes (which is implemented on top of this communication
scheme) there are at ledsbg. p| * transmission rounds necessary, otherwise at least
one node will never receive anything.

Many network technologies (like Ethernet and InfiniBand) are equipped with special
support for other communication schemes besides simple point-to-point. The following
sections will describe features which are knowrhaslware broadcasandhardware
multicast and show how this can be used to implemidiftl_Bcasf).

1.6 Hardware Broadcast

Although some network technologies support a ditecadcastfeature which could

be used to implemenIP1_Bcasf), clusters are often used simultaneously by more
than one parallel job and therefore subdivided logically into several parts. A broadcast
packet will be send to all nodes in the specified domain, and can therefore influence
the performance of other jobs (by consuming processing time within the network stack
were those packets will be rejected, and by directly reducing the network bandwidth
too). In addition, hardwarbroadcasthas usually the same drawbacks likeilticast

(e.g. the unreliable data delivery). On the other hand, there are network technologies

4The constant parameteis usually 2 but might be increased when there are several network interfaces
available ("fan-out”).
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Figure 9:reordered binomial tree structure for 16 nodes

which do not support multicast or have other interesting feat@aadricsfor example
supports a hardware-based acknowledgment scheme for its special "range” broadcast
[WYGO05]).

1.7 Hardware Multicast

Multicastis similar to abroadcast because it can be used to send a message to more
than one recipient. Contrary to the one-tofatbadcastfeature,multicastis a one-to-

many operation which sends a message selectively to nodes that have agreed prior to
receive those packets. This advantage makes it the better candidaté/fBt aBcast)
implementation upoiP-based interconnects.

Ethernetfor example, can suppdi® multicastif the underlying hardware is multicast-
capable (e.g. at least layer 2 switchindyulticast traffic is handled at the transport
layer with UDP, and multicast-capable hosts need necessariiyemmet Group Man-
agement Protoco{IGMP) implementation in their TCP/IP stack. In 1993, the first
multicast implementation saw the light in the 4.4 BSD release. TdBapulticastis a
pretty mature feature, and is supported by many hardware components as well as nearly
all recent operating systems.

1.7.1 How does Multicast Work?

Before an application can receive any multicast datagrams, it must tell the operating
system ("kernel”) which multicast groups it is interested in. Multicast groups can be
for instance class D IP addressesHtinernetor a so-callegjlobal identifier(GID) for
InfiniBand This explicit "group joining” is necessary because multicast datagrams are
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Figure 10:performance of the four basic broadcast algorithms

filtered by the hardware or by the network protocol stack (and, in some cases, by both).
Only those packets with a destination group which has been previously registered, are
accepted and delivered to the corresponding application.

Once an application has successfully joined a multicast group on a particular network
interface, it can receive multicast datagrams which are simply sent to this group. Send-
ing of multicast datagrams usually does not need any special preparation (except e.g.
opening an UDP socket for IP multicast). Finally, the application can leave a multicast
group by informing the kernel that it is no longer interested in this gréup.

When a communicator is created, a new multicast group should be assigned to it and
all participating MPI processes should join this group. The central switch will be in-
formed about any joins or leaves, and stores this information for any port. The example
scenario in figurd.1 shows a small cluster consisting®hodes, which are connected
through a central switch. In the first step, the notlesand3 join a multicast group
A by sending a join request to the switch. Afterwards, natJ&s7 and8 join another
multicast groupB, and noded and6 remain unused in this scenario. Both groups (or
their corresponding communicators) can be part of a siNtfé instance or they can
belong to totally different jobs. When a node sends a multicast datagram to one of the
registered groups, the switch will forward this packet to all ports, which are associated
with the destination group. So logically spoken: a single message arrives at the switch,

SFor a detailed programming guide of IP multicast, | recommend the E®0K{S03.
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step 1: nodes 1, 2 and 3 join MC group A step 2: nodes 3, 5, 7 and 8 join MC group B
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Figure 11:exemplary multicast scenario with 8 nodes

gets "duplicated” there, and finally arrives at several receivers "simultaneously”. In
our example scenario, nodesends a multicast datagram to the destination gi®up

step 3. The switch recognizes this group and sends the packet to the associated nodes
3,5,7 and&. Note: it is possible to suppress the "boomerang” packet of kodlee

final implementation does this to reduce this unnecessary overhead which gives a small
performance improvement).

Such a multicast feature can lead toMRI_Bcas{) implementation with a perfor-
mance which scales independently of the number of involved processes! To create such
a solution, there are a several problem which need to be solved: IP multicast sockets are
UDP-based and therefore multicast is unreliable! This means that nothing is guaranteed
and the user is responsible for any necessary reliability, privacy and control messages,
as well as scheduling an event. Especially if a node is not ready to receive a multicast
datagram, then an incoming datagram might not need to be stored and therefore it gets
usually lost. Furthermore, larger messages need to be fragmented to fit into IP packets,
and a proper multicast group assignment is also not trivial.

1.7.2 Multicast Group Assignment

Class D addresses, in the range 224.0.0.0 through 239.255.255.255, are the multicast
addresses in IPv4. The low-order 28 bits of a class D address form the multicast group
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ID and the 32-bit address is called the group address. Unfortunately, in Ethernet or
IEEE 802 networks only the low-order 23 bits of the IP multicast address are copied
to the Ethernet multicast address. There are a few special multicast addresses and
several reserved multicast addresses, which can be found in a regular updated list by
the Internet Assigned Numbers AuthorftAN06]. For some general multicast assign-
ment guidelines seeZAS01]. When we have a set of useful multicast addresses, we
need a proper way to assign a new address to each new communicator. This would be
simple if we had only one MPI instance which could keep track of all currently used
addresses. Since there can be several MPI jobs running in parallel on a single cluster,
maybe even using different MPI implementations, there is no globally visible state any-
more which could fulfill this task. The best solution for this problem is to reintroduce a
global state by adding a special server which distributes new multicast addresses on re-
quest.RFC 2730describes thdulticast Address Dynamic Client Allocation Protocol
[SHS99 ("MADCAP”) which could be used for this purpose. Every time a new com-
municator is created, this MADCAP server could be asked for a free multicast group.
As long as all used multicast addresses are known to this server, there will be no clashes
at all and many different MPI jobs can work safely in parallel.

Another solution to this address assignment problem, is to choose the multicast
address and port at random, and hope that there are no collisions. The final imple-
mentation uses this approach, but is prepared to use a MADCAP server or similar
and fall back to this solution if there is none available. Using the reserved multicast
address ranges 225.0.1.0 to 231.255.255.255 and 234.0.1.0 to 238.255.255.255 gives
200,540,160 possible addresses. Adding the port number (range 5000 t0®32368
this pool as well, gives another 27769 possibilities. Altogether, we can select an (ad-
dress, port) pair out of abodt5 - 1012 different possibilities. When the number con-
temporaneously used communicators increases, the collision probability increases even
more according to theirthday paradox If there are currently: multicast groups in
use (e.g. fom different communicators), then there are (n — 1)/2 pairs, each of
which with potentially identical values. It is easier to first calculate the probability that
all groups are different. Let, be the total number of available <multicast group, port>
pairs and assume that each pair is selected with the same probability. Note that it is
pretty important to choose the pairs at random, otherwise collisions can be very likely!

To(n,m)zl-(l—%)-(l—%) ..... (1_?177_11):#!_7@1

The probability that there is at least one collision is then the complementary of
p(n,m). Through the additional port number, the number of possibilities is large
enough, so that this probability keeps tolerable small, as can be seen ifi.table

Although only the MADCAP solution (or similar) gives a 100% certainty of never
producing any collisions, the probability that the second solution fails is, in many cases,
acceptable small.

5This range restriction was introduced because of portability issues ("ephermal ports”).
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number of communicators probability of at least one collision
1 0.0%
2 0.0000000000179 %
3 0.0000000000538 %
4 0.0000000001077 %
5 0.0000000001795 %
6 0.0000000002693 %
7 0.0000000003771 %
8 0.0000000005028 %
9 0.0000000006464 %
10 0.0000000008080 %
11 0.0000000009876 %
20 0.0000000034118 %
30 0.0000000078113 %
40 0.0000000140066 %
50 0.0000000219975 %
100 0.0000000888881 %
200 0.0000003573481 %

Table 1:collision probability when using several communicators

1.8 Open MPI

Open MPI(http://www.open-mpi.org) is a very promising project with the demand to
build the besMPI library available. Since it combines the knowledge of many prede-
cessor projectdHT-MPI, LA-MPI, LAM/MPI andPACX-MP)), it uses well-established
technologies as well as new ideas to build a completely new framework which supports
(or will support in the near future) many features (like comphfel-2 compliance,
thread safety and fault tolerance) and still achieves high performance and portability.
Open MPIloffers several advantages for computer science researchers which makes it
the perfect platform for new developments.

1.8.1 Architecture of Open MPI

The primary software design motif @pen MPlis a lightweight component architec-

ture called theModular Component ArchitectufdCA). This backbone architecture
provides management services for all other layers and contains component frameworks
for each major functional area @pen MPI Each of this component frameworks (cur-
rently theOpen MPlcomponents, th®©pen Run Time Environmenbmponents and
theOpen Portable Access Layeomponents) is a collection of self-contained software
units that export well-defined interfaces and can be deployed and composed with other
components. The MPI component framework contains for example (se&&\§(09

for more details):
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» Point-to-Point Management Layer: this component manages message delivery
and implements the semantics of a given point-to-point communications protocol

» Byte-Transfer-Layer: this component handles point-to-point data delivery over
the networks

» Collective Communication: the back-end of MPI collective operations, support-
ing both intra- and intercommunicator functionality

» Process Topology: Cartesian and graph mapping functionality for intracommu-
nicators (this allows MPI to optimize communications based on locality)

 Parallel I/0: modules for parallel file and device access

This theses makes use of this component-based approach, and - because an imple-
mentation of the collective operatidiPl_Bcas{) is one of its objectives - it is es-
pecially interested in th€OLL framework. Since components are free to implement
the standardized MPI semantics in any way that they choose, we will later use a com-
bined approach which is layered over point-to-point functions as well as an alternate
communication channel foP multicast’.

1.8.2 COLL Component

A COLL component is essentially a list of top-level function pointers that will be se-
lectively invoked upon demand. A component becomesaaulewhen it is paired

with a communicator. Top-level MPI collective functions, liMPI_Bcasf), are thin
wrappers that perform error checking and afterwards call the provided functions in the
appropriate module (depending on the communicator). There are effectively five phases
in a COLL component’s life cycle: selection, initialization, checkpoint/restart, normal
operation, and finalization. Since at the time of writing theckpoint/restarteature

is currently not really existent i©@pen MP] and [SL04, p. 11] states

It is not an error if a module does not include the functionality required
for checkpointing and restarting itself; support for checkpointing/restart in
a COLL module is optional.

we can simply mark our implementation to not support this, and get the simplified life
state diagram in figur&2 with only four phases for our ipmc broadcast component.
Every time a new communicator should be created (e.g. by directly calling the func-
tion MPI_Comm_creai@; but also including the one-time setupdPI_COMM_SELF
andMPI_COMM_WORLDat startup) Open MPIqueries each availabl@OLL com-
ponent to determine if it can be used with this newly-created communicator. A priority

"For a good description of the component architectur®©pén MPI especially with regard to the
collective framework, see5j.04]
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Selection MPI_INIT

MPI_COMM_CREATE

MPI_COMM_DUP

Normal Usage

[ Initialization ] MPI_COMM_SPLIT
( } } MPI_BCAST

Finalizati MPI_COMM_FREE
fnalization MPI_FINALIZE

Figure 12:four phases in the life of the ipmc component

value (from O to 100) will be returned by each component, and the component with
the highest priority will beselectedby the framework. Once OLL module is se-
lected for a given communicator, the component’s initialization function will be called
which performs any one-time setup required by the module (since the binding to the
communicator remains static after this step, pre-computations might be done here to
achieve some run-time optimizations). The initialization function returns a module,
which includes a list of function pointers for its algorithms. Afte€@LL module has

been initialized, those routines will be called whenever an MPI collective function is
invoked on the communicator. When a communicator should be destroyed (e.g. by
MPI_Comm_freethe modules finalization method will be called, which is responsible
for cleaning up all resources associated with this communicator.

1.9 Summary

Today, many parallel applications are implemented using\ieesage Passing Inter-

face and their performance depends on the underlyf library. MPI_Bcasf),

one of the most used collective operations, can be implemented in many ways. The
usual point-to-point communication scheme is too limiting, wheraa#icast- be-

sides its many problems - has promising advantages for a broadcast implementation.
Open MPIprovides an ideal framework for new developments, and we will try to cre-
ate a multicast-basedPI|_Bcas() implementation for this relatively new open source
MPI library.

2 Existing Applications which use MPI_Bcast()

Regrettably, many collective operations has been optimized especially for synthetical
benchmarks (where there is no "process skew”), and later score badly when used with
real-world applications. Fortunately, more papers regarding the optimization of col-
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2.1 High-Performance Linpack Benchmark

lective operations in view of application behaviour appeared in the last few years (see
e.g. JAMPO4]). In order to prevent the same mistake, this section shortly introduces
two applications which makes quite heavy useM®|_Bcasf). Each application has

its own typical broadcast pattern, which will be show in a graphical form, similar to a
Gantt chart Such charts are produce by profiling a running application: Events such
as callingMPI1_Send) will be logged together with a global time stamp and afterwards
visualized with postprocessing tools (see edl.$S99).

2.1 High-Performance Linpack Benchmark

The famoudHigh-Performance Linpack Benchmark for Distributed-Memory Comput-
ers8is the parallel benchmark that is used to measure the performance of the most pow-
erful computer systems. Twice a year, the TOP500 prdjassembles and releases the
500 most powerful systems according the performance measures of the Linpack bench-
mark.

2.1.1 Algorithm

This benchmark solves a dense system of linear equations in double precision arith-
metic. The used algorithm does ab factorizationof a random matrix with partial
pivoting. The operation count for the algorithm must be

2
=n® 4+ 0(n?)
3
floating point operations.

This portable implementation requires an MPI 1.1 compliant Message Passing Inter-
face library as well as Basic Linear Algebra SubprograniBLAS library.

2.1.2 Results

For 16 nodes on theCLiC testbed, the HPL benchmark achieves a performance of
7.538 GFLOPS (total running time of941 seconds) for a problem siz€ of 28000
and a blocking factorV B of 40. The freely availabléATLAS(Automatically Tuned
Linear Algebra Software) BLAS implementatidh was used because it outperforms
many other implementations (including some of the well-known commercial libraries).
Each of thel6 processing nodes called approximatebp0 times the level-3 BLAS
routine dgemm()which consumes a time around35 seconds 73.9% of the total
running time), and called00 times the data broadcast function to transfer around
755 MiB of data in280 seconds14.4% of the total running time).
Figure 13 shows a snapshot (seconds 35 to 84) ofHit. benchmarkunning on
12 Intel CeleronCPUs @.0 GH z each), connected by Fast Ethernenetwork. The

8see http://www.netlib.org/benchmark/hpl/
9see http://www.top500.0rg/
Osee http://math-atlas.sourceforge.net/
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Figure 13:HPL benchmark running on 12 nodes

executable was linked again®pen MPI1.1 andATLAS3.7.11. A problem of size

N = 24576 with a blocking factor ofV B = 40 was solved using a processor grid of
Px(@Q = 3x4 and the '1ring” broadcast algorithm. The red boxes show the computation
slices (i.e. the calls tablas_dgemiyn and the blue and green boxes show the data
transmission operations within th#&PL_bcasf) function.

2.1.3 Conclusion

TheHPL benchmark is a typical round-based application where the main computational
parts are periodically interrupted by shorter communication parts. The data broadcast
function (delivered with HPL) is written to allow an explicit overlapping of commu-
nication and computation by using non-blocking point-to-point communication func-
tions. However, most open source MPI implementations today do not really benefit
from using those function. So it was not astounding that replacing the non-blocking
with blocking functions in the data broadcast algorithm let the benchmark report nearly
identical performance numbers. Exchanging the different broadcast algorithms gives
slightly different running times. Quite large messages (usually more ithehi B in
size; starting with larger ones and decreasing in size over the time) are broadcasted
to all ranks within the MPI job. Although concurrent computation parts need nearly
the same amount of time, the available broadcast implementations introduce additional
gaps between consecutive rounds.

The new broadcast algorithm, based IBhmulticast should be able to achieve a
good throughput and can hopefully diminish those gaps between the rounds because of
its balanced manner.
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2.2 Abinit

2.2 Abinit

Abinit ' is an application package to find the total energy, charge density and electronic
structure of systems made of electrons and nuclei. The main code exists as sequential
version (abinis) as well as parallel version (abinip).

2.2.1 Algorithm

TheAbinit application takes the description of the unit cell and atomic positions and as-
sembles a crystal potential from the input atomic pseudopotentials. It uses either an in-
put wavefunction or simple gaussians to generate the initial charge density and screen-
ing potential, then uses a self-consistent algorithm to iteratively adjust the planewave
coefficients until a sufficient convergence is reached in the energy. The code can be ad-
justed to perform molecular dynamics or to find responses to atomic displacements and
homogeneous electric field, so that the full phonon band structure can be constructed.
There are several approaches to parallelize this taBKf. We will devote our atten-

tion to the version which uses parallelism over the bands.

2.2.2 Results

Figure 14 shows a snapshot (seconds 116 to 124) of the parallel versiBIMIT
running on8 nodes of thé=RIZ cluster (seel.1.]). After each band computation (the

red blocks), the root node collects the intermediate results and decides upon the next
"best” wavefunction. Subsequently the root node broadcasts the new block to all other
processors usiniglP1_Bcast()(the yellow parts).

2.2.3 Conclusion

The parallelAbinit application is round-based too. Yet this form of parallelization is
not as balanced as thPL benchmark. Due to the additional gather part of the root
node, it is nearly always the last node which enters the collective broadcast operation.
For that reason all other nodes are waiting quite long before the actual transmission
phase begins. The broadcast messages in this setup contained Zways double
precision values (the size is therefore a few megabytes) which are broadcasted to all
ranks in the MPI job.

Although the percentage of the consumed broadcast time regarding the total execu-
tion time of Abinit is very high, most of the time is wasted in the waiting phase of
MPI_Bcast) which cannot be shortened significantly by using another blocking broad-
cast algorithm. A nice advantage for the multicast implementation is the fact that the
root node is always the last node which joins the collective operation. Therefore an im-
mediately executethulticastcan be expected to be most effective because no packets
need to be discarded at the receiver sides. On the other hand, this is also a drawback
because the intermediate phase of the broadcast has an extent of zero. The relatively

Hsee http://www.abinit.org
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large message size and the small number of involved processes in the test scenario,
should make thé&ragmented chaimlgorithm the best choice.

2.3 Statistical Properties and Assumptions

Most applications with different algorithms (and therefore behaviour) will have their
own unique "broadcast fingerprint”. There cannot exist a non-adaptive general broad-
cast algorithm JAGBA which is always superior to all other broadcast algorithms in

all imaginable scenarios. Proof: take a fixed scenario with any regular application,
where regular means that when the application is running several times under the same
conditions, it will always behave exactly the same. Theoretically, all (maybe an infi-
nite quantity of) parameters (and options) can be investigated and their values can be
determined exactly (after an infinite amount of time). Once all parameter values are
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known, a deterministic schedule can be created which results in the optimal broadcast
algorithm for exactly this application and scenario. T¥WGBAcan never be better

than the so constructed broadcast algorithm. Once we change only a single parame-
ter which is not known to th&lAGBA a better performing broadcast algorithm can be
constructed, which therefore beats NM&GBA

Either we construct a special broadcast algorithm for a chosen application and sce-
nario, or we build a general-purpose broadcast algorithm which should hopefully per-
form well for a large class of applications and scenarios.

Figurel from the introductory chapter shows how evéff?l_Bcas() operation can
be subdivided into three phases. As long as this operation is blocking, the first phase
can never be used to make any progress. The only solutions to this problem is to
adapt the application or to make the broadcast operation non-blocking, which helps
to postpone this task and execute succeeding operations earlier. A common approach
to achieve this is to introduce new collective operations with another semantic, which
work in a non-blocking way (seé&iSB06]). Another approach is to use the concept of
Memory-Mapped Messagés maintain the semantic of a blocking behaviour and im-
plicitly achieve the advantages as if the operation would be non-blockinggses]).
Interestingly, even with a blocking broadcast it is nevertheless often possible to re-
duce the time consumption of this first phase by choosing a well-balanced broadcast
algorithm (examples are round-based application schemes where unbalanced broadcast
algorithms can lead to undesirable deferrals, which usually widen the first phase in the
consecutive round).

The intermediate broadcast phase should be used effectively by a broadcast algo-
rithm so that most of the work has been done already before the final phase even starts.
Multicast can be leveraged to achieve this effectivity. Because of its unreliable data-
gram transport, a message can be send to all nodes without knowing if they are ready
or not, whereas reliable communication channels need time consuming handshaking
operations (or additional buffering) during this phase. Whdticastapproach has two
extreme cases: If the root node is the first node which d4R$ Bcasf), then an im-
mediately executedhulticastoperation would have no positive effect since the other
nodes are not waiting for the datagrams causing them (in most cases) to get lost. If the
root node is the last node joining the broadcast operation, themuftecastoperation
is most effective and will very likely reach all participating processes. The first "bad”
case can be turned into a much better case by simply delayingutieastoperation
by a certain amount of time. For regular applications we can always find a good delay
parameter so that the new broadcast algorithm achieves its optimal performance.

When the application behaviour is in a way unpredictable, all we can do is to as-
sume some random order in which the nodes letill_Bcasf). Assuming a uniform
distribution of the arrival time means that every node has the same probability to be
the first node calling the collective operation. On average we can expect that when the
root arrives, there are alreadly— 1) /2 nodes waiting an@p — 1) /2 nodes will follow.

This yield is not too bad, because this implies that about halve of all nodes are ready to
receive themulticastdatagrams, even if thaulticastoperation is started immediately.
These insights lead to the final algorithm which can be found in the next chapter.

Christian Siebert 27



3 Solution

3 Solution

Now that we know the advantages and disadvantages ohtiigcastfeature, as well
as common application usage patternd/bfl_Bcas(), this section presents a reliable
algorithm to implement this collective operation which benefits from this knowledge.

3.1 Obijective Target

The main goal of this thesis is to construct a broadcast algorithm, which performs es-
pecially well for larger communicators in conjunction with small and medium sized
messages. For large enough messages (with respect to the communicator size), we can
always fall back to thdragmented chairalgorithm, which can broadcast such mes-
sages very efficiently (see chapfieb.?. If it is possible, the new broadcast operation
should scale independently of the number of involved proceddakicastin combi-

nation with a clever way to restore the reliability should be the key to achieve this goal.
Moreover, the new broadcast algorithm should still perform decently when used with
real-world applications and not just with synthetical benchmarks.

3.2 Multicast-based Broadcast Algorithm

We propose a two-stage broadcast algorithm, where the first part uses the unreliable
multicastfeature to deliver the message to as many nodes as possible. The second part
of the algorithm is necessary to ensure that all nodes receive the broadcast message,
even in case when the first stage fails partly or completely. No node should be stalled
unnecessarily long, and instead finish the operation as fast as possible after correctly
receiving the message.

3.2.1 Stage 1: Unreliable Broadcast

The most common approach when usmglticastis to wait until all processes are
ready to receive the datagrams. This can be achieved by using the synchronizing
MPI_Barrier() operation or something similar{[ACA0Q] suggests a binary tree gather

or a linear algorithm for synchronization before starting the multicast operation). The
big advantage is that no packets need to be discarded because of non-ready receivers.
On the other hand, there are two drawbacks: It can be proven that any barrier operation
needs at leasbg, p rounds. This proof of optimality for the barrier operation can be
found in HTMO5]. So if we would use this operation in our algorithm, then we could
never achieve a broadcast performance which scales independently of the number of
nodes. The second disadvantage (when using an upstream synchronization operation)
would be the complete dissipation of the first two phases of the broadcast algorithm,
which does not make it ideal for real-world applications where those phases can con-
sume a significant amount of time (usually all parallel applications are - to some extent

- subject to the principle gbrocess skewbecause of e.g. process scheduling or un-
foreseeable interrupts). Those reasons suggest that the new algorithm should not use a
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preceding synchronization operation. Nevertheless, this introduces a problem: When
an application causes every time the bad case, where the root node is the first node
which callsMPI_Bcasf), this first stage could never be useful for the broadcast oper-
ation. Therefore an additiondelayparameter is introduced, which tells the root node
how long it should wait before initiating the multicast operation. The value of this pa-
rameter is zero per default which disables the sleep, or it can be positive to indicate the
number of microseconds the root node should wait at the beginning. This value should
be customizable by the user, and it might also be adjustable at runtime. However, the
second alternative comes with several problems. An approach could let each broad-
cast operation keep track of the relative number of lost datagrams and adjdstake
parameter as necessary for succeeding broadcasts. If there is too much datagram loss,
then thedelayparameter should be increased. Unfortunately, since these statistics are
collected locally for each process, a separate communication channel would be neces-
sary to transmit this information to the root node. Even if this problem is solved (the
next section will try to eliminate all "backward” channels!), this information needs to

be processed by a clever (e.g. heuristic) function which returns a promising parameter
change value. This does not sound very hard, but imagine a round-based application
which uses two broadcasts per round. These two broadcasts might be completely in-
dependent and behave oppositional. It is for this reason, wherefore the current imple-
mentation does not try to adjust thdelayparameter at runtime, and instead gives the
user the full control. Note that this parameter is usually only necessary for regular ap-
plications with the worst case behaviour. We have already shown that for a large class
of applications, a zero-value is acceptable.

The broadcast message might be split into several fragments to fit into the multi-
cast datagrams. A sequence number within each datagram helps to re-assemble the
fragments in the correct order. Since the broadcast operation does not synchronize, it
is possible that some nodes are still processing a certain broadcast, while some faster
nodes are already processing the following broadcast. To prevent any overtakings, a
broadcast identifierBID) is assigned to each communicator and increases for every
broadcast operation. This identifier is also transmitted with the multicast datagram to
allow an receiver to detect any such overtakings. An optional data integrity check over
the whole multicast datagram (without tiiRC field itself) can be used to identify
defective datagrams at the receiver side. This data integrity check is optional because
Ethernetframes usually have already their omrame Check Sequentield. Therefore
this additional checking can be disabled by the user.

The data fields of a final multicast datagram used bygheimplementation can be
seen in figurels: It always starts with & byte Sequence Numbaevhich indicates the
position of this fragment in the packed data buffer. Since the minimum payload size
of a multicast fragment (except the last one, which can carry a smaller payload - up to
a single byte) has been limited 266 byte, message up té GiB can be handled cor-
rectly. Far before reaching this limit, tiagmented chaimlgorithm should take over
the work. The next fieldg§ID) is an8 bit identifier for the broadcast. It is followed by
the actual fragment data which can have any size up to the spquafydabdboundary.

If the optional data integrity check is enabled, an additian@jte trailer is appended
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Figure 15:structure of a final multicast datagram

to the datagram, which contains tR&RC-32value of the whole multicast datagram
(including the header, but excluding t&RCfield itself). Note that no separate length
field is necessary because the length of the multicast datagram is returned by the corre-
sponding receive function. In conjunction with the sequence number, the message size
and the fragment size, it is possible to check each datagram for its correct length.

At the root node, the complete message is conveyed umsirticastbefore starting
the second stage. This is important since it is very likely that we are still in the interme-
diate phase of the broadcast operation, and several nodes might not yet be available for
any reliable communication. A status bitmap can be used for each node, to keep track
of received and sent fragments. All non-root nodes initiate an asynchronous multicast
receive and update their local status bitmap for each correctly received fragment.

3.2.2 Stage 2: Reliable Broadcast Completion

It is always possible that several or all nodes have not received parts or the complete
broadcast message correctly during the first unreliable broadcast stage. On the other
hand, it is very likely that a large proportion (typically more tHaY¥ *?) of all nodes

are getting the data correctly.

This second stage ensures that those nodes which have not yet received the data
correctly, will accomplish this now. Many effort has been spent in the last years to
construct reliable multicast transport schemes. There are even several working groups
and research groups (e.g. in B F or IRTF). Nevertheless, they are usually designed
for wide area communication (i.e. Internet) and not for high-performance cluster com-
ponents. The common approach is to use some kind of acknowledgement scheme to
detect which nodes have failed: This can be a positive acknowledgement where cor-
rect delivery is confirmed with aACK and message loss is handled by time-out and
retransmission. A negative acknowledgement based scheme is also imaginable where
all nodes try to receive the fragments using time-outs and re-request the message from
the root when the reception fails. TIBACK scheme would incur no penalty when all
nodes are receiving the message correctly. Except for the root node which has to ensure

12see the discussion about the statistical application behaviour, and the purpose of the intdetaced
parameter.
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that all nodes have received the message. However, this scenario can only be guaran-
teed, if the root node is known to cIPI_Bcas() as the last node, or when a separate
synchronization operation is used. This reason and the always necessary time-out value
dissuades to use this scheme for a general purpose broadcast.

The positive ACK scheme performs bad because the root node needs to wait for all
ACKs and becomes a performance bottleneck (also referredXGKsmplosiorn. The
authors of JLP04 try to reduce these disadvantages slightly by introducicg-zaoot
scheme as well as several other workaroundsléikg ACKs

Another big problem is the time-out value, which is necessary for all ACK schemes
and needs to be determined very carefully: A too small value can |efatboretrans-
missionsand a too large value gives bad performance anyways.

An ACK scheme might be efficient when the broadcast message is large enough to
cover all of the small message latencies as well as time-outs. Especially for small sized
messages, this overhead is too much.

The solution to all those problems is to simply avoid any kind of acknowledgement
scheme at all! To eliminate this expensive "feedback”, we simply send the broadcast
message a second time using ftegmented chaimlgorithm (se€l.5.2. This means
that every node has a predefined predecessor and successor in a virtual ring topology.
As soon as a node owns a correct fragment of the broadcast message, it sends it in
a reliable way to its direct successor in the virtual ring topology (the root node does
this too after completing the first stage). Whether the fragment has been received by
multicast or by reliable send does not matter. Of course, the last node does not need
to send the message to the root node. Each node posts a reliable (but asynchronous)
receive for each fragment where the source node is the direct predecessor in the virtual
ring topology. The root node does not need to receive anything because it already holds
the complete message. Therefore the virtual distribution topology becomes effectively
a chain and the algorithm becomes the already known chain broadcast. If a node obtains
a fragment by the multicast receive request, then the reliable receive request can be
cancelled or ignored.

At first sight, it might seem to be wasteful to use the chain broadcast for the second
stage. When many consecutive nodes fail to get the message via multicast, it will
take many “penalty” rounds until they finally get the message via reliable send. A
tree topology would drastically shorten the number of rounds in this case. There are
at least two reasons for preferring the chain algorithm: An intermediate node in the
chain algorithm only sends a fragment once, whereas in a tree algorithm it would send
a fragment several times. This would lead to an undesirable increase of the broadcast
duration per node. The second reason is the usually small chance that a node does
not get the message via multicast. For a given failure probabilitiie chance that
nodes fail in a row i%™ and therefore this result converges exponentially towards the
zero value. Usually this probability can be assumed to be at hig6t(see statistical
discussion ir2.3), therefore the expected number of reliable communication rounds is
(if X represents all possible numbers of necessary rounds@rmommsize — 1,
thenp; is the probability thatX = x;):
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E(X) = ;(z o r}ggo;(z 1) 5 =10

This means that even for extreme large communicaters+ oo), the expected
number of reliable communication rounds per node is less than or equal, twhen
the failure probability is at mogt0%. In simple words: yes, it is possible that a node
needs to wait many rounds until it gets the data. However, the probability that such a
bad case occurs is negligible. In practice, almost all nodes will have to wait at most a
few communication rounds before getting their data.

A nice side effect of using thehain algorithm in the second broadcast stage is,
that for larger messages we could simply drop the multicast stage (this rmg@ns
datagram loss!) and reach the highest performance dfajenented chaibroadcast.

3.3 A collector to create a nearly-true random seed

In the next section, a good pseudo-random number generator will be presented. Since
it is still a generator, it needs some kind of initialization. A proper initialization, es-
pecially with true random data, is necessary to minimize the chance of generating the
same output twice. Unfortunately, computers are deterministic machines which can’t
really produce true random data. A good workaround for this problem is the usage of
statistic and timing data which is often influenced by other causes like human interac-
tion or small timing derivations in the hardware level. For our purpose, it is enough
to create a collector that gathers only a few bits of good random data. This is enough
to get different generator seeds for each new initialization with a high probability. The
portable implementation uses a complex data structure and gathers the results from
several different functions:

MPI_Get_processor_namei§ not really random, but at least distinguishes be-
tween different MPI processes.

MPI_Wtime()is a high-resolution timer and therefore a much better source of
randomness if it is called rarely.

/dev/urandoms a non-blocking device in Linux which outputs quite good ran-
dom data (it is only used if it is available}?

tmpnam(should return different strings each time it is called (upkbP_MAX).
So even in the unlikely case that two MPI processes on a single node are calling

13The/dev/randondevice usually blocks when the entropy pool is empty. Cluster nodes (like servers)
are often short of entropy sources because there is no human interaction. Therefore the use of the
/dev/randomndevice - contrary to the use fifev/urandom is not recommended.
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this collector at the same time (e.g. on a dual core machine), this source should
lead to a different seed.

Itis easy to add more sources to this collector. This subset however should be enough
to get a decent seed value for our purpose.

Finally, after collecting all those bytes together, they will be compressed dowh to
bit using a hash function. The result will be used to seed the pseudo-random number
generator which will be explained in the next section.

3.4 Blum-Blum-Shub pseudorandom number generator

It would be best to collect enough true random data to select a proper multicast group
and a corresponding port number. This would minimize the chance that several commu-
nicators (even in different and independent MPI entities) choose colliding identifiers.
Unfortunately, the total amount of entropy that will be collected by our portable and
non-blocking implementation can drop to just a few bits of true random data in the
worst case. For 82 bit IPv4 address and B bit port number, we need arourd bit

(a bit less because we do not accept the full range) of good random data (for an IPv6
address even more). A special kind of stretching function should be used to fill this gap
(sometimes calledmplifiersof randomness). It takes the collected data and produces a
large enough stream of pseudorandom data. If there are two different sets of collected
data which differ only by at least one bit (e.g. influenced by the true random bit), then
an optimal function should return two pseudorandom data streams where around halve
of all bits are different.

On way to achieve this objective, is to use a so-called hash function which takes
an arbitrary amount of data (i.e. the collected data in our case) and produces a fixed-
length output. Possible candidates, with the desired property that a single bit changes
approximately halve of the output bits, are cryptographic hash function$li& or
SHA-1

Another solution is a pseudorandom number generator, which will be seeded with the
collected data. Such a generator would be able to produce any amount of pseudorandom
data instead of a fixed amount, and in addition it often requires a much less complex
implementation. Many low quality pseudorandom number generators exiskj@egw
congruential generatorsnplemented with low precision integers) which on the other
hand have a high amount of throughput. Since we need only a relatively small amount
of random data (e.g. the 48 bits for IPv4), | suggest to use a slightly softened version
of a cryptographically strong pseudorandom number generator which gives some kind
of guarantee for the high quality of the generated output.

Blum-Blum-Shul§proposed in 1986 by Lenore Blum, Manuel Blum and Michael
Shub [BS84) is such a pseudorandom number generator. The ingredients for this
generator are two large prime numbgiendq which should be congruent 80(mod 4).

A small value forged(o(p — 1), 0(¢ — 1)) ensures that the cycle length is large. Itis
initialized with a seed:, which can be any quadratic residue wheté(xy, M) = 1.
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To generate a single output bit, this generator updates an internal state according to
Tpi1 = 22 mod M

whereM is the product of the two prime numbersndg, and returns the bit parity of
the new state. The resulting sequence repeats after a perigd @Y )).
In Annex E of ISO/IEC 9899:1990 (often called ANSI C standard),uasigned
long datatype is guaranteed to hold at le3g&bits (in other words it needs to be able
to represent numbers ranging franto 4, 294, 967, 295). Since this might be too small
for our purpose, | suggest to use at least two such words and implement a minimal big
integer package. To remain able to handle possible overflows, we could simply use 31
bit of each word, allowing us to calculate with integers of 62 bit precision.
A valid BBS modulus of this size is

M = 2%2-63 = 4,611,686, 018,427, 387,841 = 64,129,007-71,912, 637,263 = p-q

because = 3 (mod 4) andg = 3 (mod 4). Itis also a good modulus with a large cycle
length of nearly25!, because — 1 = 2% 32064503, ¢ — 1 = 2% 223 %1223+ 131839 and
thereforegcd(o(p — 1), o(¢ — 1)) = 2. So even if the generator produck®) million

bits per second (a reasonable assumption for a modern CPU), then the first repetition
can be expected aft&B1 years of continuous processing time.

A native implementation on a 64-bit architecture (using the "diminished radix” tech-
nique instead of real "div’s” to reduce moduloM %) achieves an output rate of more
than8 M+iB per second (tested on &MD Opteron 244 with 1.8 GHz

The following algorithm to calculate? mod M will be used to ensure portability:

r—2o
a—X
b« x
while (b £ 0) do
if is_even(b) fa- (2-b) modM=2-a)-b mod M
a—2-amodM
b—b>1
else ta-2-b+1) mod M=(2-a)-b"+a) mod M
r«— (r+a) mod M
a«—2-amodM
b—(b-1)>1
returnr

Figure 16:algorithm to calculate? mod M

Finally, instead of looping through &P bits to get the parityp XOR and5 SHIFT
operations suffice to accomplish this task.

14d like to thank Tom St Denigor this useful tip (hint:(h - 262 + 1) mod M = (h - 63 + 1) mod M).
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3.5 Implementation for Open MPI

All ingredients for the new broadcast implementation have been prepared in the pre-
vious chapters. This section will describe in more detail how these components are
glued together to form a suitable implementation @pen MPI A first prototype on
top of MPI has been created first, to prove that the new algorithm is working in practice.
This prototypical implementation is therefore usable with eWdBj library, and not
restricted solely t@pen MPI Subsequently, thbasiccomponent oOpen MPlhad
been used as a starting framework, to integrate the functionality of the prototype into
the component framework @pen MPI The name of the new component is "ipmc”
which stands fotP MultiCast

The final source code package of the new implementation (which is located under
openmpi-x.y.z/ompi/mca/co)lcontains the following files:

* ipmc/coll_ipmc_bcast.c
 ipmc/coll_ipmc_component.c
 ipmc/coll_ipmc.h

* ipmc/coll_ipmc_module.c

* ipmc/coll_ipmc_util_crc.c

* ipmc/coll_ipmc_util.h

* ipmc/coll_ipmc_util_ipv4.c
 ipmc/coll_ipmc_util_oob.c

* ipmc/coll_ipmc_util_random.c
* ipmc/configure.params

* ipmc/Makefile.am

* ipmc/README

The "README” contains a textual description of the package, some installation
instructions, and an explanation of all parameters which can be changed by the user
to influence the behaviour (and performance) of ifrac implementation. Currently
there are the following seven parameters:

 coll_ipmc_priority The collective component with the highest priority will be
used inOpen MPI This parameter describes the priority of thexccomponent.
The default value i40, which makes it a bit higher than the priority of thened
component, so that it will immediately get active after an installation.
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* coll_ipmc_crossover_nodesFor small communicators, themcbroadcast can

be slower than an "usual” broadcast algorithm on top of point-to-point commu-
nication. Exactly which broadcast algorithm is the best for small communica-
tors depends on the scenario (see also chdpBer The current implementation

falls back to the improved linear broadcast because it is usually more suited to
use the intermediate phase of the broadcast operation than the other algorithms.
This crossover value determines the minimum communicator size at which the
multicast-based algorithm will be used. Although the theoretical value for the
optimal crossover value is approximateédynodes for synthetical benchmarks,

the default value i4 because applications are usually subject to the principle of
process skew

coll_ipmc_crossover_size For very large messages, tinegmented chaibroad-

cast is the best choice. This crossover value determines the maximum size of a
message at which the multicast-based broadcast will be used. The default value is
1048576, which means that all message abav&/: B will be broadcasted using
thefragmented chaimlgorithm. Note: These two boundary values are in reality
both dependent on the message size and the communicator size. One possibility
would be to estimate the running time of all three broadcast algorithms with e.g.
theLogGPmodel. On the other hand, this would need an exact determination of
all LogGP parameters, and would still ignore tpeocess skewvhich is hard to
determine in advance. These two crossover values are easy to understand for all
users and therefore allow a much better user control over the choice of the right
algorithm for the user’s application.

coll_ipmc_fragment_size SincelP packets as well as datagrams itself have a
limited maximum size (usuallg5, 535 and MTU=1, 500 byte), this parameter
prescribes the maximum payload size ofiBmulticastfragment for this imple-
mentation. Measurements on tG&iC cluster resulted in an optimal fragment
size 0f4096 byte, which is therefore chosen to be the default value. The mini-
mum value of this parameter is limited 266 byte.

coll_ipmc_root_wait_time If the root node of a broadcast is often the first node
enteringMPI_Bcast), then it is possible that most (or even all) multicast data-
grams will get lost. With this parameter you can advice the root node to wait a
certain number of microseconds (s = 1075 seconds) before issuing the mul-
ticast operation. The default value(is which means that the root node never
waits (i.e. it starts the multicast as soon as possible).

coll_ipmc_use_crc_checkingAlthough it is normally not necessary, this switch
can be used to force an additiol2RC-32data integrity check for each multicast
datagram. Corrupt data packets can be identified with high probability and will
be dismissed. A value df deactivates this check, and any other value enables
this additional checking. It is activated per default. If you are sure that no cor-
rupt datagrams will be delivered, you can turn this checking off and get a small
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additional performance gain (because multicast datagranisigte shorter and

some processor cycles are saved). On the other hand, we have noticed no signifi-
cant performance penalty éfast Etherne{only a0.83% degradion forl6 KiB
messages).

 coll_ipmc_print_statistics This switch can be used to print some useful statis-
tics every time a communicator is destroyed, like the number of exeMPédBcas()
operations and multicast datagram information. Here you can find out how many
datagrams were sent or received, and how many of them were useful for the
broadcast or rejected. Note: These statistics are generated for each involved pro-
cess. A non-zero value activates this output, which is disabled per default.

The files "configure.params” and "Makefile.am” are used by the script "autogen.sh”
to produce the "configure” script in the top level directory and the template file "Make-
file.in”, which are later used for the usual build procedure ("configure” and "make”).

The newcomponenuses a whole bunch of utility functions which are specified in
the header file "coll_ipmc_util.h”".

"coll_ipmc_util_crc.c” contains the functiacoll_ipmc_util_calc_crf) whichis used
to calculate a cyclic-redundancy-check val@R(C-32 see alsopeu9q) for a given
buffer. Open MPlcomes with an own CRC calculation function. Unfortunately, this
function is currently buggy and does not work properly. Once those bugs (e.g. the
non-existing support for heterogeneous systems) are removed, this function could be
replaced. The typical way to speed up CRC calculations is to use lookup tables. A sec-
ond function is used to create this lookup table (e.g. during the module initialization).

"coll_ipmc_util_random.c” is a bit more extensive and contains the entropy gather
function coll_ipmc_util_random_gathé€y, which can be used to seed the pseudoran-
dom number generator state witbll_ipmc_util_random_se€d Once this has been
done, it is possible to extract an arbitrary amount of pseudorandom data in form of
bits (coll_ipmc_util_random_get_bibr in form of integers between a specified range
(coll_ipmc_util_random_get_ulonhg How the gatherer and the generator work, has
been described already in chap88and3.4.

The next larger collection of utility functions covers all the network related function-
ality and can be found in "coll_ipmc_util_ipv4.c”. Note that tpe4 suffix as well as
the chosen form of all function has been introduced with caution, to make it easier to
switch tolPv6, or even a completely different network interface. This file exports a
function to find an unused multicast group and port number, which can be assigned to a
new communicator. A two-layered approach is intended here: this function should first
try to contact aMADCAPserver (this is not yet implemented), and alternatively choose
the values at random (the already mentioned utility functions from the random package
are used here). Another (currently stub) function can be used to free such allocated
values when they are not necessary anymore (e.g. when a communicator is destroyed).
Then there are functions to create and close a socket which is suitabferfarticast
Two separate preparation functions exist to make a receive socket listen to a specific
multicast group and to set a bunch of options for a given send socket. Finally there are
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two functions to send and receive messages using these sockets. It should be noted that
the receive function is non-blocking and can therefore be used in a polling way.

File "coll_ipmc_util_oob.c” has been added lately to solve a problem with commu-
nication during the communicator initialization phase. Originally it was intended to
use collective operations from th@asicmodule for setup communication. In current
versions ofOpen MP] this is not possible anymore (it fails for larger communicators).

As long as this possibility is not re-established, this workaround uses the slower but
more stabl®®OBcommunication. The original (much smaller) code fragments are still
contained in the code and can be reactivated easily. Two point-to-point functions are
contained within this filemca_coll_ipmc_oob_sendjcsends a small message to the
specified destination rank, amaca_coll_ipmc_oob_recvfrgreceives a small mes-
sage from a specified source rank. On top of these function two collective functions
have been implemented: a simple broadcast function and a simple reduce function,
both using a binary tree distribution topology. Those functions are only used during the
initialization phase of a communicator and never for the final broadcast!

"coll_ipmc_component.c” contains the functionality to open the fwc compo-
nent at startup. All user-visible parameters are initialized and registered here.

The query, initialization and finalization functions for our component are located in
the file "coll_ipmc_module.c”. Thegueryfunction checks if a given communicator is
an intra-node communicator, and if it contains at leastM# processes. Furthermore
it checks whether or ndP multicastis potentially working. If at least one of those
requirements is not fulfilled, then this function return$, indicating that it wants to
be rejected (another collective component will than be used). An elaboratglicast
test would be quite expensive. Therefore only a quick test has been implemented.
The initialization function prepares several (sometimes time-consuming) things that
are used instantly in latavPI_Bcasf) calls. The special ranf0 calls the function to
get a free multicast group and port number, and broadcasts the results to all other nodes.
Afterwards all nodes create two multicast sockets (one for sending and a second one
for receiving), and they try to join the given group as well as bind the receiving socket
to the unique port number. Finally, &PI1_Allreducd) similar function is used to find
out if all nodes could be initialized correctly or if one or more nodes failed to do this.
Note that the two provisional collective functions are uses exclusively for this purpose.
If all nodes are initialized successfully, a proper collective module is returned to the
Open MPIlinstance. If something on any node went wrong, the complete initialization
procedure is tried some more times or finally given up. fihalizefunction releases
the allocated multicast group and port number, frees all allocated resources and prints
some useful statistics if the user has enabled this feature.

Last but not least, the file "coll_ipmc_bcast.c” contains three different broadcast im-
plementations:

1. the fragmented chain algorithm,
2. the linear broadcast algorithm, and

3. the multicast-based algorithm.
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The first two algorithms are derived from already existing implementations i tfesl
andbasiccomponent. Therefore they need not to be explained in detail, contrary to the
new multicast-based broadcast algorithm. The chain algorithm tries to split the message
into several fragments (using theuntargument and the size of the specified datatype)
before sending them in a virtual chain topology. The linear algorithm lets the root node
initialize p — 1 non-blocking send operations which are matched by a single receive
operation on each non-root node. The root node than waits for the completion of all
operations with a call tompi_request_wait_d).

The new multicast-based broadcast algorithm first determines the size (or at least an
upper bound) of the raw message usMgIl_Pack_siz@, and allocates a temporary
buffer for this packed message as well as a bitmap holding the current status of each
fragment. This is acceptable because we are usually only sending small or medium
sized messages with this broadcast algorithm (sleipmc_crossover_sizgarame-
ter). If thecoll_ipmc_root_wait_timg@arameter is larger than zero, then the root node
waits this number of microseconds. After this optional delay, it packs the original
message into the packed buffer. Now it owns each fragment which is indicated by up-
dating the status bitmap. This message is how conveyed fragment-wise by sending it
in repackaged datagrams to the multicast group and port number which are assigned to
this communicator. All nodes enter the second stage of the broadcast algorithm where
they receive fragments (either reliable or unreliable) and forward them in a reliable way
within a virtual chain topology. Two reliable requests are used to send and receive the
fragments as necessary. The status bitmap helps to remember which fragments are

1. already owned by this rank,
2. already received using the reliable channel, and
3. already sent using the reliable channel.

A fragment needs to be owned by a rank before it can be forwarded to its direct succes-
sor. One reliable receive requests is posted for each fragment which is not yet received
using the reliable communication channel. If a multicast datagram is received, then its
sequence number, broadcast identifier and optional checksum value will be extracted
and checked for validness. The result will be noted using the existing counters for re-
ceived, useful and rejected datagrams. A correct fragment will be copied into the raw
message buffer and the status of this fragment is updated. When all fragments have
been received and sent using the reliable channel, this broadcast stage completes. Fi-
nally, each non-root node unpacks this raw message into the user-supplied data buffer.
After deallocating the temporary buffer, the multicast-based broadcast functions returns
to the caller.

When the application invokedPI_Bcas(), the functiormca_coll_ipmc_bcatwill
be called. This function decides at runtime upon the current scenario (message size,
number of processes and user parameters) which of the three broadcast algorithms
should be used. If the message is larger than the speciikdpmc_crossover_size
parameter, then thieagmented chairalgorithm will be called. If this is not the case
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and the communicator contains less tltafi_ipmc_crossover_nodewdes, then the
linear broadcast implementation will be called. Finally, if the message is not too large
and the communicator is not too small, the multicast-based broadcast algorithm will be
used.

4 Practical Results

This chapter will compare the new broadcast implementation with existing implemen-
tations. At the beginning, the environment (hardware and software) on which the nu-
merous tests and measurements have been executed, will be presented. A method for
measuring the broadcast duration separately for each node will be explained, before
showing microbenchmark results for large (uBt@ nodes) and smaller communica-

tors. Finally, the effect on the already introduced parallel applications will be analysed.

4.1 Benchmark Environment

Mainly, two different clusters have been used during the development of thgmeaw
broadcast implementation. Both clusters belong to the equipment Ghthanitz Uni-
versity of TechnologyAll presented measurement results in this thesis have been ob-
tained using those environments. To ensure repeatability of those results, all tests have
been executed at least two times, to prove that they reproduced similar results at least
once.

4.1.1 FRIZ

The smaller test system is a computer pool of the faculty computing center (in German:
Fakultatsrechen- und Informationszentruf@R1Z). A subset of all available nodes has
been grouped to form a cluster o nodes, each equipped with

* Intel Celeron 2.0 GHz processor
* 512 M+B main memory

» SUSELinux 9.3 (kernel2.6.11)

* GCC3.3.5andG950.90!

All nodes are connected with a singtast Etherneswitch.

4.1.2 CLIiC

The larger system, callgdLiC (which stands foChemnitzer Linux Clustgris a clus-
ter of the university computing center. Since the y&#0, it is the largesBeowulf
style cluster alChemnitz University of Technolagyt will be soon replaced with a
modern cluster of approximately the same number of nodes. Each b2&hedes is
equipped with
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Intel Pentium 111800 MHz processor

512 MiB main memory

Red HatLinux 7.3 (kernel2.4.18)

GCC2.96 andGNU Fortran0.5.26

The communication network contains a single laFgest Ethernetswitch Extreme

Black Diamondwith 6 x 96-port modules), which is directly connected with all nodes.

A second service network exists, but has been explicitly disabled for each tests using
the

--mca btl_tcp_if_include ethl

parameter (this instruc@pen MPIto use only the communication network).

4.2 Microbenchmark Results

This section presents a synthetical microbenchmark for measuring the duration of the
MPI1_Bcasf) operation. It investigates the performance of the used broadcast imple-
mentation for different message sizes as well as a various number of processes per
communicator. The results show the scaling behaviour and can be used to estimate
the performance in other scenarios (e.g. with real-world applications). However, this
microbenchmark assumes that all nodes call nearly at the sam#&/itthd3cast()

Especially for all measurements with a very small timing (i.e. small message size
in our case), it is good to repeat the measurement several times. There are often some
"runaways” which need much longer to complete (caused e.g. by additional or unex-
pected events like interrupts). Therefore many benchmarks output the minimum mea-
sured time. Though if you analyse an aggregation of measurements by plotting them
in the sorted order, then you will notice that the minimum time is in most cases a "run-
away” as well, whereas typically more thae’ of all measurements are very similar.

One could use the average value over all measurements, but a single extreme "runaway”
is sufficient to nullify the result. All in all, | suggest to use the median value (the value
which is located in the middle of all sorted values), which represents the duration that
can be expected.

4.2.1 Measuring Broadcast/Multicast Performance

Many collective benchmarks measure only the maximum duration of a given operation.
For example FK99] (section 5.2.1) suggests to cBMPI_Bcas() several times after an
initial synchronization pointNIP1_Barrier) and finally extract the maximum measured
time duration'®:

15The original suggested algorithm has been slightly modified (For example: The MPI standard does
not guarantee thiPI_Wtim€) is globally synchronized.)
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MPI_Barrier (comm);
totTime = —MPI_Wtime ();
for (i = 0; i < NUMREPEATS; i++) {
MPI_Bcast(data, len, MPI_BYTE, root, comm);
}
totTime += MPI_Wtime ();
MPI_Reduce(&totTime , &maxTotTime, 1,
MPI_DOUBLE, MPI_MAX, root, comm);
if (myrank == root) {
maxTime = maxTotTime / NUMREPEATS;
}

Listing 5: algorithm to measure the maximum MPI_Bcast() duration

Unfortunately, this method for measuring the maximum broadcast duration can re-
port misleading results: Imagine the nornehlain algorithmwhich has a pretty bad
worst case running time (scales linearly with the communicator size). If you try to mea-
sure this algorithm with the above suggested method, then you will implicitly introduce
a pipelining effect and get a "perfect running time” when the number of loops is large
enough. PPY0{ suggests a similar technique to measure the broadcast performance,
and adds aiMPI_Barrier() operation after eacklP1_Bcas() to prevent this pipelined
communication between iterations. The drawback of this workaround is that this newly
introduced operation can increase the measured durations dramatically, especially for
smaller message sizes (for this reason the authors measured only with message sizes
above8 KiB and ignored the barrier overhead).

Therefore | suggest another and more comprehensive broadcast benchmark, which
measures the broadcast completion time for each node separately. Slightly modified,
this benchmark can also be used to measure multicast performance. This benchmark
has the advantage that all performance numbers (like minimum, average or maximum)
can be easily derived from the results. It is even sometimes possible to reconstruct
the exact distribution topology (e.g. binary tree) using those results. For a given sce-
nario (predefined communicator and message size), a memory block is copied in a
ping-pongfashion from one buffer at the root node over the network, back into a sec-
ond buffer at the root node. The forward transfeing) will be accomplished by the
MPI1_Bcast()operation, and the backward transfpog will be accomplished by a
simple point-to-point operation, which is only initiated by a predefined target node. It
is not possible to measure all target times at once uspigg@pongscheme, because
the root node would be a bottleneck for all incompngs A special synchronization
procedure MPI1_Barrier() often fulfills the needs - but this depends on the underlying
barrier implementation) should take care that the root node is the last node entering
the succeedinyIP1_Bcas() operation and all other nodes are already waiting therein.
The accuracy can be further improved by usMBl’s ready-mode send for thgong
operation, which - especially for larger message sizes - prevents the usage of the more
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expensive and often slightly less predictatdadezvous protocpand uses always the
eager protocoinstead. Finally, a separate (ready-mopieg-pongto each node is ne-

cessary to obtain the duration of a thengoperation, which is then subtracted from
the MPI_Bcast()-pondime to get the ravMPI_Bcas() duration per node.

root node target node non—target node(s)
Irecv() synchronize
tl = Wtime
0 Beast() Bcast()
Bcast()

 »

Rsend()

2 —t1 "Bcast ping"

Wait()
ong"
t2 = Wtime() pone
Irecv()
Irecv() synchronize
t3 = Wtime()
Rsend() Wait()
B > Rsend(
t4 = Wtime() "pong”

Figure 17:a single round to measure the broadcast duration per node

The complete broadcast benchmark runs over different communicator sizes (using
MPI_Comm_splijtand different message sizes. For each target node, a single measure
round - according to figur&7 - is performed. Since the twilPl_Rseng) operations
in the second part are very similar (they are just working in the opposite direction),
it can be assumed that they need the same amount of time/(jpgg) = t(pong).
Therefore, halving thping-pongduration (4—t3) reveals thgpongduration, which can
then be subtracted from tlBxast pingpongduration to get the raw broadcast duration
to this target node. The separation into two buffers at the root node allows checking
for transmission errors (e.g. in casemfilticastor a newMPI implementation) and
permits fine control over the wanted cache behaviour.

The target node can be predefined in case of a reliable broadcadtfel.gBcas},
or it can be specified within the message (e.g. when unreliable multicast is used). The
root node should useme-outsin the latter case to avoid stagnation when datagrams
are lost.
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4.2.2 Results on Large Communicators

The performance chart in figue3 shows the average broadcast time per node, when
the number of nodes increases u@Bt@ nodes. The measurements have been taken
on theCLIC cluster, and the results compare the npmcbroadcast with the original

broadcast implementation.

Average MPI Broadcast Time Per Node (OpenMPI r11630, CLiC)
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Figure 18:comparison of original and ipmc broadcast ug4@ nodes

Whereas point-to-point implementations get slower when the numbigiPbfpro-
cesses increases, the almost horizontal curves of the new implementation show that -
in practice - the new broadcast implementation scales independently of the number of
involved processes. For example: a broadcasteaf A7 B message using the original
MPI_Bcast) implementation needs only0068 seconds per node when ordynodes
are involved, but take8.0339 seconds per node wh&a2 nodes are involved (this is
a performance loss by a factor ©4685!). The new implementation need$134 sec-
onds per node when onbBy nodes are involved, and nee@d$136 seconds per node
when332 nodes are involved! A broadcast of &r'i B message t842 nodes is by a
factor 0f4.896 slower (0.002125 seconds versus010405 seconds) when the original
implementatiort® is used.

16The original broadcast implementation is selected upon several criteria withimsécomponent of
Open MPI In the presented scenario (small to medium sized messages and large communicators), it
uses thévinomial treealgorithm.
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Another advantageous aspect of the new broadcast is the fact that it is very well bal-
anced. Figurdl9 shows the broadcast duration for each of $4@ nodes. Whereas
the originalMPI_Bcast) implementation with &4 KiB message needs a time which
varies between.0126 seconds and more th&rd4 seconds, the multicast-based imple-
mentation needs a very similar time on each node (betw#ea3 seconds and.0145
seconds). This means a process skew of upit® times the broadcast duration when
the original implementation is used, whereas the process skew of the new implementa-
tion is only up tol.17 times the broadcast duration.

Average MPI Broadcast Time For Each Of 342 Nodes (OpenMPI r11630, CLiC)
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Figure 19:comparison of original and ipmc broadcast witt2 nodes

Conclusion: The new multicast-based implementatioMéfi_Bcas() achieves a
nearly constant running time for any given message $iz€he term "constant” has a
double meaning here: On the one hand it scales nearly independently of the communi-
cator size, and on the other hand for any given communicator size, all nodes need the
same amount of time to complete the broadcast operation.

"The broadcast of larger messages is even more "constant” through to the positive effect of the frag-
mented chain algorithm in the second stage of the algorithm (even in the theoretical worst case where
the multicast stage fails completely!).
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4.2.3 Results on Smaller Communicators

In the last section it was shown that the new broadcast implementation emerges victo-
rious, as soon as the number of involved processes crosses a certain boundary. Figure
20 compares the differePI_Bcasf) performance scalings again (with smaller com-
municator sizes) to find this decision boundary.

Average MPI Broadcast Time Per Node (CLiC)
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Figure 20:differentMPI_Bcas{) with respect to smaller node numbers

Note that this performance chart has a logarithmic time scale, so that the broad-
cast duration can be better distinguished for different message $i2ésK, 64 KiB,
4 KiB and256 byte). The most recent versions of three well-known open-soltieée
implementations have been tested:

* LAM/MPI - one of the "predecessors” @fpen MPI- version 7.1.2
* MPICH2 - from theArgonne National Laboratory Groupversion 1.0.4p1
* Open MPI- with and without the neipmccomponent - SVN r11682

The top-most curves show the broadcast duration ofMdiB message. Because
LAM/MPI never uses any fragmentation, the duration grows rapidly when the number
of nodes increases (according to thi@omial treealgorithm). Both other libraries,
Open MPIlas well asMPICHZ2, use fragmentation when the message size is large
enough. Unfortunately, some people seem to believe that fragmentation over tree
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topologies or meshes can be efficient for large message sizes (see/\&35 [or
[Tra04). However, thefragmented chaimlgorithm is by far the most efficient broad-

cast algorithm for large enough messages (section "Fragmented Tree vs. Fragmented
Chain" in the appendix should clarify this if there are still any doulilgden MPlIis the

only library of those three which uses thregmented chairalgorithm for large mes-
sages, and is therefore up to a factor of two faster M&HhCH2, which uses implicit
fragmentationusing thescatter-allgathetbroadcast. The curreigmcimplementation

is also not suited for such large messages, because it effectively sends the message
twice: one time with unreliable multicast and a second time with reliable point-to-
point communication. There are possibilities to makeithpc implementation faster

for larger messages (e.g. falling back toAGK scheme), but it is better to find the
crossover point and fall back to tifimgmented chaimlgorithm.

Although both libraries are still using fragmentation éar K B messages, thpmc
implementation outperforms their broadcasts starting witlodes. A4 KiB there is
no fragmentation anymore, and all thigé| libraries fall back to a tree distribution
scheme, which performs always worse thanitirac broadcast, when the number of
processes crosses taode boundaryLAM/MPI, which initially achieves only poor
broadcast performance for large messages (because it does not fragment), is always
better than its opponents for smaller message sizes. In this example scefaranea
boundary would be sufficient f@dpen MPland this message size.

For very small messages, the currgmnc implementation might need a bit more
tuning to achieve the theoretical crossover poing abdes'® and is therefore slightly
outperformed at this point byAM/MPI, which gets slower not beforé nodes. How-
ever, forOpen MPland MPICH2 this theoretical boundary holds, even for smaller
message sizes (tested with elg.byte).

Conclusion: This section has verified that the ndw|_Bcasf) implementation is
almost always the fastest of the available broadcast algorithms for all small and medium
sized messages, when the communicator size is largerStimaaes. For as little as
20 nodes, thepmc broadcast is usually at lea%t.92% faster than the best available
point-to-point broadcast AM/MPI 4 KiB needd).002046 seconds angpmc4 KiB
needs0.001393 seconds). These results also strengthen the usage of two threshold
values: One threshold value to switch to one of the simple broadcast implementations
when the communicator size is very small, and another threshold value to switch to
thefragmented chaimlgorithm once the message size is large enough. Both threshold
values mainly depend on the message size and the communicator size.

4.3 Application Results

Whereas the microbenchmark results have already attested the outstanding performance
of the new implementation for a large range of scenarios, this section should analyse

18A simple ping-pongbenchmark reveals th@ipen MPlis slower for small messages theRAM/MPI.
This is another reason for the "bad” performance ofifirac component when compared with the
MPI_Bcasf) implementation o AM/MPL.
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how this improves the running time of the applications from chapter

4.3.1 High-Performance Linpack Benchmark

Figures21 and22 show snapshots of the runniktPL benchmark Whereas the first
run uses the origindIPI_Bcasf) implementation oOpen MP] the second run uses
the newipmccomponent with the multicast-basktPl_Bcas() implementation.
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Figure 21:HPL with original MPI_Bcast()
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Figure 22:HPL with ipmc MPI_Bcast()
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Although the benchmark is running only 8modes'?, the first test run need77
seconds222.5 + 221.4 + 225.0 + 231.4 + 224.9 + 219.4 + 224.3 + 229.3 = 1798.2
seconds within thé1P1_Bcasf) call) whereas the second test run is 39 seconds faster
(187.4+187.0+187.1 +194.4 + 188.3 + 187.3 + 192.0 + 185.0 = 1508.5 seconds within
the MPI_Bcas() call). This is al6.11% MPI_Bcasf) improvement, simply due to the
positive impact of the much more balanced behaviour of the new broadcast operation.
Therefore all nodes are calling and leaving this collective operation nearly simultane-
ously, which minimizes the gaps between consecutive computation blocks. When the
number of nodes increases, the performance improvement will be much higher.

Table2 shows theHPL benchmark results for different broadcast algorithms. It has
been measured ofv CLIiC nodes withOpen MP| a problem sizeNV = 56320, a
blocking factorV B = 40 and a gridP x () = 8 x 8.

broadcast algorithm total duration | achieved performance
(0) 1ring 4137.43 seconds 28.79 GFLOPS
(1) 1 ringM 4150.74 seconds  28.69 GFLOPS
(2) 2ring 4188.44 seconds  28.44 GFLOPS
(3) 2 ringM 4098.30 seconds 29.06 GFLOPS
(4) Blong 4092.20 seconds 29.10 GFLOPS
(5) BlongM 4130.56 seconds 28.83 GFLOPS
(6a) original 4197.13 seconds  28.38 GFLOPS
(6b) ipmc 4057.23 seconds  29.36 GFLOPS

Table 2:HPL benchmark results using different broadcasts

Broadcast algorithmg0) to (5) are the special implementations which are devel-
oped for and shipped with thdPL benchmark. | have written a patch that adds a
sixth algorithm to this list, which simply callsiPI_Bcasf). Test run(6b) with the
original broadcast implementation ©pen MPlachieved the following results for the
consumed time within th®1PI_Bcas{) operation per node:

e minimum =569.22 seconds (let this b&00%)
¢ maximum =636.60 seconds{11.84%)

 average $93.37 seconds¥04.24%)

The newipmcbroadcast implementation achieved the following results for the con-
sumed time within thé1P1_Bcasf) operation per node:

e minimum =501.51 seconds&R.10%)
e maximum =573.30 seconds ¥00.72%)
 average $32.89 seconds{3.61%)

198 nodes is, according to the microbenchmark results, not enough to give any real benefits.
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Each node called arours)90 times thedgemn() function, which consumed a total
time of roughly2925 seconds. In addition, each node calleds times theMPI_Bcasf)
function to transfer a total amount of approximateig0 MiB of data &~ 1.09 MiB
per operation). This is identical for test ruf@:) and (6b) - what differs is the time
which is spent within the broadcast operation. All (minimum, average and maximum)
broadcast times could be improved significantly.

69.6%

On average, the broadcast time of the original algorithml i85% slower than the
broadcast time of the neipmcimplementation. Even the minimum value of the origi-
nal implementation is larger than the new average value. The residual time without the
dgemnf) andMPI_Bcasf) phases is called "others” and nedds25% more time with
the original broadcast compared with the new implementation. Altogether, when we
ignore the equal time for thegemn{) operation, the remaining parts ar&5% slower
when theipmchbroadcast is not used.

The total amount of sent multicast datagrams %d86, 948, the number of received
datagrams on all nodes wag, 515, 378, and4, 299 of them need to be rejected.

Although the first five broadcast algorithms are purpose-built forHR& bench-
mark, they are all outperformed by the new implementation. Thereforé&;Bh&OPS
value can be increased ByY% compared with the best availalt#PL broadcast algo-
rithm.

4.3.2 Abinit

The heavy broadcast usageAtsinit (at least in the already introduced scenario) has a
very large influence of the total running time of this application. AgaiNPI nodes

are not (according to the microbenchmark results) enough to expect any improvements.
Whereas therocess skewvithin the runningHPL benchmarlallowed our new mul-

ticast implementation to make use of the intermediate phase of the broadcast, this is
regrettably not the case féinit (see chapte?.2, especially the reason why the root
node is always the last MPI process callv@|_Bcasj.

broadcast algorithm total duration| percentage
binomial tree 278.8 seconds 165.26%
ipmc (with MC) | 197.2 seconds 116.89%
fragmented chain | 168.7 seconds 100.00%

Table 3:Abinit results using different broadcasts

Table3 shows the total running time @binit on 8 nodes, using different broadcast
algorithms. All runs produced identical results, but the time needed to accomplish this
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varies heavily. With théinomial treebroadcast (which is the default fbAM/MPI) the
application need$1.38% longer than with the newpmcbroadcast. But the winner of

all broadcast algorithms for this application example isftagmented chaialgorithm.

The large message sizer (3 MiB), the small communicator siz& (iodes) and the
non-existing intermediate phase of the broadcast operation makes is the best choice
here.

4.3.3 Conclusion

Although both applications (thdPL benchmark as well a&binit make heavy use of
MPI1_Bcas(), they are broadcasting relative large messages. For such large message
(especially in theAbinit case), thefragmented chairalgorithm is usually the better
choice. Nevertheless, we have seen (in case dfifie) that point-to-point broadcasts
which were faster in the microbenchmarks, have been outperformed by the new broad-
cast implementation. The already mentioned long-term statistics dfiltikS show

that on average each broadcast operations transfers a message size of 'oughiy

and a parallel job contains abait.4 MPI processes. These parameters are perfectly
suited for the nevipmcbroadcast algorithm.

5 Conclusion and Future Work

This diploma thesis has analysed the network featunticast which is supported by
several network technologies. It tried to evaluate different solutions for the various
problems that appear whemulticastis used to implement thiglP1_Bcas() operation.

A preceding analysis of existing applications had a big influence on the decisions. The
resulting broadcast algorithm does not only scale perfectly with large communicators

- it takes usually the same amount of time, whether it is used to broadcast a message
to just ten nodes or to some hundred or thousand nodes - it also uses the intermediate
phase of the broadcast very efficiently, making it even perform better for real-world
applications than for synthetical benchmarks.

The finalipmc implementation forOpen MPIcan be easily installed (even after-
wards to an existing installation as a binary object) and used by anyone. Users do not
need to know anything about the broadcast behaviour of their application: they can
simply check out this implementation and measure the direct change of their applica-
tion performance. After this single test, they can immediately decide if it is useful to
them. More interested users should read the paragraph about the adjustable parameters
in section3. The default settings can be changed easily with the help of command line
parameters, which permit almost full control of the broadcast behaviour.

Developers should find it relatively easy to understand the well documented algo-
rithm as well as the elaborately commented and legibly written source code which
should comply to th®©pen MPIcoding standards. This should facilitate quick modifi-
cations, or even ports of this implementation to different (i.e. non-IP-based) platforms.
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Surely, this implementation is not yet fully optimized, leaving room for further im-
provements.

Open things for future and related work includes:

1
2
3
4.
5
6

. implementation and usage oMADCAPSserver
. IPv6 support

. away to reduce copy overhead€ro copy?)

maybe a self-adapting decision function (at request of the user)

. possibly support fomfiniBandor other network technologies

. further analysis of applications to find ways to measure and paramegbevizess

skew

utilization of multicastfor other collective operations as well
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A.1 A guide for Open MPI with the IPMC component

This is just an example how one can build, install and use a recent versipeof MPI
together with the newpmccomponent.

A.1.1 Installation of a single Open MPI instance

At the beginning we will start with the following steps:
1. get arecent (or special) subversion checkoupén MPI
2. add the sources of the négpmccomponent
3. build theOpen MPIbinaries (includingpmo
4. install the results in a temporary directory
5. check if the installation is working correctly

The following script assumes Bashlike shell, and has been tested with a recent
version ofsubversionv1.3.2) ,autoconf(v2.59),automakegv1.9.6),libtool (v1.5.20)
andflex(v2.5.33).

mkdir /tmp/openmpi

cd /tmp/openmpi

# get a recent version of Open MPI

# (add "-r 11682" after "co" to get revision 11682)
svn co http://svn.open-mpi.org/svn/ompi/trunk ompi-trunk
# add the new "ipmc" component

cd ompi-trunk/ompi/mca/coll

tar xzf $DOWNLOADS/ipmc_component.tar.gz
cd ../.1.

# prepare for building

Jautogen.sh

mkdir build

cd build

$ # configure Open MPI

$ ..Iconfigure --prefix=/tmp/openmpi

$ # build Open MPI with “ipmc"

$ make all 2>&1 | tee make_all with_ipmc_log.txt
$ # install the binaries

$ make install

$ # activate the binaries

$ export LD_LIBRARY_PATH=/tmp/openmpi/lib

PP PP PPHHHHHH BB
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$ export PATH=/tmp/openmpi/bin:$PATH

$ # check if Open MPI is installed correctly

$ ompi_info

$ # list all parameters of the "ipmc" component
$ ompi_info --param coll ipmc

A.1.2 Make Open MPI available and build an application

Since we have installe@pen MPIlin a local temporary directory, we need to make
it explicitly available to all other cluster nodes. An alternative would be the use of
a distributed or parallel file system, but our large test systiiC had sometimes
problems with itsAFSfile system. Therefore we will continue with the following steps:

1. build a binary package dpen MPI

2. install those binaries on all cluster nodes
3. build and install a test application

4. run the test application

We assume that SNODEFILE is a variable with a name of a file containing a list of
all cluster nodes, and $SNUMNODES is a variable holding the number of cluster nodes.

# build a binary package
rm -rf ompi-trunk
tar -cjf /tmp/openmpi_r11682_with_ipmc.tar.bz2 *
# install those binaries on all nodes
for node in ‘cat $NODEFILE'; do
echo "installing Open MPI on node $node ...";
ssh $node rm -rf /tmp/openmpi;
ssh $node mkdir /tmp/openmpi;
scp -q /tmp/openmpi_r11682_with_ipmc.tar.bz2 \
$node:/tmp/openmpil;
ssh $node "cd /tmp/openmpi ; \
tar xjf openmpi_r11682_ with_ipmc.tar.bz2";
done
# get and build a test application
wget www.tu-chemnitz.de/~chsi/bcast_bench.tar.gz
tar xzvf bcast_bench.tar.gz
cd bcast_bench
make
# install this test application
for node in ‘cat $NODEFILE'; do
echo "copying test application to node $node ...";

AP PRP AL RPHBHHPHAH
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$ scp -q bcast_bench $node:/tmp/openmpi/test_app;
$ done

$ # run this test application

$ mpiexec -np SNUMNODES --hostfile $NODEFILE \
$ --prefix /tmp/openmpi /tmp/chsi-tmp/test_app \
$ 2>&1 | tee results_bcast_bench_1st.txt

A.1.3 Playing around with the IPMC parameters

If all steps until here observed no problems, then the installation seems to be working
correctly. Now we can start to play around with some parameters opthecompo-
nent to influence its behaviour and performance.

First, you might try to disable this new component to know how the performance
of your application changes when it is used with the origidpen MPIcomponents.
Disabling can be achieved by lowering the priority of themccomponent. This can be
done by adding the

--mca coll_ipmc_priority O

parameter to thenpiexeccall.
Second, you might try to adjust the decision boundaries for the alternative broadcast
algorithms. Large message are usually broadcasted usirfgatiraented chairalgo-
rithm, and on small communicators it falls back to timear broadcast algorithm. You
can adjust these boundaries by modifying the following two parameters:

--mca coll_ipmc_crossover_size 2097152
--mca coll_ipmc_crossover_nodes 8

The first example sets the maximum message size (for the multicast-based broadcast
algorithm) to2 M+iB, and the second example forbids the usage of the multicast-based
broadcast when the communicator contains less&HdR1 nodes.

Third, you might try to optimize some parameters to further influence the perfor-
mance of your application.

--mca coll_ipmc_fragment_size 8192
--mca coll_ipmc_root_wait_time 10
--mca coll_ipmc_use_crc_checking 0

The first example increases the payload size oflfhmulticastdatagrams t@ KiB,
the second line causes the root node to Wajt.s before issuing the multicast. The last
example disables the additional CRC checking of all datagram packets. You should
only do this when you are sure that no corrupt datagrams are possible.

Finally, you can also turn on some useful statistical output, which can help you to
get some more details:
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--mca coll_ipmc_print_statistics 1

This will print some counters for every node, when a communicator is finally destroyed.
Here you can see how many broadcast operations were called by your application and
how many multicast datagrams were sent, or useful at the receivers side.

A.2 Fragmented Tree vs. Fragmented Chain

Theorem: For any fixed communicator size, there exist a message size with a cor-
responding fragment size, so that for all larger message sizesatjraented chain
broadcast is always faster than any tree-based broadcast algorithm implemented on top
of point-to-point communication.

The broadcast operation involves BIPI processes in the specified communicator.
"Work-optimal” would mean that all those processes are communicating all the time
until the operation has finally finished, while there are no duplicate or senseless mes-
sage transfers. Unfortunately, since only the root node owns the data at the beginning,
an additional startup- and/or ending-step is definitely necessary. In the case of frag-
mented broadcast algorithms, this can be seen as "filling” the pipeline and/or "empty-
ing” the pipeline. Pipelining uses the fact that a given large message can be split into
several smaller fragments.

Now the easy-to-understand reasoning why a tree structure cannot be better (in re-
gards to "work-optimal”) than the corresponding chain variant: Both variants have a
single node that does only sending: the root node. But contrary to the tree variant where
there are arounginodes/2 leave nodes, the chain variant has only a single node that
does only receiving. Therefore for a large enough communicator and a large enough
message (crossover for pipeline), the chain variant will get up to twice as fast as the tree
variant. The binomial tree version is even worse because the root node sends to more
than two children when the size of the communicator increases abdveerefore the
resulting bandwidth will be divided by the fan-out of the root node.

Another explanation is based on the fact that we originally assumed that only a single
message can be injected into the network. If a node is serving several children instead of
only one, then it can only issue the fragments in an interleaved fashion. A single child
node will always only receive data halve of the time, effectively halving the available
bandwidth.

A.2.1 Example

A larger message, sayMiB (= 1024 % 1024 byte), which can be split inta024 frag-
ments, should be broadcastedtoodes. We will just count the number of fragment-
transfer rounds for simplicity. The binomial tree structure (which is BTW optimal for
power of two node numbers) needs exadlyounds to fill the pipeline and addi-
tional rounds to empty the pipeline which is quite good. Unfortunately, the root node
needs to supply children with the data. Therefore the overall bandwidth within the
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pipeline stage gets reduced by a factoslot he chain version needsrounds to fill the
pipeline andr rounds to empty it again. But since the root node only supplies a single
child node, the achieved bandwidth within the pipeline does not reduce. The number of
rounds with a full pipeline is much higher in this example than this negligible startup
overhead. Here are the measurements (medians with a minimal deviation) for the dif-
ferent implementations (on CLiC with LAM/MPI):

original LAM/MPI 6.5.6 implementation (binary tree version):
* node 1 receives the broadcast message €t&77 jis
» node 2 receives the broadcast message 373 s
» node 3 receives the broadcast message a6&t10 yus
* node 4 receives the broadcast message 208323 1is
» node 5 receives the broadcast message &t#61 s
» node 6 receives the broadcast message 38884 s
* node 7 receives the broadcast message &f&07 s

The average broadcasting time over7alleceivers using theinary treebroadcast is
450519 ps.

binomial tree implementation (without fragmentation):
» node 1 receives the broadcast message 2883172 yus
* node 2 receives the broadcast message 286897 s
» node 3 receives the broadcast message 28805 1is
* node 4 receives the broadcast message 20t8155 jis
» node 5 receives the broadcast message 20627 1is
* node 6 receives the broadcast message 20674 ;s
* node 7 receives the broadcast message 3070 j.s

Fortunately, new version dfAM/MPI use thisbinomial treebroadcast too. The aver-
age broadcasting time over &lreceivers is her291529 ys.

binomial tree implementation (with 1024 fragments):
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» node 1 receives the broadcast message 206319 s
* node 2 receives the broadcast message 20678 s
» node 3 receives the broadcast message 2ftE190 1us
» node 4 receives the broadcast message 224 s
» node 5 receives the broadcast message &R0 s
» node 6 receives the broadcast message 2f3#69 1is
» node 7 receives the broadcast message 2ME160 (s

Although we are using fragmentation now, the average broadcast duration over all
receivers only slightly decreases2p4103 s, saving only5.98%.
simple chain implementation (without fragmentation):

» node 1 receives the broadcast message 8210 pus
* node 2 receives the broadcast message 2066 1.s
» node 3 receives the broadcast message 39643 s
» node 4 receives the broadcast message &t&11 s
» node 5 receives the broadcast message @6tHI76 1.s
» node 6 receives the broadcast message aft#36 s
» node 7 receives the broadcast message af@21 us

The average broadcasting time overdafeceivers ist87023 us, which is even worse
than the binary tree implementation! So avoid the chain version if you cannot use frag-
mentation.

simple chain implementation (with 1024 fragments):
* node 1 receives the broadcast message @3ter2 1is
* node 2 receives the broadcast message @ft&7 ys
* node 3 receives the broadcast message @ftetl s
* node 4 receives the broadcast message @t 1is
* node 5 receives the broadcast message @$te}0 s

* node 6 receives the broadcast message a$tars s
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* node 7 receives the broadcast message @dterd (s

The simple (and usually bad performingain broadcast becomes a very fast broad-
cast algorithm when it is used with fragmentation. The average broadcasting time over
the 7 receivers i97605 us, making this broadcast algorithm arouswl4% faster than

the fragmentedbinomial treeimplementation.

A.3 IP over InfiniBand

Our new big cluster in Chemnitz, call€&HIC, will be equipped with amnfiniBandin-
terconnection network. Therefore nMPI_Bcast()implementation, which is based on

IP multicast is only of limited use for this cluster. InfiniBand itself can support native
multicast too, so a further work could adapt thencimplementation and get it running
natively with InfiniBand. Up to then it might be an option to ugeover InfiniBand

(IPolB, see [IB06]), an encapsulation of IP packets in native InfiniBand. Since we are
planning to establish an InfiniBand-only clustétoIB is required in any case (e.g. for

the management). Oded Bergman (Project Manager at Voltaire) assured me that the IP
multicast will be mapped to InfiniBand multicast and is therefore working as expected.
He kindly sent me the following performance numbers:

» Native IB latency -1.2 us up to4 us (and more on old server platforms)

IPoIB latency 6 us for ping RC

IPoIB latency 20 — 30 us for TCP

IPolB MCE latency 9 us using UDP multicast sockets APIs

IPoIB bandwidth -1.5 to 2 Gbps

Native IB bandwidth - over Gbps

As you can see, the IPoIB penalty both latency and bandwidth is quite huge (a fac-
tor of 4 to 5), making this idea (using thmc component with IPv4 on InfiniBand)
obsolete. Although the newwpmc broadcast should work correctly using 1PoIB, the
expected performance gain up to some hundred of nodes would be eliminated by the
performance penalty of the IPolB encapsulation.
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Abbreviations and Acronyms

ACK .......... Acknowledgment — page 30

ATLAS........ Automatically Tuned Linear Algebra Software- page 23
BID........... Broadcast Identifier — page 29

BLAS......... Basic Linear Algebra Subprograms- page 23
BSD........... Berkeley Software Distribution— page 16
BSP........... Bulk Synchronous Parallel (model}- page 4
CPU........... Central Processing Unit— page 23

CRC........... Cyclic Redundancy Check— page 29

FAQ........... Frequently Asked Questions- page 1

FLOPS........ Floating Point Operations Per Second
GFLOPS...... gigaFLOPS [0° FLOPS) — page 4

GID........... Global Identifier — page 16

HPC........... High Performance Computing- page 2
HPL........... High-Performance Linpack (Benchmark) page 4
IEEE.......... Institute of Electrical and Electronics Engineers page 19
IETF.......... Internet Engineering Task Force- page 30
P Internet Protocol — page 2

IPv4 .......... Internet Protocol Version 4— page 18

IPV6 .......... Internet Protocol Version 6— page 33

IRTF.......... Internet Research Task Force page 30
KIB........... kibibyte (1 KiB = 2'° byte) — page 4

MADCAP ..... Multicast Address Dynamic Client Allocation Protocet page 19
MCA.......... Modular Component Architecture- page 20
MD5.......... Message-Digest algorithm 5- page 33

MIB........... mebibyte { MiB = 2% byte) — page 36
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MPIl........... Message Passing Interface page 2
MTU.......... Maximum Transmission Unit— page 36
NACK......... Negative Acknowledgment— page 30
PDF........... Portable Document Format- page 5
PRAM......... Parallel Random Access Machine page 4
RFC........... Request for Comments- page 19
SHA-1........ Secure Hash Algorithm - 1— page 33
TCP........... Transmission Control Protocol page 16
UDP........... User Datagram Protocol- page 16
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