
Faculty of Computer Science
Chair of Computer Architecture

Diploma Thesis

Efficient Broadcast for Multicast-
Capable Interconnection Networks

Christian Siebert
christian.siebert@cs.tu-chemnitz.de

30th September 2006

Advisor: Dipl.-Inf. Torsten Hoefler

Supervisor: Prof. Dr.-Ing. Wolfgang Rehm

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Multimedia ONline ARchiv CHemnitz

https://core.ac.uk/display/153228078?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Task of the Thesis

The subject matter of this diploma thesis is an optimized implementation of the col-
lective operationMPI_Bcast()which is part of theMessage Passing Interface(MPI)
standard. This special1 : n communication function sends a given message from one
process to all other processes of the same group. A possible implementation of this
operation could use the nativemulticastcapability of the underlying interconnection
network if this is supported (e.g.EthernetandInfiniBand). Contrary to the specified
reliable data delivery ofMPI_Bcast(), multicastdoes normally only support unreliable
data delivery. Many different algorithms are possible to ensure this reliability.

A theoretical analysis and practical investigations should lead to an efficient strategy
to solve this problem. The work will focus its attention on massive-parallel applications
for High Performance Computing(HPC)cluster. A resulting implementation, based on
IP multicast, for a recent version of theOpen MPIlibrary will be used to compare this
algorithm with existing solutions. Importance should be attached especially towards
stability, portability andhardware independence.

Thesis Declaration

I hereby declare that this diploma thesis was composed by myself and all work included
has been done by me.

Chemnitz, 30th September 2006

Christian Siebert

Theses

i) It is possible to create a broadcast operation whose running time is
(in practice) independent of the number of involved processes.

ii) Multicast is suited to use the intermediate phase of the broadcast op-
eration more efficiently than point-to-point communication.

iii) There cannot exist a non-adaptive general broadcast algorithm which
is always superior to all other broadcast algorithms in all imaginable
scenarios.

iv) Balanced collective operations are a prerequisite to prevent addi-
tional process skew in parallel applications.

v) For each scenario, there exists a message size threshold value so that
for all larger messages thefragmented chainalgorithm is always the
fastest broadcast method based on point-to-point communication.

vi) The preceding work does not take into account the theoretical foun-
dations properly.

Abstract

According to long-term studies inHigh Performance Computing Centers(see
e.g. [Rab99]), almost all parallel applications are using collective communica-
tion operations. The broadcast functionMPI_Bcast(), which is a part of the
MPI-1.1standard, is one the most heavily used collective operations for the widely
used message passing programming paradigm. Inefficient implementations of this
function can therefore cause a disastrous performance loss of the whole applica-
tion. This thesis will try to make use of a feature calledmulticast, which is sup-
ported by several network technologies (likeEthernetor InfiniBand) and notwith-
standing often goes to waste, to create a more efficientMPI_Bcast() implemen-
tation, especially for large communicators and small to medium sized messages.
Several problems in conjunction with this feature (like re-establishment of reli-
ability) needs to be solved to comply with the semantics of the target function.
Existing solutions will be analysed, and new solutions will be proposed based
on theoretical deductions and conclusions. The analysis of existing real-world
applications (theHPL benchmark andAbinit) as well as a generalization of the
broadcast behaviour using statistical assumptions lead to a solution which does
not only perform well for synthetical benchmarks but also even better for a wide
class of parallel applications. The finally derived broadcast algorithm has been im-
plemented for the open sourceMPI library Open MPIusingIP multicast. Instead
of creating just another ”experimental” prototype, special care has been taken to
make the implementation portable and stable enough for productive utilization.
The achieved microbenchmark results prove that the new broadcast is usually al-
ways better than existing point-to-point implementations when the number ofMPI
processes exceeds the8 node boundary. For as little as13 nodes, the broadcast
of a 4 KiB message needs49.1% longer when the original implementation of
Open MPIis used instead of the new broadcast. With28 MPI processes the same
message can be transferred twice as fast. Since the the new broadcast scales inde-
pendently of the number of involved processes, the performance (compared with
point-to-point algorithms) differs more and more when the communicator size in-
creases further. For342 nodes and an8 KiB message, the difference amounts
a factor of4.896! Real-world applications can benefit even more from this new
implementation, because it uses the intermediate phase of the broadcast operation
more efficiently and because it achieves a pretty balanced behaviour. These addi-
tional improvements will be exemplarily verified with theHPL benchmark, which
achieves a higherGFLOPSrate with the new and general broadcast algorithm,
than with the supplied and purpose-built broadcasts.

The original (PDF) version of this document can be found here:
http://archiv.tu-chemnitz.de/pub/2006/0182

Siebert, Christian:
Efficient Broadcast for Multicast-
Capable Interconnection Networks
Diploma Thesis, 2006
Chemnitz University of Technology

http://archiv.tu-chemnitz.de/pub/2006/0182

Contents

Contents

1 Introduction 1
1.1 Discussion of the Problem. 1
1.2 Outline of this Work . 1
1.3 MPI Standard. 2

1.3.1 The MPI_Bcast() operation. 2
1.3.2 An Example Using MPI_Bcast(). 3

1.4 LogGP Model of Parallel Computation. 4
1.5 Existing Techniques. 5

1.5.1 Linear Algorithm. 5
1.5.2 Chain Algorithm . 7
1.5.3 Binary Tree Algorithm. 10
1.5.4 Binomial Tree Algorithm. 12
1.5.5 Other Algorithms. 14
1.5.6 Limits Of Those Algorithms. 14

1.6 Hardware Broadcast. .15
1.7 Hardware Multicast. .16

1.7.1 How does Multicast Work?. 16
1.7.2 Multicast Group Assignment. 18

1.8 Open MPI. .20
1.8.1 Architecture of Open MPI. 20
1.8.2 COLL Component. 21

1.9 Summary .22

2 Existing Applications which use MPI_Bcast() 22
2.1 High-Performance Linpack Benchmark. 23

2.1.1 Algorithm. .23
2.1.2 Results .23
2.1.3 Conclusion. .24

2.2 Abinit .25
2.2.1 Algorithm. .25
2.2.2 Results .25
2.2.3 Conclusion. .25

2.3 Statistical Properties and Assumptions. 26

3 Solution 28
3.1 Objective Target. .28
3.2 Multicast-based Broadcast Algorithm. 28

3.2.1 Stage 1: Unreliable Broadcast. 28
3.2.2 Stage 2: Reliable Broadcast Completion. 30

3.3 A collector to create a nearly-true random seed. 32
3.4 Blum-Blum-Shub pseudorandom number generator. 33
3.5 Implementation for Open MPI. 35

Christian Siebert i

Contents

4 Practical Results 40
4.1 Benchmark Environment. 40

4.1.1 FRIZ .40
4.1.2 CLiC .40

4.2 Microbenchmark Results. 41
4.2.1 Measuring Broadcast/Multicast Performance. 41
4.2.2 Results on Large Communicators. 44
4.2.3 Results on Smaller Communicators. 46

4.3 Application Results. .47
4.3.1 High-Performance Linpack Benchmark. 48
4.3.2 Abinit .51
4.3.3 Conclusion. .52

5 Conclusion and Future Work 52

A Appendix 54
A.1 A guide for Open MPI with the IPMC component. 54

A.1.1 Installation of a single Open MPI instance. 54
A.1.2 Make Open MPI available and build an application. 55
A.1.3 Playing around with the IPMC parameters. 56

A.2 Fragmented Tree vs. Fragmented Chain. 57
A.2.1 Example .57

A.3 IP over InfiniBand. .60

Abbreviations and Acronyms 62

References 63

ii Christian Siebert

List of Figures

List of Figures

1 MPI_Bcast() operation can be split into 3 phases. 4
2 linear broadcast running on 8 nodes. 7
3 chain broadcast running on 8 nodes. 9
4 fragmented chain broadcast running on 8 nodes. 10
5 binary tree broadcast running on 8 nodes. 12
6 binary tree structure for an 8-node broadcast. 13
7 binomial tree structure for an 8-node broadcast. 14
8 binomial tree broadcast running on 8 nodes. 15
9 reordered binomial tree structure for 16 nodes. 16
10 performance of the four basic broadcast algorithms. 17
11 exemplary multicast scenario with 8 nodes. 18
12 four phases in the life of the ipmc component. 22
13 HPL benchmark running on 12 nodes. 24
14 ABINIT running on 8 nodes . 26
15 structure of a final multicast datagram. 30
16 algorithm to calculatex2 mod M . 34
17 a single round to measure the broadcast duration per node. 43
18 comparison of original and ipmc broadcast up to342 nodes. 44
19 comparison of original and ipmc broadcast with342 nodes 45
20 differentMPI_Bcast() with respect to smaller node numbers. 46
21 HPL with original MPI_Bcast(). 49
22 HPL with ipmc MPI_Bcast(). 49

Listings

1 example which uses MPI_Bcast(). 3
2 linear MPI_Bcast() implementation. 6
3 chain implementation. 8
4 binary tree implementation. 11
5 algorithm to measure the maximum MPI_Bcast() duration. 42

List of Tables

1 collision probability when using several communicators. 20
2 HPL benchmark results using different broadcasts. 50
3 Abinit results using different broadcasts. 51

Christian Siebert iii

List of Tables

iv Christian Siebert

1 Introduction

An optimal implementation of collective communication will take advan-
tage of the specifics of the underlying communication network (such as
support for multicast, which can be used for MPI broadcast), and will use
different algorithms, according to the number of participating processes
and the amount of data communicated.

1.1 Discussion of the Problem

The above citation from ”MPI - The Complete Reference” [MSD98, p. 194] suggests
to use themulticast feature (of course only when it is supported by the underlying
communication network) to create an optimal implementation of theMPI broadcast
operation. Even eight years after this well-known publication, merely a handful of
rather ”experimental” implementations by various people have been created. A couple
of problems need to be solved to make themulticast feature useful for a broadcast
implementation which conforms to theMPI standard - and many existing solutions are
often so expensive that the performance gain of the final implementation is pretty small.

MPICH, a commonMPI implementation, gives the following statement in itsFAQ
(http://www-unix.mcs.anl.gov/mpi/mpich1/faq.html):

”Does MPICH use IP Multicast for MPI_Bcast?”
”No. In principle, MPICH could use multicast, but in practice this would
be very difficult. [...] There is a fairly easy way to replace any collective
routine in MPI, but no-one has offered us a multicast-based MPI_Bcast
yet...”

This diploma thesis deals with the problematic aspects ofmulticast, presents exist-
ing and new solutions to these problems, and shows how a well-chosen subset of these
solutions can be combined to create an efficient implementation for theMPI_Bcast()
operation. It is mainly targeted at developers and users of (massively) parallel applica-
tions and libraries (including but not limited to theMPI library), especially in conjunc-
tion with high-grade networked cluster systems forHigh Performance Computing(i.e.
switch-based interconnection networks).

1.2 Outline of this Work

The rest of this first chapter gives an introduction to theMPI standard and its broadcast
function, as well as a short overview of existing implementations for that. It gives a
general description of themulticastfeature with its advantages and disadvantages, and
also a survey of a very promisingMPI implementation, which will be used as the target
library for the final solution.

The second chapter analyses two parallel applications with respect to their broadcast
behaviour, before trying to cover a wide range of different usage scenarios with the
help of some statistical assumptions and properties.

Christian Siebert 1

1 Introduction

After giving those fundamentals, the third chapter refers to this knowledge and sug-
gests a complete broadcast algorithm which uses themulticastfeature. The pros and
cons of alternative solutions (existing and new ones) are evaluated before arriving at a
decision. The more general description of the algorithm will be completed with some
more implementation details.

Microbenchmark results and the effects on the application show the actual achieved
performance of this new broadcast implementation in the fourth chapter. Some theoret-
ical boundary values for certain decision functions will derived from (or strengthened
by) those results too.

The last chapter gives a conclusion of this diploma thesis, and proposes some addi-
tional work for possible future improvements. It gives some hints to developers which
want to port this algorithm to other interconnection network, and it also gives some
useful advices to users of this implementation.

1.3 MPI Standard

Message passing is a widely used programming paradigm on parallel computers, espe-
cially with distributed memory. At the beginning of this era, many different (mainly
proprietary) message passing libraries were available, which limited the portability of
written code. Hence, theMessage Passing Interface (MPI) Forumtried to define the
syntax as well as the semantics of a standard core of library routines that would be
useful to a wide range of users. Special care has been taken to allow efficient imple-
mentations on a wide range of computers.

The official documents of theMPI Forum, including the standard, are available from
theMPI Forum Webpage at

http://www.mpi-forum.org

The first version ofMPI was publicly released in May 1994, and version1.1 [For95]
(released in June 1995) made some clarifications and corrections. All the fundamental
functionality, like point-to-point communication or collective operations, are already
covered by this first version of the standard. A second version of theMPI standard
[For97] was completed by the Forum in July 1997, and includes several extensions like
dynamic process management or one-sided operations.

1.3.1 The MPI_Bcast() operation

MPI_Bcast() broadcasts a message from a special process called ”root” to all processes
of the group, itself included. So initially, just this single origin process contains the
data, but after the broadcast all processes contain it. The argumentroot must have
identical values on all processes, andcomm must represent the same intragroup com-
munication domain. This collective operation can (but is not required to) return as soon
as the content ofroot’s communication buffer has been copied to all processes. The
completion of a call indicates that the caller is now free to access the data within the
communication buffer. This also means that this operation is blocking - the current

2 Christian Siebert

1.3 MPI Standard

official standard does not specify any non-blocking collective operations. The local
completion does not indicate that other processes in the group have completed or even
started the operation (contrary to the synchronizing collective operationMPI_Barrier).

General, derived datatypes are allowed fordatatype. The only restriction is that the
type signature of count anddatatype on any process must be equal to the type signature
of count anddatatype at the root. This implies that the amount of data sent must be
equal to the amount received, pairwise between each process and the root. Distinct type
maps between sender and receiver are still allowed.

This broadcast operation is ”in place” because there is only a single buffer argument,
which indicates that data is not moved at the root node.

The standard itself does not support amulticastfunction, where a broadcast executed
by a root can be matched by regular receives at the remaining processes. It justifies this
decision with the statement:

Such a function is easy to implement if the root directly sends data to each
receiving process. However, there is little to be gained, as compared to ex-
ecuting multiple send operations. An implementation where processes are
used as intermediate nodes in a broadcast tree is hard, since only the root
executes a call that identifies the operation as a multicast. In contrast, in a
collective call to MPI_BCAST all processes are aware that they participate
in a broadcast.

1.3.2 An Example Using MPI_Bcast()

Assume the root node gets some new input values from the user and wants to send
those values to all otherMPI processes. The following example inC will broadcast
100 integers from the process with rank number0 to every process in the group.

MPI_Comm comm ;
i n t a r r a y [1 0 0] ;
i n t r o o t =0;
/ * l e t t h e ’ r o o t ’ node f i l l t h e ’ a r r a y ’ * /
MPI_Bcast (a r ray , 1 0 0 , MPI_INT , roo t , comm) ;
/ * now a l l nodes o b t a i n e d t h e d a t a from ’ r o o t ’ * /

Listing 1:example which uses MPI_Bcast()

Figure1 shows an example of a runningMPI_Bcast() operation on8 nodes. To be
more precise: It is the improved version of the linear broadcast algorithm, which can be
found in chapter1.5.1, where all participating nodes are delayed by a random amount
of time. This diagram serves as a perfect example to show how the duration of the
broadcast operation can be subdivided into phases.

SinceMPI_Bcast() is a blocking collective operation, it starts as soon as the first MPI
process entersMPI_Bcast() and it ends when the last MPI process finishesMPI_Bcast().
But there are two other important moments during this operation: The root node is the
only node which contains the message data at the beginning. Therefore ”useful” com-
munications can only be started after the root node callsMPI_Bcast(). The second

Christian Siebert 3

1 Introduction

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
��

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
44.4 44.5 44.6 44.7 44.8 44.9 45.0 45.1 45.2 time (seconds) 45.5

no
de

 1
no

de
 2

no
de

 3
no

de
 4

no
de

 5
no

de
 6

no
de

 7
no

de
 8

Wait MPI_Send() MPI_Recv()

1

2

3

4

Figure 1:MPI_Bcast() operation can be split into 3 phases

important point in time occurs when the last node finally joins this operation. Alto-
gether, the time frame of this collective can be subdivided into three phases: Within
the ”startup phase” the first MPI processes enter this operation, but need to wait for the
arrival of the root node. The ”intermediate phase” can be used for communication but
cannot be completed because not all nodes are already present. The ”final phase” starts
as soon as all processes have joined the collective operation and lasts until all processes
have completed the operation.

Most synthetical benchmarks let all MPI processes callMPI_Bcast() simultaneously,
making the first two phases collapsing into a non-existing time frame. Unfortunately,
many broadcast algorithms (especially in the past) have been constructed upon this
assumption, which is naturally not valid for most real-world applications.

1.4 LogGP Model of Parallel Computation

The performance of each broadcast algorithm depends on many parameters, like the
number of nodes, message size, time of node arrival, network topology and parameters,
application behaviour, number of network interfaces, communication library, and many
more. There are several models for estimating the performance of parallel algorithms,
for example thePRAMmodel, theBSPmodel, theHockneymodel and theLogPmodel.
We have decided to give a performance estimation for each algorithm using the more
realisticLogGP[AISS97] model of parallel computation, which is an extension of the
LogPmodel. The parameters for this model can be summarized as follows:

4 Christian Siebert

1.5 Existing Techniques

• L: the Latencyof the interconnection network (the time it takes a single bit to
travel from the source processor to its target processor)

• o: theoverhead, defined as the time that a processor needs to inject or retrieve a
message to or from the network (during this time the processor cannot perform
other operations)

• g: the gap between messages, defined as the minimum time interval between
consecutive message transmissions or receptions

• G: the Gap per byteor time per byte for long messages (the reciprocal ofG
characterizes the available communication bandwidth)

• P: the number of participatingProcessors(which equals the size of the commu-
nicator in ourMPI_Bcastscenarios)

Sending ann byte message from one processor to another takeso+(n−1)·G+L+o
time units under thisLogGPmodel. It is possible to measure allLogGPparameters for a
given platform [TKV00]. We assume a full-duplex network which allows simultaneous
message transfers of an initiated send and receive operation. Note that this model does
not consider any form of network congestion.

1.5 Existing Techniques

There are several possibilities to implementMPI_Bcast(). Most implementations are
using simple point-to-point communication because this is the basis of each communi-
cation library and therefore always present as well as working properly. This section
gives a short overview of the most common techniques. There are many other imple-
mentations which are usually based on one of the here presented algorithms. Often
they are slightly modified to make use of special additional knowledge or properties
(like network topology).

Since there is no single number to express the performance of a collective algorithm,
this section will give the estimated minimum, average and maximum completion time
of a node according to theLogGPmodel, after presenting the description of each al-
gorithm, some pseudo-code, and the advantages as well as disadvantages compared
to the alternatives. For simplicity, we mainly assume that all nodes callMPI_Bcast()
simultaneously, and that each pair of nodes has the same communication parameters.
The parametern holds the size of the broadcast message andp represents the number
of involved MPI processes (p = 1 can be ignored because it is ano-operation, sop is
defined to be larger than1). f contains the number of fragments andnf their size.

1.5.1 Linear Algorithm

The most simplest algorithm is derived from the definition of broadcast, and sends
an individual message from the root node to all participating nodes. Therefore it is
sometimes also called ”simple” or ”flat-tree” algorithm.

Christian Siebert 5

1 Introduction

i n t MPI_Bcas t_ l i nea r (vo id * b u f f e r , i n t count , . . .)
{

. . .
MPI_Comm_size (comm, & nodes) ;
MPI_Comm_rank (comm, & myrank) ;

i f (myrank = = r o o t) {
/ * r o o t node sends t o a l l o t h e r nodes * /
f o r (d e s t = 0 ; d e s t < r o o t ; d e s t ++) {

MPI_Send (b u f f e r , count , d type , des t , . . .) ;
}
f o r (d e s t = (r o o t + 1) ; d e s t < nodes ; d e s t ++) {

MPI_Send (b u f f e r , count , d type , des t , . . .) ;
}

}
e l s e {

/ * non−r o o t nodes r e c e i v e from r o o t * /
MPI_Recv (b u f f e r , count , d type , roo t , . . .) ;

}
}

Listing 2: linear MPI_Bcast() implementation

Although this linear implementation (contrary to e.g. an implementation with a loga-
rithmic worst case running time) usually does not scale well when used with large com-
municators, it achieves acceptable performance for smaller communicators. Replac-
ing thoseMPI_Send() by non-blockingMPI_Isend() calls and adding a corresponding
MPI_Waitall(), improves this algorithm, especially in the case when the MPI processes
enter this collective operation in a deferred but unknown chronological order. Unfor-
tunately, when all processes call this function simultaneously (which is for instance
the case when running a synthetical benchmark), the average completion time per MPI
process is

�Tlinear(n, p) =
1

p
· TSend(n) ·

(
(p− 1) +

p−1∑
i=1

i

)
= TSend(n) ·

(
p + 1

2
− 1

p

)
Using theLogGPmodel, ranki receives the message after time

2 · o + L + i · (n− 1) ·G + (i− 1) · g

The maximum completion time is therefore

T = L + 2 · o + (p− 1) · (n− 1) ·G + (p− 2) · g

One node receives the message (and therefore completes MPI_Bcast) after the first
send operation from root and one node receives the message afterp− 1 rounds, giving

6 Christian Siebert

1.5 Existing Techniques

the following extreme performance numbers:

TSend(n) ≤ Tlinear(n, p) ≤ (p− 1) · TSend(n)

6.0 6.1 6.2 6.3 6.4 time (seconds) 6.6

no
de

 1
no

de
 2

no
de

 3
no

de
 4

no
de

 5
no

de
 6

no
de

 7
no

de
 8

Wait MPI_Send() MPI_Recv()

Figure 2:linear broadcast running on 8 nodes

Figure2 shows howMPI_Bcast_linear() broadcasts a1 MiB message to8 nodes on
a Fast Ethernet network. For a better understanding, the time forMPI_Recv() has been
divided into the time it waits for the first byte and the actual transmission time. The
broadcast duration per node was{0.641, 0.103, 0.195, 0.284, 0.376, 0.468, 0.560, 0.651}
seconds, giving a real average duration of0.410 seconds per node.

1.5.2 Chain Algorithm

Another implementation with a similar ”bad” performance lets each node send and
receive at most one message. This effectively creates a kind of ring topology where
each node has one predecessor from which it receives the message, and one successor to
which it sends the message (for that reason it is also sometimes called ”ring” algorithm).
Since the root node does not need to receive the message, the ring is reduced to a chain
where the last node skips the send part.

Christian Siebert 7

1 Introduction

i n t MPI_Bcast_chain (vo id * b u f f e r , i n t count , . . .)
{

. . .
MPI_Comm_size (comm, & nodes) ;
MPI_Comm_rank (comm, & myrank) ;

p red = (nodes + myrank− 1) % nodes ;
succ = (myrank + 1) % nodes ;
i f (myrank ! = r o o t) {

MPI_Recv (b u f f e r , count , d type , pred , . . .) ;
}
i f (succ ! = r o o t) {

MPI_Send (b u f f e r , count , d type , succ , . . .) ;
}

}

Listing 3: chain implementation

Listing 3 uses a simple modular addition/subtraction of1 to determine the successor
and predecessor of the own node. A better way to support other network topologies
(like meshes) is to useMPI_Cart_create() with a single dimension to embed the virtual
chain topology into the real underlying topology. The actual neighbours can then be
determined with a call toMPI_Cart_shift().

Usually this algorithm is even slightly worse than the linear algorithm because the
MPI processes are served in a predefined chronological order. A single late node is
enough to stall the whole chain algorithm (contrary to the improved version of the
linear algorithm). When there are no delays, the average completion time per MPI
process is

�Tchain(n, p) =
1

p
·

(
p∑

i=1

i− 1

)
· TSend(n) = TSend(n) ·

(
p + 1

2
− 1

p

)
The root node completes the broadcast after a single send, and the last node in the

chain needs to waitp− 1 rounds until it receives the message. This gives the following
extreme performance numbers:

TSend(n) ≤ Tchain(n, p) ≤ (p− 1) · TSend(n)

The maximum time of thechainalgorithm, according to theLogGPmodel is

T = (p− 1) · (L + 2 · o + (nf − 1) ·G) + (f − 1) · (g + (nf − 1) ·G)

The ”stairs” in figure3 show how the nodes get the message from their neighbours.
The broadcast duration was{0.090, 0.194, 0.297, 0.399, 0.503, 0.607, 0.709, 0.721} sec-
onds, giving a real average duration of0.440 seconds per node.

8 Christian Siebert

1.5 Existing Techniques

3.2 3.3 3.4 3.5 3.6 3.7 time (seconds) 3.9

no
de

 1
no

de
 2

no
de

 3
no

de
 4

no
de

 5
no

de
 6

no
de

 7
no

de
 8

Wait MPI_Send() MPI_Recv()

Figure 3:chain broadcast running on 8 nodes

If this chain algorithm has no obvious advantages (except the good support for
”cheaper” network topologies - even without any switches at all1), then why should
we care about this algorithm? Because there is an optimization possibility, which turns
this ”bad” algorithm into the best algorithm for large messages2: Normally, each node
waits until the message has been received completely before sending it to the next node.
When we split this message into several fragments, each node can start sending as soon
as it received the first fragment: A trivial implementation could callMPI_Bcast_chain()
for each fragment. This introduces an overlapping of send and receive requests and
leads to the principle of pipelining.

When the1 MiB message gets split into64 KiB fragments, the fragmented chain al-
gorithm achieves an overwhelming performance compared to the non-fragmented ver-
sion. Figure4 shows this behaviour. Note that the optimal size of the fragments de-
pends on several parameters (number of nodes, message size and network parameters)
and might need to be recalculated for every new broadcast operation. The broadcast
duration per node was{0.097, 0.104, 0.110, 0.116, 0.123, 0.130, 0.136, 0.142} seconds,
giving an astounding real average duration of just0.120 seconds per node. The non-
fragmented version is therefore by a factor of3.67 slower than this fragmented version.

1Example: Several modern mainboards are equipped with two Gigabit Ethernet ports on-board. Con-
nect such cluster nodes in a real ring topology and you have created a very cheap cluster without any
switches. The (fragmented) chain broadcast is always the optimal algorithm for such a network.

2For a discussion of fragmented tree versus fragmented chain algorithm see the appendix.

Christian Siebert 9

1 Introduction

4.31 4.32 4.33 4.34 4.35 4.36 4.37 4.38 4.39 4.40 4.41 4.42 time (seconds) 4.45

no
de

 1
no

de
 2

no
de

 3
no

de
 4

no
de

 5
no

de
 6

no
de

 7
no

de
 8

MPI_Recv()MPI_Send()Wait

Figure 4:fragmented chain broadcast running on 8 nodes

The next large class of broadcast algorithms use virtual tree topologies to limit the
number of rounds to some logarithmic function. This reduces the average and maxi-
mum broadcast duration per node and is therefore very useful for medium and large-
sized communicators. The broadcast messages traverse the trees starting from the root
node, and going towards the leaf nodes through intermediate nodes.

1.5.3 Binary Tree Algorithm

A binary treeis a well-known data structure in computer science. Nodes, which rep-
resent MPI processes, are connected by directed edges, which indicate the direction of
the message transfer. To get a good performance, we require that each parent node has
two children - except the leave nodes which are allowed to have only a single or no
children (this is often calledcomplete binary tree).

10 Christian Siebert

1.5 Existing Techniques

i n t MPI_Bcast_b inary (vo id * b u f f e r , i n t count , . . .)
{

. . .
/ * assumpt ion: r o o t = = 0 * /
MPI_Comm_size (comm, & nodes) ;
MPI_Comm_rank (comm, & myrank) ;

l c h i l d = (myrank < < 1) + 1 ;
r c h i l d = (myrank < < 1) + 2 ;
p a r e n t = (myrank− 1) > > 1 ;

i f (p a r e n t > = 0) {
MPI_Recv (b u f f e r , count , d type , pa ren t , . . .) ;

}
/ * send message t o bo th c h i l d r e n * /
i f (l c h i l d < nodes) {

MPI_Send (b u f f e r , count , d type , l c h i l d , . . .) ;
}
i f (r c h i l d < nodes) {

MPI_Send (b u f f e r , count , d type , r c h i l d , . . .) ;
}

}

Listing 4:binary tree implementation

A trivial binary tree implementation can be found in listing4. Note that this algo-
rithm assumes that the broadcast root has always rank0. The usual way to circumvent
this restriction is to introduce virtual rank numbers, so that the root node gets the virtual
rank 0. A rank rotation, e.g. using the modular arithmetic trick from the chain algo-
rithm, can be used to create such a mapping between real and virtual rank numbers.

Although 8 nodes create a nearly-balanced (and symmetric) binary tree (with the
exception of a single node in an additional level), diagram5 demonstrates that the
broadcast duration per node ({0.184, 0.287, 0.377, 0.298, 0.298, 0.299, 0.390, 0.320}) is
not very balanced when a binary tree is used as a broadcast topology. Nevertheless, the
average broadcast duration of0.307 seconds per node is already better than the non-
fragmented algorithms of the linear-scaling class.

The maximum time of thebinary treebroadcast, according to theLogGPmodel is

T = (dlog2(p + 1)e − 1) · (L + 2 · (o + (n− 1) ·G + g)) + 2 · ((n− 1) ·G + g)

The reason for this imbalance is that each node usually serves two children but can
not send two messages simultaneously over a single network interface. So instead of
thinking of an ”usual” balanced binary tree, the real tree structure - when used as a
broadcast topology - can be seen in figure6.

When the communicator size increases, the imbalance will get even worse, because
the root node in a binary tree finishes always after two rounds, whereas all leave nodes

Christian Siebert 11

1 Introduction

4.6 4.7 4.8 time (seconds) 5.0

no
de

 1
no

de
 2

no
de

 3
no

de
 4

no
de

 5
no

de
 6

no
de

 7
no

de
 8

Wait MPI_Send() MPI_Recv()

Figure 5:binary tree broadcast running on 8 nodes

(and there ared0.5 · pe of them) have to waitdlog2 pe rounds. Fortunately, there is
another tree structure which takes care of this issue.

1.5.4 Binomial Tree Algorithm

A binomial treeis a more sophisticated tree structure, and can be defined recursively:

• a binomial tree of order0 is a single node

• a binomial tree of orderk has a root of degreek and its children are roots of
binomial trees of ordersk − 1, k − 2, . . . , 2, 1, 0

A binomial treeof orderk has at most2k nodes and heightk. Figure7 shows a possible
structure of a binomial tree for a broadcast operation on 8 nodes.

The different communication pattern results in a much more balanced broadcast be-
haviour compared to the simple binary tree structure (see figure8).

The broadcast duration on this binomial tree used{0.274, 0.285, 0.286, 0.285, 0.297,
0.297, 0.297, 0.308} seconds per node, which is all very close to the average value of
0.291 seconds. An application where all (especially2k) nodes are callingMPI_Bcast()
simultaneously, can expect that all nodes complete this collective operation in a similar
amount of time. This very useful feature and the slightly better overall performance
of this binomial tree algorithm makes it the favourite tree-based broadcast algorithm,
despite the slightly more complicated handling. Figure9 shows a binomial tree for

12 Christian Siebert

1.5 Existing Techniques

0

1

3

7 4 5

2

6

ro
un

d
1

ro
un

d
2

ro
un

d
3

ro
un

d
4

Figure 6:binary tree structure for an 8-node broadcast

16 nodes, where the rank numbers are ordered in a way which makes computation of
parent and child nodes easier than the originally suggested ordering, and they are pre-
sented in binary notation to make it easier for the reader to follow the bit manipulation
description.

To find the parent of a node3 in a such a binomial tree structure, clear the least
significant set bit of the rank number. For all (valid) least significant clear bits, there
is one children whose rank number can be figured out by setting this corresponding bit
within the node’s rank number. Note that is is important to send the broadcast message
in the correct order to the children - start with the highest such clear bit and proceed up
to the lowest such clear bit.

The maximum duration of thebinomial treebroadcast, according to theLogGP
model is

T = dlog2pe · (L + 2 · o + (n− 1) ·G)

The performance chart of all four basic algorithms (from2 to 32 MPI processes) in
figure10 shows that the two algorithms of the first class (linear and chain algorithm)
scale linearly with the number of involved MPI nodes (but the linear algorithm usually
has a better gradient). The tree algorithms of the second class scale logarithmically with
the number of the involved MPI processes. As expected, the binomial tree algorithm
performs somewhat better than the simple binary tree algorithm.

3Note that rank0 is always root and therefore has no parent node. See also the previous discussion
about virtual ranks.

Christian Siebert 13

1 Introduction

1

0

2

3

4

5 67

ro
un

d
1

ro
un

d
2

ro
un

d
3

Figure 7:binomial tree structure for an 8-node broadcast

1.5.5 Other Algorithms

Many additional broadcast algorithms have been proposed in the literature.
TheSplitted-binary treealgorithm [PGAB+05] splits the original message into two

parts, and then sends the ”left” half of the message down the left half of the binary tree,
and the ”right” half of the message down the right half of the tree. In the final phase of
the algorithm, every node exchanges messages with its ”pair” node from the opposite
side of the binary tree.

It is also possible to build a broadcast algorithm out of other collective operations:
MPI_Scatter() followed by anMPI_Allgather() [PMG95] distributes the message in
parts over all nodes, and subsequently collects all parts using for example therecursive
doublingalgorithm (see [GDBC03] or [RTG05]).

This ”splitting” of messages can be generalized for any arbitrary broadcast algo-
rithm: A larger message can be seen as a collection of several fragments, and each
fragment can be delivered independently of the others. If a node sends a message to
several destinations, then the communication can be done interleaved, which involves
other nodes much earlier. Succeeding communications can be started as soon as the
first fragment has been received and therefore before the complete message has been
received. This transmission scheme leads to the well-known pipelining effect. The best
usage example for this property is thefragmented chainalgorithm for large messages.

1.5.6 Limits Of Those Algorithms

The most limiting parameter for all presented algorithms so far, comes from the usage
of point-to-point communication and the fact that a single MPI process can not inject or

14 Christian Siebert

1.6 Hardware Broadcast

3.6 3.7 time (seconds) 3.9

no
de

 1
no

de
 2

no
de

 3
no

de
 4

no
de

 5
no

de
 6

no
de

 7
no

de
 8

Wait MPI_Send() MPI_Recv()

Figure 8:binomial tree broadcast running on 8 nodes

retrieve several messages simultaneously into or from the network (”unicast”). For any
broadcast operation top nodes (which is implemented on top of this communication
scheme) there are at leastdlogc pe 4 transmission rounds necessary, otherwise at least
one node will never receive anything.

Many network technologies (like Ethernet and InfiniBand) are equipped with special
support for other communication schemes besides simple point-to-point. The following
sections will describe features which are known ashardware broadcastandhardware
multicast, and show how this can be used to implementMPI_Bcast().

1.6 Hardware Broadcast

Although some network technologies support a directbroadcastfeature which could
be used to implementMPI_Bcast(), clusters are often used simultaneously by more
than one parallel job and therefore subdivided logically into several parts. A broadcast
packet will be send to all nodes in the specified domain, and can therefore influence
the performance of other jobs (by consuming processing time within the network stack
were those packets will be rejected, and by directly reducing the network bandwidth
too). In addition, hardwarebroadcasthas usually the same drawbacks likemulticast
(e.g. the unreliable data delivery). On the other hand, there are network technologies

4The constant parameterc is usually 2 but might be increased when there are several network interfaces
available (”fan-out”).

Christian Siebert 15

1 Introduction

0000

1000

1100

10101110

1111 1101 1011 00011001

0100

0110 0010

0111 0101 0011

ro
un

d
1

ro
un

d
2

ro
un

d
3

ro
un

d
4

Figure 9:reordered binomial tree structure for 16 nodes

which do not support multicast or have other interesting features (Quadricsfor example
supports a hardware-based acknowledgment scheme for its special ”range” broadcast
[WYG05]).

1.7 Hardware Multicast

Multicast is similar to abroadcast, because it can be used to send a message to more
than one recipient. Contrary to the one-to-allbroadcastfeature,multicastis a one-to-
many operation which sends a message selectively to nodes that have agreed prior to
receive those packets. This advantage makes it the better candidate for anMPI_Bcast()
implementation uponIP-based interconnects.

Ethernetfor example, can supportIP multicastif the underlying hardware is multicast-
capable (e.g. at least layer 2 switching).Multicast traffic is handled at the transport
layer with UDP, and multicast-capable hosts need necessarily anInternet Group Man-
agement Protocol(IGMP) implementation in their TCP/IP stack. In 1993, the first
multicast implementation saw the light in the 4.4 BSD release. Today,IP multicastis a
pretty mature feature, and is supported by many hardware components as well as nearly
all recent operating systems.

1.7.1 How does Multicast Work?

Before an application can receive any multicast datagrams, it must tell the operating
system (”kernel”) which multicast groups it is interested in. Multicast groups can be
for instance class D IP addresses forEthernetor a so-calledglobal identifier(GID) for
InfiniBand. This explicit ”group joining” is necessary because multicast datagrams are

16 Christian Siebert

1.7 Hardware Multicast

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0 5 10 15 20 25 30 35

tim
e

[s
ec

on
ds

]

number of MPI processes

Average MPI Broadcast Time Per Node (LAM/MPI, CLiC)

MPI Bcast linear (4 KiB)
MPI Bcast chain (4 KiB)

MPI Bcast binary tree (4 KiB)
MPI Bcast binomial tree (4 KiB)

Figure 10:performance of the four basic broadcast algorithms

filtered by the hardware or by the network protocol stack (and, in some cases, by both).
Only those packets with a destination group which has been previously registered, are
accepted and delivered to the corresponding application.

Once an application has successfully joined a multicast group on a particular network
interface, it can receive multicast datagrams which are simply sent to this group. Send-
ing of multicast datagrams usually does not need any special preparation (except e.g.
opening an UDP socket for IP multicast). Finally, the application can leave a multicast
group by informing the kernel that it is no longer interested in this group.5

When a communicator is created, a new multicast group should be assigned to it and
all participating MPI processes should join this group. The central switch will be in-
formed about any joins or leaves, and stores this information for any port. The example
scenario in figure11 shows a small cluster consisting of8 nodes, which are connected
through a central switch. In the first step, the nodes1, 2 and3 join a multicast group
A by sending a join request to the switch. Afterwards, nodes3, 5, 7 and8 join another
multicast groupB, and nodes4 and6 remain unused in this scenario. Both groups (or
their corresponding communicators) can be part of a singleMPI instance or they can
belong to totally different jobs. When a node sends a multicast datagram to one of the
registered groups, the switch will forward this packet to all ports, which are associated
with the destination group. So logically spoken: a single message arrives at the switch,

5For a detailed programming guide of IP multicast, I recommend the book [BWRS03].

Christian Siebert 17

1 Introduction

6 8

2 3

4 5

7

A1

6 8

2 3

4 5

7

A

B

1

6 8

2 3

4 5

7

A

B

1

6 8

2 3

4 5

7

A

B

1

A: 1, 2, 3

B: 3, 5, 7, 8

A: 1, 2, 3

B: 3, 5, 7, 8

A: 1, 2, 3 A: 1, 2, 3

step 1: nodes 1, 2 and 3 join MC group A step 2: nodes 3, 5, 7 and 8 join MC group B

step 3: node 8 sends datagram to group B step 4: switch replicates datagram

B: 3, 5, 7, 8

Figure 11:exemplary multicast scenario with 8 nodes

gets ”duplicated” there, and finally arrives at several receivers ”simultaneously”. In
our example scenario, node8 sends a multicast datagram to the destination groupB in
step 3. The switch recognizes this group and sends the packet to the associated nodes
3, 5, 7 and8. Note: it is possible to suppress the ”boomerang” packet of node8 (the
final implementation does this to reduce this unnecessary overhead which gives a small
performance improvement).

Such a multicast feature can lead to anMPI_Bcast() implementation with a perfor-
mance which scales independently of the number of involved processes! To create such
a solution, there are a several problem which need to be solved: IP multicast sockets are
UDP-based and therefore multicast is unreliable! This means that nothing is guaranteed
and the user is responsible for any necessary reliability, privacy and control messages,
as well as scheduling an event. Especially if a node is not ready to receive a multicast
datagram, then an incoming datagram might not need to be stored and therefore it gets
usually lost. Furthermore, larger messages need to be fragmented to fit into IP packets,
and a proper multicast group assignment is also not trivial.

1.7.2 Multicast Group Assignment

Class D addresses, in the range 224.0.0.0 through 239.255.255.255, are the multicast
addresses in IPv4. The low-order 28 bits of a class D address form the multicast group

18 Christian Siebert

1.7 Hardware Multicast

ID and the 32-bit address is called the group address. Unfortunately, in Ethernet or
IEEE 802 networks only the low-order 23 bits of the IP multicast address are copied
to the Ethernet multicast address. There are a few special multicast addresses and
several reserved multicast addresses, which can be found in a regular updated list by
the Internet Assigned Numbers Authority[IAN06]. For some general multicast assign-
ment guidelines see [ZAS01]. When we have a set of useful multicast addresses, we
need a proper way to assign a new address to each new communicator. This would be
simple if we had only one MPI instance which could keep track of all currently used
addresses. Since there can be several MPI jobs running in parallel on a single cluster,
maybe even using different MPI implementations, there is no globally visible state any-
more which could fulfill this task. The best solution for this problem is to reintroduce a
global state by adding a special server which distributes new multicast addresses on re-
quest.RFC 2730describes theMulticast Address Dynamic Client Allocation Protocol
[SHS99] (”MADCAP”) which could be used for this purpose. Every time a new com-
municator is created, this MADCAP server could be asked for a free multicast group.
As long as all used multicast addresses are known to this server, there will be no clashes
at all and many different MPI jobs can work safely in parallel.

Another solution to this address assignment problem, is to choose the multicast
address and port at random, and hope that there are no collisions. The final imple-
mentation uses this approach, but is prepared to use a MADCAP server or similar
and fall back to this solution if there is none available. Using the reserved multicast
address ranges 225.0.1.0 to 231.255.255.255 and 234.0.1.0 to 238.255.255.255 gives
200,540,160 possible addresses. Adding the port number (range 5000 to 327686) to
this pool as well, gives another 27769 possibilities. Altogether, we can select an (ad-
dress, port) pair out of about5.5 · 1012 different possibilities. When the number con-
temporaneously used communicators increases, the collision probability increases even
more according to thebirthday paradox. If there are currentlyn multicast groups in
use (e.g. forn different communicators), then there aren · (n − 1)/2 pairs, each of
which with potentially identical values. It is easier to first calculate the probability that
all groups are different. Letm be the total number of available <multicast group, port>
pairs and assume that each pair is selected with the same probability. Note that it is
pretty important to choose the pairs at random, otherwise collisions can be very likely!

p(n, m) = 1 ·
(

1− 1

m

)
·
(

1− 2

m

)
· · · · ·

(
1− n− 1

m

)
=

m!

mn · (m− n)!

The probability that there is at least one collision is then the complementary of
p(n,m). Through the additional port number, the number of possibilities is large
enough, so that this probability keeps tolerable small, as can be seen in table1.

Although only the MADCAP solution (or similar) gives a 100% certainty of never
producing any collisions, the probability that the second solution fails is, in many cases,
acceptable small.

6This range restriction was introduced because of portability issues (”ephermal ports”).

Christian Siebert 19

1 Introduction

number of communicatorsprobability of at least one collision
1 0.0 %
2 0.0000000000179 %
3 0.0000000000538 %
4 0.0000000001077 %
5 0.0000000001795 %
6 0.0000000002693 %
7 0.0000000003771 %
8 0.0000000005028 %
9 0.0000000006464 %
10 0.0000000008080 %
11 0.0000000009876 %
.
20 0.0000000034118 %
30 0.0000000078113 %
40 0.0000000140066 %
50 0.0000000219975 %
100 0.0000000888881 %
200 0.0000003573481 %

Table 1:collision probability when using several communicators

1.8 Open MPI

Open MPI(http://www.open-mpi.org) is a very promising project with the demand to
build the bestMPI library available. Since it combines the knowledge of many prede-
cessor projects (FT-MPI, LA-MPI, LAM/MPI andPACX-MPI), it uses well-established
technologies as well as new ideas to build a completely new framework which supports
(or will support in the near future) many features (like completeMPI-2 compliance,
thread safety and fault tolerance) and still achieves high performance and portability.
Open MPIoffers several advantages for computer science researchers which makes it
the perfect platform for new developments.

1.8.1 Architecture of Open MPI

The primary software design motif ofOpen MPIis a lightweight component architec-
ture called theModular Component Architecture(MCA). This backbone architecture
provides management services for all other layers and contains component frameworks
for each major functional area inOpen MPI. Each of this component frameworks (cur-
rently theOpen MPIcomponents, theOpen Run Time Environmentcomponents and
theOpen Portable Access Layercomponents) is a collection of self-contained software
units that export well-defined interfaces and can be deployed and composed with other
components. The MPI component framework contains for example (see e.g. [GWS05]
for more details):

20 Christian Siebert

1.8 Open MPI

• Point-to-Point Management Layer: this component manages message delivery
and implements the semantics of a given point-to-point communications protocol

• Byte-Transfer-Layer: this component handles point-to-point data delivery over
the networks

• Collective Communication: the back-end of MPI collective operations, support-
ing both intra- and intercommunicator functionality

• Process Topology: Cartesian and graph mapping functionality for intracommu-
nicators (this allows MPI to optimize communications based on locality)

• Parallel I/O: modules for parallel file and device access

• ...

This theses makes use of this component-based approach, and - because an imple-
mentation of the collective operationMPI_Bcast() is one of its objectives - it is es-
pecially interested in theCOLL framework. Since components are free to implement
the standardized MPI semantics in any way that they choose, we will later use a com-
bined approach which is layered over point-to-point functions as well as an alternate
communication channel forIP multicast7.

1.8.2 COLL Component

A COLL component is essentially a list of top-level function pointers that will be se-
lectively invoked upon demand. A component becomes amodulewhen it is paired
with a communicator. Top-level MPI collective functions, likeMPI_Bcast(), are thin
wrappers that perform error checking and afterwards call the provided functions in the
appropriate module (depending on the communicator). There are effectively five phases
in a COLL component’s life cycle: selection, initialization, checkpoint/restart, normal
operation, and finalization. Since at the time of writing thecheckpoint/restartfeature
is currently not really existent inOpen MPI, and [SL04, p. 11] states

It is not an error if a module does not include the functionality required
for checkpointing and restarting itself; support for checkpointing/restart in
a COLL module is optional.

we can simply mark our implementation to not support this, and get the simplified life
state diagram in figure12with only four phases for our ipmc broadcast component.

Every time a new communicator should be created (e.g. by directly calling the func-
tionMPI_Comm_create(); but also including the one-time setup ofMPI_COMM_SELF
andMPI_COMM_WORLDat startup),Open MPIqueries each availableCOLL com-
ponent to determine if it can be used with this newly-created communicator. A priority

7For a good description of the component architecture ofOpen MPI especially with regard to the
collective framework, see [SL04]

Christian Siebert 21

2 Existing Applications which use MPI_Bcast()

Normal Usage

Finalization

Selection

Initialization

MPI_COMM_FREE

MPI_FINALIZE

MPI_BCAST

MPI_COMM_SPLIT

MPI_COMM_DUP

MPI_COMM_CREATE

MPI_INIT

Figure 12:four phases in the life of the ipmc component

value (from 0 to 100) will be returned by each component, and the component with
the highest priority will beselectedby the framework. Once aCOLL module is se-
lected for a given communicator, the component’s initialization function will be called
which performs any one-time setup required by the module (since the binding to the
communicator remains static after this step, pre-computations might be done here to
achieve some run-time optimizations). The initialization function returns a module,
which includes a list of function pointers for its algorithms. After aCOLL module has
been initialized, those routines will be called whenever an MPI collective function is
invoked on the communicator. When a communicator should be destroyed (e.g. by
MPI_Comm_free) the modules finalization method will be called, which is responsible
for cleaning up all resources associated with this communicator.

1.9 Summary

Today, many parallel applications are implemented using theMessage Passing Inter-
face, and their performance depends on the underlyingMPI library. MPI_Bcast(),
one of the most used collective operations, can be implemented in many ways. The
usual point-to-point communication scheme is too limiting, whereasmulticast - be-
sides its many problems - has promising advantages for a broadcast implementation.
Open MPIprovides an ideal framework for new developments, and we will try to cre-
ate a multicast-basedMPI_Bcast() implementation for this relatively new open source
MPI library.

2 Existing Applications which use MPI_Bcast()

Regrettably, many collective operations has been optimized especially for synthetical
benchmarks (where there is no ”process skew”), and later score badly when used with
real-world applications. Fortunately, more papers regarding the optimization of col-

22 Christian Siebert

2.1 High-Performance Linpack Benchmark

lective operations in view of application behaviour appeared in the last few years (see
e.g. [AMP04]). In order to prevent the same mistake, this section shortly introduces
two applications which makes quite heavy use ofMPI_Bcast(). Each application has
its own typical broadcast pattern, which will be show in a graphical form, similar to a
Gantt chart. Such charts are produce by profiling a running application: Events such
as callingMPI_Send() will be logged together with a global time stamp and afterwards
visualized with postprocessing tools (see e.g. [ZLGS99]).

2.1 High-Performance Linpack Benchmark

The famousHigh-Performance Linpack Benchmark for Distributed-Memory Comput-
ers8 is the parallel benchmark that is used to measure the performance of the most pow-
erful computer systems. Twice a year, the TOP500 project9 assembles and releases the
500 most powerful systems according the performance measures of the Linpack bench-
mark.

2.1.1 Algorithm

This benchmark solves a dense system of linear equations in double precision arith-
metic. The used algorithm does anLU factorizationof a random matrix with partial
pivoting. The operation count for the algorithm must be

2

3
n3 + O(n2)

floating point operations.
This portable implementation requires an MPI 1.1 compliant Message Passing Inter-

face library as well as aBasic Linear Algebra Subprograms(BLAS) library.

2.1.2 Results

For 16 nodes on theCLiC testbed, the HPL benchmark achieves a performance of
7.538 GFLOPS (total running time of1941 seconds) for a problem sizeN of 28000
and a blocking factorNB of 40. The freely availableATLAS(Automatically Tuned
Linear Algebra Software) BLAS implementation10 was used because it outperforms
many other implementations (including some of the well-known commercial libraries).

Each of the16 processing nodes called approximately7350 times the level-3 BLAS
routine dgemm()which consumes a time around1435 seconds (73.9% of the total
running time), and called700 times the data broadcast function to transfer around
755 MiB of data in280 seconds (14.4% of the total running time).

Figure13 shows a snapshot (seconds 35 to 84) of theHPL benchmarkrunning on
12 Intel CeleronCPUs (2.0 GHz each), connected by aFast Ethernetnetwork. The

8see http://www.netlib.org/benchmark/hpl/
9see http://www.top500.org/

10see http://math-atlas.sourceforge.net/

Christian Siebert 23

2 Existing Applications which use MPI_Bcast()

84.0time (seconds)74.072.070.0 76.0 82.068.066.064.060.058.056.054.052.050.0 62.044.042.040.038.036.0 48.046.0

no
de

 3
no

de
 4

no
de

 5
no

de
 6

no
de

 7
no

de
 8

no
de

 9
no

de
 1

0
no

de
 1

1
no

de
 1

2
no

de
 2

no
de

 1

Computation MPI_Send MPI_Recv

Figure 13:HPL benchmark running on 12 nodes

executable was linked againstOpen MPI-1.1 andATLAS-3.7.11. A problem of size
N = 24576 with a blocking factor ofNB = 40 was solved using a processor grid of
P ∗Q = 3∗4 and the ”1ring” broadcast algorithm. The red boxes show the computation
slices (i.e. the calls tocblas_dgemm), and the blue and green boxes show the data
transmission operations within theHPL_bcast() function.

2.1.3 Conclusion

TheHPLbenchmark is a typical round-based application where the main computational
parts are periodically interrupted by shorter communication parts. The data broadcast
function (delivered with HPL) is written to allow an explicit overlapping of commu-
nication and computation by using non-blocking point-to-point communication func-
tions. However, most open source MPI implementations today do not really benefit
from using those function. So it was not astounding that replacing the non-blocking
with blocking functions in the data broadcast algorithm let the benchmark report nearly
identical performance numbers. Exchanging the different broadcast algorithms gives
slightly different running times. Quite large messages (usually more than1 MiB in
size; starting with larger ones and decreasing in size over the time) are broadcasted
to all ranks within the MPI job. Although concurrent computation parts need nearly
the same amount of time, the available broadcast implementations introduce additional
gaps between consecutive rounds.

The new broadcast algorithm, based onIP multicast, should be able to achieve a
good throughput and can hopefully diminish those gaps between the rounds because of
its balanced manner.

24 Christian Siebert

2.2 Abinit

2.2 Abinit

Abinit 11 is an application package to find the total energy, charge density and electronic
structure of systems made of electrons and nuclei. The main code exists as sequential
version (abinis) as well as parallel version (abinip).

2.2.1 Algorithm

TheAbinit application takes the description of the unit cell and atomic positions and as-
sembles a crystal potential from the input atomic pseudopotentials. It uses either an in-
put wavefunction or simple gaussians to generate the initial charge density and screen-
ing potential, then uses a self-consistent algorithm to iteratively adjust the planewave
coefficients until a sufficient convergence is reached in the energy. The code can be ad-
justed to perform molecular dynamics or to find responses to atomic displacements and
homogeneous electric field, so that the full phonon band structure can be constructed.
There are several approaches to parallelize this task [HR05]. We will devote our atten-
tion to the version which uses parallelism over the bands.

2.2.2 Results

Figure14 shows a snapshot (seconds 116 to 124) of the parallel version ofABINIT
running on8 nodes of theFRIZ cluster (see4.1.1). After each band computation (the
red blocks), the root node collects the intermediate results and decides upon the next
”best” wavefunction. Subsequently the root node broadcasts the new block to all other
processors usingMPI_Bcast()(the yellow parts).

2.2.3 Conclusion

The parallelAbinit application is round-based too. Yet this form of parallelization is
not as balanced as theHPL benchmark. Due to the additional gather part of the root
node, it is nearly always the last node which enters the collective broadcast operation.
For that reason all other nodes are waiting quite long before the actual transmission
phase begins. The broadcast messages in this setup contained always370, 560 double
precision values (the size is therefore a few megabytes) which are broadcasted to all
ranks in the MPI job.

Although the percentage of the consumed broadcast time regarding the total execu-
tion time of Abinit is very high, most of the time is wasted in the waiting phase of
MPI_Bcast() which cannot be shortened significantly by using another blocking broad-
cast algorithm. A nice advantage for the multicast implementation is the fact that the
root node is always the last node which joins the collective operation. Therefore an im-
mediately executedmulticastcan be expected to be most effective because no packets
need to be discarded at the receiver sides. On the other hand, this is also a drawback
because the intermediate phase of the broadcast has an extent of zero. The relatively

11see http://www.abinit.org

Christian Siebert 25

2 Existing Applications which use MPI_Bcast()

117.0 118.0 119.0 time (seconds) 123.0120.0

no
de

 2
no

de
 3

no
de

 4
no

de
 5

no
de

 6
no

de
 7

no
de

 8
no

de
 1

Computation MPI_Send() MPI_Recv() MPI_Bcast()

Figure 14:ABINIT running on 8 nodes

large message size and the small number of involved processes in the test scenario,
should make thefragmented chainalgorithm the best choice.

2.3 Statistical Properties and Assumptions

Most applications with different algorithms (and therefore behaviour) will have their
own unique ”broadcast fingerprint”. There cannot exist a non-adaptive general broad-
cast algorithm (NAGBA) which is always superior to all other broadcast algorithms in
all imaginable scenarios. Proof: take a fixed scenario with any regular application,
where regular means that when the application is running several times under the same
conditions, it will always behave exactly the same. Theoretically, all (maybe an infi-
nite quantity of) parameters (and options) can be investigated and their values can be
determined exactly (after an infinite amount of time). Once all parameter values are

26 Christian Siebert

2.3 Statistical Properties and Assumptions

known, a deterministic schedule can be created which results in the optimal broadcast
algorithm for exactly this application and scenario. TheNAGBAcan never be better
than the so constructed broadcast algorithm. Once we change only a single parame-
ter which is not known to theNAGBA, a better performing broadcast algorithm can be
constructed, which therefore beats theNAGBA.

Either we construct a special broadcast algorithm for a chosen application and sce-
nario, or we build a general-purpose broadcast algorithm which should hopefully per-
form well for a large class of applications and scenarios.

Figure1 from the introductory chapter shows how everyMPI_Bcast() operation can
be subdivided into three phases. As long as this operation is blocking, the first phase
can never be used to make any progress. The only solutions to this problem is to
adapt the application or to make the broadcast operation non-blocking, which helps
to postpone this task and execute succeeding operations earlier. A common approach
to achieve this is to introduce new collective operations with another semantic, which
work in a non-blocking way (see [HSB+06]). Another approach is to use the concept of
Memory-Mapped Messagesto maintain the semantic of a blocking behaviour and im-
plicitly achieve the advantages as if the operation would be non-blocking (see [SR06]).
Interestingly, even with a blocking broadcast it is nevertheless often possible to re-
duce the time consumption of this first phase by choosing a well-balanced broadcast
algorithm (examples are round-based application schemes where unbalanced broadcast
algorithms can lead to undesirable deferrals, which usually widen the first phase in the
consecutive round).

The intermediate broadcast phase should be used effectively by a broadcast algo-
rithm so that most of the work has been done already before the final phase even starts.
Multicast can be leveraged to achieve this effectivity. Because of its unreliable data-
gram transport, a message can be send to all nodes without knowing if they are ready
or not, whereas reliable communication channels need time consuming handshaking
operations (or additional buffering) during this phase. Themulticastapproach has two
extreme cases: If the root node is the first node which callsMPI_Bcast(), then an im-
mediately executedmulticastoperation would have no positive effect since the other
nodes are not waiting for the datagrams causing them (in most cases) to get lost. If the
root node is the last node joining the broadcast operation, then themulticastoperation
is most effective and will very likely reach all participating processes. The first ”bad”
case can be turned into a much better case by simply delaying themulticastoperation
by a certain amount of time. For regular applications we can always find a good delay
parameter so that the new broadcast algorithm achieves its optimal performance.

When the application behaviour is in a way unpredictable, all we can do is to as-
sume some random order in which the nodes callMPI_Bcast(). Assuming a uniform
distribution of the arrival time means that every node has the same probability to be
the first node calling the collective operation. On average we can expect that when the
root arrives, there are already(p− 1)/2 nodes waiting and(p− 1)/2 nodes will follow.
This yield is not too bad, because this implies that about halve of all nodes are ready to
receive themulticastdatagrams, even if themulticastoperation is started immediately.
These insights lead to the final algorithm which can be found in the next chapter.

Christian Siebert 27

3 Solution

3 Solution

Now that we know the advantages and disadvantages of themulticastfeature, as well
as common application usage patterns ofMPI_Bcast(), this section presents a reliable
algorithm to implement this collective operation which benefits from this knowledge.

3.1 Objective Target

The main goal of this thesis is to construct a broadcast algorithm, which performs es-
pecially well for larger communicators in conjunction with small and medium sized
messages. For large enough messages (with respect to the communicator size), we can
always fall back to thefragmented chainalgorithm, which can broadcast such mes-
sages very efficiently (see chapter1.5.2). If it is possible, the new broadcast operation
should scale independently of the number of involved processes.Multicast in combi-
nation with a clever way to restore the reliability should be the key to achieve this goal.
Moreover, the new broadcast algorithm should still perform decently when used with
real-world applications and not just with synthetical benchmarks.

3.2 Multicast-based Broadcast Algorithm

We propose a two-stage broadcast algorithm, where the first part uses the unreliable
multicastfeature to deliver the message to as many nodes as possible. The second part
of the algorithm is necessary to ensure that all nodes receive the broadcast message,
even in case when the first stage fails partly or completely. No node should be stalled
unnecessarily long, and instead finish the operation as fast as possible after correctly
receiving the message.

3.2.1 Stage 1: Unreliable Broadcast

The most common approach when usingmulticast is to wait until all processes are
ready to receive the datagrams. This can be achieved by using the synchronizing
MPI_Barrier() operation or something similar ([HACA00] suggests a binary tree gather
or a linear algorithm for synchronization before starting the multicast operation). The
big advantage is that no packets need to be discarded because of non-ready receivers.
On the other hand, there are two drawbacks: It can be proven that any barrier operation
needs at leastlog2 p rounds. This proof of optimality for the barrier operation can be
found in [HTM05]. So if we would use this operation in our algorithm, then we could
never achieve a broadcast performance which scales independently of the number of
nodes. The second disadvantage (when using an upstream synchronization operation)
would be the complete dissipation of the first two phases of the broadcast algorithm,
which does not make it ideal for real-world applications where those phases can con-
sume a significant amount of time (usually all parallel applications are - to some extent
- subject to the principle ofprocess skew, because of e.g. process scheduling or un-
foreseeable interrupts). Those reasons suggest that the new algorithm should not use a

28 Christian Siebert

3.2 Multicast-based Broadcast Algorithm

preceding synchronization operation. Nevertheless, this introduces a problem: When
an application causes every time the bad case, where the root node is the first node
which callsMPI_Bcast(), this first stage could never be useful for the broadcast oper-
ation. Therefore an additionaldelayparameter is introduced, which tells the root node
how long it should wait before initiating the multicast operation. The value of this pa-
rameter is zero per default which disables the sleep, or it can be positive to indicate the
number of microseconds the root node should wait at the beginning. This value should
be customizable by the user, and it might also be adjustable at runtime. However, the
second alternative comes with several problems. An approach could let each broad-
cast operation keep track of the relative number of lost datagrams and adjust thedelay
parameter as necessary for succeeding broadcasts. If there is too much datagram loss,
then thedelayparameter should be increased. Unfortunately, since these statistics are
collected locally for each process, a separate communication channel would be neces-
sary to transmit this information to the root node. Even if this problem is solved (the
next section will try to eliminate all ”backward” channels!), this information needs to
be processed by a clever (e.g. heuristic) function which returns a promising parameter
change value. This does not sound very hard, but imagine a round-based application
which uses two broadcasts per round. These two broadcasts might be completely in-
dependent and behave oppositional. It is for this reason, wherefore the current imple-
mentation does not try to adjust thisdelayparameter at runtime, and instead gives the
user the full control. Note that this parameter is usually only necessary for regular ap-
plications with the worst case behaviour. We have already shown that for a large class
of applications, a zero-value is acceptable.

The broadcast message might be split into several fragments to fit into the multi-
cast datagrams. A sequence number within each datagram helps to re-assemble the
fragments in the correct order. Since the broadcast operation does not synchronize, it
is possible that some nodes are still processing a certain broadcast, while some faster
nodes are already processing the following broadcast. To prevent any overtakings, a
broadcast identifier (BID) is assigned to each communicator and increases for every
broadcast operation. This identifier is also transmitted with the multicast datagram to
allow an receiver to detect any such overtakings. An optional data integrity check over
the whole multicast datagram (without theCRC field itself) can be used to identify
defective datagrams at the receiver side. This data integrity check is optional because
Ethernetframes usually have already their ownFrame Check Sequencefield. Therefore
this additional checking can be disabled by the user.

The data fields of a final multicast datagram used by theipmcimplementation can be
seen in figure15: It always starts with a3 byte Sequence Numberwhich indicates the
position of this fragment in the packed data buffer. Since the minimum payload size
of a multicast fragment (except the last one, which can carry a smaller payload - up to
a single byte) has been limited to256 byte, message up to4 GiB can be handled cor-
rectly. Far before reaching this limit, thefragmented chainalgorithm should take over
the work. The next field (BID) is an8 bit identifier for the broadcast. It is followed by
the actual fragment data which can have any size up to the specifiedpayloadboundary.
If the optional data integrity check is enabled, an additional4 byte trailer is appended

Christian Siebert 29

3 Solution

Number
Sequence BID CRC−32

Data (Payload)

Number
Sequence BID

Data (Payload)

Figure 15:structure of a final multicast datagram

to the datagram, which contains theCRC-32value of the whole multicast datagram
(including the header, but excluding theCRCfield itself). Note that no separate length
field is necessary because the length of the multicast datagram is returned by the corre-
sponding receive function. In conjunction with the sequence number, the message size
and the fragment size, it is possible to check each datagram for its correct length.

At the root node, the complete message is conveyed usingmulticastbefore starting
the second stage. This is important since it is very likely that we are still in the interme-
diate phase of the broadcast operation, and several nodes might not yet be available for
any reliable communication. A status bitmap can be used for each node, to keep track
of received and sent fragments. All non-root nodes initiate an asynchronous multicast
receive and update their local status bitmap for each correctly received fragment.

3.2.2 Stage 2: Reliable Broadcast Completion

It is always possible that several or all nodes have not received parts or the complete
broadcast message correctly during the first unreliable broadcast stage. On the other
hand, it is very likely that a large proportion (typically more than50% 12) of all nodes
are getting the data correctly.

This second stage ensures that those nodes which have not yet received the data
correctly, will accomplish this now. Many effort has been spent in the last years to
construct reliable multicast transport schemes. There are even several working groups
and research groups (e.g. in theIETF or IRTF). Nevertheless, they are usually designed
for wide area communication (i.e. Internet) and not for high-performance cluster com-
ponents. The common approach is to use some kind of acknowledgement scheme to
detect which nodes have failed: This can be a positive acknowledgement where cor-
rect delivery is confirmed with anACK and message loss is handled by time-out and
retransmission. A negative acknowledgement based scheme is also imaginable where
all nodes try to receive the fragments using time-outs and re-request the message from
the root when the reception fails. ThisNACK scheme would incur no penalty when all
nodes are receiving the message correctly. Except for the root node which has to ensure

12See the discussion about the statistical application behaviour, and the purpose of the introduceddelay
parameter.

30 Christian Siebert

3.2 Multicast-based Broadcast Algorithm

that all nodes have received the message. However, this scenario can only be guaran-
teed, if the root node is known to callMPI_Bcast() as the last node, or when a separate
synchronization operation is used. This reason and the always necessary time-out value
dissuades to use this scheme for a general purpose broadcast.

The positive ACK scheme performs bad because the root node needs to wait for all
ACKs and becomes a performance bottleneck (also referred to asACK implosion). The
authors of [JLP04] try to reduce these disadvantages slightly by introducing aco-root
scheme as well as several other workarounds likelazy ACKs.

Another big problem is the time-out value, which is necessary for all ACK schemes
and needs to be determined very carefully: A too small value can lead tofalse retrans-
missionsand a too large value gives bad performance anyways.

An ACK scheme might be efficient when the broadcast message is large enough to
cover all of the small message latencies as well as time-outs. Especially for small sized
messages, this overhead is too much.

The solution to all those problems is to simply avoid any kind of acknowledgement
scheme at all! To eliminate this expensive ”feedback”, we simply send the broadcast
message a second time using thefragmented chainalgorithm (see1.5.2). This means
that every node has a predefined predecessor and successor in a virtual ring topology.
As soon as a node owns a correct fragment of the broadcast message, it sends it in
a reliable way to its direct successor in the virtual ring topology (the root node does
this too after completing the first stage). Whether the fragment has been received by
multicast or by reliable send does not matter. Of course, the last node does not need
to send the message to the root node. Each node posts a reliable (but asynchronous)
receive for each fragment where the source node is the direct predecessor in the virtual
ring topology. The root node does not need to receive anything because it already holds
the complete message. Therefore the virtual distribution topology becomes effectively
a chain and the algorithm becomes the already known chain broadcast. If a node obtains
a fragment by the multicast receive request, then the reliable receive request can be
cancelled or ignored.

At first sight, it might seem to be wasteful to use the chain broadcast for the second
stage. When many consecutive nodes fail to get the message via multicast, it will
take many ”penalty” rounds until they finally get the message via reliable send. A
tree topology would drastically shorten the number of rounds in this case. There are
at least two reasons for preferring the chain algorithm: An intermediate node in the
chain algorithm only sends a fragment once, whereas in a tree algorithm it would send
a fragment several times. This would lead to an undesirable increase of the broadcast
duration per node. The second reason is the usually small chance that a node does
not get the message via multicast. For a given failure probabilityp, the chance thatn
nodes fail in a row ispn and therefore this result converges exponentially towards the
zero value. Usually this probability can be assumed to be at most50% (see statistical
discussion in2.3), therefore the expected number of reliable communication rounds is
(if X represents all possible numbers of necessary rounds from0 to commsize − 1,
thenpi is the probability thatX = xi):

Christian Siebert 31

3 Solution

E(X) =
n∑

i=1

xi · pi = 0 · 1
2

+ 1 · 1

22
+ 2 · 1

23
+ . . . + (n− 1) · 1

2n

E(X) =
n∑

i=1

(i− 1) · 1

2i
lim

n→∞

n∑
i=1

(i− 1) · 1

2i
= 1.0

This means that even for extreme large communicators (n → ∞), the expected
number of reliable communication rounds per node is less than or equal to1.0, when
the failure probability is at most50%. In simple words: yes, it is possible that a node
needs to wait many rounds until it gets the data. However, the probability that such a
bad case occurs is negligible. In practice, almost all nodes will have to wait at most a
few communication rounds before getting their data.

A nice side effect of using thechain algorithm in the second broadcast stage is,
that for larger messages we could simply drop the multicast stage (this means100%
datagram loss!) and reach the highest performance of thefragmented chainbroadcast.

3.3 A collector to create a nearly-true random seed

In the next section, a good pseudo-random number generator will be presented. Since
it is still a generator, it needs some kind of initialization. A proper initialization, es-
pecially with true random data, is necessary to minimize the chance of generating the
same output twice. Unfortunately, computers are deterministic machines which can’t
really produce true random data. A good workaround for this problem is the usage of
statistic and timing data which is often influenced by other causes like human interac-
tion or small timing derivations in the hardware level. For our purpose, it is enough
to create a collector that gathers only a few bits of good random data. This is enough
to get different generator seeds for each new initialization with a high probability. The
portable implementation uses a complex data structure and gathers the results from
several different functions:

• MPI_Get_processor_name()is not really random, but at least distinguishes be-
tween different MPI processes.

• MPI_Wtime()is a high-resolution timer and therefore a much better source of
randomness if it is called rarely.

• /dev/urandomis a non-blocking device in Linux which outputs quite good ran-
dom data (it is only used if it is available).13

• tmpnam()should return different strings each time it is called (up toTMP_MAX).
So even in the unlikely case that two MPI processes on a single node are calling

13The /dev/randomdevice usually blocks when the entropy pool is empty. Cluster nodes (like servers)
are often short of entropy sources because there is no human interaction. Therefore the use of the
/dev/randomdevice - contrary to the use of/dev/urandom- is not recommended.

32 Christian Siebert

3.4 Blum-Blum-Shub pseudorandom number generator

this collector at the same time (e.g. on a dual core machine), this source should
lead to a different seed.

It is easy to add more sources to this collector. This subset however should be enough
to get a decent seed value for our purpose.

Finally, after collecting all those bytes together, they will be compressed down to64
bit using a hash function. The result will be used to seed the pseudo-random number
generator which will be explained in the next section.

3.4 Blum-Blum-Shub pseudorandom number generator

It would be best to collect enough true random data to select a proper multicast group
and a corresponding port number. This would minimize the chance that several commu-
nicators (even in different and independent MPI entities) choose colliding identifiers.
Unfortunately, the total amount of entropy that will be collected by our portable and
non-blocking implementation can drop to just a few bits of true random data in the
worst case. For a32 bit IPv4 address and a16 bit port number, we need around48 bit
(a bit less because we do not accept the full range) of good random data (for an IPv6
address even more). A special kind of stretching function should be used to fill this gap
(sometimes calledamplifiersof randomness). It takes the collected data and produces a
large enough stream of pseudorandom data. If there are two different sets of collected
data which differ only by at least one bit (e.g. influenced by the true random bit), then
an optimal function should return two pseudorandom data streams where around halve
of all bits are different.

On way to achieve this objective, is to use a so-called hash function which takes
an arbitrary amount of data (i.e. the collected data in our case) and produces a fixed-
length output. Possible candidates, with the desired property that a single bit changes
approximately halve of the output bits, are cryptographic hash functions likeMD5 or
SHA-1.

Another solution is a pseudorandom number generator, which will be seeded with the
collected data. Such a generator would be able to produce any amount of pseudorandom
data instead of a fixed amount, and in addition it often requires a much less complex
implementation. Many low quality pseudorandom number generators exist (e.g.Linear
congruential generatorsimplemented with low precision integers) which on the other
hand have a high amount of throughput. Since we need only a relatively small amount
of random data (e.g. the 48 bits for IPv4), I suggest to use a slightly softened version
of a cryptographically strong pseudorandom number generator which gives some kind
of guarantee for the high quality of the generated output.

Blum-Blum-Shub(proposed in 1986 by Lenore Blum, Manuel Blum and Michael
Shub [LBS86]) is such a pseudorandom number generator. The ingredients for this
generator are two large prime numbersp andq which should be congruent to3 (mod 4).
A small value forgcd(ϕ(p − 1), ϕ(q − 1)) ensures that the cycle length is large. It is
initialized with a seedx0 which can be any quadratic residue wheregcd(x0, M) = 1.

Christian Siebert 33

3 Solution

To generate a single output bit, this generator updates an internal state according to

xn+1 = x2
n mod M

whereM is the product of the two prime numbersp andq, and returns the bit parity of
the new state. The resulting sequence repeats after a period ofλ(λ(N)).

In Annex E of ISO/IEC 9899:1990 (often called ANSI C standard), anunsigned
long datatype is guaranteed to hold at least32 bits (in other words it needs to be able
to represent numbers ranging from0 to 4, 294, 967, 295). Since this might be too small
for our purpose, I suggest to use at least two such words and implement a minimal big
integer package. To remain able to handle possible overflows, we could simply use 31
bit of each word, allowing us to calculate with integers of 62 bit precision.

A valid BBS modulus of this size is

M = 262−63 = 4, 611, 686, 018, 427, 387, 841 = 64, 129, 007·71, 912, 637, 263 = p·q

becausep ≡ 3 (mod 4) andq ≡ 3 (mod 4). It is also a good modulus with a large cycle
length of nearly261, becausep−1 = 2∗32064503, q−1 = 2∗223∗1223∗131839 and
thereforegcd(ϕ(p − 1), ϕ(q − 1)) = 2. So even if the generator produces100 million
bits per second (a reasonable assumption for a modern CPU), then the first repetition
can be expected after731 years of continuous processing time.

A native implementation on a 64-bit architecture (using the ”diminished radix” tech-
nique instead of real ”div’s” to reducex2 moduloM 14) achieves an output rate of more
than8 MiB per second (tested on anAMD Opteron 244 with 1.8 GHz).

The following algorithm to calculatex2 mod M will be used to ensure portability:

r← 0
a← x
b← x
while (b 6= 0) do

if is_even(b)] a · (2 · b’) mod M = (2 · a) · b’ mod M
a← 2 · a mod M
b← b >> 1

else] a · (2 · b’ + 1) mod M = ((2 · a) · b’ + a) mod M
r← (r + a) mod M
a← 2 · a mod M
b← (b - 1) >> 1

return r

Figure 16:algorithm to calculatex2 mod M

Finally, instead of looping through all62 bits to get the parity,6 XOR and5 SHIFT
operations suffice to accomplish this task.

14I’d like to thankTom St Denisfor this useful tip (hint:(h · 262 + l) mod M = (h · 63 + l) mod M).

34 Christian Siebert

3.5 Implementation for Open MPI

3.5 Implementation for Open MPI

All ingredients for the new broadcast implementation have been prepared in the pre-
vious chapters. This section will describe in more detail how these components are
glued together to form a suitable implementation forOpen MPI. A first prototype on
top ofMPI has been created first, to prove that the new algorithm is working in practice.
This prototypical implementation is therefore usable with everyMPI library, and not
restricted solely toOpen MPI. Subsequently, thebasiccomponent ofOpen MPIhad
been used as a starting framework, to integrate the functionality of the prototype into
the component framework ofOpen MPI. The name of the new component is ”ipmc”
which stands forIP MultiCast.

The final source code package of the new implementation (which is located under
openmpi-x.y.z/ompi/mca/coll/.) contains the following files:

• ipmc/coll_ipmc_bcast.c

• ipmc/coll_ipmc_component.c

• ipmc/coll_ipmc.h

• ipmc/coll_ipmc_module.c

• ipmc/coll_ipmc_util_crc.c

• ipmc/coll_ipmc_util.h

• ipmc/coll_ipmc_util_ipv4.c

• ipmc/coll_ipmc_util_oob.c

• ipmc/coll_ipmc_util_random.c

• ipmc/configure.params

• ipmc/Makefile.am

• ipmc/README

The ”README” contains a textual description of the package, some installation
instructions, and an explanation of all parameters which can be changed by the user
to influence the behaviour (and performance) of theipmc implementation. Currently
there are the following seven parameters:

• coll_ipmc_priority The collective component with the highest priority will be
used inOpen MPI. This parameter describes the priority of theipmccomponent.
The default value is40, which makes it a bit higher than the priority of thetuned
component, so that it will immediately get active after an installation.

Christian Siebert 35

3 Solution

• coll_ipmc_crossover_nodesFor small communicators, theipmcbroadcast can
be slower than an ”usual” broadcast algorithm on top of point-to-point commu-
nication. Exactly which broadcast algorithm is the best for small communica-
tors depends on the scenario (see also chapter1.5). The current implementation
falls back to the improved linear broadcast because it is usually more suited to
use the intermediate phase of the broadcast operation than the other algorithms.
This crossover value determines the minimum communicator size at which the
multicast-based algorithm will be used. Although the theoretical value for the
optimal crossover value is approximately8 nodes for synthetical benchmarks,
the default value is4 because applications are usually subject to the principle of
process skew.

• coll_ipmc_crossover_sizeFor very large messages, thefragmented chainbroad-
cast is the best choice. This crossover value determines the maximum size of a
message at which the multicast-based broadcast will be used. The default value is
1048576, which means that all message above1 MiB will be broadcasted using
the fragmented chainalgorithm. Note: These two boundary values are in reality
both dependent on the message size and the communicator size. One possibility
would be to estimate the running time of all three broadcast algorithms with e.g.
theLogGPmodel. On the other hand, this would need an exact determination of
all LogGPparameters, and would still ignore theprocess skewwhich is hard to
determine in advance. These two crossover values are easy to understand for all
users and therefore allow a much better user control over the choice of the right
algorithm for the user’s application.

• coll_ipmc_fragment_size SinceIP packets as well as datagrams itself have a
limited maximum size (usually65, 535 andMTU=1, 500 byte), this parameter
prescribes the maximum payload size of anIP multicastfragment for this imple-
mentation. Measurements on theCLiC cluster resulted in an optimal fragment
size of4096 byte, which is therefore chosen to be the default value. The mini-
mum value of this parameter is limited to256 byte.

• coll_ipmc_root_wait_time If the root node of a broadcast is often the first node
enteringMPI_Bcast(), then it is possible that most (or even all) multicast data-
grams will get lost. With this parameter you can advice the root node to wait a
certain number of microseconds (1 µs = 10−6 seconds) before issuing the mul-
ticast operation. The default value is0, which means that the root node never
waits (i.e. it starts the multicast as soon as possible).

• coll_ipmc_use_crc_checkingAlthough it is normally not necessary, this switch
can be used to force an additionalCRC-32data integrity check for each multicast
datagram. Corrupt data packets can be identified with high probability and will
be dismissed. A value of0 deactivates this check, and any other value enables
this additional checking. It is activated per default. If you are sure that no cor-
rupt datagrams will be delivered, you can turn this checking off and get a small

36 Christian Siebert

3.5 Implementation for Open MPI

additional performance gain (because multicast datagrams are4 byte shorter and
some processor cycles are saved). On the other hand, we have noticed no signifi-
cant performance penalty onFast Ethernet(only a0.83% degradion for16 KiB
messages).

• coll_ipmc_print_statistics This switch can be used to print some useful statis-
tics every time a communicator is destroyed, like the number of executedMPI_Bcast()
operations and multicast datagram information. Here you can find out how many
datagrams were sent or received, and how many of them were useful for the
broadcast or rejected. Note: These statistics are generated for each involved pro-
cess. A non-zero value activates this output, which is disabled per default.

The files ”configure.params” and ”Makefile.am” are used by the script ”autogen.sh”
to produce the ”configure” script in the top level directory and the template file ”Make-
file.in”, which are later used for the usual build procedure (”configure” and ”make”).

The newcomponentuses a whole bunch of utility functions which are specified in
the header file ”coll_ipmc_util.h”.

”coll_ipmc_util_crc.c” contains the functioncoll_ipmc_util_calc_crc() which is used
to calculate a cyclic-redundancy-check value (CRC-32, see also [Deu96]) for a given
buffer. Open MPIcomes with an own CRC calculation function. Unfortunately, this
function is currently buggy and does not work properly. Once those bugs (e.g. the
non-existing support for heterogeneous systems) are removed, this function could be
replaced. The typical way to speed up CRC calculations is to use lookup tables. A sec-
ond function is used to create this lookup table (e.g. during the module initialization).

”coll_ipmc_util_random.c” is a bit more extensive and contains the entropy gather
function coll_ipmc_util_random_gather(), which can be used to seed the pseudoran-
dom number generator state withcoll_ipmc_util_random_seed(). Once this has been
done, it is possible to extract an arbitrary amount of pseudorandom data in form of
bits (coll_ipmc_util_random_get_bit) or in form of integers between a specified range
(coll_ipmc_util_random_get_ulong). How the gatherer and the generator work, has
been described already in chapter3.3and3.4.

The next larger collection of utility functions covers all the network related function-
ality and can be found in ”coll_ipmc_util_ipv4.c”. Note that theipv4 suffix as well as
the chosen form of all function has been introduced with caution, to make it easier to
switch to IPv6, or even a completely different network interface. This file exports a
function to find an unused multicast group and port number, which can be assigned to a
new communicator. A two-layered approach is intended here: this function should first
try to contact aMADCAPserver (this is not yet implemented), and alternatively choose
the values at random (the already mentioned utility functions from the random package
are used here). Another (currently stub) function can be used to free such allocated
values when they are not necessary anymore (e.g. when a communicator is destroyed).
Then there are functions to create and close a socket which is suitable forIP multicast.
Two separate preparation functions exist to make a receive socket listen to a specific
multicast group and to set a bunch of options for a given send socket. Finally there are

Christian Siebert 37

3 Solution

two functions to send and receive messages using these sockets. It should be noted that
the receive function is non-blocking and can therefore be used in a polling way.

File ”coll_ipmc_util_oob.c” has been added lately to solve a problem with commu-
nication during the communicator initialization phase. Originally it was intended to
use collective operations from thebasicmodule for setup communication. In current
versions ofOpen MPI, this is not possible anymore (it fails for larger communicators).
As long as this possibility is not re-established, this workaround uses the slower but
more stableOOBcommunication. The original (much smaller) code fragments are still
contained in the code and can be reactivated easily. Two point-to-point functions are
contained within this file:mca_coll_ipmc_oob_sendto() sends a small message to the
specified destination rank, andmca_coll_ipmc_oob_recvfrom() receives a small mes-
sage from a specified source rank. On top of these function two collective functions
have been implemented: a simple broadcast function and a simple reduce function,
both using a binary tree distribution topology. Those functions are only used during the
initialization phase of a communicator and never for the final broadcast!

”coll_ipmc_component.c” contains the functionality to open the newipmc compo-
nent at startup. All user-visible parameters are initialized and registered here.

The query, initialization and finalization functions for our component are located in
the file ”coll_ipmc_module.c”. Thequeryfunction checks if a given communicator is
an intra-node communicator, and if it contains at least twoMPI processes. Furthermore
it checks whether or notIP multicast is potentially working. If at least one of those
requirements is not fulfilled, then this function returns−1, indicating that it wants to
be rejected (another collective component will than be used). An elaboratelymulticast
test would be quite expensive. Therefore only a quick test has been implemented.
The initialization function prepares several (sometimes time-consuming) things that
are used instantly in laterMPI_Bcast() calls. The special rank]0 calls the function to
get a free multicast group and port number, and broadcasts the results to all other nodes.
Afterwards all nodes create two multicast sockets (one for sending and a second one
for receiving), and they try to join the given group as well as bind the receiving socket
to the unique port number. Finally, anMPI_Allreduce() similar function is used to find
out if all nodes could be initialized correctly or if one or more nodes failed to do this.
Note that the two provisional collective functions are uses exclusively for this purpose.
If all nodes are initialized successfully, a proper collective module is returned to the
Open MPIinstance. If something on any node went wrong, the complete initialization
procedure is tried some more times or finally given up. Thefinalizefunction releases
the allocated multicast group and port number, frees all allocated resources and prints
some useful statistics if the user has enabled this feature.

Last but not least, the file ”coll_ipmc_bcast.c” contains three different broadcast im-
plementations:

1. the fragmented chain algorithm,

2. the linear broadcast algorithm, and

3. the multicast-based algorithm.

38 Christian Siebert

3.5 Implementation for Open MPI

The first two algorithms are derived from already existing implementations in thetuned
andbasiccomponent. Therefore they need not to be explained in detail, contrary to the
new multicast-based broadcast algorithm. The chain algorithm tries to split the message
into several fragments (using thecountargument and the size of the specified datatype)
before sending them in a virtual chain topology. The linear algorithm lets the root node
initialize p − 1 non-blocking send operations which are matched by a single receive
operation on each non-root node. The root node than waits for the completion of all
operations with a call toompi_request_wait_all().

The new multicast-based broadcast algorithm first determines the size (or at least an
upper bound) of the raw message usingMPI_Pack_size(), and allocates a temporary
buffer for this packed message as well as a bitmap holding the current status of each
fragment. This is acceptable because we are usually only sending small or medium
sized messages with this broadcast algorithm (seecoll_ipmc_crossover_sizeparame-
ter). If thecoll_ipmc_root_wait_timeparameter is larger than zero, then the root node
waits this number of microseconds. After this optional delay, it packs the original
message into the packed buffer. Now it owns each fragment which is indicated by up-
dating the status bitmap. This message is now conveyed fragment-wise by sending it
in repackaged datagrams to the multicast group and port number which are assigned to
this communicator. All nodes enter the second stage of the broadcast algorithm where
they receive fragments (either reliable or unreliable) and forward them in a reliable way
within a virtual chain topology. Two reliable requests are used to send and receive the
fragments as necessary. The status bitmap helps to remember which fragments are

1. already owned by this rank,

2. already received using the reliable channel, and

3. already sent using the reliable channel.

A fragment needs to be owned by a rank before it can be forwarded to its direct succes-
sor. One reliable receive requests is posted for each fragment which is not yet received
using the reliable communication channel. If a multicast datagram is received, then its
sequence number, broadcast identifier and optional checksum value will be extracted
and checked for validness. The result will be noted using the existing counters for re-
ceived, useful and rejected datagrams. A correct fragment will be copied into the raw
message buffer and the status of this fragment is updated. When all fragments have
been received and sent using the reliable channel, this broadcast stage completes. Fi-
nally, each non-root node unpacks this raw message into the user-supplied data buffer.
After deallocating the temporary buffer, the multicast-based broadcast functions returns
to the caller.

When the application invokesMPI_Bcast(), the functionmca_coll_ipmc_bcast() will
be called. This function decides at runtime upon the current scenario (message size,
number of processes and user parameters) which of the three broadcast algorithms
should be used. If the message is larger than the specifiedcoll_ipmc_crossover_size
parameter, then thefragmented chainalgorithm will be called. If this is not the case

Christian Siebert 39

4 Practical Results

and the communicator contains less thancoll_ipmc_crossover_nodesnodes, then the
linear broadcast implementation will be called. Finally, if the message is not too large
and the communicator is not too small, the multicast-based broadcast algorithm will be
used.

4 Practical Results

This chapter will compare the new broadcast implementation with existing implemen-
tations. At the beginning, the environment (hardware and software) on which the nu-
merous tests and measurements have been executed, will be presented. A method for
measuring the broadcast duration separately for each node will be explained, before
showing microbenchmark results for large (up to342 nodes) and smaller communica-
tors. Finally, the effect on the already introduced parallel applications will be analysed.

4.1 Benchmark Environment

Mainly, two different clusters have been used during the development of the newipmc
broadcast implementation. Both clusters belong to the equipment of theChemnitz Uni-
versity of Technology. All presented measurement results in this thesis have been ob-
tained using those environments. To ensure repeatability of those results, all tests have
been executed at least two times, to prove that they reproduced similar results at least
once.

4.1.1 FRIZ

The smaller test system is a computer pool of the faculty computing center (in German:
Fakultätsrechen- und Informationszentrum- FRIZ). A subset of all available nodes has
been grouped to form a cluster of16 nodes, each equipped with

• Intel Celeron 2.0 GHz processor

• 512 MiB main memory

• SUSELinux 9.3 (kernel2.6.11)

• GCC3.3.5 andG950.90!

All nodes are connected with a singleFast Ethernetswitch.

4.1.2 CLiC

The larger system, calledCLiC (which stands forChemnitzer Linux Cluster), is a clus-
ter of the university computing center. Since the year2000, it is the largestBeowulf-
style cluster atChemnitz University of Technology. It will be soon replaced with a
modern cluster of approximately the same number of nodes. Each of the528 nodes is
equipped with

40 Christian Siebert

4.2 Microbenchmark Results

• Intel Pentium III800 MHz processor

• 512 MiB main memory

• Red HatLinux 7.3 (kernel2.4.18)

• GCC2.96 andGNU Fortran0.5.26

The communication network contains a single largeFast Ethernetswitch (Extreme
Black Diamond, with 6 ? 96-port modules), which is directly connected with all nodes.
A second service network exists, but has been explicitly disabled for each tests using
the

--mca btl_tcp_if_include eth1

parameter (this instructsOpen MPIto use only the communication network).

4.2 Microbenchmark Results

This section presents a synthetical microbenchmark for measuring the duration of the
MPI_Bcast() operation. It investigates the performance of the used broadcast imple-
mentation for different message sizes as well as a various number of processes per
communicator. The results show the scaling behaviour and can be used to estimate
the performance in other scenarios (e.g. with real-world applications). However, this
microbenchmark assumes that all nodes call nearly at the same timeMPI_Bcast().

Especially for all measurements with a very small timing (i.e. small message size
in our case), it is good to repeat the measurement several times. There are often some
”runaways” which need much longer to complete (caused e.g. by additional or unex-
pected events like interrupts). Therefore many benchmarks output the minimum mea-
sured time. Though if you analyse an aggregation of measurements by plotting them
in the sorted order, then you will notice that the minimum time is in most cases a ”run-
away” as well, whereas typically more than90% of all measurements are very similar.
One could use the average value over all measurements, but a single extreme ”runaway”
is sufficient to nullify the result. All in all, I suggest to use the median value (the value
which is located in the middle of all sorted values), which represents the duration that
can be expected.

4.2.1 Measuring Broadcast/Multicast Performance

Many collective benchmarks measure only the maximum duration of a given operation.
For example [FK99] (section 5.2.1) suggests to callMPI_Bcast() several times after an
initial synchronization point (MPI_Barrier) and finally extract the maximum measured
time duration15:
15The original suggested algorithm has been slightly modified (For example: The MPI standard does

not guarantee thatMPI_Wtime() is globally synchronized.)

Christian Siebert 41

4 Practical Results

. . .
MPI_Bar r ie r (comm) ;
to tT ime = −MPI_Wtime () ;
f o r (i = 0 ; i < NUMREPEATS ; i ++) {

MPI_Bcast (da ta , len , MPI_BYTE , roo t , comm) ;
}
to tT ime + = MPI_Wtime () ;
MPI_Reduce(& to tT ime , & maxTotTime , 1 ,

MPI_DOUBLE , MPI_MAX , roo t , comm) ;
i f (myrank = = r o o t) {

maxTime = maxTotTime / NUMREPEATS;
}
. . .

Listing 5:algorithm to measure the maximum MPI_Bcast() duration

Unfortunately, this method for measuring the maximum broadcast duration can re-
port misleading results: Imagine the normalchain algorithmwhich has a pretty bad
worst case running time (scales linearly with the communicator size). If you try to mea-
sure this algorithm with the above suggested method, then you will implicitly introduce
a pipelining effect and get a ”perfect running time” when the number of loops is large
enough. [PPY06] suggests a similar technique to measure the broadcast performance,
and adds anMPI_Barrier() operation after eachMPI_Bcast() to prevent this pipelined
communication between iterations. The drawback of this workaround is that this newly
introduced operation can increase the measured durations dramatically, especially for
smaller message sizes (for this reason the authors measured only with message sizes
above8 KiB and ignored the barrier overhead).

Therefore I suggest another and more comprehensive broadcast benchmark, which
measures the broadcast completion time for each node separately. Slightly modified,
this benchmark can also be used to measure multicast performance. This benchmark
has the advantage that all performance numbers (like minimum, average or maximum)
can be easily derived from the results. It is even sometimes possible to reconstruct
the exact distribution topology (e.g. binary tree) using those results. For a given sce-
nario (predefined communicator and message size), a memory block is copied in a
ping-pongfashion from one buffer at the root node over the network, back into a sec-
ond buffer at the root node. The forward transfer (ping) will be accomplished by the
MPI_Bcast()operation, and the backward transfer (pong) will be accomplished by a
simple point-to-point operation, which is only initiated by a predefined target node. It
is not possible to measure all target times at once using aping-pongscheme, because
the root node would be a bottleneck for all incomingpongs. A special synchronization
procedure (MPI_Barrier() often fulfills the needs - but this depends on the underlying
barrier implementation) should take care that the root node is the last node entering
the succeedingMPI_Bcast() operation and all other nodes are already waiting therein.
The accuracy can be further improved by usingMPI’s ready-mode send for thepong
operation, which - especially for larger message sizes - prevents the usage of the more

42 Christian Siebert

4.2 Microbenchmark Results

expensive and often slightly less predictablerendezvous protocol, and uses always the
eager protocolinstead. Finally, a separate (ready-mode)ping-pongto each node is ne-
cessary to obtain the duration of a thepongoperation, which is then subtracted from
theMPI_Bcast()-pongtime to get the rawMPI_Bcast() duration per node.

root node target node non−target node(s)

Irecv()

t1 = Wtime() Bcast()Bcast()
Bcast()

Wait()

Irecv()

Rsend()

t2 = Wtime()

t3 = Wtime()

Irecv()

Wait()

Rsend()

Rsend()

Wait()
t4 = Wtime()

"Bcast ping"

"pong"

"ping"

"pong"

synchronize

synchronize

t2 − t1

t4 − t3

Figure 17:a single round to measure the broadcast duration per node

The complete broadcast benchmark runs over different communicator sizes (using
MPI_Comm_split) and different message sizes. For each target node, a single measure
round - according to figure17 - is performed. Since the twoMPI_Rsend() operations
in the second part are very similar (they are just working in the opposite direction),
it can be assumed that they need the same amount of time (i.e.t(ping) = t(pong)).
Therefore, halving theping-pongduration (t4−t3) reveals thepongduration, which can
then be subtracted from theBcast ping-pongduration to get the raw broadcast duration
to this target node. The separation into two buffers at the root node allows checking
for transmission errors (e.g. in case ofmulticastor a newMPI implementation) and
permits fine control over the wanted cache behaviour.

The target node can be predefined in case of a reliable broadcast (e.g.MPI_Bcast),
or it can be specified within the message (e.g. when unreliable multicast is used). The
root node should usetime-outsin the latter case to avoid stagnation when datagrams
are lost.

Christian Siebert 43

4 Practical Results

4.2.2 Results on Large Communicators

The performance chart in figure18 shows the average broadcast time per node, when
the number of nodes increases up to342 nodes. The measurements have been taken
on theCLiC cluster, and the results compare the newipmcbroadcast with the original
broadcast implementation.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 50 100 150 200 250 300 350

tim
e

[s
ec

on
ds

]

number of MPI processes

Average MPI Broadcast Time Per Node (OpenMPI r11630, CLiC)

original MPI Bcast (64 KiB)
original MPI Bcast (8 KiB)

original MPI Bcast (16 byte)
ipmc MPI Bcast (64 KiB)
ipmc MPI Bcast (8 KiB)

ipmc MPI Bcast (16 byte)

Figure 18:comparison of original and ipmc broadcast up to342 nodes

Whereas point-to-point implementations get slower when the number ofMPI pro-
cesses increases, the almost horizontal curves of the new implementation show that -
in practice - the new broadcast implementation scales independently of the number of
involved processes. For example: a broadcast of a64 KiB message using the original
MPI_Bcast() implementation needs only0.0068 seconds per node when only2 nodes
are involved, but takes0.0339 seconds per node when332 nodes are involved (this is
a performance loss by a factor of4.985!). The new implementation needs0.0134 sec-
onds per node when only2 nodes are involved, and needs0.0136 seconds per node
when332 nodes are involved! A broadcast of an8 KiB message to342 nodes is by a
factor of4.896 slower (0.002125 seconds versus0.010405 seconds) when the original
implementation16 is used.

16The original broadcast implementation is selected upon several criteria within thetunedcomponent of
Open MPI. In the presented scenario (small to medium sized messages and large communicators), it
uses thebinomial treealgorithm.

44 Christian Siebert

4.2 Microbenchmark Results

Another advantageous aspect of the new broadcast is the fact that it is very well bal-
anced. Figure19 shows the broadcast duration for each of the342 nodes. Whereas
the originalMPI_Bcast() implementation with a64 KiB message needs a time which
varies between0.0126 seconds and more than0.04 seconds, the multicast-based imple-
mentation needs a very similar time on each node (between0.0123 seconds and0.0145
seconds). This means a process skew of up to3.18 times the broadcast duration when
the original implementation is used, whereas the process skew of the new implementa-
tion is only up to1.17 times the broadcast duration.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 50 100 150 200 250 300 350

tim
e

[s
ec

on
ds

]

MPI rank (target node)

Average MPI Broadcast Time For Each Of 342 Nodes (OpenMPI r11630, CLiC)

original MPI Bcast (64 KiB)
ipmc MPI Bcast (64 KiB)

original MPI Bcast (8 KiB)
ipmc MPI Bcast (8 KiB)

original MPI Bcast (16 byte)
ipmc MPI Bcast (16 byte)

Figure 19:comparison of original and ipmc broadcast with342 nodes

Conclusion: The new multicast-based implementation ofMPI_Bcast() achieves a
nearly constant running time for any given message size17. The term ”constant” has a
double meaning here: On the one hand it scales nearly independently of the communi-
cator size, and on the other hand for any given communicator size, all nodes need the
same amount of time to complete the broadcast operation.

17The broadcast of larger messages is even more ”constant” through to the positive effect of the frag-
mented chain algorithm in the second stage of the algorithm (even in the theoretical worst case where
the multicast stage fails completely!).

Christian Siebert 45

4 Practical Results

4.2.3 Results on Smaller Communicators

In the last section it was shown that the new broadcast implementation emerges victo-
rious, as soon as the number of involved processes crosses a certain boundary. Figure
20compares the differentMPI_Bcast() performance scalings again (with smaller com-
municator sizes) to find this decision boundary.

 0.001

 0.01

 0.1

 5 10 15 20 25 30

lo
g(

tim
e)

 [s
ec

on
ds

]

number of MPI processes

Average MPI Broadcast Time Per Node (CLiC)

LAM/MPI (1 MiB)
MPICH2 (1 MiB)

OpenMPI (1 MiB)
+ ipmc (1 MiB)

LAM/MPI (64 KiB)
MPICH2 (64 KiB)

OpenMPI (64 KiB)
+ ipmc (64 KiB)

LAM/MPI (4 KiB)
MPICH2 (4 KiB)

OpenMPI (4 KiB)
+ ipmc (4 KiB)

LAM/MPI (256 byte)
MPICH2 (256 byte)

OpenMPI (256 byte)
+ ipmc (256 byte)

Figure 20:differentMPI_Bcast() with respect to smaller node numbers

Note that this performance chart has a logarithmic time scale, so that the broad-
cast duration can be better distinguished for different message sizes (1 MiB, 64 KiB,
4 KiB and256 byte). The most recent versions of three well-known open-sourceMPI
implementations have been tested:

• LAM/MPI - one of the ”predecessors” ofOpen MPI- version 7.1.2

• MPICH2 - from theArgonne National Laboratory Group- version 1.0.4p1

• Open MPI- with and without the newipmccomponent - SVN r11682

The top-most curves show the broadcast duration of a1 MiB message. Because
LAM/MPI never uses any fragmentation, the duration grows rapidly when the number
of nodes increases (according to thebinomial treealgorithm). Both other libraries,
Open MPI as well asMPICH2, use fragmentation when the message size is large
enough. Unfortunately, some people seem to believe that fragmentation over tree

46 Christian Siebert

4.3 Application Results

topologies or meshes can be efficient for large message sizes (see e.g. [WG95] or
[Trä04]). However, thefragmented chainalgorithm is by far the most efficient broad-
cast algorithm for large enough messages (section "Fragmented Tree vs. Fragmented
Chain" in the appendix should clarify this if there are still any doubts).Open MPIis the
only library of those three which uses thefragmented chainalgorithm for large mes-
sages, and is therefore up to a factor of two faster thanMPICH2, which uses implicit
fragmentation, using thescatter-allgatherbroadcast. The currentipmcimplementation
is also not suited for such large messages, because it effectively sends the message
twice: one time with unreliable multicast and a second time with reliable point-to-
point communication. There are possibilities to make theimpc implementation faster
for larger messages (e.g. falling back to anACK scheme), but it is better to find the
crossover point and fall back to thefragmented chainalgorithm.

Although both libraries are still using fragmentation for64 KiB messages, theipmc
implementation outperforms their broadcasts starting with4 nodes. At4 KiB there is
no fragmentation anymore, and all threeMPI libraries fall back to a tree distribution
scheme, which performs always worse than theipmc broadcast, when the number of
processes crosses the8 node boundary.LAM/MPI, which initially achieves only poor
broadcast performance for large messages (because it does not fragment), is always
better than its opponents for smaller message sizes. In this example scenario, a6 node
boundary would be sufficient forOpen MPIand this message size.

For very small messages, the currentipmc implementation might need a bit more
tuning to achieve the theoretical crossover point of8 nodes18 and is therefore slightly
outperformed at this point byLAM/MPI, which gets slower not before15 nodes. How-
ever, forOpen MPI and MPICH2 this theoretical boundary holds, even for smaller
message sizes (tested with e.g.16 byte).

Conclusion: This section has verified that the newMPI_Bcast() implementation is
almost always the fastest of the available broadcast algorithms for all small and medium
sized messages, when the communicator size is larger than8 nodes. For as little as
20 nodes, theipmc broadcast is usually at least31.92% faster than the best available
point-to-point broadcast (LAM/MPI 4 KiB needs0.002046 seconds andipmc4 KiB
needs0.001393 seconds). These results also strengthen the usage of two threshold
values: One threshold value to switch to one of the simple broadcast implementations
when the communicator size is very small, and another threshold value to switch to
the fragmented chainalgorithm once the message size is large enough. Both threshold
values mainly depend on the message size and the communicator size.

4.3 Application Results

Whereas the microbenchmark results have already attested the outstanding performance
of the new implementation for a large range of scenarios, this section should analyse

18A simpleping-pongbenchmark reveals thatOpen MPIis slower for small messages thanLAM/MPI.
This is another reason for the ”bad” performance of theipmc component when compared with the
MPI_Bcast() implementation ofLAM/MPI.

Christian Siebert 47

4 Practical Results

how this improves the running time of the applications from chapter2.

4.3.1 High-Performance Linpack Benchmark

Figures21 and22 show snapshots of the runningHPL benchmark. Whereas the first
run uses the originalMPI_Bcast() implementation ofOpen MPI, the second run uses
the newipmccomponent with the multicast-basedMPI_Bcast() implementation.

48 Christian Siebert

4.3 Application Results

202.0 204.0 206.0 208.0 210.0 212.0 214.0 216.0 218.0 220.0 222.0 224.0 226.0 time (seconds) 234.0

no
de

 1
no

de
 2

no
de

 3
no

de
 4

no
de

 5
no

de
 6

no
de

 7
no

de
 8

Compute (dgemm) MPI_Bcast() original

Figure 21:HPL with original MPI_Bcast()
236.0 238.0 240.0 242.0 244.0 246.0 248.0 250.0 252.0 254.0 256.0 258.0 260.0 time (seconds) 268.0

no
de

 1
no

de
 2

no
de

 3
no

de
 4

no
de

 5
no

de
 6

no
de

 7
no

de
 8

Compute (dgemm) MPI_Bcast() ipmc

Figure 22:HPL with ipmc MPI_Bcast()

Christian Siebert 49

4 Practical Results

Although the benchmark is running only on8 nodes19, the first test run needs1277
seconds (222.5 + 221.4 + 225.0 + 231.4 + 224.9 + 219.4 + 224.3 + 229.3 = 1798.2
seconds within theMPI_Bcast() call) whereas the second test run is 39 seconds faster
(187.4 + 187.0 + 187.1 + 194.4 + 188.3 + 187.3 + 192.0 + 185.0 = 1508.5 seconds within
theMPI_Bcast() call). This is a16.11% MPI_Bcast() improvement, simply due to the
positive impact of the much more balanced behaviour of the new broadcast operation.
Therefore all nodes are calling and leaving this collective operation nearly simultane-
ously, which minimizes the gaps between consecutive computation blocks. When the
number of nodes increases, the performance improvement will be much higher.

Table2 shows theHPL benchmark results for different broadcast algorithms. It has
been measured on64 CLiC nodes withOpen MPI, a problem sizeN = 56320, a
blocking factorNB = 40 and a gridP ? Q = 8 ? 8.

broadcast algorithm total duration achieved performance
(0) 1 ring 4137.43 seconds 28.79 GFLOPS

(1) 1 ringM 4150.74 seconds 28.69 GFLOPS
(2) 2 ring 4188.44 seconds 28.44 GFLOPS

(3) 2 ringM 4098.30 seconds 29.06 GFLOPS
(4) Blong 4092.20 seconds 29.10 GFLOPS

(5) BlongM 4130.56 seconds 28.83 GFLOPS
(6a) original 4197.13 seconds 28.38 GFLOPS
(6b) ipmc 4057.23 seconds 29.36 GFLOPS

Table 2:HPL benchmark results using different broadcasts

Broadcast algorithms(0) to (5) are the special implementations which are devel-
oped for and shipped with theHPL benchmark. I have written a patch that adds a
sixth algorithm to this list, which simply callsMPI_Bcast(). Test run(6b) with the
original broadcast implementation ofOpen MPIachieved the following results for the
consumed time within theMPI_Bcast() operation per node:

• minimum =569.22 seconds (let this be100%)

• maximum =636.60 seconds (111.84%)

• average =593.37 seconds (104.24%)

The newipmcbroadcast implementation achieved the following results for the con-
sumed time within theMPI_Bcast() operation per node:

• minimum =501.51 seconds (88.10%)

• maximum =573.30 seconds (100.72%)

• average =532.89 seconds (93.61%)

198 nodes is, according to the microbenchmark results, not enough to give any real benefits.

50 Christian Siebert

4.3 Application Results

Each node called around8090 times thedgemm() function, which consumed a total
time of roughly2925 seconds. In addition, each node called1408 times theMPI_Bcast()
function to transfer a total amount of approximately1530 MiB of data (⇒≈ 1.09 MiB
per operation). This is identical for test runs(6a) and(6b) - what differs is the time
which is spent within the broadcast operation. All (minimum, average and maximum)
broadcast times could be improved significantly.

dgemm
MPI_Bcast
other

69.6%

14.2%

16.2%

MPI_Bcast
MPI_Bcast saved
other
other saved

41.5%

4.8%

46.6%

7.1%

On average, the broadcast time of the original algorithm is11.35% slower than the
broadcast time of the newipmc implementation. Even the minimum value of the origi-
nal implementation is larger than the new average value. The residual time without the
dgemm() andMPI_Bcast() phases is called ”others” and needs15.25% more time with
the original broadcast compared with the new implementation. Altogether, when we
ignore the equal time for thedgemm() operation, the remaining parts are12.5% slower
when theipmcbroadcast is not used.

The total amount of sent multicast datagrams was3, 136, 948, the number of received
datagrams on all nodes was18, 515, 378, and4, 299 of them need to be rejected.

Although the first five broadcast algorithms are purpose-built for theHPL bench-
mark, they are all outperformed by the new implementation. Therefore, theGFLOPS
value can be increased by0.9% compared with the best availableHPL broadcast algo-
rithm.

4.3.2 Abinit

The heavy broadcast usage ofAbinit (at least in the already introduced scenario) has a
very large influence of the total running time of this application. Again,8 MPI nodes
are not (according to the microbenchmark results) enough to expect any improvements.
Whereas theprocess skewwithin the runningHPL benchmarkallowed our new mul-
ticast implementation to make use of the intermediate phase of the broadcast, this is
regrettably not the case forAbinit (see chapter2.2, especially the reason why the root
node is always the last MPI process callingMPI_Bcast).

broadcast algorithm total duration percentage
binomial tree 278.8 seconds 165.26%

ipmc (with MC) 197.2 seconds 116.89%
fragmented chain 168.7 seconds 100.00%

Table 3:Abinit results using different broadcasts

Table3 shows the total running time ofAbinit on 8 nodes, using different broadcast
algorithms. All runs produced identical results, but the time needed to accomplish this

Christian Siebert 51

5 Conclusion and Future Work

varies heavily. With thebinomial treebroadcast (which is the default forLAM/MPI) the
application needs41.38% longer than with the newipmcbroadcast. But the winner of
all broadcast algorithms for this application example is thefragmented chainalgorithm.
The large message size (≈ 3 MiB), the small communicator size (8 nodes) and the
non-existing intermediate phase of the broadcast operation makes is the best choice
here.

4.3.3 Conclusion

Although both applications (theHPL benchmark as well asAbinit make heavy use of
MPI_Bcast(), they are broadcasting relative large messages. For such large message
(especially in theAbinit case), thefragmented chainalgorithm is usually the better
choice. Nevertheless, we have seen (in case of theHPL) that point-to-point broadcasts
which were faster in the microbenchmarks, have been outperformed by the new broad-
cast implementation. The already mentioned long-term statistics of theHLRSshow
that on average each broadcast operations transfers a message size of roughly17 KiB
and a parallel job contains about32.4 MPI processes. These parameters are perfectly
suited for the newipmcbroadcast algorithm.

5 Conclusion and Future Work

This diploma thesis has analysed the network featuremulticast, which is supported by
several network technologies. It tried to evaluate different solutions for the various
problems that appear whenmulticastis used to implement theMPI_Bcast() operation.
A preceding analysis of existing applications had a big influence on the decisions. The
resulting broadcast algorithm does not only scale perfectly with large communicators
- it takes usually the same amount of time, whether it is used to broadcast a message
to just ten nodes or to some hundred or thousand nodes - it also uses the intermediate
phase of the broadcast very efficiently, making it even perform better for real-world
applications than for synthetical benchmarks.

The final ipmc implementation forOpen MPI can be easily installed (even after-
wards to an existing installation as a binary object) and used by anyone. Users do not
need to know anything about the broadcast behaviour of their application: they can
simply check out this implementation and measure the direct change of their applica-
tion performance. After this single test, they can immediately decide if it is useful to
them. More interested users should read the paragraph about the adjustable parameters
in section3. The default settings can be changed easily with the help of command line
parameters, which permit almost full control of the broadcast behaviour.

Developers should find it relatively easy to understand the well documented algo-
rithm as well as the elaborately commented and legibly written source code which
should comply to theOpen MPIcoding standards. This should facilitate quick modifi-
cations, or even ports of this implementation to different (i.e. non-IP-based) platforms.

52 Christian Siebert

Surely, this implementation is not yet fully optimized, leaving room for further im-
provements.

Open things for future and related work includes:

1. implementation and usage of aMADCAPserver

2. IPv6 support

3. a way to reduce copy overhead (”zero copy”?)

4. maybe a self-adapting decision function (at request of the user)

5. possibly support forInfiniBandor other network technologies

6. further analysis of applications to find ways to measure and parameterizeprocess
skew

7. utilization ofmulticastfor other collective operations as well

Christian Siebert 53

A Appendix

A Appendix

A.1 A guide for Open MPI with the IPMC component

This is just an example how one can build, install and use a recent version ofOpen MPI
together with the newipmccomponent.

A.1.1 Installation of a single Open MPI instance

At the beginning we will start with the following steps:

1. get a recent (or special) subversion checkout ofOpen MPI

2. add the sources of the newipmccomponent

3. build theOpen MPIbinaries (includingipmc)

4. install the results in a temporary directory

5. check if the installation is working correctly

The following script assumes aBash-like shell, and has been tested with a recent
version ofsubversion(v1.3.2) ,autoconf(v2.59),automake(v1.9.6),libtool (v1.5.20)
andflex(v2.5.33).

$ mkdir /tmp/openmpi
$ cd /tmp/openmpi
$ # get a recent version of Open MPI
$ # (add "-r 11682" after "co" to get revision 11682)
$ svn co http://svn.open-mpi.org/svn/ompi/trunk ompi-trunk
$ # add the new "ipmc" component
$ cd ompi-trunk/ompi/mca/coll
$ tar xzf $DOWNLOADS/ipmc_component.tar.gz
$ cd ../../..
$ # prepare for building
$./autogen.sh
$ mkdir build
$ cd build
$ # configure Open MPI
$../configure --prefix=/tmp/openmpi
$ # build Open MPI with "ipmc"
$ make all 2>&1 | tee make_all_with_ipmc_log.txt
$ # install the binaries
$ make install
$ # activate the binaries
$ export LD_LIBRARY_PATH=/tmp/openmpi/lib

54 Christian Siebert

A.1 A guide for Open MPI with the IPMC component

$ export PATH=/tmp/openmpi/bin:$PATH
$ # check if Open MPI is installed correctly
$ ompi_info
$ # list all parameters of the "ipmc" component
$ ompi_info --param coll ipmc

A.1.2 Make Open MPI available and build an application

Since we have installedOpen MPI in a local temporary directory, we need to make
it explicitly available to all other cluster nodes. An alternative would be the use of
a distributed or parallel file system, but our large test systemCLiC had sometimes
problems with itsAFSfile system. Therefore we will continue with the following steps:

1. build a binary package ofOpen MPI

2. install those binaries on all cluster nodes

3. build and install a test application

4. run the test application

We assume that $NODEFILE is a variable with a name of a file containing a list of
all cluster nodes, and $NUMNODES is a variable holding the number of cluster nodes.

$ # build a binary package
$ rm -rf ompi-trunk
$ tar -cjf /tmp/openmpi_r11682_with_ipmc.tar.bz2 *
$ # install those binaries on all nodes
$ for node in ‘cat $NODEFILE‘; do
$ echo "installing Open MPI on node $node ...";
$ ssh $node rm -rf /tmp/openmpi;
$ ssh $node mkdir /tmp/openmpi;
$ scp -q /tmp/openmpi_r11682_with_ipmc.tar.bz2 \
$ $node:/tmp/openmpi/;
$ ssh $node "cd /tmp/openmpi ; \
$ tar xjf openmpi_r11682_with_ipmc.tar.bz2";
$ done
$ # get and build a test application
$ wget www.tu-chemnitz.de/~chsi/bcast_bench.tar.gz
$ tar xzvf bcast_bench.tar.gz
$ cd bcast_bench
$ make
$ # install this test application
$ for node in ‘cat $NODEFILE‘; do
$ echo "copying test application to node $node ...";

Christian Siebert 55

A Appendix

$ scp -q bcast_bench $node:/tmp/openmpi/test_app;
$ done
$ # run this test application
$ mpiexec -np $NUMNODES --hostfile $NODEFILE \
$ --prefix /tmp/openmpi /tmp/chsi-tmp/test_app \
$ 2>&1 | tee results_bcast_bench_1st.txt

A.1.3 Playing around with the IPMC parameters

If all steps until here observed no problems, then the installation seems to be working
correctly. Now we can start to play around with some parameters of theipmccompo-
nent to influence its behaviour and performance.

First, you might try to disable this new component to know how the performance
of your application changes when it is used with the originalOpen MPIcomponents.
Disabling can be achieved by lowering the priority of theipmccomponent. This can be
done by adding the

--mca coll_ipmc_priority 0

parameter to thempiexeccall.
Second, you might try to adjust the decision boundaries for the alternative broadcast

algorithms. Large message are usually broadcasted using thefragmented chainalgo-
rithm, and on small communicators it falls back to thelinear broadcast algorithm. You
can adjust these boundaries by modifying the following two parameters:

--mca coll_ipmc_crossover_size 2097152
--mca coll_ipmc_crossover_nodes 8

The first example sets the maximum message size (for the multicast-based broadcast
algorithm) to2 MiB, and the second example forbids the usage of the multicast-based
broadcast when the communicator contains less than8 MPI nodes.

Third, you might try to optimize some parameters to further influence the perfor-
mance of your application.

--mca coll_ipmc_fragment_size 8192
--mca coll_ipmc_root_wait_time 10
--mca coll_ipmc_use_crc_checking 0

The first example increases the payload size of theIP multicastdatagrams to8 KiB,
the second line causes the root node to wait10 µs before issuing the multicast. The last
example disables the additional CRC checking of all datagram packets. You should
only do this when you are sure that no corrupt datagrams are possible.

Finally, you can also turn on some useful statistical output, which can help you to
get some more details:

56 Christian Siebert

A.2 Fragmented Tree vs. Fragmented Chain

--mca coll_ipmc_print_statistics 1

This will print some counters for every node, when a communicator is finally destroyed.
Here you can see how many broadcast operations were called by your application and
how many multicast datagrams were sent, or useful at the receivers side.

A.2 Fragmented Tree vs. Fragmented Chain

Theorem: For any fixed communicator size, there exist a message size with a cor-
responding fragment size, so that for all larger message sizes thefragmented chain
broadcast is always faster than any tree-based broadcast algorithm implemented on top
of point-to-point communication.

The broadcast operation involves allMPI processes in the specified communicator.
”Work-optimal” would mean that all those processes are communicating all the time
until the operation has finally finished, while there are no duplicate or senseless mes-
sage transfers. Unfortunately, since only the root node owns the data at the beginning,
an additional startup- and/or ending-step is definitely necessary. In the case of frag-
mented broadcast algorithms, this can be seen as ”filling” the pipeline and/or ”empty-
ing” the pipeline. Pipelining uses the fact that a given large message can be split into
several smaller fragments.

Now the easy-to-understand reasoning why a tree structure cannot be better (in re-
gards to ”work-optimal”) than the corresponding chain variant: Both variants have a
single node that does only sending: the root node. But contrary to the tree variant where
there are around]nodes/2 leave nodes, the chain variant has only a single node that
does only receiving. Therefore for a large enough communicator and a large enough
message (crossover for pipeline), the chain variant will get up to twice as fast as the tree
variant. The binomial tree version is even worse because the root node sends to more
than two children when the size of the communicator increases above4. Therefore the
resulting bandwidth will be divided by the fan-out of the root node.

Another explanation is based on the fact that we originally assumed that only a single
message can be injected into the network. If a node is serving several children instead of
only one, then it can only issue the fragments in an interleaved fashion. A single child
node will always only receive data halve of the time, effectively halving the available
bandwidth.

A.2.1 Example

A larger message, say1 MiB (= 1024 ∗ 1024 byte), which can be split into1024 frag-
ments, should be broadcasted to8 nodes. We will just count the number of fragment-
transfer rounds for simplicity. The binomial tree structure (which is BTW optimal for
power of two node numbers) needs exactly3 rounds to fill the pipeline and3 addi-
tional rounds to empty the pipeline which is quite good. Unfortunately, the root node
needs to supply3 children with the data. Therefore the overall bandwidth within the

Christian Siebert 57

A Appendix

pipeline stage gets reduced by a factor of3! The chain version needs7 rounds to fill the
pipeline and7 rounds to empty it again. But since the root node only supplies a single
child node, the achieved bandwidth within the pipeline does not reduce. The number of
rounds with a full pipeline is much higher in this example than this negligible startup
overhead. Here are the measurements (medians with a minimal deviation) for the dif-
ferent implementations (on CLiC with LAM/MPI):

originalLAM/MPI 6.5.6 implementation (binary tree version):

• node 1 receives the broadcast message after464877 µs

• node 2 receives the broadcast message after377973 µs

• node 3 receives the broadcast message after565710 µs

• node 4 receives the broadcast message after293223 µs

• node 5 receives the broadcast message after486061 µs

• node 6 receives the broadcast message after388784 µs

• node 7 receives the broadcast message after577007 µs

The average broadcasting time over all7 receivers using thebinary treebroadcast is
450519 µs.

binomial tree implementation (without fragmentation):

• node 1 receives the broadcast message after283172 µs

• node 2 receives the broadcast message after283697 µs

• node 3 receives the broadcast message after284005 µs

• node 4 receives the broadcast message after294555 µs

• node 5 receives the broadcast message after294327 µs

• node 6 receives the broadcast message after295074 µs

• node 7 receives the broadcast message after305870 µs

Fortunately, new version ofLAM/MPI use thisbinomial treebroadcast too. The aver-
age broadcasting time over all7 receivers is here291529 µs.

binomial tree implementation (with 1024 fragments):

58 Christian Siebert

A.2 Fragmented Tree vs. Fragmented Chain

• node 1 receives the broadcast message after273319 µs

• node 2 receives the broadcast message after273678 µs

• node 3 receives the broadcast message after274590 µs

• node 4 receives the broadcast message after274324 µs

• node 5 receives the broadcast message after274580 µs

• node 6 receives the broadcast message after273669 µs

• node 7 receives the broadcast message after274560 µs

Although we are using fragmentation now, the average broadcast duration over all7
receivers only slightly decreases to274103 µs, saving only5.98%.

simple chain implementation (without fragmentation):

• node 1 receives the broadcast message after192910 µs

• node 2 receives the broadcast message after294266 µs

• node 3 receives the broadcast message after396343 µs

• node 4 receives the broadcast message after499811 µs

• node 5 receives the broadcast message after602176 µs

• node 6 receives the broadcast message after706036 µs

• node 7 receives the broadcast message after717621 µs

The average broadcasting time over all7 receivers is487023 µs, which is even worse
than the binary tree implementation! So avoid the chain version if you cannot use frag-
mentation.

simple chain implementation (with 1024 fragments):

• node 1 receives the broadcast message after95092 µs

• node 2 receives the broadcast message after97027 µs

• node 3 receives the broadcast message after97471 µs

• node 4 receives the broadcast message after97894 µs

• node 5 receives the broadcast message after98190 µs

• node 6 receives the broadcast message after98615 µs

Christian Siebert 59

A Appendix

• node 7 receives the broadcast message after98944 µs

The simple (and usually bad performing)chainbroadcast becomes a very fast broad-
cast algorithm when it is used with fragmentation. The average broadcasting time over
the7 receivers is97605 µs, making this broadcast algorithm around64.4% faster than
the fragmentedbinomial treeimplementation.

A.3 IP over InfiniBand

Our new big cluster in Chemnitz, calledCHIC, will be equipped with anInfiniBandin-
terconnection network. Therefore myMPI_Bcast()implementation, which is based on
IP multicast, is only of limited use for this cluster. InfiniBand itself can support native
multicast too, so a further work could adapt theipmcimplementation and get it running
natively with InfiniBand. Up to then it might be an option to useIP over InfiniBand
(IPoIB, see [(IB06]), an encapsulation of IP packets in native InfiniBand. Since we are
planning to establish an InfiniBand-only cluster,IPoIB is required in any case (e.g. for
the management). Oded Bergman (Project Manager at Voltaire) assured me that the IP
multicast will be mapped to InfiniBand multicast and is therefore working as expected.
He kindly sent me the following performance numbers:

• Native IB latency -1.2 µs up to4 µs (and more on old server platforms)

• IPoIB latency -6 µs for ping RC

• IPoIB latency -20− 30 µs for TCP

• IPoIB MCE latency -9 µs using UDP multicast sockets APIs

• IPoIB bandwidth -1.5 to 2 Gbps

• Native IB bandwidth - over7 Gbps

As you can see, the IPoIB penalty both latency and bandwidth is quite huge (a fac-
tor of 4 to 5), making this idea (using theipmc component with IPv4 on InfiniBand)
obsolete. Although the newipmc broadcast should work correctly using IPoIB, the
expected performance gain up to some hundred of nodes would be eliminated by the
performance penalty of the IPoIB encapsulation.

60 Christian Siebert

Abbreviations and Acronyms

ACK Acknowledgment − page 30

ATLAS Automatically Tuned Linear Algebra Software− page 23

BID Broadcast Identifier− page 29

BLAS Basic Linear Algebra Subprograms− page 23

BSD Berkeley Software Distribution− page 16

BSP Bulk Synchronous Parallel (model)− page 4

CPU Central Processing Unit− page 23

CRC.Cyclic Redundancy Check− page 29

FAQ Frequently Asked Questions− page 1

FLOPS Floating Point Operations Per Second

GFLOPS gigaFLOPS (109 FLOPS) − page 4

GID Global Identifier − page 16

HPC High Performance Computing− page 2

HPL High-Performance Linpack (Benchmark)− page 4

IEEE Institute of Electrical and Electronics Engineers− page 19

IETF Internet Engineering Task Force− page 30

IP Internet Protocol− page 2

IPV4 Internet Protocol Version 4− page 18

IPV6 Internet Protocol Version 6− page 33

IRTF Internet Research Task Force− page 30

K IB kibibyte (1 KiB = 210 byte) − page 4

MADCAP Multicast Address Dynamic Client Allocation Protocol− page 19

MCA Modular Component Architecture− page 20

MD5 Message-Digest algorithm 5− page 33

M IB mebibyte (1 MiB = 220 byte) − page 36

61

A Appendix

MPI Message Passing Interface− page 2

MTU Maximum Transmission Unit− page 36

NACK Negative Acknowledgment− page 30

PDF Portable Document Format− page 5

PRAM. Parallel Random Access Machine− page 4

RFC Request for Comments− page 19

SHA-1 Secure Hash Algorithm - 1− page 33

TCP Transmission Control Protocol− page 16

UDP. User Datagram Protocol− page 16

62 Christian Siebert

References

[AISS97] Albert Alexandrov, Mihai F. Ionescu, Klaus E. Schauser and Chris
Scheiman:LogGP: Incorporating Long Messages into the LogP Model
for Parallel Computation. Journal of Parallel and Distributed Comput-
ing, 44(1), 1997:pp. 71–79. [p. 4]

[AMP04] J. Liu A. Mamidala and D. K. Panda:Efficient Barrier and Allreduce on
IBA clusters using hardware multicast and adaptive algorithms, Septem-
ber 2004. IEEE Cluster Computing 2004. [p. 23]

[BWRS03] Andrew M. Rudoff By W. Richard Stevens, Bill Fenner:UNIX Network
Programming Volume 1, Third Edition: The Sockets Networking API. Ad-
dison Wesley, 2003. ISBN 0-13-141155-1. [p. 17]

[Deu96] P. Deutsch:GZIP file format specification version 4.3. Request for Com-
ments: 1952, May 1996. Contains a sample code for the CRC-32 calcu-
lation. [p. 37]

[FK99] Hans-Hermann Frese and Harald Knipp:Performance Evaluation of MPI
and MPICH on the Cray T3E, 1999. [p. 41]

[For95] Message Passing Interface Forum:MPI: A Message-Passing Interface
Standard (version 1.1), 1995. Technical report.
URL http://www.mpi-forum.org [p. 2]

[For97] Message Passing Interface Forum:MPI-2: Extensions to the Message-
Passing Interface, 1997. Technical report.
URL http://www.mpi-forum.org [p. 2]

[GDBC03] Qing Huang Gregory D. Benson, Cho-Wai Chu and Sadik G. Caglar:
A Comparison of MPICH Allgather Algorithms on Switched Networks..
In Proceedings, Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface, 10th European PVM/MPI Users’ Group Meeting.
Springer, Venice, Italy, September 2003, Lecture Notes in Computer Sci-
ence, pp. 335–343, pp. 335–343. [p. 14]

[GWS05] Richard L. Graham, Timothy S. Woodall and Jeffrey M. Squyres:Open
MPI: A Flexible High Performance MPI, September 2005. [p. 20]

[HACA00] Yvette O. Carrasco Hsiang Ann Chen and Amy W. Apon:MPI Collective
Operations over IP Multicast, 2000. IPDPS Workshop. [p. 28]

[HR05] T. Hoefler and W. Rehm:A short Performance Analysis of Abinit on a
Cluster System, July 2005. [p. 25]

[HSB+06] T. Hoefler, J. Squyres, G. Bosilca, G. Fagg, A. Lumsdaine and W. Rehm:
Non-Blocking Collective Operations for MPI-2, August 2006. [p. 27]

Christian Siebert 63

http://www.mpi-forum.org
http://www.mpi-forum.org

References

[HTM05] Torsten Hoefler and W. Rehm T. Mehlan, F. Mietke:Evaluation of
publicly available Barrier-Algorithms and Improvement of the Barrier-
Operation for large-scale Cluster-Systems with special Attention on In-
finiBand Networks, March 2005. Diploma Thesis. [p. 28]

[IAN06] IANA: Internet Multicast Addresses, 1988-2006. A comprehensive and
up-to-date list of reserved multicast addresses.
URL http://www.iana.org/assignments/
multicast-addresses [p. 19]

[(IB06] V. Kashyap (IBM):IP over InfiniBand (IPoIB) Architecture. Request for
Comments: 4392, April 2006. [p. 60]

[JLP04] A. Mamidala J. Liu and D. K. Panda:Fast and Scalable MPI-Level
Broadcast using InfiniBand’s Hardware Multicast Support., April 2004.
Int’l Parallel and Distributed Processing Symposium (IPDPS 04). [p. 31]

[LBS86] M. Blum L. Blum and M. Shub:A Simple Unpredictable Pseudo-Random
Number Generator. SIAM Journal on Computing, 15(2), May 1986:pp.
364–383. [p. 33]

[MSD98] Steven Huss-Lederman Marc Snir, Steve Otto and Jack Dongarra:MPI
- The Complete Reference, 2nd edition. The MIT Press, 1998. ISBN
0-262-69215-5. Volume 1, The MPI Core; second edition. [p. 1]

[PGAB+05] J Pjesivac-Grbovic, T Angskun, G Bosilca, G E Fagg, E Gabriel and J J
Dongarra:Performance Analysis of MPI Collective Operations, 2005. [p.
14]

[PMG95] Lance Shuler Prasenjit Mitra, David Payne and Robert van de Geijn:Fast
Collective Communication Libraries, Please. In Proceedings of the Intel
Supercomputing Users’ Group Meeting. January 1995. [p. 14]

[PPY06] A. Faraj P. Patarasu and X. Yuan:Pipelined Broadcast on Ethernet
Switched Clusters, April 2006. [p. 42]

[Rab99] Rolf Rabenseifner:Automatic Profiling of MPI Applications with Hard-
ware Performance Counters. In Proceedings, Message Passing Interface
and High-Performance Cluster Developer’s and User’s Conference. At-
lanta, USA, March 1999, pp. 35–42, pp. 35–42. [p. 4]

[RTG05] Rolf Rabenseifner Rajeev Thakur and William Gropp:Optimization of
Collective Communication Operations in MPICH. International Journal
of High Performance Computing Applications, 19(1), 2005:pp. 49–66. [p.
14]

64 Christian Siebert

http://www.iana.org/assignments/multicast-addresses
http://www.iana.org/assignments/multicast-addresses

References

[SHS99] B. Patel S. Hanna and M. Shah:Multicast Address Dynamic Client Al-
location Protocol (MADCAP). Request for Comments: 2730, December
1999. [p. 19]

[SL04] Jeffrey M. Squyres and Andrew Lumsdaine:The Component Architecture
of Open MPI: Enabling Third-Party Collective Algorithms, July 2004. [p.
21]

[SR06] Christian Siebert and Wolfgang Rehm:’Memory-Mapped Messages’ -
eine implizite Technik zur Überlappung von Kommunikation und Berech-
nung, January 2006. KiCC Workshop 2005. [p. 27]

[Tan03] Andrew S. Tanenbaum:Computer Networks. Pearson, 2003. ISBN 3-
8273-7046-9. [p.-]

[TKV00] Henri E. Bal Thilo Kielmann and Kees Verstoep:Fast Measurement of
LogP Parameters for Message Passing Platforms. Lecture Notes in Com-
puter Science, 1800, May 2000:p. 1176ff. [p. 5]

[Trä04] Jesper-Larsson Träff:A simple Work-optimal Broadcast Algorithm for
Message-Passing Parallel Systems. In EuroPVM/MPI 2004. Springer,
2004, volume 3241 ofLecture Notes in Computer Science, pp. 173–180,
pp. 173–180. [p. 47]

[WG95] Jerrell Watts and Robert Van De Geijn:A pipelined broadcast for multidi-
mensional meshes. Parallel Processing Letters, 5(2), 1995:pp. 281–292.
[p. 47]

[WYG05] Dhabaleswar K. Panda Weikuan Yu, Sayantan Sur and Rich L. Graham:
High Performance Broadcast Support in La-Mpi Over Quadrics. Inter-
national Journal of High Performance Computing Applications, 19(4),
2005:pp. 453–463. [p. 16]

[ZAS01] D. Meyer Z. Albanna, K. Almeroth and M. Schipper:IANA Guidelines
for IPv4 Multicast Address Assignments. Request for Comments: 3171,
August 2001. [p. 19]

[ZLGS99] Omer Zaki, Ewing Lusk, William Gropp and Deborah Swider:Toward
Scalable Performance Visualization with Jumpshot. International Journal
of High Performance Computing Applications, 13(2), 1999:pp. 277–288.
[p. 23]

Christian Siebert 65

	Cover Sheet
	Table of Contents
	Introduction
	Discussion of the Problem
	Outline of this Work
	MPI Standard
	The MPI_Bcast() operation
	An Example Using MPI_Bcast()

	LogGP Model of Parallel Computation
	Existing Techniques
	Linear Algorithm
	Chain Algorithm
	Binary Tree Algorithm
	Binomial Tree Algorithm
	Other Algorithms
	Limits Of Those Algorithms

	Hardware Broadcast
	Hardware Multicast
	How does Multicast Work?
	Multicast Group Assignment

	Open MPI
	Architecture of Open MPI
	COLL Component

	Summary

	Existing Applications which use MPI_Bcast()
	High-Performance Linpack Benchmark
	Algorithm
	Results
	Conclusion

	Abinit
	Algorithm
	Results
	Conclusion

	Statistical Properties and Assumptions

	Solution
	Objective Target
	Multicast-based Broadcast Algorithm
	Stage 1: Unreliable Broadcast
	Stage 2: Reliable Broadcast Completion

	A collector to create a nearly-true random seed
	Blum-Blum-Shub pseudorandom number generator
	Implementation for Open MPI

	Practical Results
	Benchmark Environment
	FRIZ
	CLiC

	Microbenchmark Results
	Measuring Broadcast/Multicast Performance
	Results on Large Communicators
	Results on Smaller Communicators

	Application Results
	High-Performance Linpack Benchmark
	Abinit
	Conclusion

	Conclusion and Future Work
	Appendix
	A guide for Open MPI with the IPMC component
	Installation of a single Open MPI instance
	Make Open MPI available and build an application
	Playing around with the IPMC parameters

	Fragmented Tree vs. Fragmented Chain
	Example

	IP over InfiniBand

	Abbreviations and Acronyms
	References

