743 research outputs found

    A study of the communication cost of the FFT on torus multicomputers

    Get PDF
    The computation of a one-dimensional FFT on a c-dimensional torus multicomputer is analyzed. Different approaches are proposed which differ in the way they use the interconnection network. The first approach is based on the multidimensional index mapping technique for the FFT computation. The second approach starts from a hypercube algorithm and then embeds the hypercube onto the torus. The third approach reduces the communication cost of the hypercube algorithm by pipelining the communication operations. A novel methodology to pipeline the communication operations on a torus is proposed. Analytical models are presented to compare the different approaches. This comparison study shows that the best approach depends on the number of dimensions of the torus and the communication start-up and transfer times. The analytical models allow us to select the most efficient approach for the available machine.Peer ReviewedPostprint (published version

    Alternating-Direction Line-Relaxation Methods on Multicomputers

    Get PDF
    We study the multicom.puter performance of a three-dimensional Navier–Stokes solver based on alternating-direction line-relaxation methods. We compare several multicomputer implementations, each of which combines a particular line-relaxation method and a particular distributed block-tridiagonal solver. In our experiments, the problem size was determined by resolution requirements of the application. As a result, the granularity of the computations of our study is finer than is customary in the performance analysis of concurrent block-tridiagonal solvers. Our best results were obtained with a modified half-Gauss–Seidel line-relaxation method implemented by means of a new iterative block-tridiagonal solver that is developed here. Most computations were performed on the Intel Touchstone Delta, but we also used the Intel Paragon XP/S, the Parsytec SC-256, and the Fujitsu S-600 for comparison

    A general analytical model of adaptive wormhole routing in k-ary n-cubes

    Get PDF
    Several analytical models of fully adaptive routing have recently been proposed for k-ary n-cubes and hypercube networks under the uniform traffic pattern. Although,hypercube is a special case of k-ary n-cubes topology, the modeling approach for hypercube is more accurate than karyn-cubes due to its simpler structure. This paper proposes a general analytical model to predict message latency in wormhole-routed k-ary n-cubes with fully adaptive routing that uses a similar modeling approach to hypercube. The analysis focuses Duato's fully adaptive routing algorithm [12], which is widely accepted as the most general algorithm for achieving adaptivity in wormhole-routed networks while allowing for an efficient router implementation. The proposed model is general enough that it can be used for hypercube and other fully adaptive routing algorithms

    A Jacobi-based algorithm for computing symmetric eigenvalues and eigenvectors in a two-dimensional mesh

    Get PDF
    The paper proposes an algorithm for computing symmetric eigenvalues and eigenvectors that uses a one-sided Jacobi approach and is targeted to a multicomputer in which nodes can be arranged as a two-dimensional mesh with an arbitrary number of rows and columns. The algorithm is analysed through simple analytical models of execution time, which show that an adequate choice of the mesh configuration (number of rows and columns) can improve performance significantly, with respect to a one-dimensional configuration, which is the most frequently considered scenario in current proposals. This improvement is especially noticeable in large systems.Peer ReviewedPostprint (published version

    Parallel processing and expert systems

    Get PDF
    Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 1990s cannot enjoy an increased level of autonomy without the efficient implementation of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real-time demands are met for larger systems. Speedup via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial laboratories in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems is surveyed. The survey discusses multiprocessors for expert systems, parallel languages for symbolic computations, and mapping expert systems to multiprocessors. Results to date indicate that the parallelism achieved for these systems is small. The main reasons are (1) the body of knowledge applicable in any given situation and the amount of computation executed by each rule firing are small, (2) dividing the problem solving process into relatively independent partitions is difficult, and (3) implementation decisions that enable expert systems to be incrementally refined hamper compile-time optimization. In order to obtain greater speedups, data parallelism and application parallelism must be exploited

    Fractal Image Compression on MIMD Architectures II: Classification Based Speed-up Methods

    Get PDF
    Since fractal image compression is computationally very expensive, speed-up techniques are required in addition to parallel processing in order to compress large images in reasonable time. In this paper we discuss parallel fractal image compression algorithms suited for MIMD architectures which employ block classification as speed-up method

    Efficient processor allocation strategies for mesh-connected multicomputers

    Get PDF
    Abstract Efficient processor allocation and job scheduling algorithms are critical if the full computational power of large-scale multicomputers is to be harnessed effectively. Processor allocation is responsible for selecting the set of processors on which parallel jobs are executed, whereas job scheduling is responsible for determining the order in which the jobs are executed. Many processor allocation strategies have been devised for mesh-connected multicomputers and these can be divided into two main categories: contiguous and non-contiguous. In contiguous allocation, jobs are allocated distinct contiguous processor sub-meshes for the duration of their execution. Such a strategy could lead to high processor fragmentation which degrades system performance in terms of, for example, the turnaround time and system utilisation. In non-contiguous allocation, a job can execute on multiple disjoint smaller sub-meshes rather than waiting until a single sub-mesh of the requested size and shape is available. Although non-contiguous allocation increases message contention inside the network, lifting the contiguity condition can reduce processor fragmentation and increase system utilisation. Processor fragmentation can be of two types: internal and external. The former occurs when more processors are allocated to a job than it requires while the latter occurs when there are free processors enough in number to satisfy another job request, but they are not allocated to it because they are not contiguous. A lot of efforts have been devoted to reducing fragmentation, and a number of contiguous allocation strategies have been devised to recognize complete sub-meshes during allocation. Most of these strategies have been suggested for 2D mesh-connected multicomputers. However, although the 3D mesh has been the underlying network topology for a number of important multicomputers, there has been relatively little activity with regard to designing similar strategies for such a network. The very few contiguous allocation strategies suggested for the 3D mesh achieve complete sub-mesh recognition ability only at the expense of a high allocation overhead (i.e., allocation and de-allocation time). Furthermore, the allocation overhead in the existing contiguous strategies often grows with system size. The main challenge is therefore to devise an efficient contiguous allocation strategy that can exhibit good performance (e.g., a low job turnaround time and high system utilisation) with a low allocation overhead. The first part of the research presents a new contiguous allocation strategy, referred to as Turning Busy List (TBL), for 3D mesh-connected multicomputers. The TBL strategy considers only those available free sub-meshes which border from the left of those already allocated sub-meshes or which have their left boundaries aligned with that of the whole mesh network. Moreover TBL uses an efficient scheme to facilitate the detection of such available sub-meshes while maintaining a low allocation overhead. This is achieved through maintaining a list of allocated sub-meshes in order to efficiently determine the processors that can form an allocation sub-mesh for a new allocation request. The new strategy is able to identify a free sub-mesh of the requested size as long as it exists in the mesh. Results from extensive simulations under various operating loads reveal that TBL manages to deliver competitive performance (i.e., low turnaround times and high system utilisation) with a much lower allocation overhead compared to other well-known existing strategies. Most existing non-contiguous allocation strategies that have been suggested for the mesh suffer from several problems that include internal fragmentation, external fragmentation, and message contention inside the network. Furthermore, the allocation of processors to job requests is not based on free contiguous sub-meshes in these existing strategies. The second part of this research proposes a new non-contiguous allocation strategy, referred to as Greedy Available Busy List (GABL) strategy that eliminates both internal and external fragmentation and alleviates the contention in the network. GABL combines the desirable features of both contiguous and non-contiguous allocation strategies as it adopts the contiguous allocation used in our TBL strategy. Moreover, GABL is flexible enough in that it could be applied to either the 2D or 3D mesh. However, for the sake of the present study, the new non-contiguous allocation strategy is discussed for the 2D mesh and compares its performance against that of well-known non-contiguous allocation strategies suggested for this network. One of the desirable features of GABL is that it can maintain a high degree of contiguity between processors compared to the previous allocation strategies. This, in turn, decreases the number of sub-meshes allocated to a job, and thus decreases message distances, resulting in a low inter-processor communication overhead. The performance analysis here indicates that the new proposed strategy has lower turnaround time than the previous non-contiguous allocation strategies for most considered cases. Moreover, in the presence of high message contention due to heavy network traffic, GABL exhibits superior performance in terms of the turnaround time over the previous contiguous and non-contiguous allocation strategies. Furthermore, GABL exhibits a high system utilisation as it manages to eliminate both internal and external fragmentation. The performance of many allocation strategies including the ones suggested above, has been evaluated under the assumption that job execution times follow an exponential distribution. However, many measurement studies have convincingly demonstrated that the execution times of certain computational applications are best characterized by heavy-tailed job execution times; that is, many jobs have short execution times and comparatively few have very long execution times. Motivated by this observation, the final part of this thesis reviews the performance of several contiguous allocation strategies, including TBL, in the context of heavy-tailed distributions. This research is the first to analyze the performance impact of heavy-tailed job execution times on the allocation strategies suggested for mesh-connected multicomputers. The results show that the performance of the contiguous allocation strategies degrades sharply when the distribution of job execution times is heavy-tailed. Further, adopting an appropriate scheduling strategy, such as Shortest-Service-Demand (SSD) as opposed to First-Come-First-Served (FCFS), can significantly reduce the detrimental effects of heavy-tailed distributions. Finally, while the new contiguous allocation strategy (TBL) is as good as the best competitor of the previous contiguous allocation strategies in terms of job turnaround time and system utilisation, it is substantially more efficient in terms of allocation overhead

    Distributed memory compiler methods for irregular problems: Data copy reuse and runtime partitioning

    Get PDF
    Outlined here are two methods which we believe will play an important role in any distributed memory compiler able to handle sparse and unstructured problems. We describe how to link runtime partitioners to distributed memory compilers. In our scheme, programmers can implicitly specify how data and loop iterations are to be distributed between processors. This insulates users from having to deal explicitly with potentially complex algorithms that carry out work and data partitioning. We also describe a viable mechanism for tracking and reusing copies of off-processor data. In many programs, several loops access the same off-processor memory locations. As long as it can be verified that the values assigned to off-processor memory locations remain unmodified, we show that we can effectively reuse stored off-processor data. We present experimental data from a 3-D unstructured Euler solver run on iPSC/860 to demonstrate the usefulness of our methods
    • …
    corecore