Metadata, citation and similar papers at core.ac.uk

Provided by Glasgow Theses Service

UNIVERSITY
of
GLASGOW

Efficient Processor Allocation Strategies for

Mesh-Connected Multicomputers

A Thesis Submitted

by

Saad O. Bani Mohammad

for
The Degree of Doctor of Philosophy
to

The Faculty of Information and Mathematical Science

University of Glasgow

© Saad Bani Mohammad, February 2008

https://core.ac.uk/display/370517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Efficient processor allocation and job schedulingoathms are critical if the full
computational power of large-scale multicomputsrtoibe harnessed effectively. Processor
allocation is responsible for selecting the setpodcessors on which parallel jobs are
executed, whereas job scheduling is responsiblddtarmining the order in which the jobs
are executed. Many processor allocation stratdumgee been devised for mesh-connected
multicomputers and these can be divided into twanneategoriescontiguousand non-
contiguous In contiguous allocation, jobs are allocatedidettcontiguous processor sub-
meshes for the duration of their execution. Suddtrategy could lead to high processor
fragmentation which degrades system performanderms of, for example, the turnaround
time and system utilisation. In non-contiguous @dlmon, a job can execute on multiple
disjoint smaller sub-meshes rather than waitingl angingle sub-mesh of the requested size
and shape is available. Although non-contiguouscalion increases message contention
inside the network, lifting the contiguity condiican reduce processor fragmentation and
increase system utilisation.

Processor fragmentation can be of two typeternal andexternal The former occurs when
more processors are allocated to a job than itiregjwhile the latter occurs when there are
free processors enough in number to satisfy angdherequest, but they are not allocated to
it because they are not contiguous. A lot of effohiave been devoted to reducing
fragmentation, and a number of contiguous allocattrategies have been devised to
recognize complete sub-meshes during allocationstMid these strategies have been
suggested for 2D mesh-connected multicomputers. edewy although the 3D mesh has
been the underlying network topology for a numbeingortant multicomputers, there has
been relatively little activity with regard to dgsing similar strategies for such a network.
The very few contiguous allocation strategies saggefor the 3D mesh achieve complete
sub-mesh recognition ability only at the expenseaohigh allocation overhead(i.e.,
allocation and de-allocation time). Furthermoreg #ilocation overhead in the existing
contiguous strategies often grows with system sizee main challenge is therefore to
devise an efficient contiguous allocation stratdmat can exhibit good performance (e.g., a
low job turnaround time and high system utilisa}iaith a low allocation overhead.

The first part of the research presents a new gootis allocation strategy, referred to as
Turning Busy List (TBL), for 3D mesh-connected nmdimputers. The TBL strategy
considers only those available free sub-mesheshwiticder from the left of those already
allocated sub-meshes or which have their left bated aligned with that of the whole
mesh network. Moreover TBL uses an efficient schémnéacilitate the detection of such
available sub-meshes while maintaining a low aliocaoverhead. This is achieved through
maintaining a list of allocated sub-meshes in ondeefficiently determine the processors
that can form an allocation sub-mesh for a newcation request. The new strategy is able
to identify a free sub-mesh of the requested ssZerag as it exists in the mesh. Results from
extensive simulations under various operating load®al that TBL manages to deliver
competitive performance (i.e., low turnaround tinesesl high system utilisation) with a
much lower allocation overhead compared to othékrkmewn existing strategies.

Most existing non-contiguous allocation strategiest have been suggested for the mesh
suffer from several problems that include interframentation, external fragmentation,

and message contention inside the network. Furtbrernthe allocation of processors to job
requests is not based on free contiguous sub-masliesse existing strategies. The second
part of this research proposes a new non-contigudlosation strategy, referred to as
Greedy Available Busy List (GABL) strategy thatminates both internal and external
fragmentation and alleviates the contention inrbavork. GABL combines the desirable
features of both contiguous and non-contiguouscatlon strategies as it adopts the
contiguous allocation used in our TBL strategy. dtorer, GABL is flexible enough in that

it could be applied to either the 2D or 3D meshweeer, for the sake of the present study,
the new non-contiguous allocation strategy is dised for the 2D mesh and compares its
performance against that of well-known non-contiggi@allocation strategies suggested for
this network. One of the desirable features of GA8Lthat it can maintain a high degree of
contiguity between processors compared to the gusvallocation strategies. This, in turn,
decreases the number of sub-meshes allocated tub,aapd thus decreases message
distances, resulting in a low inter-processor comigation overhead. The performance
analysis here indicates that the new proposedeglydtas lower turnaround time than the
previous non-contiguous allocation strategies fostrconsidered cases. Moreover, in the
presence of high message contention due to heawprietraffic, GABL exhibits superior
performance in terms of the turnaround time ovex phrevious contiguous and non-
contiguous allocation strategies. Furthermore, GARhibits a high system utilisation as it
manages to eliminate both internal and externghfientation.

The performance of many allocation strategies liclg the ones suggested above, has been
evaluated under the assumption that job execuiinastfollow an exponential distribution.
However, many measurement studies have convincidgiyionstrated that the execution
times of certain computational applications aret bdsaracterized by heavy-tailed job
execution times; that is, many jobs have short @tk@c times and comparatively few have
very long execution times. Motivated by this obsgion, the final part of this thesis reviews
the performance of several contiguous allocaticategies, including TBL, in the context of
heavy-tailed distributions. This research is thetfto analyze the performance impact of
heavy-tailed job execution times on the allocatmategies suggested for mesh-connected
multicomputers. The results show that the perfomeanf the contiguous allocation
strategies degrades sharply when the distributiojolm execution times is heavy-tailed.
Further, adopting an appropriate scheduling styatsgch as Shortest-Service-Demand
(SSD) as opposed to First-Come-First-Served (FCFa)) significantly reduce the
detrimental effects of heavy-tailed distributionBinally, while the new contiguous
allocation strategy (TBL) is as good as the beshpmtitor of the previous contiguous
allocation strategies in terms of job turnaroumdetiand system utilisation, it is substantially
more efficient in terms of allocation overhead.

To my parents,
To my wife and children,
To my brothers and my sister

for their endless love, support and encouragement

Acknowledgments

| would like to express my deep gratitude to myesuisors, Dr. Mohamed Ould-Khaoua
and Dr. Lewis M. Mackenzie for their inspiring gaitte, valuable advice and constant
encouragement throughout the progress of this wikir suggestions, criticism and their
frequent questions motivated this research and riesgr failed to provide their help at all

stages of this research.

| would also like to thank Dr. Ismail Ababneh fdslnelp and advice at the early stages of
my Ph.D. program and for the time reviewing my papend giving me constructive and
insightful comments and reviews. My gratitude ajses to Prof. Joe Sventek for his helpful

comments and the time for reading my first yeaorefhrough my first year VIVA.

I am highly indebted to the Al al-Bayt Universityprdan, for the financial support and for
granting me a scholarship to pursue my higher studnd give my thanks to my colleagues
there. My thanks are also to all the staff of thepBrtment of Computing Science,
University of Glasgow, for their kind and friendbgpport. | am also grateful to my caring
colleagues and friends here in the UK and back hdore their friendship and

encouragement during my time at Glasgow University.

I would like to dedicate this thesis to my familypy parents, my brothers and my sister,
whose love and encouragement from a distant lante viee motivating factors for
completion of this work. Finally, | would like toxpress my dearest gratitude to my wife,
whose unconditional love, support, patience, amthgavere and always will be a source of
inspiration, my son Yamen and my daughter Salmay are the blessings of my life. This
thesis would not have been possible without the élmy family. | could never be as

happy as | am without each of you. You are all ymgcious to me.

Contents

1. Introduction

1.1 Processor Allocatic

1.2 Motivation:

1.3 Thesis Stateme

1.4 Main Contributior

1.5 Outline of the Thes

2. Background and Preliminaries

2.1 Introductiol
2.2 RelatecAllocation Strategie
2.2.1 Contiguous Allocation Strategies for 2D and 3Bst
2.2.2 Nor-contiguous Allocation Strategies for 2D m
2.3 System Mode
2.3.1 Switching Methc
2.3.2 Routing Algorithr
2.3.3 Communication Pattel
2.4 Assumption
2.5 The Simulation Tool ProcSimity Simulatc)

2.6 Justification of the Method of Stu

1C

12

13

16

18

18

21

21

27

34

37

3¢

41

42

43

45

2.7 Summar
3. Turning Busy List (TBL): A New Contiguous Allocation Algorithm for Mesh-
Connected Multicomputers
3.1 Introductiol
3.2 Preliminarie
3.3 The Proposed Turning Busy List Allocation Strai (TBL)
3.4 Performance Evaluatit
3.4.1 Simulation Resul
3.4.1.1 Performance Impa of Mesh Systei Size
3.5 Conclusiol
4. Greedy Available Busy List (GABL): A New Non-cotiguous Allocation
Algorithm for Mesh-Connected Multicomputers
4.1 Introductiol
4.2 The Proposed Greedy Available Busy List Allocat&trateg (GABL)
4.3 Performance Evaluati
4.3.1 Allocation and D-allocation Timein GABL
4.3.2 Simulation Redts
4.3.2.1 Performance Impact of Mesh System :
4.3.2.2 Performance Impact of PaclLengtl
4.4 Conclusiol
5. Comparative Evaluation of Contiguous Allocation Strategies on Mest-
Connected Multicomputers
5.1 Introductiol
5.z Processor Allocation Strategi

5.3 Job Scheduling Stratec

Vi

46

49

49

51

53

56

5¢

71

73

75

75

78

84

84

5.4 Simulation Resul 11¢
5.4.1 Performance Comparison under He-Tailed and Exponential Jc
Execution Times with the FCFS Scheduling Strategy 122

5.4.2 Performance Compariscunder Different System Loads and Schedu

Strategies 124

5.4.3 Impact of System Si; 13t

5.5 Conclusio 137

6. Conclusions and Future Directions 139
6.1 Summary of the esult: 141

6.2 Directions for the Future Wo 14¢
Appendix A. The Components of the MBS Allocation Adorithm 152
A.1 Introductior 152
A.2 System Initialisatio 152
A.3 The Request Factoring Algoritt 158
A.4 The Buddy Generating Algoritr 158
A.5 The Allocation Algorithn 154
A.6 The De-allocation Algorithn 154

Appendix B. The PossibleCases forSubtracting Prohibited Regions from RBP’s in

the TBL Allocation Algorithm 155
Appendix C. Publications during the Course of thisResearch 163
Reference 16€

vii

List of Figures

Figure 1.:
Figure 2.:

Figure 2.:

Figure 2.:
Figure 2.«
Figure 25:
Figure 26:
Figure 27:

Figure 28:

Figure 29:

Figure 2.0:

Figure %.11:

Figure 2.12:

Figure &1

An Example of a 44 2D mesh 4
An internal fragmentation of 2 process 2C

An external fragmentation of 4 processors assuntirag the allocatiol

strategy is contiguous 20
An allocationusing the frame sliding strate 22
An allocation using First Fit and Best Fit strat= 24
Outline of the FF Contiguous Allocation Strat 24
Outline of FF d-allocation algorithr 25
Allocation with rctation to request (2, 3, 2) followed by request3l 27

Paging(0) using different indexing schemes: (a) -major indexing, (b

Shuffled row-major indexing, (c) Snake-like indexinand (d) Shuffled

shake-like indexing 29
Outline of the Paging allocation algorit! 3C
Outline of the Paging +allocation algorithr 3C

An 8 x 8 2D mesh receiving an allocation requestl® processors in MB

strategy 34
A deadlock in wormhole routing used by 4 messac 40
An example of a 4 2x 2 3D mesh 51

viii

Figure &.2:

Figure 3.:

Figure 3.

Figure 3.:

Figure 3.

Figure 3."

Figure 3.t

Figure 3.t

Figure 3.1t

Figure 3..1:

Figure 3.1:

Figure 3.1:

Figure 3.1

A suk-mesh inside the 3D me 52
All possible cases for subtracting a prohibitediorgrom a right borde
plane 54

Outline of the Detect Produre in the proposed Contiguous Allocat

Strategy 55
Outline of the proposed Contiguous Allocation %ty 57
Allocation Exampl 58
Outline of the proposed -allocation algorithr 59

Average turnaroud time vs. system load for the contiguous alloce
strategies (BL, FF, TBL, TFF) and the uniform diglegths distribution in an

8 x 8 x 8 mesh 64
Average turnaround time vs. system load for thetigoous allocatior
strategies (BL, FF, TBL, TFF) and the exponentidé dengths distribution
inan 8 x 8 x 8 mesh 64
Mean System utilisation for the contiguous allomatistrategies (BL, FI
TBL, TFF) and the uniform side lengths distributioran 8 x 8 x 8 mesh 65
Mean System utilisation for the contiguous allomatistrategies (BL, FI
TBL, TFF) and the exponential side lengths distidruin an 8 x 8 x 8 mesh 65
Average number of allocated sub-mesheg (n TBL and the uniform side
lengths distribution in 8 x 8 x 8, 10 x 10 x 1Add 2 x 12 x 12 meshes 66
Average number of allocated sub-meshag (n BL and the uniform side
lengths distribution in 8 x 8 x 8, 10 x 10 x 10dd® x 12 x 12 meshes 66
Average number of allocated sub-mesheg (n TBL and the exponential

side lengths distribution in 8 x 8 x 8, 10 x 1005 &nd 12 x 12 x 12 mesheH7

Figure 3.1%

Figure 3.1«

Figure 3.1"

Figure 3.1:

Figure 3.1

Figure 3.2t

Figure 3.2:

Figure 3.2:

Figure 323

Figure 4.:

Figure 4.:
Figure 4.

Figure 4.«

Average number of allocated sub-meshas) (in BL and the exponential
side lengths distribution in 8 x 8 x 8, 10 x 1005 &nd 12 x 12 x 12 mesheH7
Average allocation overhead for the allocationtstyees (TBL, TFF, BL
and FF) and uniform side lengths distribution irBaxn 8 x 8 mesh 70
Average allocation overhead for the allocationtstyees (TBL, TFF, BL
and FF) and exponential side lengths distributivari 8 x 8 x 8 mesh 70
Average allocation overhead for the allocatiorategies (TBL, TFF, BL
and FF) and uniform side lengths distribution it0ax 10 x 10 mesh 70
Average allocation overhead for the allocationtstyees (TBL, TFF, BL
and FF) and exponential side lengths distributiva L0 x 10 x 10 mesh 71
Average allocation overhead for the allocationtstyees (TBL, TFF, BL
and FF) and uniform side lengths distribution it2ax 12 x 12 mesh 71
Average allocation overhead for the allocationtstyees (TBL, TFF, BL
and FF) and exponential side lengths distributiva 12 x 12 x 12 mesh 71
Average turnaround time vs. size of the mesh sydtmnthe contiguou
allocation strategies (BL, FF, TBL, TFF) and theiform side lengths
distribution 72
Average turnaround time vs. size of the mesh sydtmnthe contiguou
allocation strategies (BL, FF, TBL, TFF) and thep@xential side lengths
distribution 72
Outline of the Detect Procedure in TBL Contiguoubdation Strategy fo

2D Mesh 79
Outline of the TBL Contiguous Allocation Strategy D Mesl| 8C
A 6 x 6 sul-mesh with 19 free processors forming several fub-meshe 83

Outline of the Greedy Available Busy List allocatialgorithn 83

Figure 4.k

Figure 4.t

Figure 4."

Figure 4.t

Figure 4.%

Figure 4.1«

Figure 4.1:

Figure 4.1:

Figure 4.1:

Figure 4.1

Figure 4.1~

Figure 4.1¢

Figure 4.1"

Outline of the Greedy Available Busy List-allocation algorithr

Average turnaround time vs. system load for the-to-all communicatior
pattern and uniform side lengths distribution ib6ax 16 mesh

Average turnaround time vs. system load for the -to-all communicatior
pattern and exponential side lengths distributioa iL6 x 16 mesh
Average turnaround time vs. system load for th-to-all communicatior
pattern and uniform side lengths distribution ib6ax 16 mesh

Average turnaround time vs. system load for th-to-all communicatior
pattern and exponential side lengths distributioa iL6 x 16 mesh
Average turnaround time vs. system load for random communicatio
pattern and uniform side lengths distribution ib6ax 16 mesh

Average turnaround time vs. system load for thedloam communicatiol
pattern and exponential side lengths distributioa iL6 x 16 mesh
Average waiting time vs. System load for the -to-all communicatior
pattern and uniform side lengths distribution ib6ax 16 mesh

Average waiting time vs. System load for the -to-all communicatior
pattern and exponential side lengths distributioa iL6 x 16 mesh
Average waiting time vs. System load for the-to-all communicatior
pattern and uniform side lengths distribution ib6ax 16 mesh

Average waiting time vs. System load for the-to-all communicatior
pattern and exponential side lengths distributioa iL6 x 16 mesh
Average waiting time vs. System load for the randmmmunication patter
and uniform side lengths distribution in a 16 xmMésh

Average waiting time vs. System load for the randomrounication patter

and exponential side lengths distribution in a 18*mesh

Xi

84

91

91

91

92

92

92

94

94

95

95

95

96

Figure 4.1:

Figure 4.1

Figure 4.2«

Figure 4.2

Figure 4.2:

Figure 4.2:

Figure 4.2

Figure 4.2t

Figure 4.2«

System utilisation of the n-contiguous allocation strategies (GABL, ME
Paging(0)) and contiguous allocation strategy Fer fthe three
communication patterns tested, and uniform sidgtlendistribution in a 16

x 16 mesh 97
System utilisation of the n-contiguous allocation strategies (GABL, ME
Paging(0)) and contiguous allocation strategy Fler fthe three
communication patterns tested, and exponentiallsitigths distribution in a
16 x 16 mesh 97
Percent of jobs allocated contiguously in the -contiguous allocatio
strategies (GABL, MBS, Paging(0)), for the threeanoounication patterns
tested, and uniform side lengths distribution itbax 16 mesh 98
Percent of jobs allocated contiguously in the -contiguous allocatio
strategies (GABL, MBS, Paging(0)), for the threanoounication patterns
tested, and exponential side lengths distributioa 16 x 16 mesh 98
Average blocks per job vs. system load for the-to-all communicatior
pattern and uniform side lengths distribution 99
Average blocks per job vs. system loaor the on-to-all communicatior
pattern and exponential side lengths distribution 99
Average blocks per job vs. system load for th-to-all communicatior
pattern and uniform side lengths distribution 100
Average blocks pejob vs. system load for the -to-all communicatior
pattern and exponential side lengths distribution 100
Average blocks per job vs. system load for the camccommunicatiol

pattern and uniform side lengths distribution 100

Xil

Figure 4.2

Figure 4.2:

Figure 4.2

Figure 4.3t

Figure 4.3:

Figure 4.3:

Figure 4.3:

Figure 4.3

Average blocks per job vs. system load for the remdmmmunicatior
pattern and exponential side lengths distribution 101
Average number of allocated sub-meshes) (n GABL for the one-to-all
communication pattern and uniform side lengthsrithistion in a 16 x 16
mesh, a 20 x 20 mesh, and a 24 x 24 mesh 102
Average number of allocated sub-meshes) (n GABL for the one-to-all
communication pattern and exponential side lendigisibution in a 16 x 16
mesh, a 20 x 20 mesh, and a 24 x 24 mesh 102
Average number of allocated sub-meshes) (in GABL for the all-to-all
communication pattern and uniform side lengthsrithistion in a 16 x 16
mesh, a 20 x 20 mesh, and a 24 x 24 mesh 102
Average number of allocated sub-meshes) (in GABL for the all-to-all
communication pattern and exponential side lendiisibution in a 16 x 16
mesh, a 20 x 20 mesh, and a 24 x 24 mesh 103
Average number of allocated sub-meshes) (in GABL for the random
communication pattern and uniform side lengthsrithistion in a 16 x 16
mesh, a 20 x 20 mesh, and a 24 x 24 mesh 103
Average number of allocated sub-meshes) (in GABL for the random
communication pattern and exponential side lendigisibution in a 16 x 16
mesh, a 20 x 20 mesh, and a 24 x 24 mesh 103
Average number of allocation attemptb)(in GABL for the one-to-all
communication pattern and uniform side lengthsrithistion in a 16 x 16

mesh, a 20 x 20 mesh, and a 24 x 24 mesh 104

Xiii

Figure 4.3

Figure 4.3t

Figure 4.3

Figure 4.3:

Figure 4.3

Figure 4.4¢

Figure 4.1:

Figure 4.4:

Figure 4.4:

Figure 4.4.

Average number of allocation attemptb)(in GABL for the one-to-all
communication pattern and exponential side lendiisibution in a 16 x 16
mesh, a 20 x 20 mesh, and a 24 x 24 mesh 104
Average number of allocation attemptb)(in GABL for the all-to-all
communication pattern and uniform side lengthsrithistion in a 16 x 16
mesh, a 20 x 20 mesh, and a 24 x 24 mesh 105
Average number of allocation attemptb)(in GABL for the all-to-all
communication pattern and exponential side lendisisibution in a 16 x 16
mesh, a 20 x 20 mesh, and a 24 x 24 mesh 105
Average number of allocation attemptb)(in GABL for the random
communication pattern and uniform side lengthsrithistion in a 16 x 16
mesh, a 20 x 20 mesh, and a 24 x 24 mesh 105
Average number of allocation attemptd)(in GABL for random
communication pattern and exponential side lendiisibution in a 16 x 16
mesh, a 20 x 20 mesh, and a 24 x 24 mesh 106
Average turnaround time vs. mesh system size fa tneto-all
communication pattern and the uniform side lendiksibution 107
Average turnaround time vs. mesh system size fa tneto-all
communication pattern and the exponential sidetlendistribution 108
Average turnaround time vs. mesh system size fog #i-to-all
communication pattern and the uniform side lendiksibution 108
Average turnaround time vs. mesh system size fog #i-to-all
communication pattern and the exponential sidetlendistribution 108
Average turnaround time vs. mesh system size foe tlandon

communication pattern and the uniform side lengiksibution 109

Xiv

Figure 4.4:

Figure 4.4

Figure 4.4"

Figure 4.4:

Figure 4.4

Figure 4.5t

Figure 4.5:

Figure 5.:

Average turnaround me vs. mesh system size for the ranc
communication pattern and the exponential sidetlendistribution 109
Average turnaround time vs. system load for the-to-all communicatior
pattern and uniform side lengths distribution vatté4-flits packet length in

a 16 x 16 mesh 111
Average turnaround time vs. system load for the-to-all communicatior
pattern and exponential side lengths distributidih & 64-flits packet length
ina 16 x 16 mesh 111
Averageturnaround time vs. system load for the-to-all communicatior
pattern and uniform side lengths distribution vatl64-flits packet length in

a 16 x 16 mesh 112
Average turnaround time vs. system load for th-to-all communicatior
pattern and exponential side lengths distributidth & 64-flits packet length
ina 16 x 16 mesh 112
Average turnaround time vs. system load for theloam communicatiol
pattern and uniform side lengths distribution vatl64-flits packet length in

a 16 x 16 mesh 112
Average turnaround time vs. system load for theloam communicatiol
pattern and exponential side lengths distributidih & 64-flits packet length
ina 16 x 16 mesh 113
Turnaround time in BL, FF, TL, and TFF under the exponential and he
tailed job execution times with FCFS schedulingitsigy and the uniform

side lengths distribution in an 8 x 8 x 8 mesh 123

XV

Figure 5.:

Figure 5.:

Figure 5.«

Figure 5.k

Figure 5.t

Figure 5."

Figure 5.&

Figure 5.4

Mean system utilisation in BL, FF, TBL, and TFF enthe exponential ar
heavy-tailed job execution times with FCFS schedulstrategy and the
uniform side lengths distribution in an 8 x 8 x 8sh 124
Average turnaround time vs. system load for thetigoous allocatior
strategies (BL, FF, TBL, TFF) under the schedulitigitegies (FCFS and
SSD) and the uniform side lengths distributionnirBax 8 x 8 mesh 125
Average turnaround time vs. system load for thetigoous allocatior
strategies (BL, FF, TBL, TFF) under the schedulitigitegies (FCFS and
SSD) and the exponential side lengths distribuiticem 8 x 8 x 8 mesh 126
Mean System utilisation for the contiguous allomatistrategies (BL, FI
TBL, TFF) under the scheduling strategies (FCFS$8D) and the uniform
side lengths distribution in an 8 x 8 x 8 mesh 127
Mean System utilisation for the contiguous allomatistrategies (BL, FI
TBL, TFF) under the scheduling strategies (FCFS &®D) and the
exponential side lengths distribution in an 8 x 8 mesh 127
Average number of allocated sub-mesheg (n TBL under the scheduling
strategies (FCFS and SSD) and the uniform sideherajstribution in 8 x 8

x 8,10 x 10 x 10 and 12 x 12 x 12 meshes 129
Average number of allocated sub-mesheg (n TBL under the scheduling
strategies (FCFS and SSD) and the exponentiallesigghs distribution in 8

x 8 x 8,10 x 10 x 10 and 12 x 12 x 12 meshes 129
Average number of allocated sub-meshas) (n BL under the scheduling
strategies (FCFS and SSD) and the uniform sideherajstribution in 8 x 8

x 8,10 x 10 x 10 and 12 x 12 x 12 meshes 129

XVi

Figure 5.1t

Figure 5.1:

Figure 5.1:

Figure 5.1:

Figure 5.1

Figure 5.1~

Figure 5.1«

Figure 5.1"

Average number of allocated sub-meshas) (n BL under the scheduling
strategies (FCFS and SSD) and the exponentialesigghs distribution in 8

x 8x 8,10 x 10 x 10and 12 x 12 x 12 meshes 130
Average allocation overhead for the contiguouscaliion strategies (TB

and TFF) under the scheduling strategies (FCFSS&1)) and uniform side
lengths distribution in an 8 x 8 x 8 mesh 131
Average allocation overhead for the contiguouscaliion strategies (TB

and TFF) under the scheduling strategies (FCFSS81d) and exponential
side lengths distribution in an 8 x 8 x 8 mesh 132
Average allocation overhead for the contiguouscalion strategies (BL ar

FF) under the scheduling strategies (FCFS and S8id) uniform side
lengths distribution in an 8 x 8 x 8 mesh 132
Average allocation overhead for the contiguouscalion strategies (BL ar

FF) under the scheduling strategies (FCFS and $®D)exponential side
lengths distribution in an 8 x 8 x 8 mesh 132
Average aocation overhead for the contiguous allocationtstyias (TBL

and TFF) under the scheduling strategies (FCFSS&M) and uniform side
lengths distribution in an 10 x 10 x 10 mesh 133
Average allocation overhead for the contiguouscaliion strategies (TBI

and TFF) under the scheduling strategies (FCFSS81d) and exponential
side lengths distribution in an 10 x 10 x 10 mesh 133
Average allocation overhead for the contiguouscallion strategies (BL ar

FF) under the scheduling strategies (FCFS and S8id) uniform side

lengths distribution in an 10 x 10 x 10 mesh 133

XVii

Figure 5.1:

Figure 5.1t

Figure 5.2t

Figure 5.2:

Figure 5.2:

Figure 5.2:

Figure 5.2

Average allocation overhead for the contiguouscallion strategies (BL ar

FF) under the scheduling strategies (FCFS and %®D)exponential side
lengths distribution in an 10 x 10 x 10 mesh 134
Average allocation overhead for the contiguouscallion strategies (TB

and TFF) under the scheduling strategies (FCFSS&M) and uniform side
lengths distribution ina 12 x 12 x 12 mesh 134
Average allocation overhead for the contiguouscallion strategies (TB

and TFF) under the scheduling strategies (FCFSS81d) and exponential
side lengths distribution ina 12 x 12 x 12 mesh 134
Average alloation overhead for the contiguous allocation sgjigt (BL anc

FF) under the scheduling strategies (FCFS and S8id) uniform side
lengths distribution ina 12 x 12 x 12 mesh 135
Average allocation overhead for the contiguouscallion srategies (BL an

FF) under the scheduling strategies (FCFS and $®D)exponential side
lengths distribution ina 12 x 12 x 12 mesh 135
Average turnaround time vs. size of the mesh sydtanthe contiguou
allocation strategies (BL, FF, TBL, TFF) and theifarm side lengths
distribution under FCFS and SSD scheduling stragegi 136
Average turnaround time vs. size of the mesh sydtmnthe contiguou
allocation strategies (BL, FF, TBL, TFF) and thep@xential side lengths

distribution under FCFS and SSD scheduling stragegi 137

Xviii

List of Tables

Table 3.1:

Table 3.2:

Table4.1:

Table 4.2:

Table5.1:

Table5.2:

The System Parameters Used in the Simulation Exeei 6C
The mean (i.e., mean turnaround time of job), a@rfte interval, and relati
error for the results shown in Figure 3.8 for thad 5.8 jobs/time unit 62
The System Parameters used in the Simulation Erpaeti 87
The mean (i.e., mean turnaround time of job), aw@rfte interval, and relati
error for the results shown in Figure 4.6 for thad 0.0185 jobs/time unit 88
The System Parameters Used in the Simulation Exeeit 12C
The mean (i.e., mean turnaround time of job), a@rfte interval, and relati
error for the results shown in Figure 5.3 for thad 0.035 jobs/time unit and

the SSD scheduling strategy 121

XiX

Chapter 1

Introduction

Parallel computers are generally considered toneeod the most feasible ways of achieving
the ever-growing computational power required bynynaeal-life parallel applications,
especially in the fields of science and engineel®y 70, 90]. A Parallel Computer consists
of a set of processors that cooperate with eactr dthfind a solution to a given problem
[36]. The inter-processor communication may be thase either theshared-memonor
distributed-memorynodel. In shared-memory architectures, also knasmultiprocessors
processors communicate via shared memory. Howeawedistributed-memory parallel
computers, also known asnulticomputers processors communicate by means of

interchanging messages through an interconnecabmank [4, 29, 64, 83].

Generally, interconnection networks can be divided two categoriesindirect anddirect
networks [4, 5, 14, 29, 32, 64, 83]. In indirectvmarks, multiple intermediate stages of
switches are used to interconnect the nodes [frecessors) of a multiprocessor; examples
of indirect networks include the crossbar [32, 8®us [5, 83], and multistage

interconnection networks [14, 83]. In direct netigreach node has a point-to-point

Chapter 1: Introduction 2

connection to one or more nodes (known as its heigts), allowing for direct

communication between these nodes; examples aftdiegworks include the mesh [4, 82],
k-ary n-cube [29], and hypercube [43]. Direct networkseéhreen extensively employed in
large-scale multicomputers because of their sdélgbihey can be scaled up by adding
nodes and channels based on the predefined nestrartture [4, 29, 64, 90]. Moreover,
direct networks are able to exploit communicationcality (nearest neighbour

communication) that is exhibited by many real-watiplications.

Among the various multicomputer architectures, ¢hbssed on the mesh network have
received much attention due to the simplicity, sueal regularity, partition-ability, and ease
of implementation of this network [9, 18, 20, 2%, 31, 33, 35, 51, 52, 77, 78, 85, 99].
Meshes are suited to a variety of applicationsjuoing matrix computations, image
processing and problems whose task graphs can bedeled naturally into the mesh [27,
89, 95]. Moreover, the mesh has been used as tterlyimg network in a number of
practical and experimental parallel machines, agkhe Intel Paragon [39], the Cray XT3
[19, 60], the MIT J-machine [61], the Cray T3D [p#}e Cray T3E [25], the IWARP [15],

the IBM BlueGene/L [10, 55, 97, 98], and the Ddltaichstone [40].

Definition 1.1: An n-dimensional mesh hdg xk; x............. xKn-2 XK1 nodes, where

k; is the number of nodes along & dimension and; = 2. Each noden is identified by
n coordinates, pg(a), 01(a),....ccce.... ,Pn-2(a),pn-1(@), where 0< p;(a) <k for
O<i<n. Two nodesa and b are neighbours if and only ip;(a)= p;(b) for all
dimensions, except for one dimensipnwhere p;(b) = p;(a)+1. Each node in a mesh

refers to a processor, and any two neighbours amn¢erconnected by a direct

communication link.

Chapter 1: Introduction 3

Definition 1.2: A 2D mesh, referred to asl (W, L), consists of W x Lprocessors, where

W is the width of the mesh and is its length. Everprocessoris denoted by a pair of

coordinates (x,y), where 0<x< W and O0<y< L. A processor is connected by a

bidirectional communication link to each of its glebours.

Definition 1.3: In a 2D meshM (W, L), a sub-mestgs(w,1) is a two-dimensional sub-mesh
of nodes belonging toM (W,L) with width w and length |, whereO<ws< Wand
0<l<L. S(wl) is represented by the coordinatesy, x’,y'), where(x,y) is the lower
left corner of the sub-mesh, arf#’, y') is its upper right corner. The lower left cornerdeo

is called the base node of the sub-mesh, wheraasigper right corner node is the end

node. Herew=x'-x+1 andl =y'—y+1. The size ofS(w,l) iswx |processors.

Definition 1.4: In a 2D meshM (W, L), a suitable sub-mes8(w,1) is a free sub-mesh that
satisfies the conditionsw=¢a and | = 8 assuming that the allocation o8(a,f) is

requested, where the allocation refers to selectimgt of processors to an incoming job.

Figure 1.1 shows an example of & 4 2D mesh, where allocated processors are debgted
shaded circles and free processors are denotetkay arcles. The mesh network has the
desirable property of being partitionable into derakub-meshes [18, 49, 73, 77, 79, 85].
For example, (0, 0, 2, 1) represents the Bsub-mesHsS in Figure 1.1, where (0, 0) are the
coordinates of the base of the sub-mesh and (Zard)the coordinates of its end. A
partitionable system has the advantage of enaltiacallocation of multiple simultaneous
jobs, which can result in good processor utiliga{fib8, 77, 85]. The execution time of a job
can often be reduced by allocating as many procgssdhe job as possible. In the presence

of multiple jobs, the mesh can be partitioned istd-meshes so that each job can be

Chapter 1: Introduction 4

allocated its own sub-mesh [85]. When a job dep#énes mesh system, its allocated
processors need to be combined with other idlegasmrs in the mesh system. Otherwise,
severe processor fragmentation may arise, causegiadation in the overall system

performance [18, 49, 73, 77, 79, 85].

3.3

. : Allocated Node

O : Free Node

Figure 1.1: An Example of a4 x4 2D mesh

In this research, we assume that jobs executingnesh-connected multicomputers are
parallel programs consisting of tasks that commateievith each other via message passing.
Upon arrival, a job requests the allocation of &-mesh of a given size. As previously

reported in definition 1.4, the selection of thegessors to be allocated to the job is referred

to asprocessor allocation

The remainder of this chapter is organized as fedloSection 1.1 describes the different
types of processor allocation algorithms and presican overview of the processor
allocation strategies proposed previously for 2l 8D mesh-connected multicomputers.
We limit our attention to these low-dimensional mes because they have received much
consideration by researchers recently [9, 11, 4628, 28, 31, 33, 34, 35, 45, 51, 52, 71, 72,
73, 74, 75, 76, 77, 78, 79, 81, 97]. Furthermoranynparallel machines in the real world,

such as the iWARP [15], the MIT J-machine [61], thiel Paragon [39], the Cray T3D [67],

Chapter 1: Introduction 5

the IBM BlueGene/L [10, 55, 97, 98], and the Cra8ET[25] have used these low-
dimensional meshes as their underlying topologyti®e 1.2 presents the motivations for
the present research. Section 1.3 presents this 8tatement. Section 1.4 presents the main
contributions of this research. Finally, Sectio® provides an outline of the rest of the

thesis.

1.1 Processor Allocation

Efficient processor allocation afob schedulingare critical if the full computational power
of large-scale multicomputers is to be harnesséetidfely [9, 27, 31, 78, 94]. Processor
allocation is responsible for selecting the setpodcessors on which a parallel job is
executed, whereas job scheduling is responsiblddtarmining the order in which jobs are
selected for execution [9, 11, 20]. The job schedsélects the next job to execute using the
scheduling policy, and then the processor allocttols free processors for the selected job
[50, 66]. If an arriving job cannot be run immeeigt due to a lack of free processors or the
existence of other waiting jobs, for example, itdiverted to the waiting queue. Once
processors are allocated to a job, the job holdselprocessors exclusively until it finishes
running. At this time, it departs from the systendahe processors are freed for use by

other jobs.

A processor allocation strategy may have a paotidull sub-mesh recognition capability
[85, 99]. Full sub-mesh recognition capability meémat the allocation strategy can identify
a free sub-mesh of the requested size as longeassits in the mesh system, while partial
recognition capability means that the allocatiaatsigy may fail to identify a free sub-mesh
of the requested size although one exists. Havinlg sub-mesh recognition capability
improves system performance, but increases therteeded to allocate a sub-mesh to a new

job, as has been shown in [26, 31, 34, 94, 97]h\ivitreased system size, the time to search

Chapter 1: Introduction 6

for free processors that satisfy an incoming retjueight be comparable to the job’s
execution time [46]. Hence it is important to degetechniques for minimizing the search
time (also referred to as the allocation time). ihization of the allocation time in mesh-
connected multicomputers is fundamental. This sabhse a major goal of parallel execution
is to minimize the turnaround time of jobs (i.de ttime that a job is expected to spend in
the mesh system from arrival to departure). Howethex allocation time of many existing
allocation strategies [26, 31, 34, 94, 97] increasben the number of processors in the

mesh increases.

Processor allocation strategies can be dividedtimtomain categoriesontiguousandnon-
contiguous[18, 49, 71, 72, 73, 77, 79, 85]. In the contiga@liocation strategy, jobs are
allocated distinct contiguous processor sub-me&irate duration of their execution [9, 11,
21, 27, 31, 33, 35, 38, 48, 65, 74, 78, 80, 94, 88th a strategy can lead to high processor
fragmentation, as has been shown in [99]. High ggeor fragmentation degrades system
performance parameters, such as the average tunthtone of jobs and the mean system

utilisation (i.e., the percentage of processors dha utilized over a given period of time).

Processor fragmentation is of two typesiternal and external [11, 85]. Internal
fragmentation occurs when more processors aresaiddo a job than it requires, whereas
external fragmentation occurs when there are freegssors sufficient in number to satisfy

a pending allocation request, but they are notatkd because they are not contiguous.

Examples of contiguous allocation strateyji¢isat have been developed for 2D mesh-
connected multicomputers include the Two Dimendi@ualdy System (2DBS) [48], Frame

Sliding (FS) [65], Adaptive Scan (AS) [41], and stiFFit (FF) and Best Fit (BF) [99]. The

Chapter 1: Introduction 7

2DBS [48] is simple, but it applies to square megbtems only and suffers from internal
and external processor fragmentation. The FS gydh] is applicable to a mesh of any
size and any sub-mesh shape, but it suffers froterexl fragmentation as it cannot
recognize all free sub-meshes. The frame slidingratpon is such that it may skip over a
large-enough free sub-mesh because the frame glapieration is by the job’s width and
length. The AS strategy [41] has been shown to avprsystem performance by switching
the orientation (i.e., rotation) of any allocatimrguest that cannot be accommodated in the

requested orientation. A job that requestsaan sub-mesh may be allocatedBax a sub-

mesh. However, the allocation time of AS is higimpared to FS because the AS strategy
scans processors in the mesh system with a vedidale distance of 1 processor (i.e.,
Jumps to successive processors are by 1 proce3dw)FF and BF strategies [99] can
detect all large-enough free sub-meshes, but tdkydomplete sub-mesh recognition ability

in that they do not consider switching the orieiotabf requests.

Examples of contiguous allocation strategies thavehbeen suggested for 3D mesh-
connected multicomputers include First Fit (FF) &bt Fit (BF) [34], Turning First Fit
(TFF) and Turning Best Fit (TBF) [34], and the Adaiion Algorithm for the IBM
BlueGene/L [97]. The FF and BF strategies [34]sangple, but they do not permit changing
the orientation of requests, hence they suffer flogh external processor fragmentation.
The TFF and TBF [34] improve performance by considgall orientations of the request
when needed, however their allocation overhead @location and de-allocation time) is
high. The Allocation Algorithm for the IBM BlueGefie[97] assumes that a job can utilize
an integer number of midplanes (a midplane is a&pd x 8 x 8 processors). Otherwise,

there is internal processor fragmentation, whiah lva severe because this allocation unit is

1 The details of the existing contiguous allocasitrategies will be provided in Chapter 2.

Chapter 1: Introduction 8

rather large.

Although contiguous allocation suffers from low oca# system utilisation [31, 33, 85], it
has been proposed for use in the IBM BlueGene/Lskxurity reasons; because of the
sensitive nature of some of its applications, aeBlane/L job is allocated a sub-mesh of

processors that is isolated from sub-meshes a#ddatother jobs [97].

So as to reduce the processor fragmentation th#tgemus allocation suffers from, non-
contiguous allocation has been proposed [18, 44,749 72, 77, 85]. In non-contiguous
allocation, a job can execute on multiple disjamaller sub-meshes rather than always
waiting until a single sub-mesh of the requested sind shape is available [18, 44, 49, 71,
72, 77, 85]. In Figure 1.1 above, if a job requekesallocation of a sub-mesh of size 2,
contiguous allocation fails because nox22 sub-mesh of free processors is available.
However, the four free processors (depicted infidngre by white circles) can be allocated
to the job when the non-contiguous allocation iopdd. Although non-contiguous
allocation can increase message contention inehgank, lifting the contiguity condition is
expected to reduce processor fragmentation aneéaser processor utilisation, as has been

shown in [85].

The wide adoption ofvormhole routing [11, 18, 83] in practical systems has encouraged
researchers to consider non-contiguous allocat@nniulticomputers that use networks
characterised by long communication distances,(hg.mesh) [18, 49, 71, 72, 77, 85]. A
major advantage of wormhole routing over earlieitawng techniques, especially store-

and-forward, is that message latency is less semdit message distance, especially under

2 Wwormhole routing is a switching technique whicts leeen used in multicomputers. The detailed operaif
wormhole routing will be provided in Chapter 2.

Chapter 1: Introduction 9

light to moderate traffic conditions [2, 43]. Reoggjng that wormhole routing can mitigate
the additional communication overhead, non-contiguallocation has received increased
interest from the research community due to itéitgdo allocate small sub-meshes of free
processors scattered throughout the mesh-conneatéittomputer instead of waiting until
a single large free sub-mesh is available, whigmifitantly decreases external processor
fragmentation [11, 18, 71, 72, 77, 85]. Experimeots a 208-processor Paragon, a
multicomputer based on a 2D mesh with wormhole ingut have indicated that the
communication overhead in non-contiguous allocati@y not be so severe as to offset the

benefits of reduced fragmentation [85].

The method used for partitioning allocation reqsebas considerable impact on the
performance of non-contiguous allocation [71, 78].particular, the partitioning process
should aim to maintain a high degree of contigligfween the processors allocated to a
parallel job. This is so that the communication rbead is reduced without adversely

affecting the overall system performance [71, 72,78].

Existing non-contiguous allocation stratediexlude Random [85], Paging [85], Multiple
Buddy Strategy (MBS) [85], Adaptive Non-Contiguotibocation (ANCA) [18], Adaptive

Scan and Multiple Buddy (AS&MB) [49], and sever¢ Paging variants [24]. In
Random [85], both internal and external fragmeoteti are eliminated, but high
communication interference amongst jobs is to hgeeted. In Paging [85], there is some
degree of contiguity among processors allocated fwarallel job, and contiguity can be
increased by using larger pages. However, therébeanternal processor fragmentation for
page sizes larger than one. MBS [85] has been shownprove performance compared to

the earlier strategies, but it may fail to allocateontiguous sub-mesh of free processors

Chapter 1: Introduction 10

although one exists. Hence, it can increase thenuaritation overhead. ANCA [18]

subdivides the request int2' equal parts during thé" iteration. Also, it requires that
allocation to all parts occur in the same partitignand allocation iteration, which can
result in skipping over the possibility of alloaadilarger sub-meshes for a large part of the
request in a previous iteration. This can increagecommunication overhead. Moreover,
allocation fails if a side length of the sub-parémches one, which can cause external
fragmentation. The performance of AS&MB [49] inrter of response times and service
times can be almost identical to that of MBS [85]as been shown in [44]. However,
AS&MB suffers from high allocation overhead fordarmeshes. In the Paging variants [24],
the unit of allocation is a single processor, whsri can be larger in MBS [85] and ANCA
[18]. As a consequence, the Paging variants camree@ long time to reach an allocation

decision in large machines [97].

1.2 Motivations

The results of previous research suggest that rawiguious as well as non-contiguous
allocation strategies for mesh-connected multicalysuare needed. The motivation for the
development of a newontiguousallocation strategy for the 3D mesh network hasnbe
driven by the observation that the existing cortgiga allocation strategies suggested for the
3D mesh achieve complete sub-mesh recognition dépainly at the expense of a high
allocation overhead [31, 34, 94, 97] that accodiotghe time required to allocate and de-
allocate processors to an incoming job. The allooabverhead of the previously proposed
algorithms for contiguous allocation in 3D meshed #ori grow with the system size [26,

31, 34, 94].

% The details of the existing non-contiguous allmastrategies will be provided in Chapter 2.

Chapter 1: Introduction 11

The motivation for the development of a nean-contiguousllocation strategy for the 2D
mesh has been driven by the observation that thstix non-contiguous allocation
strategies suggested for the 2D mesh network stiffen several problems that include
internal fragmentation, external fragmentation, amessage contention inside the network
[18, 24, 84, 85]. Furthermore, the allocation obgessors to job requests is not based on
free contiguous sub-meshes in all of the existiimgtegies [18, 85] but rather on artificial
predefined geometric or arithmetic patterns [18]. 85or example, in [18], ANCA
subdivides the job request into two equal partd,the subparts are successively subdivided
in a similar fashion if allocation fails for any giem. In [85], MBS bases partitioning on a
base-4 representation of the number of processgrsested, and partitioning in Paging [85]
is based on the characteristics of the page, wikighobally predefined independently from
the request. Hence these strategies may fail boak an available large sub-mesh, which in

turn can cause degradation in system performancé, as the turnaround times of jobs.

Many previous studies [6, 11, 18, 27, 31, 33, 3,3B, 48, 49, 51, 52, 74, 78, 85, 94, 99]
have used the exponential distribution for job exien times when evaluating the
performance of a new allocation strategy. Therefare exponential distribution has been
assumed for our suggested allocation strategiesrdier to evaluate their performance
properties against those of the existing strategiesvever, many measurement studies [22,
47, 56, 57, 58, 59, 88, 96] have convincingly destiated that the execution times of
certain computational jobs can be characterisetidayy-tailed distributions; that is, many
jobs are short and fewer are long. Heavy-tailetritistions can capture this variability and
have been shown to behave quite differently fromakponential distribution [22, 57, 58,
75]. In particular, when sampling random varialiest follow a heavy-tailed distribution,

the probability of large generated values is noghigible [22, 47, 56, 57, 58, 59, 88, 96].

Chapter 1: Introduction 12

1.3 Thesis Statement

Current allocation strategies used in mesh-condettelticomputers can be classified into
two categories:contiguous and non-contiguous The existing contiguous allocation
strategies manage to achieve complete sub-mesgnition capability but at the expense of
high allocation overhead. On the other hand, eagstion-contiguous allocation strategies
suffer from several problems that include interfragmentation, external fragmentation,
and message contention inside the network. Alsey @tho not exploit knowledge of the

current state of the system (e.g., currently abblaub-meshes).

A number of measurement studies have convincingipahstrated that the execution times
of many computational jobs can be characterisedhbgvy-tailed distributions (e.g.,
Bounded Pareto). However, the effectiveness of raoggested allocation strategies have
been evaluated under the assumption of exponegntigtributed execution times, which

may not reflect all possible practical scenarios.

This thesis will justify the following key claims:

T1: A contiguous allocation strategy can be developed €xhibits competitive system
performance (e.g., a low job turnaround time anghlsystem utilisation) with a
lower allocation overhead compared to existingtsgi@s for 3D mesh-connected
multicomputers. This is achieved by maintainingsa of allocated sub-meshes in
order to efficiently determine the processors t&t form an allocation sub-mesh

for a new allocation request.

T2: A non-contiguous allocation strategy for 2D meshyected multicomputers can be

developed where requests are partitioned by trgckise sub-meshes so as to

Chapter 1: Introduction 13

maintain a high degree of contiguity. This stratégyfree from both internal and
external fragmentation, and reduces message canterit also improves system
performance in terms of job turnaround times comgao the existing strategies
and exhibits a high system utilisation as it masaigeeliminate both internal and

external fragmentation.

T3: The performance of contiguous allocation strategasbe significantly affected by
both the type of the distribution adopted for joteeution times and the scheduling
strategy adopted for determining the order in whaldts are selected for execution.
To date, no study has been reported that analysegrpact of heavy-tailed job
execution on the performance of the allocationtsgrias. When the performance of
the new contiguous allocation strategy describedlinas well as the traditional
allocation strategies, is re-visited in the conteftjobs with execution times
following both heavy-tailed and exponential distions, using First-Come-First-
Served (FCFS) scheduling strategy, the performasfcthe allocation strategies
degrades when the distribution of job executioresns heavy-tailed, an appropriate
scheduling strategy should be adopted to deal matvy-tailed distributions and, in
this regard, our analysis will demonstrate that $fertest-Service-Demand (SSD)
scheduling strategy exhibits superior performanaer othe FCFS scheduling

strategy.

1.4 Main Contributions

To address the above research concerns listee imdiivations section, this thesis presents
efficient contiguous and non-contiguous allocatitrategies that overcome the limitations

of the existing strategies suggested previouslyHfer2D and 3D mesh networks.

Chapter 1: Introduction 14

In the first part of this research, an efficienhtiguous allocation algorithm, referred to as
Turning Busy List (or TBL for short), for 3D meslmected multicomputers is proposed.
The TBL strategy considers only those available Beb-meshes which border from the left
of those already allocated sub-meshes or which Hasie left boundaries aligned with that
of the whole mesh network.The TBL strategy can fifigra free sub-mesh of the requested
size as long as it exists in the mesh system.nitdzaso because it relies on a new approach
that maintains a list of allocated sub-meshes terdene the processors that can form an
allocation sub-mesh for a new allocation requeke TBL strategy is shown to exhibit a
lower allocation overhead than that in the previstrategies [34]. Moreover, simulation
results show that system performance, in termsaddpeters such as turnaround times and

system utilisation, is as good as that of the nesliy promising proposed strategies [34].

In the second part of this research, a new nonigrooiis allocation algorithm, referred to as
Greedy Available Busy List (or GABL for short), fire 2D mesh-connected multicomputer
is suggested. The GABL strategy combines the ddsirieatures of both contiguous and
non-contiguous allocation. For example, the de&rdbatures of contiguous allocation
include the elimination of the communication ovexthebetween processors allocated to a
parallel job, and achieving complete sub-mesh reitiogn capability with low allocation
overhead. The desirable features of non-contiguallscation are reducing processor
fragmentation and alleviating the communicationrbead between processors allocated to
a job by maintaining a high degree of contiguityween them. Moreover, GABL is general
enough in that it could be applied to either thed®2[3D mesh. However, for the sake of the
present discussion, the new non-contiguous allogairategy is adapted for the 2D mesh in
order to compare its performance against that ef ékisting non-contiguous allocation
strategies suggested for the 2D mesh; it is wooihtjmg out that there has been hardly any

non-contiguous allocation strategy which has beggested for the 3D mesh network.

Chapter 1: Introduction 15

The proposed GABL strategy relies on a new apprdbah maintains a higher degree of
contiguity among processors than that of the previoon-contiguous allocation strategies.
This decreases the number of sub-meshes alloaaijbb, hence the distance traversed by
messages is decreased, which in turn decreasesrimunication overhead. Our simulation
results indicate that GABL has better performamce&ims of the turnaround time than the
previous non-contiguous allocation strategies psepoin [85]. Moreover, when message
contention is increased inside the network duesiogiall-to-all communication patterns,
for example, GABL exhibits superior performance roygevious contiguous and non-
contiguous allocation strategies. Furthermore, GA8hble to eliminate internal as well as

external fragmentation from which several previaliscation strategies suffer.

In the Final part of this research, the performantehe existing contiguous allocation
strategies for 3D mesh-connected multicomputersludiing the ones proposed in this
research, is revisited in the context of heavyethilob execution times. To the best of our
knowledge, this research is the first to considemvy-tailed distributions in the context of
processor allocation in mesh-connected multicompgutin this part, the performance of
allocation strategies is measured in terms of twablperformance parameters [6, 9, 18, 21,
27, 31, 33, 34, 35, 38, 71, 72, 73, 74, 75, 76,78{,79, 85, 94, 99], including the average
turnaround time and mean system utilisation, a$ asthe measured allocation overhead,
that is, the time that the allocation and de-afiieraoperations take per job. Our results
show that the system performance of the allocatinategies degrades considerably when
the distribution of job execution times is heavifetd. Our analysis also shows that when
job execution times follow a heavy-tailed distriomt the SSD scheduling strategy
improves the performance of the allocation straegiompared to the FCFS scheduling
strategy. In addition, the results show that oggssted contiguous allocation strategy has a

low allocation overhead and its system performanderms of average turnaround time and

Chapter 1: Introduction 16

mean system utilisation is as good as the best ettop of the previous contiguous

allocation strategies.

1.5 Outline of the Thesis

The rest of the thesis is organised as follows.pf#ra2 describes well-known contiguous
and non-contiguous allocation strategies that hbgen proposed for mesh-connected
multicomputers and presents the system model asbumethis research. A list of

assumptions used in this research is also provigiedlly, the chapter describes the method

of study used in this research and justifies thecsien of simulation as a study tool.

Chapter 3 introduces the Turning Busy List (TBL)aasew contiguous allocation algorithm
for 3D mesh-connected multicomputers, and discugsesnain features of this algorithm.
Also, extensive simulation experiments are cardetin order to compare the performance

of the proposed allocation strategy against wetivkim contiguous allocation strategies.

Chapter 4 introduces the Greedy Available Busy I({SABL) strategy as a new non-

contiguous allocation algorithm for 2D mesh-conedamulticomputers. The main features
of the GABL strategy are also discussed, and ektersmulation experiments are carried
out in order to evaluate the performance of the #iiategy and compare it against existing

well-known contiguous and non-contiguous allocastmategies.

Chapter 5 conducts an extensive performance stéidigeoexisting contiguous allocation

strategies, including the one proposed in Chaptier 3D mesh-connected multicomputers
when the job execution times follow a heavy-taitigstribution. The strategies are evaluated
using simulation experiments for both FCFS and S8eduling strategies under a variety

of system loads and system sizes.

Chapter 1: Introduction 17

Chapter 6 summarises the main results presentatisnresearch and outlines possible

directions to continue this work in the future.

Chapter 2

Background and Preliminaries

2.1 Introduction

Space sharingcan be used in addition tane sharingin parallel computers due to the
presence of multiple processors in such computets I7, 37]. In space sharing, a job is
allocated a distinct subset of processors; thahasprocessor is concurrently assigned to
more than one job [6, 11, 17, 37]. In time shariagrocessor spends an interval of time
executing a job, then it switches to the executbranother one [6, 11, 17, 37]. The
overhead that results from the context switthas time sharing degrades system

performance, and as a result it has become lesdgydp practical systems [11, 17].

Most existing allocation strategies employ spacaisg [9, 11, 18, 20, 21, 24, 26, 27, 31,
33, 34, 35, 38, 48, 49, 51, 52, 65, 71, 72, 73,704,716, 77, 78, 79, 80, 85, 94, 99] and can

be categorised asntiguousand/ornon-contiguousin contiguous allocation [9, 20, 21, 26,

1 A context switch is the process of storing andomiisg the state (context) of processors suchrthdtiple jobs
can share these processors.

Chapter 2: Background and Preliminaries 19

27, 31, 33, 34, 35, 38, 48, 52, 65, 74, 75, 78994, the allocated processors are physically
contiguous and have the same topology as the wmilgrmulticomputer network (i.e.,
mesh) in order to keep minimal the communicatioarbead between allocated processors.
A direct consequence of contiguous allocation iat tgood system utilization is not
achievable due to thirEagmentation problenthat contiguous allocation suffers from [18,
85]. As previously reported in Chapter 1, the fragitation problem is of two typeistternal
and external processor fragmentation. Internal fragmentationuccovhen some of the
processors allocated to a job are not used, wherdasnal fragmentation occurs when a
sufficient number of free processors are availableatisfy a job request but they are not

allocated to it because they are not contiguous.

Figure 2.1 shows a job that requested 2 processutsvas allocated 4 processors; hence
there is an internal fragmentation of 50%. Figur2 2hows the existence of an external
fragmentation of 4 processors due to processorcnatiguity, assuming that the allocation
strategy is contiguous. The 4 free processors aralfocated to the request because they
are not contiguous. To solve this problem, someanehers [18, 24, 49, 71, 72, 84, 85] have
opted for non-contiguous allocation where a job barexecuted on multiple disjoint sub-
meshes rather than waiting until a single sub-mekihe requested size is available.
Initially, non-contiguous allocation did not receimuch attention from researchers. This is
because the communication latency was very seesity the distance between
communicating nodes when store-and-forward switghimas dominant in the first
generation of multicomputer networks [11]. Howevadvances in switching technique,
such asvormhole switching (also widely known as wormhaleting) [2, 4, 11, 13, 29, 71,
72, 83], have made non-contiguous allocation pldesh mesh-connected multicomputers.
This is because one of the advantages of wormhwiectsng over earlier switching
schemes, mainly store-and-forward, is that messsigacy depends less on the message

distance [2, 43].

Chapter 2: Background and Preliminaries 20

A job requests 2
processors

' . : Allocated Node

O : Free Node

> . : Allocated to request

Figure 2.1: An internal fragmentation of 2 processo rs

A job requests a

R\
2 x 2 sub-mesh \‘/ Q

. . : Allocated Node

|::> O : Free Node
.—. . : Allocated to request

Figure 2.2: An external fragmentation of 4 processo rs assuming that

the allocation strategy is contiguous.
The main objective of this chapter is to describme of the existing contiguous and non-
contiguous allocation strategies that have beepgsed in the literature [18, 24, 34, 41, 48,
49, 65, 84, 85, 97, 99] for mesh-connected multipatars. This chapter also describes the
system model assumed in this study. Such backgrainécessary for understanding the
subsequent chapters. The remainder of this chapterganized as follows. Section 2.2
describes the existing allocation strategies. 8ai3 provides the system model assumed
in this research. Section 2.4 outlines the lishsfumptions used in this research. Section 2.5
describes the simulation tool (ProcSimity Simulatehile Section 2.6 justifies the selection

of simulation as a tool of study. Finally, Sectii summarises this chapter.

Chapter 2: Background and Preliminaries 21

2.2 Related Allocation Strategies

This section provides a brief overview of some &xgs contiguous and non-contiguous
allocation strategies that have been suggestetdibr the 2D and the 3D mesh-connected

multicomputers.

2.2.1 Contiguous Allocation Strategies for 2D and3 Mesh

Contiguous allocation has been extensively invagtid for mesh-connected multicomputers
[9, 20, 21, 27, 31, 33, 34, 38, 48, 51, 52, 65,808,94, 99]. Most of the previous studies
have focused on reducing the degrading effectagif processor fragmentation caused by

contiguous allocation. Below we describe some efwiell-known strategies.

Two Dimensional Buddy System (2DBS): The 2DBS allocation [48] applies to square mesh
systems with power of two side lengths. Procesabogated to jobs also form square sub-

meshes with power of two side lengths. If a jobuesis a sub-mesh of sizex S such that

a<pf, the 2DBS allocates a sub-mesh of sizes, where s = olloga(maxa. B))] o

example, if a job requests 2 processors it is athxt a square sub-mesh of processors with a
side length of 2, resulting in 2 idle processord am internal fragmentation of 50% as
shown in Figure 2.1 above. This strategy suffemnfrinternal and external processor
fragmentation [18, 20, 77, 85, 99]. Furthermoregahnot be used for non-square meshes

[18, 77, 85].

Frame Sliding (FS): The frame sliding strategy [65] is applicable tmash of any size and
shape. FS searches for an appropriate allocatimg asset of sequenced non-overlapping

processor frames (i.e., processor sub-meshes).aksumed that an arriving job requests a

Chapter 2: Background and Preliminaries 22

processor sub-mesh of rectangular shape. Prockasaes of the same side lengths as the
requested sub-mesh are searched from left to aght from bottom to top. Jumps to
successive frames are by the job's width and lerifitle goal of searching is to find a
suitable frame for allocation; i.e., all its prosess are free and it is large enough to
accommodate the allocation request. This procesis evith either finding a suitable
allocation or when all frames are scanned and moogpiate frame is found. Figure 2.3
gives the states of a*65 mesh and the allocation algorithm is invokedd@x 2 request.
An allocation process starts with the first fre@gassor found starting from the lowest-
leftmost corner of the sub-mesh. It can be seem fthis figure that the first frame
considered is not allocated because there is anadfid processor inside that frame. The
request then slides horizontally by the width of {bb request, which goes outside of the
mesh. After that, the requested frame slides \alyito the top of the mesh by the length of
the job request, but again the new frame of praxress not allocated because it contains
allocated processors. This process continues, andotice that it ends without finding a
suitable frame for allocation. The allocation st fails to allocate a sub-mesh to the job
request although one exists. A problem with thrategy is that it may not recognise free

sub-meshes because the jumps are by the job's andtkength [85].

@ : Allocated Node O : Free Node

A job requests
6 processors

%

/

) O

g
-O

Figure 2.3: An allocation using the frame sliding s trategy

Chapter 2: Background and Preliminaries 23

Adaptive Scan (AS): This strategy [41] is an improvement of the F&tsigy [65] and uses
scanning instead of a sliding operation. Thattisnoves a frame vertically with a stride
distance of 1 processor and horizontally basecheratlocated sub-meshes. Moreover, this
strategy supports the re-orientation (i.e., rotgtiof the allocation request when allocation

fails for the requested orientation. A job thatuests anx x 5 sub-mesh may be allocated a
[*xa sub-mesh. However, the shorter stride distancee@&ses the allocation time and

hence AS is not suitable for large meshes. Forghminder of this dissertation, the terms

rotation andre-orientationwill be used interchangeably.

First Fit (FF) and Best Fit (BF) for 2D Meshes: The problem of missing an existing
possible allocation encountered in previous strage solved in the FF and BF strategies
[99]. The processors that can serve as base nauteshé free sub-meshes that can
accommodate the current job request are represbgtad array of sizeN , whereN is the
number of processors in the mesh system. In FFfithke such base is chosen as the
allocation base. In BF, a base that has the largasber of busy neighbours and smallest
surrounding free area is selected as the allocatige. Given a request for & 2 sub-mesh

and the mesh shown in Figure 2.4, FF and BF alothe sub-meshess; andS,,

respectively. The FF and BF strategies [99] cardedll large-enough free sub-meshes, but
they lack complete sub-mesh recognition abilityhiat they do not consider switching the
orientation of requests. An in-depth discussior-Bfand BF allocation and de-allocation

algorithms can be found in [99].

First Fit (FF) and Best Fit (BF) for 3D Meshes: In these two strategies [34], the free sub-
meshes are scanned and FF allocates the first eab-that is large enough to hold the job,
whereas BF allocates the smallest suitable sub-nfishulation results have shown that

these two strategies have comparable performantarims of average turnaround time and

Chapter 2: Background and Preliminaries 24

mean scheduling effectivenésthe performance of FF is close to that of BFre¢fmre we
only consider the FF strategy for the purpose sf$tudy. The strategies FF and BF are not
recognition-complete; an allocation request is awvodated only if there exists a large
enough sub-mesh with the same orientation as tbeasion request, hence they suffer from
high external processor fragmentation. Bit arrases @sed for the scanning of available
processors. The allocation and de-allocation dligms for the FF strategy are presented in

Figures 2.5 and 2.6, respectively.

@ : Allocated Node O : Free Node @ : Allocated to request

)

A job requests 4

processors

&
B

Figure 2.4: An allocation using First Fit and Best Fit strategies

—O—0—0
_‘
_‘

Procedure FF_Allocate (a, 8, 7):
{
W = Mesh Width; D = Mesh Depth; H = Mesh Height
Mesh Size =W x D xH
Job Size = x g x y
int w, d, hg w, d, h,
int Avail;// To determine the number of procesdorsan incoming job.
if (Job Size > free processors) return failure
for each wfromOtoW -1

2 The scheduling effectiveness measures the abifign allocation algorithm to avoid processor fragiation
[38].

Chapter 2: Background and Preliminaries 25

for each gfromOto D -1
foreach hfromOtoH -1
if the node (w d, h) is free then {
Avail =0
for each wfrom wto w + a — 1 provided that yw< W
for each ¢ from dto d + § — 1 provided that@d< D
for each hfrom h to h+y — 1provided that, < H
if the node (w d,, h) is free then Avail++;

if (Avail==Job Size){
for each wfromwtow + a—1
foreachdfromdtod+ -1
for each hfromhtoh+y—1

allocate the node(wd, h) to the current job by
setting node’s ID to job ID.

return success.

}

return failure

Figure 2.5: Outline of the FF Contiguous Allocation Strategy.

Procedure FF_De-allocation ():

{
jid = id of the departing job;
For all nodes in the mesh system
if (nodes’ id == jid)
de-allocate it.
}

Figure 2.6: Outline of FF de-allocation algorithm

Turning First Fit (TFF) and Turning Best Fit (TBF) for 3D Meshes: The problem of
missing an existing possible allocation mentionedrfr and BF above is solved using TFF
and TBF [34]. The TFF and TBF strategies [34] supfite rotation of the job request. They

consider all orientations of the request when neéetet (a, 5,y) be the width, depth and

Chapter 2: Background and Preliminaries 26

height of a sub-mesh allocation request. The simptationga, S,y) (a,y,.£5), (B.a,y),
B,y,a), (y,a,B) and (y,B,a) are, in turn, considered for allocation. If allboa

succeeds for any of these permutations the prateps. For example, assume a free mesh
(3, 3, 2) and the job requests (2, 3, 2) and (31)2arrive in this order. The second job
request cannot be accommodated until it is rotatedl, 3, 2), as shown in Figure 2.7.
Simulation results have shown that the TFF strateagy greatly improve performance in
terms of average turnaround time and mean schedudifiectiveness. Changing the
orientation of allocation requests can alleviatdemal fragmentation. Moreover, the
performance of TFF is almost identical to that &FT therefore only the TFF strategy is
considered in this research. In [34], differentexiiling strategies, such as First-Come-First-
Served (FCFS) and Out-of-Ord¢O0) have been studied. The goal of OO schedising

avoid performance loss due to blocking associaiéittive head of the FCFS queue.

Allocation Algorithm for the IBM BlueGene/L: In this algorithm [97], the allocation unit is
the midplane, which consists ox83 x 8 processors. The goal of using this large allonat
unit is to decrease the allocation overhead. Thygrithm supports the rotation of the
allocation request. The system is scanned for @llr&ctangular and spatially contiguous
sets of free midplanes that match the shape amrdo$ithe request. This algorithm assumes
that a job can utilize an integer number of midpk&rOtherwise, there is internal processor
fragmentation, which can be severe as this allonatinit is rather large, hence the
degradation of system utilization can be severathEumore, the allocation overhead
depends on the number of midplanes in the meskmystnd it increases when the number

of midplanes increases.

% In the OO scheduling strategy, the requests ifFtR® waiting queue are considered for allocatiothie order
of their arrival, this process is stopped whenehd of the queue is reached, or when there areare free
processors.

Chapter 2: Background and Preliminaries 27

‘ Allocation to request (2, 3, 2) @ Allocation to request (3, 2, .
after rotation to (1, 3, 2)

Figure 2.7: Allocation with rotation to request (2, 3, 2) followed by request (3, 2, 1)

The above allocation strategies consider only goiotiis regions for the execution of a job.
As a consequence, the length of the communicatathspis expected to be minimized in
contiguous allocation. Only messages generatetidogame job are expected within a sub-
mesh and therefore there is no inter-job contentiothe network. On the other hand, the
restriction that jobs have to be allocated to @udus processors reduces the chance of
successful allocation. It is possible that allomatifails in the contiguous allocation
strategies while there is a sufficient number ekefprocessors [18, 85], i.e., fragmentation

occurs in these strategies.

2.2.2 Non-Contiguous Allocation Strategies for 2D kshes

Advances in routing techniques such as wormholetimgu[4, 29, 83], have made
communication latency less sensitive to the disgtametween communicating nodes [2, 18,
43, 71, 72, 77]. This has made allocating a jolmda-contiguous processors plausible in

networks characterised by long-diameter, such a2ih mesh. Non-contiguous allocation

Chapter 2: Background and Preliminaries 28

allows jobs to be executed when the number of abkglprocessors is sufficient [18, 44, 49,
71,72, 77, 85]. Some of the non-contiguous aliocastrategies that have been suggested in

the literature are described below.

Random: Random allocation is a straightforward strategywimich a request for a given
number of processors is satisfied with a numbesro€essors selected randomly [85]. Both
internal and external fragmentations are eliminaiede all jobs are assigned exactly the
requested number of processors, if available. Becaio type of contiguity is enforced in

this strategy, high communication interference agstypobs would be expected.

Paging: In the Paging strategy [85], the entire 2D mestivided into pages that are sub-
meshes with equal side lengths28f&-""9€X where size_index is a positive integer. A

page is the allocation unit. The pages are indeambrding to several indexing schemes
(row-major, shuffled row-major, snake-like and dhad snake-like indexing), as shown in

Figure 2.8. An ordered list is used to keep tratlalb unallocated pages. The pages are
sorted in the increasing order of their order iedicassigned by the indexing scheme. Each
entry in the list contains the corresponding pageis and column indices, and the page’s

order index. The number of pages a job requestsigputed as:

Prequest=] (@ % B)/ PSIZ€| ... (221)

where Psizeis the size of the page, amd and S are the side lengths of the requested sub-
mesh. If the number of free pages is greater thraeqoal to Bequest the first Pequest

unallocated pages are removed from free list alodatled to the requesting job. When a job
is de-allocated, pages occupied by it are mergedk b#o the free page list. A paging

strategy is denoted as Pagisile_index). For example, Paging(2) means that the pages are

4 x 4 sub-meshes.

Chapter 2: Background and Preliminaries 29

Paging suffers from internal fragmentation wkee_index> . The internal fragmentation
of running jobs is given by:

> Lost_Processors

Internal_Fragmentation =—22 e, (2.2)
> Allocated Processol

jobs

where Lost_Processorsis for a parallel job that request®ob_Size processors, but is
allocatedNumber_of _ Allocated_Pages. It is calculated using:

Lost_Processorss Number_of _ Allocated_Pagesx Psize- Job_Size....... (2.3)
To illustrate this, consider a paging strategy wite _index=1, and suppose a parallel job

requests the allocation of ax33 sub-mesh. When allocation is carried out forjtieit is

allocated 3 pages (12 processors). Since only 8egsors are needed there is an internal

fragmentation of 25%.

-0-0-0

(d)

Figure 2.8: Paging(0) using different indexing schemes: (a) Row -major indexing, (b)
Shuffled row-major indexing, (¢) Snake-like indexin g, and (d) Shuffled snake-like indexing

Chapter 2: Background and Preliminaries 30

In this research, only the row-major indexing schemconsidered because the remaining
indexing schemes exhibit only a slight impact oa gerformance of paging, as revealed in
[85]. The Paging allocation and de-allocation alyons are presented in Figures 2.9 and

2.10, respectively.

/I Page_Side= 2578-INdeX- pgjze= page Sidex Page_Side
/I The parametejid is the id of the job that is being considereddtocation
I/l @ and g are the side lengths of the job’s allocation resfue
Procedure Paging_Allocation (jid, a, f)
Begin {
Job_Size=axf
Prequest | Job_ Size/ Psize]
/I Allocation:

Sted.. if (number of free pages Pgquesy) returnfailure else go to step

Ste2. allocate the firstRequest Pages from the list of unallocated pages to the job
setting the IDs of these pagegith and return success.

}End

Figure 2.9: Outline of the Paging allocation algori ~ thm

/ljid: id of departing job;
Procedure Paging_De-allocation (jid):
Begin {
for all allocated pages
if (page’s id ==jid)
de-allocate the page and add it to the list of lozdted pages
} End

Figure 2.10: Outline of the Paging de-allocation al gorithm

Multiple Buddy Strategy (MBS): In MBS [85], the mesh is divided into non-overlapp
square sub-meshes with side lengths equal to powekrg upon initialization. MBS

maintains free block records (FBR) for all freegassor squares of the same size. The entry

Chapter 2: Background and Preliminaries 31

FBRJi] contains the number of available squares of Qize?2! , and an ordered list of the

locations of these squares. The number of procggsprequested by an incoming job is
represented as a base 4 number of the following:for
p=d; x2 x2 +d_yx2Tx2 e +dgx29%20 e, (2.4)

where the factorglg....d; O {0123} This strategy attempts to satisfy every tdrrn the

request withd; free processor blocks of sizes equal2{0< 2 processors using FBR. If a

required block is unavailable, MBS searches fargdr block in FBR and repeatedly breaks

it down into 4 adjacent buddies until it producéschks of the desired size. The 4 buddies of
a 2} x21 plock are2! ™ x 2171 plocks. If that fails, MBS breaks the requestaiozi x 2!

block into 4 smaller requests f@ 1x2'"1 blocks and repeats the allocation process. In
this algorithm, allocation always succeeds whenntinaber of free processors in the mesh
system is sufficient. This is because the requastparts of it, can be partitioned into
requests for X 1 blocks. The MBS strategy is composed of fivagpaystem initialization,
request factoring algorithm, buddy generating atgor, allocation algorithm, and de-

allocation algorithm. The detailed operations @& parts are included in Appendix A.

Adaptive Non-contiguous Allocation (ANCA): In [18], ANCA first attempts to allocate a
job contiguously. When contiguous allocation faitshreaks a job request into two equal-
sized sub-frames (i.e., sub-requests). For exarapl&x 3 request is partitioned into two 4
x 3 sub-frames. These sub-frames are then allocatadable sub-meshes, if possible.
Otherwise, each of these sub-frames is broken tinto equal-sized sub-frames, and then
ANCA tries to assign all sub-frames to availableakions and thus take advantage of non-
contiguous allocation, and so on. This processitet®s if allocation succeeds for all sub-
frames, or it has repeated a specified numbemudgi Moreover, allocation fails if a side

length of the sub-frames reaches 1, which can caxteenal fragmentation.

Chapter 2: Background and Preliminaries 32

Adaptive Scan and Multiple Buddy (AS&MB): AS&MB is a hybrid strategy [49]. Firstly, it
attempts to allocate a job contiguously using tdepéive scan strategy [41]. When the
adaptive scan strategy fails to allocate a job esuit employs the non-contiguous
allocation strategy MBS [85] for allocation. Simiiden results in [44] show that the
performance of AS&MB is almost identical to that BMIBS [85] in terms of average
response time and average service time (i.e., theage time it takes for jobs to execute
once allocated to processors in the mesh systeawekkr, the shorter stride distance in AS
increases the allocation time and hence AS&MB issuitable for large meshes; therefore

we do not consider it in this research.

Paging variants: In addition to the four indexing schemes considdare[85], the Hilbert
and H-indexing space-filling curves have been psepofor ordering processors [24, 84]. In
these studies, different page selection heurigtiage been used. Given a request for

allocating p processors, an attempt is first made to find akat leastp consecutive free
processors. If this fails, the set pf processors with the smallest range of processsris

allocated to the request. The algorithm that Idokghe consecutive free processors is First
Fit if it looks for the first large enough set, aitds Best Fit if it looks for the smallest one
that is large enough for the request. The snale-kklbert and H-indexing orderings, when
used with First Fit and Best Fit consecutive sdeaimn, have been evaluated using
simulation [24]. They have also been comparedstategy that minimises the average pair-
wise distance between the processors allocatedrémest (see Gen-Algorithm in [24]).
The results have shown that the Gen-Algorithm perforelatively poorly, and the relative

performance of the strategies depends on the coioation pattern used.

In the above non-contiguous allocation stratedles random strategy ignores the contiguity

of processors allocated to a job, leading to ins®ean communication delays. In Paging,

Chapter 2: Background and Preliminaries 33

there is some degree of contiguity because of idexing schemes used. Contiguity can

also be increased by increasing the paramseterindex. However, there is internal
processor fragmentation fsize_index=> , &nd it increases witkize_index [85]. An issue

with MBS is that it may fail to allocate a contigusub-mesh, although one exists. For
example, if a job requests the allocation of 16cpssors in the mesh system shown in
Figure 2.11. Initially, the request is factorisexd4x 4 number, but because there are no 4
4 or larger free blocks the request is partitioirgd 4 requests for % 2 blocks. The 4
lightly-shaded non-contiguous 2 2 blocks shown in this figure may be assignedhi t
request although a large enough single contiguaesdub-mesh 2 8, denoted in the figure
by a dashed rectangle, is available. We can ndtm® the figure that communication
between processors belonging to blocks assignedhi® job can interfere with the

communication of other jobs. In fact, contiguous@tion is explicitly sought in MBS only

for requests with sizes of the foaf", wheren is a positive integer. As for ANCA, it can
disperse the allocated sub-meshes more than issege It requires that allocation to all
sub-frames occur in the same partitioning and atioa iteration, skipping over the
possibility of allocating larger sub-meshes foraage part of the request in a previous
iteration. Moreover, ANCA halts the partitioningdasearch processes when a side length
reaches 1, which can cause external fragmentationthe Paging variant that uses

size_index=0, the unit of allocation is a single processor, rgas it can be larger in MBS

[85] and ANCA [18]. Any processor allocation stmgites like Paging variants that operate at
this level of granularity (i.e., a single procegsaquire a long time to reach the allocation
decision [97]. For large machines such as IBM Bée6&L, allocation strategies that take a
reasonable time for allocation and de-allocatioarafions were proposed [97]. It is to avoid
low allocation granularity that the allocation uiitthe IBM BlueGene/L, for example, is
the midplane, which is an88 x 8 three-dimensional page [97]. Therefore, the tinat the

allocation and de-allocation operations take canrd@sonable. The drawback with this

Chapter 2: Background and Preliminaries 34

approach to solving the granularity problem is tinétrnal processor fragmentation can be

high.

. : Allocated Node

A job requests 16

processors O : Free Node

’ : Allocated to request

Figure 2.11: An 8 x 8 2D mesh receiving an allocati on request for 16
processors in MBS strategy

2.3 System Model

The topology of the interconnection network desesilthe way in which the nodes in the
network are connected and can be described usiilgemonnection graph. The vertices of
this graph are the nodes while the edges are tisiqath channels that connect the nodes
[23, 83]. The network diameter, node degree, antivar& degree are often used to
characterize a given topology [4, 23, 29]. The ditenis the maximum value of the shortest
path lengths between any two nodes. The numberin&E Iconnecting a node to its
neighbours is known as the node degree while tiank degree is the maximum node

degree in the network.

Many topologies have been proposed for parallelpgers, including the hypercube [8, 43]

and the mesh [4, 8, 82]. In a hypercube wdtldimensions we havél = 29 nodes each of

Chapter 2: Background and Preliminaries 35

degreed . The advantage of the hypercube topology is itsllsdiameter. However, a major
drawback of the hypercube network is its lack @lability, which limits its use in building
large-size multicomputers [8]. Among important paeders of an interconnection network
of a multicomputer system are its scalability anddoiarity. Scalable networks have the
property that the size of the system (i.e., the lmemmof communicating nodes) can be
increased with minor or no change in the existiogfiguration [8]. Also, the increase in the
system size is expected to result in an increageiformance to the extent of the increase
in size [8]. The lack of scalability of the hypebsustems from the fact that the node degree
is not bounded and varies by the number of procesisothe system) (i.e., as the
dimension of the hypercube is increased by onenome links needs to be added to every
node in the network). This property makes the hgylee cost prohibitive for larg& [8,
83]. In addition to the changes in the node comfijan, a doubling of the size is required

for the regular hypercube network to expand armeaain as a hypercube [8].

Moreover, because a computer must be placed itk we live in (a 3D space), some
links in the hypercube, when the number of dimemsi® 3, must be longer than others, and
longer than link lengths in 2D and 3D meshes. Coueetly the longer links in hypercube
networks have an adverse effect on the networkdstas shown in [62]. Unlike hypercube,
links in 2D and 3D meshes can be of the same lemgtth the length is independent of the
size of the mesh system. Furthermore, as the nuofb@rdes increases in the network the
average number of hops in the mesh networks, f@meke, increases more rapidly
compared to the hypercube [62]. This allows the hmastworks to exploit the available
buffer size to reduce the number of channels thateasage occupies, thus reducing the
blocking delays. Whereas, in the hypercube, duthéosmaller average number of hops,
messages occupy almost all the channels betweensdhece and destination nodes

increasing the probability of blocking, even widrde buffer sizes [62]. Nevertheless, the

Chapter 2: Background and Preliminaries 36

mesh network is able to exploit the increase inlthier size more efficiently compared to

the hypercube [62].

Motivated by the above observations, the netwopolimgy assumed in this research is the
mesh interconnection network. Mesh networks ardyeagplemented because of the simple
regular connection and small number of links pedtend®ue to the constant node degree, the
mesh network is highly scalable. Moreover, the mieah been widely used in practical
multicomputers due to its advantages such as gityliscalability, structural regularity,
ease of implementation, and partition-ability [818, 21, 27, 31, 33, 35, 51, 52, 77, 78, 85,

99].

The nodes in the mesh are connected to their inateedieighbours by bidirectional links.
Each node in the mesh network consists of a proggstement (PE) and a router. The PE
contains a processor and some local memory. A rontan n-dimensional mesh ha2n
input and2n output channels that connect the router to itght®uring routers. There are 2
input and 2 output channels per dimension. A roigeronnected to its local processor via
internal channels, or ports. When each node hagaineof internal channels, it is referred
to asone-portarchitecture. In this model, one internal charigalsed by the processor to
output messages to the network, while the othasésl to input messages from the network.
A crossbar switch is used to establish a connedigiween any of the input channels and
any of the output channels. In this model, whensagss destined for the local node arrive
at a router on input channels, they are transmittethe local node sequentially. Thé-
port architectural model differs from the one-port motethat a node can process (i.e.,
send/receive)n messages (which equals the number of ports) simediasly. The
discussion can be easily extended to the nodeatsituat the corners and edges of the

network.

Chapter 2: Background and Preliminaries 37

2.3.1 Switching Method

The switching method determines the way messageshandled as they travel through
intermediate nodes. Switching takes place in thégeroand consists of the receipt of a
message, determining the appropriate output chaandlthen sending the message through
this channel. Various switching methods have beescribed in the literature for
multicomputer networks, of which the three most amant ones aretore-and-forward

[83], virtual cut-through[13, 29] andvormhole switchingl3, 16, 18, 54, 83, 85].

Store-and-forward switching: In store-and-forward switching, the message isdéiy into
fixed-length packets that are routed from sourcedéstination. Each packet contains a
header that contains the data needed for routimgaicket. A packet is completely stored in
each intermediate node before it is forwarded te tiext node along its path to the
destination. This switching method has two majaadvantages: large buffer spaces are
required to store entire packets and the timeasimit a message is directly proportional to

the distance between the source and destinatioesri6d].

Virtual cut-through switching: Virtual cut-through [13, 29] has been introduces] an
enhancement to store-and-forward switching in otdeeduce the transmission time. In this
switching method, a message header (i.e., the giatthe message that contains routing
information) is examined upon arrival at an intedia¢e node, if the next channel requested
is busy; the message is entirely stored at the abdtecation of lead message. Otherwise, it
is transmitted to the next node without bufferilige network latency, especially under low
and moderate traffic loads, is noticeably reducetlacked messages are removed from the
network and the channels are simultaneously udlise transmit unblocked messages.
However, the nodes must provide sufficient bufigaices for all blocked messages passing

through it and multiple messages may become blodediltaneously, so a very large

Chapter 2: Background and Preliminaries 38

buffer space is required at each node. TherefdryaV cut-through might be costly to
implement due to the high buffer requirement whiddo has a strong adverse effect on the

router speed and on the cost and size of multicoengystems [29, 43, 64].

Wormhole switching: The disadvantage of virtual cut-through has magidathe use of its
variant wormhole switching. Wormhole switching (@lsalled wormhole routing [29, 43,
54]) has been widely used in practical multicompute 3, 43] due to its low buffering
requirement and good performance. Experimentaltsesu[64] have revealed that network
latency in wormhole-switched networks is almosteipendent from message distance in the
absence of message contention for network resobegters and channels). In wormhole
switching, amessage is divided into a sequence of fixed-sizés,unalledflits. A flit
typically consists of a few bytes. A message staitls a header flit that is used for message
transmission and flow control, and each channelebufeeds only to hold one flit. A flit is
the smallest unit of data transmission in a wormhauting network. Theneader flit
(containing routing information) establishes thethpahrough the network while the
remaining data flits follow it in a pipelined fashi. If a channel transmits the header of a
message, it must transmit all the remaining flitthe same message before transmitting flits
of another message. If the header cannot be rqiied blocked) in the network due to
contention for resources, the data flits stop mgvand remain spread across the channels
where they are, keeping all allocated channels lauifers occupied. As a result, they
prevent other messages from using these chanmelshis in turn leads to chained blocking
in the network with the possibility of serious pmrhance degradation under moderate and
heavy loads [4]. One common solution to this problespecially in meshes, is to force the

messages to pass through pre-ordered channelatsa Iblocking chain can be avoided [4].

Since wormhole routing uses pipelined transmis§®j, it can perform well even in high-

Chapter 2: Background and Preliminaries 39

diameter networks, such the mesh [29]. Many expemial machines, such as the iIWARP
[15] and the MIT J-machine [61]; and commercial ®ieluding the Intel Paragon [39], the
Cray T3D [67], the IBM BlueGene/L [10, 55, 97, 98jhd the Cray T3E [25] have used
wormhole switching. Wormhole switching is used histresearch when examining the
performance of the non-contiguous allocation athoms. We have limited ourselves to
wormhole switching because it has been used inettigting non-contiguous allocation

strategies [44, 49, 71, 72, 77, 85].

2.3.2 Routing Algorithm

Many existing networks, including meshes, provideltiple physical paths for routing a
message between any two nodes. The routing algoniitermines the path used by each
message in the network. Routing algorithms areddiiinto two classesleterministicand
adaptive according to their ability to modify routing pattbased on dynamic network
conditions [23, 54, 83]. In deterministic routing, message always uses the same path
between the source and destination; intermediatiesiare unable to redirect messages to
any alternative paths. In adaptive routing, intediae2 nodes can take the actual network
conditions, such as the presence of congestionaiturdés, into account and determine
accordingly to which node a message should be[88htAn important issue for any routing
algorithm is to ensure freedom frodeadlock; deadlock occurs when no message can
advance towards its destination because of busynetsand buffers [29, 43]. Many studies
[42, 69, 91, 92] have been devoted to addressiig i#sue in wormhole switched

interconnection networks, including meshes [42,939,

Figure 2.12 illustrates a deadlock situation wheaieh of the 4 messages (N,, M3, and
M,) waits for a communication link that is held byo#mer message, and waiting is circular.

It is assumed in the figure that the messaggdWj, M3, and M, are destined respectively to

Chapter 2: Background and Preliminaries

the nodes C, D, A, and B. The messages are in aingiaycle, and none of them can

progress. Deadlock is a disastrous state becaesmthmunication can never be completed.

Deterministic routing has been widely employed inrmvhole switched interconnection
networks as it offers a simple way to avoid messggdlock. This is achieved by forcing
messages to visit the channels in a strict ofdenension-orderedouting [13, 43, 91] is a
well-known example of deterministic routing wheressages cross network dimensions in a
pre-defined order, reducing to zero the offset me aimension before visiting the next.
Consequently, messages always take the same patbdmea given pair of nodes. For mesh
networks, dimension-ordered routing ensures de&dleedom. This type of routing is also
widely known asXY routing when the interconnection topology is therdBsh [13, 16, 43,
85]. Dimension-ordered routing is used in this a@sk when examining the performance of
the non-contiguous allocation algorithms. We haxétéd ourselves to dimension-ordered

routing because it has been used in the existingcoatiguous allocation strategies [44, 49,

71,72, 77, 85].

M, Blocke

M., Blockec

M5 Blockec l% A

I
M, Blocked . B N

Figure 2.12: A deadlock in wormhole routing caused

Buffer occupied byM,

Buffer occupied by M

Buffer occupied bM;

Buffer occupied b,

by 4 messages.

Chapter 2: Background and Preliminaries 41

In contrast to deterministic routing, adaptive mgtalgorithms enable messages to use
alternative paths to advance through the networgnadncommunication link is congested or
it has failed, for example [42, 92]. The main disattage of adaptive routing is the
requirement for extra hardware resources, e.gyalichannels, to deal with the problem of
deadlock. A physical channel is divided into two raore virtual channels, where each
virtual channel has its own queue, but shares @imelwidth of the physical channel with the
other virtual channels. Virtual channels often @ase hardware complexity, which can
significantly reduce router speed, decreasing diveework performance [12, 30, 43]. This
increase in hardware cost has motivated researthelsvelop algorithms that can achieve
adaptive routing without using virtual channelsadimg to more efficient router

implementation [1, 12, 30, 54].

2.3.3 Communication Patterns

Processors allocated to a parallel job often exghanessages with each other according to
a given communication pattern [85]. When non-cardigs allocation is employed, we are
interested in measuring message contention thattsefom exchanging messages and its
effects on overall system performance. Three connration patterns have been considered
in this research work in order to evaluate the grenbnce of the proposed non-contiguous
allocation algorithms. In theone-to-all communication pattern, a randomly selected
processor sends a message to all other procedtmrated to the same job. kl-to-all
communication, each processor allocated to a jolds@ message to all other processors
allocated to the same job. This communication pattauses much message contention and
is considered as the weak point for non-contigulasation algorithms [49]. In thendom
communication pattern, randomly selected processensl messages to randomly selected
destinations within the set of processors allocatedthe same job. These three

communication patterns were used in previous relstiedies [44, 49, 85].

Chapter 2: Background and Preliminaries 42

2.4 Assumptions

In the subsequent chapters, extensive simulatiealteewill be presented to evaluate the
performance of our allocation strategies. In thiglg, we make the following assumptions
which have been commonly used in the literatur®[@,1, 18, 20, 24, 27, 31, 33, 34, 35, 38,
44, 49, 51, 52, 66, 71, 72, 73, 74, 75, 76, 77,7885, 94, 99]; it is worth mentioning that
the last two assumptions are made when examinegénformance of the non-contiguous

allocation algorithms.

* The inter-arrival times of jobs are independent dotlow an exponential
distribution.

 Jobs are scheduled on a First-Come-First-Served=%f(oasis, unless stated
otherwise.

* The execution times of jobs are independent arldvichn exponential distribution,
unless stated otherwise.

* The side lengths of the sub-meshes requested lsygmbgenerated independently
and follow a given probability distribution. Twodtiiibutions have been considered
in this research. The first is the uniform disttibn over the range from one to the
mesh side length. The second is the exponentiaitmison, where the side lengths
of the requested sub-meshes are exponentiallyidigtd with a mean of half the
side length of the entire mesh.

* Messages are transmitted inside the network usimgnivole switching along with
XYrouting [2, 4, 11, 13, 29, 71, 72, 83].

* Messages are of a fixed length (i.e., a fixed nunabdlits). Moreover, the number

of messages that are generated by a given jolpanextially distributed.

Chapter 2: Background and Preliminaries 43

2.5 The Simulation Tool (ProcSimity Simulator)

This section introduces briefly the well-known P3awity simulation tool [50, 66].
ProcSimity is a discrete-event simulation tool 8] that has been developed as a research
tool in the area of processor allocation and jobedaling in multicomputers [50, 66].
ProcSimity was developed at the University of Oref6], and the development efforts of
the simulator have been supported by OACIS and [$8F The tool was written in the C
programming language and has been extensively faegrocessor allocation and job
scheduling in mesh-connected multicomputers [24338344, 45, 50, 51, 71, 72, 73, 74, 75,
76, 77, 78, 79, 85, 86]. This is due to the faeit tilh is open-source and includes detailed
simulation of important operations of multicomputextworks [50, 66]. It is worth noting

that the simulator has been extensively validatdé6].

The overall purpose of the ProcSimity is to provideconvenient environment for
performance analysis of processor allocation arteduling algorithms. In particular,
ProcSimity has been designed to investigate sortieegbrocessor allocation problems, such
as fragmentation and communication overhead prabl@d, 33, 35, 44, 45, 50, 51, 71, 72,
73, 74, 75, 76, 77, 78, 79, 85, 86]. The architecimodelled by ProcSimity consists of a
network of processors interconnected through messagers at each node. Adjacent nodes
are connected by bidirectional communication lirdesd messages may be routed by either
store-and-forward or wormhole switching. The Proa8i supports both the mesh akdry

n-cube interconnection topologies with dimensionesed! routing [50, 66].

The ProcSimity simulator specifies the target maetenvironment, including the network
topology, routing, and flow control mechanism, adnidivolves the selection of a scheduling
and an allocation algorithm from a set of providdgorithms [50, 66]. In addition, third-

party scheduling and allocation strategies camtegrated into ProcSimity. ProcSimity also

Chapter 2: Background and Preliminaries 44

involves the specification of the simulation expeents; it supports both stochastic job
streams as well as communication patterns fromahgiarallel applications [50, 66]. In
ProcSimity, the user can specify the detailed sathoh of message-passing overhead at the

flit level [50, 66].

When ProcSimity simulates a mesh-connected multeder, independent user jobs that
arrive at the system, request sub-meshes of fleeepsors. If the number of free processors
in the mesh system is not enough to satisfy theg¢gbiest, or there are other waiting jobs in
the queue, the job is diverted to the waiting quéie job is selected to be executed from
the waiting queue based on the underlying schegluditnategy, and then the processor
allocation algorithm determines and allocates thieas processors on which the job will

execute. The allocated processors may be contigeouson-contiguous based on the

allocation strategy used. When a job is allocatedet of processors, it runs there to
completion. It may not be moved to other locatidosing execution [18, 24, 33, 35, 44, 50,

51, 71, 72, 73, 74, 75, 76, 77, 78, 79, 85]. Ongebadeparts from the system the sub-

meshes it is allocated are freed for use by anaticeming job.

In ProcSimity, the overhead of allocation and deeation (i.e., the time that the allocation
and de-allocation operations take per job) is igdoifo compare the allocation strategies in
terms of the allocation overhead associated wighallocation and de-allocation operations,
we measured the average actual time taken by tbpemtions on a Pentium machine
running under Windows XP. The clock cycle of thechiae is 3 GHz and the RAM size is

504 MB. The per-job average allocation overhead wasiputed in milliseconds over

enough independent runs so that the confidence ie85% that relative errors are below

5% of the mean.

Chapter 2: Background and Preliminaries 45

2.6 Justification of the Method of Study

In this research, extensive simulation experimehn#éve been conducted to explore
performance-related issues of processor allocationesh-connected multicomputers. This
section discusses briefly the choice of simula@sna tool of study for the purpose of this
research, justifies the adoption of ProcSimity lzes preferred simulation tool, and further

provides information on the techniques used tocedbe opportunity of simulation errors.

After some consideration, simulation has been ssfeas the method of study in this
research. In general, in addition to conducting sueaments on a real practical system or
testbed, there exist two techniques for systemopmdnce evaluation: analytical modelling
and simulation [68]. One of the key consideratiavisen adopting a given evaluation
technique is the level of the desired accuracygdneral, analytical models have often low
requirements in terms of computation costs, buy thigen rely on many assumptions and
simplifications that restrict their applicabilitg & limited number of scenarios. In contrast,
simulation models can easily incorporate detailtheodesired level of accuracy in order to
mimic more closely the behaviour of the real systdihe consequence of this is that
simulations often require a longer time to devedog run the code, compared to analytical
modelling. However, as we have used the ProcSimityulator that has already been
developed and extensively validated [50, 66], weehaasily incorporated our suggested
algorithms into the simulator. This has helped ¢osiderably cut down the development
time and debugging of the code. Most often cosh@with the ease of being able to change
configurations, is the prime motivation for devalap simulations for expensive systems,
such as multicomputers. The processor allocatigorthms designed and analysed in this
study are for mesh-connected multicomputers, witichld consist of a large number of

processors. Such a study could not be easily chwoig on a practical system, as the

Chapter 2: Background and Preliminaries 46

experimental setup would require substantial ambpsive resources.

ProcSimity has been widely used to evaluate thdopeance of processor allocation
algorithms suggested for 2D mesh-connected multeders. However, the current version
of ProcSimity does not support the 3D mesh netw8ik. we have modified the existing
simulator by adding our proposed processor allooasilgorithms for both the 2D and the
3D mesh-connected multicomputers. While incorpamatithe modifications into the
simulator, special care has been taken to ensatethie algorithms implemented would
function as designed and that the simulator wooldexhibit unwanted side-effects; this has
been accomplished through implementing one of dgorithms using another simulator
[34] and comparing the outputs against those obthiny ProcSimity. Moreover, we have
carried out the validation of the simulator for amber of cases and compared the
performance results obtained for some-well knowratsgies (e.g., the FF allocation

strategy) against those obtained by other researciseng another simulator [34].

It is worth mentioning that we have evaluated tkefgrmance of our processor allocation
algorithms based on a real workload trace and comdpte results against those obtained
from our simulation study based on stochastic waa#ls. The results of the comparison
have revealed that the conclusions reached on ¢hi@rmance merits of the allocation

strategies when a real workload trace is usedragemeral compatible with those obtained

when a stochastic workload is used; please sed¢v@jore details.

2.7 Summary

A number of allocation strategies that use spaeghsty strategies have been discussed in
this chapter. These strategies can be dividedtimbatypes:contiguousandnon-contiguous

In contiguous allocation, processors allocatedbs jare physically contiguous and have the

Chapter 2: Background and Preliminaries a7

same topology as the underlying system networkn@®asib has the potential of eliminating
inter-job communication contention as each job’ssages can be routed within the set of
processors allocated to that job. However, theiotisin that the jobs have to be allocated
contiguously reduces the chance of successful allmt, resulting in high processor

fragmentation which degrades system performance.

Some researchers have suggested non-contiguousitadlo as a way to reduce processor
fragmentation that results from contiguous allamatiwormhole switching techniques have

also encouraged the adoption of non-contiguouscalion because it has made

communication latency less sensitive to the distadmetween communication processors. In
non-contiguous allocation, a job can execute ontiplal disjoint sub-meshes rather than

waiting until a single sub-mesh of free process®mvailable. This increases the number of
possible allocations that may be considered, whahreduce processor fragmentation and
improve system utilization. However, messages ggadrfrom some jobs may pass through
the processors allocated to other jobs, which as®e message contention inside the
network. Nonetheless, lifting the contiguity comait is expected to reduce processor

fragmentation and increase processor utilizatidis&ntially.

This chapter has provided the system model uséusiresearch. It also includes an outline
of assumptions that apply throughout the thesizalby, it contains a brief description of the
simulation tool (the ProcSimity Simulator) that ised to conduct the performance
evaluation of processor allocation strategies. Moee, a brief discussion of the choice of

simulation as a tool of study in this researciuded.

In the subsequent chapter, we will describe a nemtiguous allocation algorithm for the

3D mesh-connected multicomputers that can overctmee limitations of the existing

Chapter 2: Background and Preliminaries 48

contiguous allocation strategies for this classnafticomputers. Our simulation results will
reveal that the new algorithm manages to delivempmtitive performance (i.e., low
turnaround times and high system utilization) wathow allocation overhead compared to

previous strategies.

Chapter 3

Turning Busy List (TBL): A New
Contiguous Allocation Algorithm for Mesh-
Connected Multicomputers

3.1 Introduction

In distributed-memory multicomputers, jobs are oftallocated distinctcontiguous
processor sub-meshes for the duration of their i@t to reduce inter-processor
communication overhead [9, 20, 26, 27, 31, 3348451, 52, 65, 75, 78, 94, 97, 99]. Most
existing studies [9, 20, 27, 33, 48, 51, 52, 63,d@Bcontiguous allocation have been carried
out mostly in the context of the 2D mesh networtker® has been relatively very little work
on the 3D version of the mesh. Although the 2D neshbeen used in a number of parallel
machines, such as the iWARP [15] and Delta Touclkest¢40], most practical
multicomputers, like the Cray XT3 [19, 60], MIT Jadhine [61], Cray T3D [67], IBM
BlueGene/L [10, 55], and Cray T3E [25], have udedl3D mesh network as the underlying

topology due to its lower diameter and average conioation distance [90].

The main shortcoming of existing contiguous all@ratstrategies for 3D mesh-connected

Chapter 3: Turning Busy List (TBL): A New Contiguillocation Algorithm for Mesh-

Connected Multicomputers 50

multicomputers [31, 34, 94, 97] is that they achiesomplete sub-mesh recognition
capability but with high allocation overhead, tretcounts for the time required for the
allocation and de-allocation of processors to jdbsrthermore, the time for both the
allocation and de-allocation operations in the jnes contiguous allocations strategies [31,

34, 94, 97] tends to grow with the system size.

Motivated by the above observations, this chaptakes the following contributions. It
presents a new efficient contiguous allocationtsta that supports the rotation of job
requests, referred to as Turning Busy List (TBL $bort), which can identify a free sub-
mesh of the requested size as long as it exidtweimesh system; The term “turning” refers
to the fact that the orientation of an allocatiequest could be changed when no sub-mesh
is available in the requested orientation (pleas® Section 2.2.1 in Chapter 2). The new
proposed allocation algorithm without rotation ised in this chapter for comparison
purposes and is referred to as Busy List (BL fasrgh The proposed allocation strategy
relies on a new approach that maintains a listllotated sub-meshes to determine all the
regions consisting of the network nodes (i.e., ssors) that cannot be used as base nodes
for the requested sub-mesh. These nodes are titracted from the right border plane
(please see Section 3.2 for the definition of rigbtder plane) of the allocated sub-meshes

to find the nodes that can be used as base nod#gefeequired sub-mesh size.

This chapter also conducts a performance evaluafitine contiguous allocation strategies,
including our suggested strategy, in terms of terage turnaround time and mean system
utilisation, as well as the allocation overhead tha allocation and de-allocation operations
take per job. The results reveal that our prop@dletation strategy has a lower allocation
and de-allocation time (i.e., allocation overhed@n well-known existing strategies. The

simulation results show this reduction is achiewsithout scanting other important

Chapter 3: Turning Busy List (TBL): A New Contiguillocation Algorithm for Mesh-

Connected Multicomputers 51

performance metrics in that system performancélisas good in terms of turnaround time

and system utilisation as that of existing compugtitrategies.

The remainder of the chapter is organised as falloBection 3.2 provides preliminary
background information that is relevant to the pnésstudy. Section 3.3 outlines the new
proposed contiguous allocation algorithm for the r@Bsh network. Section 3.4 conducts a
comparative performance evaluation of the new egsatigainst well-known existing ones.

Finally, Section 3.5 concludes this chapter.

3.2 Preliminaries

The target system is a 3D mesh-connected multictenpwhere the network is referred to
as M(W,D,H), whereW is the width of the cubic mest) its depth andH its height.
Eachprocessois denoted by a coordinate trip{e, y,z , Where0<x<W ,0<y<D and
0<z<H [78]. A processor is connected by bidirectionamemunication links to its
neighbour processors, as depicted in Figure 3.&.fijure shows an example of &£ x 2
3D mesh, where the allocated processors are dermtezhaded circles, while the free
processors are denoted by white circles. We asstimae a parallel job requests the

allocation of a 3D sub-mesB(w,d,h ¢f width w<W, depthd <D and heighth<H .

The following definitions have been adopted from,[27, 78].

Figure 3.1: An example ofa4 x 2 x 2 3D mesh

Chapter 3: Turning Busy List (TBL): A New Contiguillocation Algorithm for Mesh-

Connected Multicomputers 52

Definition 1: A sub-mests(w,d, h) of widthw, depthd , and height h, wher@<ws< W
0<d <D and 0<h< H is specified by the coordinatég, y,z X', y', Z'), where(x, Y, 2)
are the coordinates of the base of the sub-mesitatitd to a parallel job andx',y’, ")

are the coordinates of its end, as shown in Fighiee

.end

[
>

X
Figure 3.2: A sub-mesh inside the 3D mesh.

Definition 2: The size ofS(w,d,h) iswxdx hprocessors.

Definition 3: An allocated sub-mesh is one whose processorslbadiacated to a parallel
job.

Definition 4: A free sub-mesh is one whose processors are allogaged.

Definition 5: A suitable sub-mesB(w,d, h) is a free sub-mesh that satisfies the conditions:
w2a,dz=f andhzy assuming that the allocation &a, 5,y) is requested.

Definition 6: A list of all sub-meshes that are currently allamhtto jobs and are not
available for allocation to other jobs is calleddyulist.

Definition 7: A prohibited region is a region consisting of nodbeat cannot be used as
base nodes for the requested sub-mesh. The predhibitgion of jobJ(ax Bxy) with
respect to an allocated sub-mesB(xq,V;,7,%X0,Y2,2p) is defined as the sub-mesh
represented by the address(x,y’,z',X5,Y2,25), where X =max(—a+10),

y' =max(y; —£8+10) and z' =max(z; - y+10) . For example, if a job J requests the

Chapter 3: Turning Busy List (TBL): A New Contiguillocation Algorithm for Mesh-

Connected Multicomputers 53

allocation of a sub-mesh of si2ex 2 x 2, the prohibited region ofl (2x 2x 2) with respect
to the allocated sub-mesh, {, 0, 2, 2, 1), is the sub-mesl®,0, 0, 2, 2, 1).

Definition 8: The three sub-meshes (W-a+100W-1,D-1H -1),
O,D-p+100W-1D-1,H -1, and OO H-y+1W-1D-1,H -1) are automatically
not available for accommodating the base node ofree axfxy sub-mesh for
J(a x Bx%y), whether the nodes in these sub-meshes are freetpotherwise the sub-

mesh would grow out of the corresponding mesh baynplane (rightmost, deepest and

highest planes) oM (W,D,H). These three sub-meshes are called automaticilptet
regions of J(ax B xy) and must always be excluded during the sub-mdskation
process.

Definition 9: The Right Border Plane (RBP) of a sub-meStxy, y1,21,%p,Y2,25) With
respect to a jobJ(axBxy) is defined as the collection of nodes with adslres
(X0 +1Y',Z') wheremax(y; —-f+10)<y' <y, and max(z; -y+10)<z' < z,. A RBP of

sub-mesh S is a plane located just off the righidary of S .

3.3 The Proposed Turning Busy List Allocation Strag¢gy (TBL)

The proposed TBL allocation strategy is based ointaiaing a list of allocated sub-
meshes; referred hereafter as the busy list. Htdsliscanned to determine all prohibited
regions. All prohibited regions that result frone thllocated sub-meshes are subtracted from
each RBP of the allocated sub-meshes to deterinérddes that can be used as base nodes

for the required sub-mesh size. A jdlfa x S x y is)allocatable if there exists at least one

node that does not belong to any of the prohihiggibns and the three automatic prohibited

regions of J(ax By) Figure 3.3 shows all possible cases for subtrgctirohibited

regions from a RBP; please see Appendix B wherditjuees are provided for each case.

Chapter 3: Turning Busy List (TBL): A New Contiguillocation Algorithm for Mesh-

Connected Multicomputers 54

The allocated sub-meshes in the busy list are g¢dnteghe decreasing order of the third
coordinates of their upper right corner node (iend node); so that the number of
subtraction operations required can be reducedaldwithm that is used to detect the base
nodes for any allocation request is formally présénn Figure 3.4, and the new proposed
allocation algorithm is outlined in Figure 3.5. Rbe illustration, we assume that there is a

hypothetical allocated sub-me$g with addresg(-100,-1, D -1, H - 1)at the head of the

busy list. The RBP of the hypothetical allocated-mesh is the left boundary plane of the

mesh. A list, RBP_Nodes contains a plane if the nodes of the plane asslable for

allocation to the johJ(a x B x y kelected for execution.

(XY 2)

/ (u2!V21W2)
RBP Prohibited
' Region
(UJ_,V]_,W]_)
(Xy1,21)

3.3.1 (X< u)[|(x> u|(zz< W)[|(z2> W)|[(Y=< VDII(Y1> V2))
In this case the result is RBP itself.

3.3.2 (USX<Up) &&(V 1<Y1V0) &&(V 1Yo V0) &&(W 1<2,<W5) &&(Z 1<W4)
RBP (X, Y, z, X, ¥, W-1)

3.3.3 (UXUp)&&(V 1Y1<V2) && (Y 2>V2) &&(W 152, <W2) &&(Z 1<)
RBP1 (X, Y, zi, X, ¥, Wi-1); RBP2 (X, ¥+1, Wi, X, ¥, 2)

3.3.4 (USX<Up) &&(V 1Yo V0) && (Y 1<V 1) &&(W 1<2,W5) &&(Z 1<W/1)
RBP1 (X, Y, z, X, V5, Wi-1); RBP2 (X, Yy, Wy, X, -1, %)

3.3.5 (USXSUp)&&(V 1<Y1<V2) &&(V 15Y2V0) &&(W 121 W) &&(Z 2> W)
RBP (X, Y, Wwo+1, X, 5, 2)

3.3.6 (USX<Up) &&(V 1<Y1V0) &&(Y 2>V2) &&(W 152 <W5) &&(Z 5> W)
RBP1 (x, w1, 7, X, 5, Wo); RBP2 (X, y, wot1, X, ¥, %)

3.3.7 (U=X<Up)&&(V 1<y, Vo) &&(Y 1<V1) &&(W 152, W) &&(Z 2> W)
RBP1 (X, Y, z, X, -1, W,); RBP2 (X, y, Wot1, X, ¥, 2)

3.3.8 (UX<Up) &&(V 1<Y1<V0) &&(V 1<Yo<V0) &&(Z 1<W 1) &&(Z 2> W)
RBP1 (X, Y, z, X, ¥, Wi-1); RBP2 (X, y, Wot1, X, ¥, 2)

Chapter 3: Turning Busy List (TBL): A New Contiguillocation Algorithm for Mesh-

Connected Multicomputers 55

3.3.9 (USX<Up) &&(V 1<Y1V0) && (Y 2>V2) &E&(Z 1<W1) &&(Z 2>W)

RBP1 (X, Y, z, X, W, Wi-1); RBP2 (X, w1, 7, X, ¥, 2); RBP3 (X, Y, Wot1, X, \b, %)
3.3.10 (USXSU)&&(V 1Y> Vo) &&(Y 1<V1)&&(Z 1<W 1) &&(Z 2> W)

RBP1 (X, Y, z, X, M-1, %); RBP2 (X, V¥, Z, X, 5, Wi-1); RBP3 (X, V¥, Wot1, X, ¥, %)
3.3.11 (Y=X<Up)&&(Y 2>V2)&&(Y 1<V1)&&(Z 1<W1)&&(Z 2>W)

RBP1 (X, Y, z, X, u-1, 2); RBP2 (X, ¥+1, 7, X, ¥,); RBP3 (X, Y, 1, X, \b, Wi-1)

RBP4 (X, ¥, Wot1, X, b, 2)
3.3.12 (U<X<Up)&&(Y 2>V2)&&(Y 1<V1)&&(Z 1>W1)&&(Z 2<W5)

RBP1 (X, Y, z, X, u-1, 2); RBP2 (X, ¥+1, 7, X, ¥, %)
3.3.13 (UX<U)&&(Y 2>V2)&&(Y 1<V1)&&(Z 1<W 1) &&(W 1< Z,<W)

RBP1 (X, Y, z, X, -1, 2); RBP2 (X, ¥+1, 7, X, ¥,); RBP3 (X, V, z, X, \b, Wi-1)
3.3.14 (U<X<Up)&&(Y 2>V2)&&(Y 1<V1)&&(Z 2>W,) &&(W 1< Z<W)

RBP1 (X, Y, z, X, M-1, 2); RBP2 (X, ¥+1, z, X, \, 2); RBP3 (X, ¥, Wot1, X, \b, Z)
3.3.15 (U=XSUp)&&(V 1<Y1<Vy) &&(V 1<Yo<Vo) &&(W 1521 W) &&(W 1<Z,<W)

No RBP in this case.
3.3.16 (USX<U)&&(V 1<y1<V0) &&(Y 2>V 2) &&(W 1571 <Wo) &&(W 1<2,<W5)

RBP (x, y+1, 7, X, ¥, %)
3.3.17 (UX<U)&&(V 1Y Vo) && (Y 1<V 1) &&(W 1521 W) &&(W 1<2,<W5)

RBP (X, Y, z, X, u-1, 2)

Figure 3.3: All possible cases for subtracting a pr ~ ohibited region from a right border
plane.

Procedure Detect (a, 8, y):
Begin {
{Mesh M(W, D, H); incoming job J requests for@xsxy free sub-mesh;

Busy List B = {, by, by, , b} where lyis a hypothetical allocated sub-mesh and
b, 1<i<m, are the m already allocated sub-meshes; Botimseghes (Wx+1, 0, 0, W~
1, D-1, H1), (O, D-$+1, 0, W-1, D-1, H-1), and Q,0,H-y+1,W-1,D-1,H-1) are
automatic prohibited regions and automatically aetilable for accommodating the
base node of a fraex xy sub-mesh for J.}

Step 1. RBP_NodesNULL.

Step 2. for each allocated sub-mestxh yi, z1, %o, V2,) fromi=0tom
Step 2.1. Construct RBP af Henoted as RBP (X, Y1, Z1, %, V2, Z2), With respect to
J(ax fxy), where =x+1, yiyi=max(y-f+1, 0), z;=max(z-y+1,0), Y=y, and =2,
Step 2.2. if RBAs within any automatic prohibited region then g&tep2.
Step 2.3. for each allocated sub-megxibyy, z, %, ¥», 2) from j=1tom

Construct prohibited region of J with respect tpdenoted as = (X1, Yo,
Zo1, %2 Yoo Zo2) Where x;=max(x-a+1, 0), Ypi=max(y-p+1, 0), z,=max(a-
7+1, 0), X:0=X2, Yo=Yz aNnd %5=2.

Chapter 3: Turning Busy List (TBL): A New Contiguillocation Algorithm for Mesh-

Connected Multicomputers 56

Subtract Pfrom RBPRas follows:

Determine the case to which the subtraction belobgscomparing the
coordinates of RBRand R as shown in Figure 3.3.

Switch (subtraction case)
{
case (1): if (z> z,,) then
begin
add the RBP in Figure 3.3.1 to RBP_Nodes.
goto Step 2.
end
break.
case (2): adjust RBRs shown in Figure 3.3.2; break.
case (3): adjust RBRs shown in Figure 3.3.3; break.
case (4): adjust RBRs shown in Figure 3.3.4; break.
case (5): add the whole RBP in Figure 3.3.5 to RB&Ues; goto Step 2.
case (6): add RBP(xgyww»+1, X, 5, 2) in Figure 3.3.6 to RBP_Nodes
adjust RBPas shown in Figure 3.3.6; break.
case (7): add RBP(xgyww»+1, X, s, 2) in Figure 3.3.7 to RBP_Nodes
adjust RBRas shown in Figure 3.3.7; break.
case (8): add RBP(xgyww+1, X, s, 2) in Figure 3.3.8 to RBP_Nodes
adjust RBPas shown in Figure 3.3.8; break.
case (9): add RBP(xgyww»+1, X, s, 2) in Figure 3.3.9 to RBP_Nodes
adjust RBRPas shown in Figure 3.3.9; break.
case (10): add RBP(x3,ww+1, X, ¥, %) in Figure 3.3.10 to RBP_Nodes
adjust RBPas shown in Figure 3.3.10; break.
case (11): add RBP(x3,wWw+1, X, W, %) in Figure 3.3.11 to RBP_Nodes
adjust RBPas shown in Figure 3.3.11; break.
case (12): adjust RBRs shown in Figure 3.3.12; break.
case (13): adjust RBRs shown in Figure 3.3.13; break.
case (14): add RBP(x3,Ww+1, X, W, %) in Figure 3.3.14 to RBP_Nodes
adjust RBPRas shown in Figure 3.3.14; break.
case (15): go to Step 2.
case (16): adjust RBRs shown in Figure 3.3.16; break.
case (17): adjust RBRs shown in Figure 3.3.17; break.
}
goto Step 2.3.
TBL_Allocate(RBP_Nodes, 4, v)
} End.

Figure 3.4: Outline of the Detect Procedure in the proposed Contiguous Allocation
Strategy.

Chapter 3: Turning Busy List (TBL): A New Contiguillocation Algorithm for Mesh-

Connected Multicomputers 57

Procedure TBL_Allocate (RBP_Nodes, a, £, y):
Begin {
int botx, boty, botz;
botx=RBP_Nodes.botx;
boty=RBP_Nodes.boty;
botz=RBP_Nodes.botz;

Add the sub-mesh represented by the address (imitk, botz, botx + -1, boty +5 — 1,
botz +y — 1) to the busy list by setting sub-mesh’s ID tojttielD.

}End.

Figure 3.5: Outline of the proposed Contiguous Allo cation Strategy

Example:

To show the operation of the our allocation aldoritlet us consider an example where we
assume the mesh is free, and three allocation stxjfmr the sub-meshes 2 x 4 x 4,2 x 1 x
2 and 1 x 2 x 1 arrive in this order. Figure 3l6sirates the states of the processors of a 4 x
4 x 4 mesh. The request 2 x 4 x 4 is allocatedstiiemesh (0, 0, 0, 1, 3, 3), then the
allocation algorithm is invoked for the 2 x 1 xeétjuest. The busy list contains the allocated
sub-meshedy:(-1, 0, 0, -1, 3, 3) andy :(0, O, O, 1, 3, 3), and the first RBP (RBP for the
hypothetical allocated sub-mesg) is calculated for this request, resulting in@0, 0, 3,

3). The automatic prohibited regions (3, 0, 0,,3)3(0, 4, 0, 3, 3, 3), and (0, 0, 3, 3, 3, 3),
with respect to the second allocation requestsabgracted from the first RBP, resulting in
the plane (0, O, O, O, 3, 2). Then the prohibitegion of the allocated sub-mebh:(0, 0O, O,

1, 3, 3) with respect to the second allocation estjis calculated, resulting in the (0, 0, 0, 1,
3, 3) prohibited region, which when subtracted fribva plane (0, 0, O, 0, 3, 2) results in the
NILL value, implying that no node is available fine job request up to this point. Then, the

RBP of the allocated sub-me#$h:(0, 0, 0, 1, 3, 3) is calculated, resulting in@20, 2, 3, 3).

Again the automatic prohibited regions with resptecthe second allocation request are

Chapter 3: Turning Busy List (TBL): A New Contiguillocation Algorithm for Mesh-

Connected Multicomputers 58

subtracted from this new RBP, resulting in (2, 0,203, 2), and the subtraction of the
prohibited region of the allocated sub-médsghfrom (2, 0, 0, 2, 3, 2) results in (2, 0, 0, 2, 3,
2). Now, any node on the plane (2, 0, 0, 2, 3,d) be used as base node for the second
allocation request. In this example, (2, 0, 0, 20Dis used as base node for the second
request and the sub-mesh (2, 0, 0, 3, 0, 1) ixatkal to this request, resulting in the
following busy list: {by:(-1, O, O, -1, 3, 3)}3,:(0, 0, O, 1, 3, 3)p,:(2, 0, O, 3, O, 1)}. The
same procedure is repeated for the third requadtttze sub-meshes allocated to the three

requests are denoted by the black circles, shadgddscand dotted circles, respectively.

In the de-allocation operation, an allocated subtmé de-allocated by removing its
corresponding entry from the busy list. The operatof the de-allocation algorithm is

presented in Figure 3.7.

H=3

H=2

H=1

Depth

(0,3,0)

H=0

Figure 3.6: Allocation Example

Chapter 3: Turning Busy List (TBL): A New Contiguillocation Algorithm for Mesh-

Connected Multicomputers 59

Procedure TBL_De-allocate ():
Begin
{

jid = id of the departing job;

for all elements in the busy list

if (element’s id = jid)

remove the element from the busy list

} End.

Figure 3.7: Outline of the proposed de-allocation a Igorithm

3.4 Performance Evaluation

In this section, the results from simulations thatve been carried out to evaluate the
performance of the proposed allocation algorithenaesented and compared against those
of the existing strategies First Fit (FF) and TomFirst Fit (TFF) [34]. According to [31,
34, 94, 99], the FF strategy allocates an incorjohgto the first available sub-mesh that is
found but it does not permit the orientation of #ll@cation request. It has been revealed in
[34] that the TFF strategy improves the performalageonsidering all orientations of the
request when needed. It is worth noting that switghiequest orientation has been used in
[31, 34, 94]. FF and TFF strategies have beentegldecause they have been shown in [34]
to perform well compared to other existing stradsgiThe FF and TFF strategies have been

discussed in detail in Chapter 2 (please see $e2tibl).

3.4.1 Simulation Results

Extensive simulation experiments have been caoigdor various system loads and system
sizes to compare the performance of the proposedasion strategy against well-known FF
contiguous allocation strategy [34], with and withchange of request orientation. We have

implemented the proposed allocation and de-allonagilgorithms, including the busy list

Chapter 3: Turning Busy List (TBL): A New Contiguillocation Algorithm for Mesh-

Connected Multicomputers 60

routines, in the C language, and integrated thisveoé into ProcSimity; simulation tool that

is widely used for processor allocation and jobesithing in parallel systems [50, 66].

The target mesh is a cube with width, depthD and heightH . Jobs are assumed to have
exponential inter-arrival times. They are served-ost-Come-First-Served (FCFS) basis to
preserve fairness [33, 51, 52, 93]. We limit owrsslto FCFS scheduling because our main
purpose here is to compare the allocation stragegiee execution times are assumed to be
exponentially distributed with a mean of one tinmét §i6, 11, 33, 34, 74, 78, 85]. The time
units are simulation time units, measured by floggoint numbers, NOT hours, minutes, or
seconds [66], where the numbers generated by tnelator, for some of the system
parameters such as jobs’ execution times, arem@abers. Two distributions are used to
generate the width, depth and height of job reguelte first is the uniform distribution
over the range from 1 to the mesh side length, svttee width, depth and height of the job
requests are generated independently. The secdhd exponential distribution, where the
width, depth and height of the job requests arep&ptially distributed with a mean of half
the side length of the entire mesh; the width, kiepind height of the job requests are
rounded to the integer values using floor functéond bounded by the dimensions of the
mesh. The exponential distribution represents #se evhere most jobs are small relative to
the size of the mesh system. These distributioms béten been used in the literature [9, 11,
20, 27, 33, 34, 38, 51, 52, 77, 85, 94, 99]. Sitoteparameters are illustrated in Table 3.1.
It is worth noting that most of the values of thgmeameters have been adopted in the

literature [9, 11, 20, 27, 33, 34, 38, 51, 52,8%,,94, 99].

Table 3.1: The System Parameters Used in the Simula tion Experiments

Simulator Parameter Values

Dimensions of the Mesh Architecture 8x8x8,10x10x10,and 12 x 12 x 12

Chapter 3: Turning Busy List (TBL): A New Contiguillocation Algorithm for Mesh-

Connected Multicomputers 61

Allocation Strategy TBL, BL, TFF, and FF

Scheduling Strategy FCFS

Uniform: Job widths, depths, and heights
are uniformly distributed over the range
from 1 to the mesh side lengths.

Job Size Distribution
Exponential: Job widths, depths, and heights
are exponentially distributed with a mean of
half the side length of the entire mesh.

Execution Time Distribution Exponential with a mean of one time unit.

Exponential with different values for the
mean. The values are determined through
experimentation with the simulator, ranged
from lower values to higher values.

Inter-arrival Time

The number of runs should be enough so
that the confidence level is 95% that

Number of Runs relative errors are below 5% of the means.
The number of runs ranged from dozens to
thousands.

Number of Jobs per Run 1000

Each simulation run consists of 1000 completed.j&ulation results are averaged over
enough independent runs so that the confidence ie85% that relative errors are below
5% of the means [7]. The method used to calculatdidence intervals is called batch
means analysis [4, 66]. In batch means methodn@fon is divided into a set of fixed size
batches, computing a separate sample mean forba&ch, and using these batches means to
compute the grand mean and the confidence intelwabur simulation experiments, the
grand means are obtained along with several valimetiding confidence interval and
relative errors as shown in Table 3.2, which oedirthe results depicted in Figure 3.8 for
the load 5.8 jobs/time unit. However, as in exgtatudies [9, 11, 20, 27, 33, 34, 38, 51, 52,
77, 85, 94, 99], only the grand mean is shown inf@gures. In most cases the error bars

have been found to be quite small; the error bave mot been included in all the figures for

Chapter 3: Turning Busy List (TBL): A New Contiguillocation Algorithm for Mesh-

Connected Multicomputers 62

the sake of clarity and tidiness.

The main performance parameters observed aravbage turnaround timef jobs,mean
system utilisatiorandaverage allocation overhead he turnaround time is the time that a
parallel job spends in the mesh from arrival toatgpre. The utilisation is the percentage of
processors that are utilized over time. The aliocabverhead is the time that the allocation
algorithm takes for allocation and de-allocatiori@tions per job (i.e., It is the time a job at
the head of the waiting queue takes to be allocated de-allocated). The allocation
overhead that is incurred for detecting the avditglof a free sub-mesh for an incoming
job request and de-allocating it is the realisiimet We recognize that these results are
implementation dependent, but the trends shownhbyrésults help to indicate the main
features of the strategies. The important indepetagriable in the simulation is thegystem
load. It is defined as the inverse of the mean interak time of jobs. Its range of values
from low to heavy loads has been determined thraagierimentation with the simulator
allowing each allocation strategy to reach its wgpaits of utilisation. In the figures that
are presented below, theaxis represents the system load whileytaxis represents results

of the performance metric of interest.

Table 3.2: The mean (i.e., mean turnaround time of job), 95% confidence interval, and
relative error for the results shown in Figure 3.8 for the load 5.8 jobs/time unit

Algorithm TBL TFF BL FF

- :
95% Confidence| 5 8797 78]| [95.58-97.59] [158.85-160.06] [156168.43]

Interval
Mean (time unit) 96.580111 96.586394 159.45750p 225758
Relative Error 0.007 0.01 0.004 0.008

Turnaround Time:

In Figures 3.8 and 3.9, the average turnaround d¢ihjebs is plotted against the system load

for both job size distributions considered in thésearch. It can be seen in the figures that

Chapter 3: Turning Busy List (TBL): A New Contiguillocation Algorithm for Mesh-

Connected Multicomputers 63

the strategies with rotation (TBL and TFF) have @iridentical performance, and that they
are superior to all other strategies. They arefedld, in order, by the strategies BL and FF
respectively. When compared to TBL and TFF in FegB18, for example, BL increases the
average turnaround times by about 160% and 65%h&étoads 3.4 and 5.8 jobs/time unit,
respectively. In Figure 3.9, the increases arebmytl1017% and 143% for the loads 5.8 and
12.2 jobs/time unit, respectively. It can also leers in the figures that the average
turnaround times of the strategies that depend st @f allocated sub-meshes for both
allocation and de-allocation (as in TBL and BL)vexy close to that of the strategies that
depend on the number of processors in the meshmysas in TFF and FF). For example,
the average turnaround time of TBL is close to tfaflFF and the average turnaround time
of BL is close to that of FF. As has been repodbdve, the average turnaround time of the
strategies with rotation (as in TBL and TFF) is statially superior to the strategies
without rotation (as in BL and FF) because it ighty likely that a suitable contiguous sub-
mesh is available for allocation to a job when exjuotation is allowed. Experiments that
use large mesh system sizes (10 x 10 x 10 and 12 % 12) have been also conducted.
Their results lead to the same conclusion aboutralative performance of the allocation

strategies (please see Section 3.4.1.1).

Utilisation:

In Figures 3.10 and 3.11, the mean system utitisadif the contiguous allocation strategies
is plotted against the system loads for the unifamd exponential job size distributions.
The results reveal that switching request orientaimproves performance substantially.
This is indicated by the largely superior mean esysttilisation of the allocation strategies
that can switch the orientation of allocation resjagas in TBL and TFF) when they are
compared to the allocation strategies without rota(as in BL and FF). The allocation

strategies TBL and TFF have comparable performaarte they are superior to the BL and

Chapter 3: Turning Busy List (TBL): A New Contiguillocation Algorithm for Mesh-

Connected Multicomputers 64

FF allocation strategies. This is because theiontaif the allocation request increases the
probability of its allocation, which in turn impres system utilization. For both job size
distributions, the allocation strategies with ritatTBL and TFF achieve system utilisation
of 47% under the exponential distribution and 49f@ar uniform distribution, but the
allocation strategies without rotation BL and FFmat exceed 37% utilisation. Higher
system utilisation is achievable under heavy ldagsause the waiting queue is filled very

early, allowing each allocation strategy to redshupper limits of utilisation.

2 160
£ 140

g 120

O E

g 5 100 —a—TBL
2 g

S E ——TFF
& 6o

(O]

o ——BL
g 40 —=—FF
<

0 T T T)
02 06 1 14 18 22 26 3 34 38 42 46 5 54 58

Load (jobs/time unit)

Figure 3.8: Average turnaround time vs. system load for the contiguous allocation
strategies (BL, FF, TBL, TFF) and the uniform side lengths distribution in an 8 x 8 x 8
mesh.

100 +

—&— TBL
—*—TFF

——BL

—=—FF

Average Turnaround Time
(time unit)

1 18 26 34 42 5 58 66 7.4 82 9 98 10.6 114 122
Load (jobs/time unit)

Figure 3.9: Average turnaround time vs. system load for the contiguous allocation
strategies (BL, FF, TBL, TFF) and the exponential s ide lengths distribution in an 8 x 8
x 8 mesh.

Chapter 3: Turning Busy List (TBL): A New Contiguillocation Algorithm for Mesh- 65
Connected Multicomputers

92 -
82 -
—_ 12 A
S
c —a—TBL
i)
E ——TFF
= —8—BL
D
—+—FF

2 T

02 06 1 14 18 22 26 3 34 38 42 46 5 54 58
Load (jobs/time unit)

Figure 3.10: Mean System utilisation for the contig uous allocation strategies (BL, FF,
TBL, TFF) and the uniform side lengths distribution in an 8 x 8 x 8 mesh.

92 -

82 -

72 -
S 62 -
~ —a—TBL
c
S —»—TFF
T
= —=—BL
> ——FF

2 T

1 18 26 34 42 5 58 66 74 82 9 98 106 11.4 122
Load (jobs/time unit)

Figure 3.11: Mean System utilisation for the contig uous allocation strategies (BL, FF,
TBL, TFF) and the exponential side lengths distribu tion in an 8 x 8 x 8 mesh.

Number of Allocated Sub-meshes (m):

In Figures 3.12~3.15, the average number of aldmtatb-meshes() in the strategies that
depend on a list of allocated sub-meshes for bitdabation and de-allocation (TBL and BL)
is plotted against the system load. Different n&ighs (8 x 8 x 8, 10 x 10 x 10, and 12 x 12
x 12) are considered under both the uniform andoeeptial job size distributions. As
expected, the average number of allocated sub-reeishtargest when the side lengths
follow the exponential distribution. This is becauke average sizes of jobs are smallest in

this case. Moreover, the average number of alldcatd-meshes is lower than the number

Chapter 3: Turning Busy List (TBL): A New Contiguillocation Algorithm for Mesh-

Connected Multicomputers 66

of processors in the mesh system) for both job size distributions. It can be seprthe
figures thatm is often less sensitive with. It can also be noticed that the average number
of allocated sub-meshes for the strategy thathesedtation of the allocation request TBL is
a little bit higher than that of the BL strategy ielh does not use the rotation of the
allocation request. This is because it is highltglly that a suitable contiguous sub-mesh is
available for allocation to a job when the requeséentation is allowed, which in turn
increases the number of allocated sub-meshes ibhuge list. In Figures 3.12 and 3.13, for
example, the average number of allocated sub-mesthB& for all mesh sizes is 74% of

that of TBL when the job arrival rate is 5.8 joeé unit.

s 35 -
9
G
8 3 7 r I I I T T T T
< @ k3
52 25 - Ve
N7 T —— TBL 8x8x8
[CRN) _r/l-
g £ 2 /‘J_. —%—TBL 10x10x10

QO -
23 X TBL 12x12x12
0 15 ol
o> ' =
S | —
% 1 -

02 06 1 14 18 22 26 3 34 38 42 46 5 54 58
Load (jobs/time unit)

Figure 3.12: Average number of allocated sub-meshes (m) in TBL and the uniform
side lengths distributionin 8 x 8 x 8, 10 x 10 x 1 0, and 12 x 12 x 12 meshes.

3 .
2.8 A
2.6 A
2.4 4
2.2 A

2 m —»—BL 8x8x8

1.8 | v —¥—BL 10x10x10

16 1 v BL 12x12x12
1.4 A '/‘
1.2 j/‘

1 + T T T T : :

02 06 1 14 18 22 26 3 34 38 42 46 5 54 58
Load (jobs/time unit)

Average Number of Allocated
Sub-meshes

Figure 3.13: Average number of allocated sub-meshes (m) in BL and the uniform
side lengths distributionin 8 x 8 x 8, 10 x 10 x 1 0, and 12 x 12 x 12 meshes.

Chapter 3: Turning Busy List (TBL): A New Contiguillocation Algorithm for Mesh-

Connected Multicomputers 67

=
o
)

—>—TBL 8x8x8
=¥=—TBL 10x10x10
—o—TBL 12x12x12

Average Number of
Allocated Sub-meshes
P N W PS> OO N 0O ©

1 18 26 34 42 5 58 66 7.4 82 9 9.8 10.611.412.2
Load (jobs/time unit)

Figure 3.14: Average number of allocated sub-meshes (m) in TBL and the
exponential side lengths distribution in 8 x 8 x 8, 10 x 10 x 10, and 12 x 12 x 12
meshes.

A

P UN O WO G

w

—— BL 8x8x8
—¥—BL 10x10x10
—o—BL 12x12x12

N

Average Number of
Allocated Sub-meshes

[N

1 18 26 34 42 5 58 66 74 82 9 9.8 106114122
Load (jobs/time unit)

Figure 3.15: Average number of allocated sub-meshes (M) in BL and the exponential
side lengths distributionin 8 x 8 x 8, 10 x 10 x 1 0, and 12 x 12 x 12 meshes.

Allocation Overhead (Allocation and De-allocation Time):

Before presenting the simulation results, let ust ftarry out a simple analysis of the time
required for the allocation and de-allocation ofieres in the new TBL strategy. To do so,
we need to examine the algorithm outlined in Fig8ré above. The RBP construction
operation in Steps 2 and 2.1 of this algorithm mecuO(m) time, wherem is the number
of allocated sub-meshes. Subtracting a prohibiégion from a RBP take® (Hime. As
there are at most four RBP’s amd prohibited regions, subtractingn prohibited regions

from a RBP in step 2.3 of the algorithm takeém tinje. In total, the allocation operation

takesO(mz) time since there aréxm RBP’s andm prohibited regions to be considered.

Chapter 3: Turning Busy List (TBL): A New Contiguillocation Algorithm for Mesh-

Connected Multicomputers 68

Typically, the average values afi are less sensitive witlm, where n is the number of
processors in the mesh, as has been seen in thdason results above in Figures
3.12~3.15. The de-allocation operation requinesiterations to remove the allocated sub-

mesh from the busy list. Therefore, the de-allasatoperation takeO(m Yime. TBL

maintains a busy list ofn allocated sub-meshes. Thus, the space requireshéhé TBL

allocation strategy iO(m .)The space incurred by this strategy is small amexb to the

improvement in performance in terms of allocatioverhead, as we will see in the

simulation results.

As previously reported in Chapter 2, Section g, ¢urrent version of ProcSimity ignores
the overhead of allocation and de-allocation (itee time that the allocation and de-
allocation operations take per job). To compare d@lecation strategies in terms of the
allocation overhead associated with the allocatammd de-allocation operations, we
measured the average actual time taken by thegatmpes on a Pentium machine running
under Windows XP. The clock cycle of the machin8 {SHz and the RAM size is 504 MB.

The per-job average allocation overhead was cordpite milliseconds over enough

independent runs so that the confidence level ¥ 8t relative errors are below 5% of the

mean.

In the remainder of this section, Figures 3.16~312pict the average allocation overhead
for the allocation strategies against the job aimate for different mesh sizes (8 x 8 x 8, 10
x 10 x 10, and 12 x 12 x 12), when request sidgttenfollow the uniform and exponential

distributions. We observe that the strategies diegpiend on the busy list for both allocation
and de-allocation (TBL, BL) have much smaller adlticn overhead than the strategies that
depend on the number of processors in the meslesyfIFF, FF). In Figure 3.16, for

example, the allocation overhead of TBL strategdfisof that in TFF strategy under the job

arrival rate 4.6 jobs/time unit. It can also bersgethe figures that the allocation overhead

Chapter 3: Turning Busy List (TBL): A New Contiguillocation Algorithm for Mesh-

Connected Multicomputers 69

for the strategies with rotation is higher thant thathe strategies without rotation because
in the worst case, the allocation process, in thategies with rotation, is repeated for all
possible permutations (6 permutations) of the ppuest while this process is repeated only

one time for the other strategies.

The allocation overhead for the allocation stratedhat depend on the list of allocated sub-
meshes (TBL, BL) is little affected by changes e tsystem loads in our considered
scenarios. This is because the average numbetogfitdd sub-meshes in the busy list for
these allocation strategies is much lower thamtimaber of processors in the mesh system.
In Figure 3.12 above, for example, the average muroballocated sub-meshes in the busy
list varied from 1.09 to 2.76 from low to heavy disa The allocation strategies, TBL and
BL, depend on this small number of allocated sulstras in the busy list for both allocation
and de-allocation. Consequently, the time neededbfih allocation and de-allocation
operations, for the allocation strategies that ddpmn a list of allocated sub-meshes, is little

affected by changes in the system loads.

The average size of a requested sub-mesh is mdiatsmall when the exponential

distribution is used for generating job side lesgthherefore, the number of allocated sub-
meshes is larger in this case, meaning that thecalbn choices are more numerous.
Consequently, the allocation overhead of the gifasethat depend on the busy list is largest
when the side lengths follow the exponential disttion. Also and as shown in Figures

3.18~3.21, when the number of processors increhgesllocation overhead increases for
the allocation strategies that depend on the numibjgrocessors in the mesh system while it
does not increase for the strategies that deperallish of allocated sub-meshes. In Figures
3.16 and 3.20, for example, the allocation overhefathe TFF strategy for an 8 x 8 x 8

mesh system size is 11% of that in TFF for a 12112 mesh system size under the job

arrival rate 5.8 jobs/time unit. Moreover, the flesueveal that the difference in allocation

Chapter 3: Turning Busy List (TBL): A New Contiguillocation Algorithm for Mesh-

Connected Multicomputers 70

overhead gets more noticeable as the system laadaiges. Thus, the strategies which
depend on a list of allocated sub-meshes are nitaetige than the strategies that depend

on the size of the mesh system.

1.1 1
S 09 1
= 0
© 0
E £ o —=— TBL
<@ 057 —A— TFF
(O]
g% %1 o
o >
>3 01 —*— FF
<0 7 =

01 4 —

02 06 1 14 18 22 26 3 34 38 42 46 5 54 58
Load (jobs/time unit)

Figure 3.16: Average allocation overhead for the al location strategies (TBL, TFF, BL,
and FF) and uniform side lengths distribution in an 8 x 8 x 8 mesh.

1.1 A

0.9 -

0.7 A —&— TBL

0.5 1 —&— TFF

BL

—<—FF

0.3 1

Average Allocation
Overhead (msec)

0.1 7

e ‘——", . ! L]

1 18 26 34 42 5 58 66 74 82 9 98 106 114 122
Load (jobs/time unit)

-0.1

Figure 3.17: Average allocation overhead for the al location strategies (TBL, TFF, BL,
and FF) and exponential side lengths distribution i nan 8 x 8 x 8 mesh.

3.4 -
2.9 1
2.4 A
1.9 A
1.4 A

—=— TBL
—&— TFF
BL

—— FF

0.9 A

0.4 A

= i ~r—n—n—n—n—n—nN—n—n—n—n—N
ol g —e—e—t—n—n—t—n—n—n—n—x
02 06 1 14 18 22 26 3 34 38 42 46 5 54 538

Load (jobs/time unit)

Average Allocation
Overhead (msec)

Figure 3.18: Average allocation overhead for the al location strategies (TBL, TFF, BL,
and FF) and uniform side lengths distribution in a 10 x 10 x 10 mesh.

Chapter 3: Turning Busy List (TBL): A New Contiguillocation Algorithm for Mesh-

Connected Multicomputers 1
C o)
Qo
8 %
SE —&— TBL
<3 —A— TFF
L o
gg BL
Q> —*—FF
>
Z©

1 18 26 34 42 5 58 66 74 82 9 98 106 114 122

Load (jobs/time unit)

Figure 3.19: Average allocation overhead for the al location strategies (TBL, TFF, BL,
and FF) and exponential side lengths distribution i nal0x 10 x 10 mesh.

95 4
8.5
7.5
6.5
55
4.5
3.5
2.5
1.5
0.5

Overhead (msec)

Average Allocation

o
o

02 06 1 14 18 22 26 3 34 38 42 46 5 54 58
Load (jobs/time unit)

Figure 3.20: Average allocation overhead for the al location strategies (TBL, TFF, BL,
and FF) and uniform side lengths distribution in a 12 x 12 x 12 mesh.

oo N oo
GRGRGEE NG

—8—TBL
—&—TFF
BL

—»—FF

w A~
[

=N
o,

Average Allocation
Overhead (msec)

oo
(S0]

1 18 26 34 42 5 58 66 74 82 9 98 106 11.4 122
Load (jobs/time unit)

Figure 3.21: Average allocation overhead for the al location strategies (TBL, TFF, BL,
and FF) and exponential side lengths distribution i nal2x12 x 12 mesh.

3.4.1.1 Performance Impact of Mesh System Size

In this section, we investigate the effect of tiee ©f the mesh system on the performance

of the allocation strategies considered in thisptérain terms of average turnaround time of

Chapter 3: Turning Busy List (TBL): A New Contiguillocation Algorithm for Mesh-

Connected Multicomputers 2

jobs. Figures 3.22 and 3.23 plot the average tourat time of jobs against the size of the
mesh system, assuming a heavy system load of 8.8 22 jobs/time unit for the uniform
and exponential side lengths distribution, respetti The results show that the
performance of the allocation strategies is liftiected by changes in the system size in our
considered scenarios. In Figure 3.22, for exanple,average turnaround time of the TBL
strategy for a 12 x 12 x 12 mesh system size is 88#hat of the TBL strategy for an 8 x 8
x 8 mesh system size. Moreover, the allocationtegjias that use the orientation of the
allocation request perform much better than thecalion strategies that do not use the
orientation of the allocation request regardlesthefmesh system size. For instance, Figure
3.23 shows that the average turnaround time ofTBle strategy is 44% of that of the BL

strategy for a 12 x 12 x 12 mesh system size.

@ 180
= 160 |

< 140 -

%leo . mTBL
= C i

g 5 10 BTFF
E o 80

2E o0 QFF

S 40 BBL

S 20 -

S o

z .

10x10x10 12x12x12
Mesh System Size (processor)

Figure 3.22: Average turnaround time vs. size of th e mesh system for the contiguous
allocation strategies (BL, FF, TBL, TFF) and the un iform side lengths distribution.

o) .
g 00
= m
ko] 80 - m
c 1 [
3= L @TBL
S5 60 - 2] H
E o g 3 [E o BTFF
S 1 i H
FE SR S I OFF
g % N I £
e 20- % 2] o B @BL
) 22 1ol H
% o | Eed Bad Lo BEH .
8x8x8 10x10x10 12x12x12

Mesh System Size (processor)

Figure 3.23: Average turnaround time vs. size of th e mesh system for the contiguous
allocation strategies (BL, FF, TBL, TFF) and the ex ponential side lengths distribution.

Chapter 3: Turning Busy List (TBL): A New Contiguillocation Algorithm for Mesh-

Connected Multicomputers 3

3.5 Conclusions

While the existing contiguous allocation strategiésr the 3D mesh-connected
multicomputers achieve complete sub-mesh recogndépability but with a high allocation
overhead, this chapter has suggested an efficmntguous allocation strategy, referred to
as the Turning Busy List strategy (TBL for showjjich can overcome the limitations of the
existing strategies. The performance of the neatexly has been compared against that of
the existing contiguous allocation strategies whielve been suggested for the 3D mesh-
connected multicomputers. Simulation results hdae@ve that the performance of the TBL
proposed allocation strategy is at least as godtaisof the previously promising proposed
strategies in terms of average turnaround timeraadn system utilisation. Moreover, the
allocation overhead of the TBL strategy is muchdowhan that of the existing strategies.
The scenarios that have been examined in our siimalaxperiments have also revealed

that system performance is affected only a litflealthange in the network size.

The performance impact of the switching of requa#ntations has been also evaluated.
The results have revealed that in general the iootadf the job request improves the
performance of the contiguous allocation strategsreover, TBL can be efficient because
it is implemented using a busy list approach. ®pproach can be expected to be efficient
in practice because when the mesh system sizeagesehe requirement of applications in
terms of the number of requested processors aftaeases and in such a case our algorithm

is expected to exhibit competitive performance leve

The subsequent chapter will describe a new nonguomis allocation algorithm for the 2D
mesh-connected multicomputers which can exhibitebeperformance in terms of the

turnaround time than the previous non-contiguolacation strategies in most of the cases

Chapter 3: Turning Busy List (TBL): A New Contiguillocation Algorithm for Mesh-

Connected Multicomputers 74

considered. Moreover, in the presence of high ngessantention due to heavy network
traffic, the proposed strategy exhibits superiorfggenance over the previous contiguous
and non-contiguous allocation strategies; in paldic it exhibits high system utilisation as

it manages to eliminate both internal and extepnatessor fragmentation.

Chapter 4

Greedy Available Busy List (GABL): A New
Non-contiguous Allocation Algorithm for
Mesh-Connected Multicomputers

4.1 Introduction

Most allocation strategies [9, 27, 28, 33, 34, 88, 48, 52, 65, 74, 75, 99] suggested for
mesh-connected multicomputers are based on consgatbocation, where the processors
allocated to a parallel job are physically contigsi@nd have the same topology as that of
the interconnection network of the multicomputenn@guous allocation strategies often

result in high processor fragmentation, leading tdegradation in system performance in
terms of average turnaround time of jobs and mgatem utilisation, as has been shown in

[99] (please refer to Section 2.1 in Chapter 2ffierdefinition of processor fragmentation).

The main goal of a processor allocation stratedp iduce the job turnaround time and at
the same time maximize the system utilisation bgvadting the processor fragmentation
problem. Several studies have attempted to reduamegsor fragmentation [18, 24, 28, 35,

51, 77, 81, 85]. One of the suggested solutions &lopton-contiguousllocation [18, 24,

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 76

49, 72, 85]. In non-contiguous allocation, a job eaxecute on multiple disjoint smaller sub-
networks rather than always waiting until a singlé-network of the requested size and
shape is available. Although non-contiguous allocaincreases message contention in the
network, lifting the contiguity condition is expeck to reduce processor fragmentation and
increase processor utilisation [18, 72, 85]. lthis introduction of wormhole routing [2, 11,
83] that has lead researchers to consider nongramis allocation on multicomputer
networks with a long communication distances, agthe 2D mesh [2, 18, 49, 77, 85]. This
iIs due to the fact that one of main advantages ofmkiole routing over earlier
communication schemes, e.g., store-and-forwarthat message latency is less dependent

on the message distance.

Most existing research studies have been condictdte context of contiguous allocation
[9, 27, 28, 33, 38, 48, 65, 81, 99]. There has bmmmparatively very little work on non-
contiguous allocation. Whereas contiguous allocatgiminates contention among the
messages of concurrently executing jobs, non-coatig allocation can eliminate processor
fragmentation that contiguous allocation suffefr Furthermore, most existing research
on contiguous and non-contiguous allocation has leeeried out in the context of the 2D
mesh [9, 18, 27, 28, 33, 35, 38, 48, 49, 51, 6581785, 99]. The mesh network has been
used as the underlying network in a number of pralcind experimental parallel machines,
such as the iIWARP [15], IBM BlueGene/L [10, 55, 98plant [84], and Delta Touchstone
[40]. Examples of current generation mesh-connedgstems that use non-contiguous

allocation are the Cplant [84] and Cray XT3 [19].60

The existing non-contiguous allocation strategieggested for the 2D mesh suffer from
several problems that include internal fragmentatexternal fragmentation, and message

contention inside the network [18, 24, 49, 84, &8%0, the allocation for job requests is not

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers "

based on free contiguous sub-meshes [18, 85]. ddste is often based on artificial
predefined geometric or arithmetic patterns [18]. #or example, in the study of [18],
ANCA subdivides job requests into two equal pafffie subparts are successively
subdivided in a similar fashion if allocation faftsr any of them. In the study of [85], MBS
strategy bases partitioning on a base-4 represemtaft the number of processors requested,
and partitioning in Paging [85] is based on therabieristics of the page, which is globally
predefined independently from the request. Henesdlstrategies may fail to allocate an
available large sub-mesh and which in turn caneaegradation in system performance in

terms of turnaround times [18, 72, 85].

Motivated by the above observations, this chaptakes the following contributions. We
describe a new non-contiguous allocation strategfierred to here as Greedy Available
Busy List (GABL for short), for the 2D mesh, andhguare its performance properties using
detailed simulations against those of the previaos-contiguous allocation strategies
Paging(0) and Multiple Buddy Strategy (MBS) [85heke two strategies have been selected
because they have been shown to perform well ih [B%e MBS and Paging(0) have been
discussed in detail in Chapter 2 (please see $e2tih?2). To show the superiority of non-
contiguous allocation against contiguous allocatieith respect to fragmentation, the
GABL strategy is compared against the contiguoust it strategy (FF) [99] as this has

been used in previous related studies [18, 85].

This chapter also conducts a performance evaluatiothe non-contiguous allocation
strategies in terms of overall performance pararsetech as the average turnaround time,
average waiting time, and mean system utilisatiemrthermore, the contention in the
network that results from the communication amdi@rated processors has been measured

using two metrics. These are the contiguous ratid average blocks per job. The

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 8

contiguous ratio measures the ratio of jobs thatated contiguously. The average blocks
per job is defined as the average number of notigiovus blocks allocated to a job.

Message contention decreases when the number afsbétlocated to a job deceases. This
study is the first to examine the non-contiguoucaltion based on the sub-meshes
available for allocation. The results show that pneposed strategy has lower turnaround
times than the previous non-contiguous allocatitrategies of [85]. When message
contention increases inside the network, the preghasrategy exhibits superior performance
in terms of job turnaround times over the previoostiguous and non-contiguous allocation
strategies. Furthermore, the proposed strategyigtiigh system utilisation as it manages

to eliminate both internal and external fragmenotati

The remainder of the chapter is organized as falo8ection 4.2 describes our proposed
non-contiguous allocation strategy. Section 4.3 ganmas the performance of the contiguous

and non-contiguous allocation strategies. Fin&Bgtion 4.4 concludes this chapter.

4.2 The Proposed Greedy Available Busy List Allocain Strategy (GABL)

The target system is a 2D mesh-connected multictenpreferred to asM (W,L), where

W is the width of the mesh, and is its length (for the sake of conciseness pleaf to
the description of 3D mesh in Section 3.2 in Chafteas the adaptation of the description

to the 2D mesh is straightforward).

The GABL strategy partitions requests based orsthemeshes available for allocation. A
major goal of the partitioning process is to mdimia high degree of contiguity among the
processors allocated to a given parallel job. Furtiore, the GABL strategy combines the
desirable features of both contiguous and non-goatis allocation strategies. For example,

the desirable features of any ideal contiguouscation strategy are to eliminate the

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 9

communication overhead among processors allocaied parallel job and to achieve
complete sub-mesh recognition capability with loWo@ation overhead. The desirable
feature of an ideal non-contiguous allocation sfygtis to alleviate communication
overhead among processors allocated to a job bytamaing a degree of contiguity between
them. Moreover, GABL is general enough in thatotild be applied to either the 2D or 3D
mesh. However, for the sake of the present disonsshe new non-contiguous allocation
strategy is adapted for the 2D mesh in order topaymits performance against that of the
existing non-contiguous allocation strategies sagggefor the 2D mesh; it is worth pointing
out that there has been hardly any non-contigutategy which has been suggested for the

3D mesh network.

In implementing GABL, we exploit an efficient appich, the Turning Busy List (TBL)
approach described in Chapter 3, for the detectbrsuch available sub-meshes. As
previously discussed in Chapter 3, the basic idga@t is to maintain a list of the allocated
sub-meshes. The list is used to determine all pi@d regions, which are sub-meshes
consisting of the nodes that cannot serve as badesnfor the requested sub-mesh. The
prohibited regions are then subtracted from thétrigorder lines of the allocated sub-
meshes so as to locate nodes that could be usedsasnodes for the required sub-mesh.
The TBL algorithm in Chapter 3 builds the busy irsbrder to detect the free sub-meshes in
the target mesh. The detection of available sullagesind the allocation process for 2D

mesh are implemented by the algorithms illustratdeigures 4.1 and 4.2 respectively.

Procedure Detect (a, B):
Begin {
{Mesh M(W, L); incoming job J requests for @p free sub-mesh;
Busy list B = {l3, by, by, , B} where R is a hypothetical allocated sub-mesh

and b, 1<i<m, are the m already allocated sub-meshes; Bothnsekhes (W1,
0, W4, L-1) and Q, L-p+1, W-1, L-1) are automatic prohibited regions and

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 80

automatically not available for accommodating thesé node of a freex 3 sub-
mesh for J.}
Step 1. RBL_NodesNULL.
Step 2. for each allocated sub-megR;byi, %, ¥,) fromi=0to m
Step 2.1. Construct RBL of denoted as RBt (X;, Y1, %, ¥r2), With respect to
J where ¥=x,+1, yy=max(y-p+1, 0), and y,=Y..
Step 2.2. if RBlis within an automatic prohibited region then g&tep 2.
Step 2.3. for each allocated sub-mesfxdy,%,y) fromj=1tom
Construct prohibited region of J with respect to denoted as P= (X1,
Yo1. %02, Yp2) Where ¥i=max(%-a+1, 0), yp=max(y-p+1, 0), X=Xa,
and y=Yo.
subtract Pfrom RBI; as follows:
Determine the case to which the subtraction belobgscomparing the
coordinates of RBland Ras the following:
1 ((% < Xp1) 11 (% > Xp2) 11 (Yr2< Yp) 11 (V1> Yp2))-
2. (0% >= Xp1) && (X1 <= Xp2) && (Y2>= Yp1) && (Y2<= Y p2) && (Y11< Yp1))
3. (0% >= Xp1) && (X1 <= Xp2) && (Yn>= Yp1) && (Yn<= Yp2) && (V12> ¥p2))
4. ((% >= Xp1) && (X; <= Xpp) && (Yr1< Yp1) && (Y 12> Vo))
5. (% >= Xp1) && (X1 <= Xpg) && (Y11>= Yp1) && (Y 12<= Y 2))
Switch (subtraction case)
{
case (1): if (5> yp2) then
begin
add the whole RBto RBL_Nodes.
goto Step 2.
end
break.
case (2): adjust RBIsuch that gy« yp-1.
break.
case (3): add line segment,(y2+ 1,%.,Y:») to RBL_Nodes.
goto Step 2.
case (4): add line segment,(%2+ 1,%,Y:») to RBL_Nodes.
adjust RBLsuch that yp« yp;-1.
break.
case (5): goto Step 2.
}
goto Step 2.3.

TBL_Allocate(RBL_Nodes,)
} End.

Figure 4.1: Outline of the Detect Procedure in TBL Contiguous Allocation Strategy for
2D Mesh

Procedure TBL_Allocate (RBL_Nodes, a, B):

Begin {
int botx, boty;

botx=RBL_Nodes.botx;
boty=RBL_Nodes.boty;

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 81

Add the sub-mesh represented by the address (tttk, botx +a -1, boty +4 —1)
to the busy list by setting sub-mesh’s ID to thel 0.

} End.

Figure 4.2: Outline of the TBL Contiguous Allocatio n Strategy for 2D Mesh

To explain how the detection of the available swgshes and the allocation process on the
2D mesh works; consider the example of Figure A.8/Mhich a 6 x 6 mesh is illustrated.
There are 4 allocated sub-meshes in this examplesel allocated sub-meshes are denoted
by {b;,b,,bs,bs} and represented by the addresbgd, 4, 5, 5),b,(0, 2, 1, 3),b3(4, 3, 5,

3), andby (5, 2, 5, 2), respectively. Assume that an inconjoly J requests a 2 x 4 sub-
mesh. Now, consider the sub-mesf(0, 2, 1, 3). The RBL ob, (0, 2, 1, 3) with respect to
the job requesti (2x 4)s (2, 0, 2, 3). The automatic prohibited regiovith respect to the
job request] (2x 4)are calculated resulting in the regions (5, ®)5and (0, 3, 5, 5). The
automatic prohibited regions are subtracted fromRBL (2, 0, 2, 3) resulting in (2, 0, 2, 2).
Now, the prohibited region of the first allocatatbamesh in the busy lid (1, 4, 5, 5) with
respect to the job request(2x 4% calculated resulting in (0, 1, 5, 5), which whe
subtracted from the RBL (2, 0, 2, 2) results inq22, 0). Then, the prohibited region of the
second allocated sub-med# (0, 2, 1, 3) with respect to the job requed(2x4) is
calculated resulting in (0, 0, 1, 3), which whebtsacted from the RBL (2, 0, 2, 0) results in
RBL (2, 0, 2, 0). The prohibited region of the thallocated sub-mesh;(4, 3, 5, 3) with
respect to the job request(2x 4% calculated resulting in (3, 0, 5, 3), which whe
subtracted from RBL (2, 0, 2, 0) results in (2200). Finally, the prohibited region of the
last allocated sub-medhy (5, 2, 5, 2) with respect to the job requdgx igl)calculated
resulting in (4, 0, 5, 2), which when subtracteahirthe RBL (2, 0, 2, 0) results in (2, 0, 2,
0). Now, the node (2, 0, 2, 0) will be used as sehaode for the sub-mesh requested by the

job requestJ(2x 4)and the sub-mesh (2, 0, 3, 3) is allocated tojaberequest] (2x 4)

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 82

and then it is added to the busy list.

In GABL, when a parallel job is selected for allboa, a sub-mesh suitable for the entire
job is searched. If such a sub-mesh is found alscated to the job using the above TBL
contiguous allocation strategy. Otherwise, the datgiree sub-mesh that can fit inside

S(a,p) is allocated, wherex and S are the dimensions of the job request. Then, the

largest free sub-mesh whose side lengths do neieelxihe corresponding side lengths of the
previous allocated sub-mesh is searched underath&traint that the number of processors

allocated does not exceemlx 5. This last step is repeated untix [processors are

allocated. For example, given the system state shiowrigure 4.3 and a job that requests
the allocation of an 8 x 2 sub-mesh, contiguouscalion is not possible and non-
contiguous allocation is adopted. The job is alledahe sub-meshes (0, 0, 5, 1) and (2, 2, 3,
3) as follows. Firstly, the algorithm subtracts dnem the maximum length of the side
lengths of the job request resulting in 7 x 2 swgsimwhich is not available for allocation in
the mesh system. So the subtraction process isitegpagain resulting in a 6 x 2 sub-mesh
which is available for allocation in the mesh systeso that the sub-mesh (0, 0, 5, 1) is
allocated to the job request using TBL contiguollscation strategy. Then, the algorithm
tries to allocate a sub-mesh whose side length®tlexceed the corresponding side lengths
of the previous allocated sub-mesh (6 x 2) if td@es not result in allocating more
processors than the original allocation request 23; in this example, [(6 x 2) + (6 x 2)] >
(8 x 2). The algorithm subtracts one from the maximlengths of 6 x 2 resulting in 5 x 2,
but again [(6 x 2) + (5 x 2)] > (8 x 2). So the Babtion process is repeated again until it
gets a sub-mesh whose processors, along with deegsors of the previous allocated sub-
mesh, are less than or equal the number of processguested by the original request (8 x
2). In this case, a 2 x 2 sub-mesh results fromsthraction process which is available in

the mesh system so that the sub-mesh (2, 2, 8,&8lpicated to the job request.

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 83

‘ 8@
1,5) (2,5 |(3,514,5)
® @
1,4) 1(2.4) 48, (4.4)._(b.4
i‘ “““ '“E A OE @ : Allocated Node
b, i 1,3) | (2,3B|3)_ (4
: ® : O—0O O : Free Node
(0,2 (1L2) [2.2) |G,

e M q
o1 @1 @1
-

(P e
(0,0) (1,0) (2,0)3,0) (4,00 (5,0

Figure 4.3: A 6 x 6 sub-mesh with 19 free processor s forming several free sub-meshes
Allocated sub-meshes are kept in a busy list. Edeiment in this list includes thd of the

job to which the sub-mesh is allocated. When adeparts the system its allocated sub-

meshes are removed from the busy list and the nuaflieee processors is updated.

Allocation in GABL is implemented by the algorithoutlined in Figure 4.4, while the de-
allocation algorithm is outlined in Figure 4.5. Mahat allocation always succeeds if the

number of free processors isa x 5. Moreover, it can be noticed that the methodology

used for maintaining contiguity is greedy. GABLestipts to allocate large sub-meshes first.

Procedure GABL_Allocate (e, f):
Begin {

Total_Allocated= 0

Job_Sizes ax g

Sted. If (number of free processoxsJob_Size
return failure.
Step2. Ifithere is a free @v, |) suitable for &, f))
{
allocate it using the TBL contiguous allocation @iighm.
return success.
}
Ste8. onew= @ andpfpew=f
Stepd. Subtractl from max €new Snew if max >1
Ste. If (Total _allocated +unew % Srew™> JOb_Size) go to step 4
Stef. If there is a free S (w,) suitable foroQdy Snew

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 84

Allocate it using TBL contiguous allocation algdit.
Total_allocated = Total_allocated #tnew X frew

Stefy. If (Total_allocated == Job_Size)
return success.
else
go to Step 5.
} End.

Figure 4.4: Outline of the Greedy Available Busy Li st allocation algorithm

Procedure GABL_De-allocate ():
Begin {
jid = id of the departing job;
For all elements in the busy list
if (element’s id = jid)
remove the element from the busy list
} End.

Figure 4.5: Outline of the Greedy Available Busy Li st de-allocation algorithm

4.3 Performance Evaluation

In this section, the allocation and de-allocatimmet in addition to the space requirement in
the proposed allocation strategy, are presentstl fihen, the results from simulations that
have been carried out to evaluate the performahtieeoproposed algorithm are presented

and compared against those of Paging(0), MBS and FF

4.3.1 Allocation and De-allocation Time in GABL

When a sub-mesh is allocated, TBL tal@(snz) time, wherem is the number of allocated
sub-meshes. Therefore, the time of Step 6 in GABIllscation algorithm is in the order of
O(bmz), where b is the number of allocation attempts carried outhis step. The worst

case for TBL occurs when the free and busy procsessiternate in the same way as the

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 85

light and dark positions on a chessboard, and argguires the allocation oh/2

processors, where is the number of processors in the mesh systenb Asin O(n) in

such a case, the worst-case time for Step 6 ofatleeation algorithm is inO(n3)

However, as we shall show in the simulation redo#tlow, the average values bfand m

are less sensitive ta. The number of times Steps 4 and 5 are executgd @(n) in the

worst case. These steps exhibit their worst cabaveur when all free sub-meshes are of
size equal to one. The simulation results show 8tep 6 dominates Steps 4 and 5 for the
typical cases considered in this study. When adgarts, the busy list is scanned so as to

determine the sub-meshes to be released. Therdieree-allocation algorithm tak&(m)

time. The proposed algorithm maintains a busy Tisierefore, its space requirement is in

o(m) .

4.3.2 Simulation Results

In addition to simulation results for GABL, we wahow below the results for Paging(0),
MBS and FF. We have implemented the proposed ditotand de-allocation algorithms,

including the busy list routines, in the C languaged integrated the software into the
ProcSimity; simulation tool that is widely used farocessor allocation and job scheduling

in parallel systems [50, 66].

The target mesh modelled in the simulation expemisies square with side lengths Jobs

are assumed to have exponential inter-arrival tifibgy are served on a First-Come-First-
Served (FCFS) basis. We have limited ourselves@&S- scheduling because our main
purpose here is to compare the allocation stragedilee execution time of a job is the time
at which a job completes (i.e., a job completese messages it should send have been

sent [85]) minus the time at which allocation swxt= for the job and the job starts

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 86

execution. The execution times of jobs depend entilme needed for flits to be routed

through the node, packet sizes, the number of rgessaent, message contention and
distances messages traverse. As previously report@Hapter 3, two distributions are used
to generate the lengths and widths of job requdsts.first is the uniform distribution over

[1, L], where the width and length of a request are ge#ad independently. The second is
the exponential distribution, where the width aeddth of job requests are exponentially
distributed with a mean of half the side lengthtloé entire mesh; where the width and
length of the job requests are rounded to the anteglues using floor function and bounded
by the dimensions of the mesh. The exponentiafidigion represents the case where most
jobs are small relative to the size of the systéhese distributions have often been used in

the literature [20, 27, 77, 85, 99].

The interconnection network uses wormhole routkiigs are assumed to take one time unit

to move between two adjacent nodes, &ndme units to be routed through a node. Packet
sizes are represented By,. As previously reported in Chapter 2, Section3,.processors

allocated to a job communicate with each othergusime of three common communication
patterns [49, 83, 85]. The first communication @attis one-to-all, where a randomly
selected processor sends a packet to all otheegsocs allocated to the same job. The
second communication pattern is all-to-all, wheseheprocessor allocated to a job sends a
packet to all other processors allocated to theegaim This communication pattern causes
much message collision and is known as the weaktgor non-contiguous allocation
algorithms [49]. In the third communication patterandomly selected processors send
packets to randomly selected destinations withen bt of processors allocated the same
job. In all cases, processors allocated to a jebnaapped to a linear array of processors
using row-major indexing. The simulator selects Hweirces and destinations from this

array, and the mapping is used for determiningxhend y coordinates of the sources and

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 87

destinations of communication operations. As in],[88e number of messages that are

actually generated by a given job is exponentidilstributed with a meamurr_me:s.

Unless specified otherwise, the performance figstesvn below are for a 16 x 16 mesh,

ts= 3 time units, Ren= 8 flits and num_mes= 5 packets. Simulation parameters are

illustrated in Table 4.1. It is worth noting thabst of the values of these parameters have

been adopted in the literature [20, 27, 49, 7798%and have been recommended in [66].

Table 4.1: The System Parameters used in the Simula tion Experiments

Simulator Parameter Values
Dimensions of the Mesh Architecture 16 x 16
Packet Length 8 flits
Flow Control Mechanism Wormbhole Routing
Buffer Size 1 flit
Routing Delay 3 time units
Router Type Mesh XY Routing
Allocation Strategy GABL, MBS, Paging(0), and FF
Scheduling Strategy FCFS

Uniform: Job widths and lengths are
uniformly distributed over the range from 1
to the mesh side lengths.

Job Size Distribution
Exponential: Job widths and lengths are

exponentially distributed with a mean of
half the side length of the entire mesh.

Exponential with different values for the
mean. The values are determined through
experimentation with the simulator, ranged
from lower values to higher values.

Inter-arrival Time

Mean Time between Sends 0.0

Communication Patterns One-to-All, All-to-All, and Random

Messages per Job are exponential
distributed with a mean = 5.0.

The number of runs should be enough so
that the confidence level is 95% that
Number of Runs relative errors are below 5% of the means.
The number of runs ranged from dozens to
thousands.

Number of Jobs per Run 1000

Messages per Job

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 88

Each simulation run consists of 1000 completed.j&sulation results are averaged over
enough independent runs so that the confidence ie@8% and the relative errors do not
exceed 5% [7]. The method used to calculate conéieentervals is called the batch means
analysis [4, 66]. This method has been discussettiail in Chapter 3 (please see Section
3.4.1). Table 4.2 shows the grand means, confidémesgvals, and relative errors that

outline the results depicted in Figure 4.6 for kb&d 0.0185 jobs/time unit. In most of the

cases the error bars are quite small. These earsrdye not shown on all the figures for the

sake of clarity.

Table 4.2: The mean (i.e., mean turnaround time of job), 95% confidence interval, and
relative error for the results shown in Figure 4.6 for the load 0.0185 jobs/time unit

Algorithm GABL MBS Paging(0) FF
95% Confidence| [5019.37- [8177.79- [9079.11- [18661.92-
Interval 5329.85] 8342.99] 9449.688] 19038.93]

Mean (time unit)] 5174.610807 8260.392389 9264.4804918850.428350

Relative Error 0.03 0.01 0.02 0.01

The main performance parameters used areavieeage turnaround timef jobs,average
waiting time mean system utilisatiomndcontiguous ratio Theturnaround timeof a job is
the time that the job spends in the mesh from alriv departure. Thevaiting timeis the
time that the job spends in the queue before dlliscated the requested sub-mesh. The
system utilisations the percentage of processors that are utilized time. Thecontiguous
ratio is the ratio of jobs which are allocated contigsigu The important independent
variable in the simulation is theystem loadlt is defined as the inverse of the mean inter-
arrival time of jobs. Its range of values from ldw heavy loads has been determined
through experimentation with the simulator allowiegch allocation strategy to reach its
upper limits of utilisation. In the figures thateapresented below, theaxis represents the

system load while theg-axis represents results of the performance metricterest.

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 89

Turnaround Time:

In Figures 4.6 and 4.7, the average turnaroundstiofigobs are plotted against the system
load for the one-to-all communication pattern. Tasults reveal that GABL performs better
than all other contiguous and non-contiguous atlonastrategies for both job size
distributions considered in this research. FurtleeenGABL is substantially superior to the
contiguous allocation FF strategy for both job giributions. In Figure 4.6, for example,
the difference in performance in favour for GABLutt be as large as 65% compared to FF,
and 36% to Paging(0), and 30% to MBS under thegolval rate 0.0205 jobs/time unit.
Experiments that use larger packet sizes (16, 82,64 flits) have been also conducted.
Their results lead to the same conclusion on thative performance of the allocation
strategies (please see Section 4.3.2.2). Moredber,results indicate that the relative
performance merits of the non-contiguous GABL sigtover the remaining contiguous
and non-contiguous allocation strategies becomeenmmticeable as the packet length

increases.

In Figures 4.8 and 4.9, the average turnaroundstiofigobs are plotted against the system
load for the all-to-all communication pattern. AgaGABL performs much better than all

other allocation strategies for both job size disitions. Moreover, GABL is substantially

superior to FF for both job size distributions. uig 4.8, for example, shows that when the
job arrival rate is 0.0305 jobs/time unit, the ag® turnaround times of GABL are 20%,
24%, and 38% of that of FF, Paging(0), and MBSpeesively. Experiments that use larger
packet sizes (16, 32, and 64 flits) have lead ® shme conclusion as to the relative

performance of the allocation strategies (pleaseSgztion 4.3.2.2).

In Figures 4.10 and 4.11, the average turnaroundstiare plotted against the system load

for the random communication pattern. The resuitdigure 4.10 reveal that the non-

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 90

contiguous GABL strategy outperforms the other nontiguous allocation strategies for
the uniform side lengths distribution. It can als® noticed from Figure 4.11 that GABL
performs better than the non-contiguous Paging(@jegy for the exponential side lengths
distribution. However the performance of GABL igyelose to that of the non-contiguous
MBS strategy. For instance, Figure 4.11 revealsttimaverage turnaround times of GABL
are 44%, 89%, and 99% of that of FF, Paging(0), &S, respectively, under the job

arrival rate 0.1 jobs/time unit.

GABL is overall better than the previous non-contigs allocation strategies at alleviating
message contention, but contention in the randammaaication pattern is lower than that
in the one-to-all and all-to-all communication gatis. This is because destinations are
chosen randomly and paths are less likely to operzontention that results from the
random communication pattern is not sufficient fdifferentiating among the non-
contiguous allocation strategies. For Paging(03, glrformance is relatively poor because
the distances between nodes are relatively hightabDces between communicating nodes
have significant impact on message latency, indégethy of contention, when messages
are short. This is the case in the simulation stesawhere the length of packets is 8 flits.
Also, when messages traverse longer distancesateynore likely to collide with other
messages. As expected, the results show that GABlsubstantially superior to the
contiguous FF strategy. The increase in content@@sociated with non-contiguous
allocation strategies is outweighed by the supeimlity of the non-contiguous strategies at

allocating free processors.

Experiments that use large system sizes (32 x 854« 64) have been also conducted for
the three communication patterns. The results feade same conclusion about the relative

performance of the allocation strategies (pleaseSgetion 4.3.2.1).

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers

91

11140 ~
10140 -
9140 -+
8140 -
7140 -
6140 -
5140 -
4140 A
3140 +
2140 A
1140 -+

Average Turnaround Time
(time unit)

140 =
0.0005 0.0025 0.0045 0.0065 0.0085 0.0105 0.0125 0.0145 0.0165 0.0185 0.0205

——

—8—FF
—a&— GABL
—e— Paging(0)

—*%— MBS

Load (jobs/time unit)

Figure 4.6: Average
communication pattern and uniform side lengths dist

turnaround

time vs. system load for

the one-to-all
ribution in a 16 x 16 mesh

10000
@ 9000
§ 8000
|_
- 7000
c
> = 6000
S'c
TS 5000
Co
S e 4000
= 3000
)
> 2000
E 1008
<

—a—FF
—a— GABL
—e— Paging(0)

—¥— MBS

0.005 001 0015 002 0.025 0.03 0.035
Load (jobs/time unit)
Figure 4.7: Average turnaround time vs. system load for the one-to-all

communication pattern and exponential side lengths

distribution in a 16 x 16 mesh.

12090

10090

8090

6090

4090

2090

Average Turnaround Time
(time unit)

90

0.0005

0.0055

—a—FF
—+— GABL
—e— Paging(0)
—»— MBS

0.0105 0.0155 0.0205 0.0255

Load (jobs/time unit)

0.0305

Figure 4.8: Average turnaround time vs. system load
pattern and uniform side lengths distribution in a

16 x 16 mesh.

for the all-to-all communication

Chapter 4:

Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 92

7300
6400
5500
=
‘= 4600
>
o 3700
=,2800
1900
1000

100

)

Average Turnaround Time

—a—FF
—a— GABL
—e— Paging(0)

—¥— MBS

e
0005 001 0015 0.02 0025 003 0035 0.04 0.045 0.05

Load (jobs/time unit)

Figure 4.9: Average turnaround time vs. system load

pattern and

for the all-to-all communication

exponential side lengths distribution i nal6 x 16 mesh.

o 3060 -
S
= 2560 -
©
S = 2060 - e
S°c
55 —a— GABL
c o 1560 - _
5 c —e— Paging(0)
: E1060 - —%— MBS
(@]
S 560 -
(]
>
< 60 M—a— x
0005 0.01 0.015 002 0025 0.03 0035 004 0.045
Load (jobs/time unit)
Figure 4.10: Average turnaround time vs. system loa d for the random communication

pattern and

uniform side lengths distribution in a 16 x 16 mesh.

g 4050
Z 3550
2 3050
o ey —&—FF
O ‘E 2550
Q 5 —a— GABL
S o 2050
> — i
= g1550 Paging(0)
S 1050 MBS
©
o 550
< 50 : :
001 002 003 004 005 006 007 008 009 0.1
Load (jobs/time unit)
Figure 4.11: Average turnaround time vs. system loa d for the random communication

pattern and

exponential side lengths distribution i nal6 x 16 mesh.

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 93

Waiting Time:

In Figures 4.12 and 4.13, the average waiting tiofejpbs are plotted against the system
load for the one-to-all communication pattern. Tasults reveal that GABL performs better
than all other contiguous and non-contiguous atlonastrategies for both job size

distributions. This is because the degree of caitfigbetween allocated processors in
GABL is higher than that of the previous non-contigs allocation strategies, and thus
decreases the distance traversed by messagesinThimn decreases the communication
overhead, which means that the allocation in thaBGAtrategy is more likely to succeed.

As a consequence, the waiting time is lower. Funtftoee, GABL is substantially superior to

FF for both job size distributions. In Figure 4.1@;, example, the average waiting times of
GABL are 35%, 64%, and 70% of that of FF, Pagingddd MBS, respectively, under the

job arrival rate 0.0205 jobs/time unit.

In Figures 4.14 and 4.15, the average waiting tiofejpbs are plotted against the system
load for the all-to-all communication pattern. AgaGABL outperforms all other strategies
for both job size distributions. Moreover, GABLsabstantially superior to FF for both job
size distributions. Figure 4.15, for example, depitat when the job arrival rate is 0.05
jobs/time unit, the average waiting times of GABle 49%, 27%, and 50% of that of FF,

Paging(0), and MBS, respectively.

In Figures 4.16 and 4.17, the average waiting tiaresplotted against the system load for
the random communication pattern. Figure 4.16 dspiat GABL has a better performance
than the other non-contiguous allocation stratefgeshe uniform side lengths distribution.

It can also be noticed from Figure 4.17 that GARItfprms better than the non-contiguous

Paging(0) strategy for the exponential side lengibgibution. But GABL'’s performance is

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 94

comparable to that of MBS strategy. For instandguieé 4.17 shows that the average
waiting times of GABL are 43%, 89%, and 99% of tlditFF, Paging(0), and MBS,

respectively, under the job arrival rate 0.1 jab®#tunit.

Overall, GABL is better than the previous non-cgatius allocation strategies at decreasing
waiting times in the waiting queue. This conclusisncompatible with the values of the

average turnaround times shown above.

= 12001
5
£ 10001 - ,"
£ .7
© 8001 A »
£ ’
[= s A FF
o 6001 - ,
< ® —e— GABL
8 4001 o —*— Paging(0)
= ’ +-- MBS
> ————
> 2001 - A4
B (d
Z 1 ‘ : .
0.0005 0.0045 0.0085 0.0125 0.0165 0.0205
Load (jobs/time unit)

Figure 4.12: Average waiting time vs. System load fo r the one-to-all communication pattern
and uniform side lengths distribution in a 16 x 16 mesh.

2 12001 -

[

5

Q i

£ 10001

© 8001 -

£

= —4&— FF
> 6001 -

2 —e— GABL
";_5 4001 - —— Paging(0)
° --4-- MBS
S 2001 -

g

< 1 R

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
Load (jobs/time unit)

Figure 4.13: Average waiting time vs. System load fo r the one-to-all communication pattern
and exponential side lengths distribution in a 16 x 16 mesh.

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 95

12001

10001

8001

—a&—FF
—e— GABL
—*— Paging(0)
==%-- MBS

Average Waiting Time
(time unit)

0.0005 0.0055 0.0105 0.0155 0.0205 0.0255 0.0305
Load (jobs/time unit)

Figure 4.14: Average waiting time vs. System load fo r the all-to-all communication pattern and
uniform side lengths distribution in a 16 x 16 mesh

7001
6001 -
5001 A
Z 4001 4 —&—FF
—e— GABL

: —¥— Paging(0
2001 - ging(0)

--+-- MBS

1001 -

1 = = ==
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Load (jobs/time unit)

Average Waiting Time
(time unit)
3
=t

Figure 4.15: Average waiting time vs. System load fo r the all-to-all communication pattern and
exponential side lengths distribution in a 16 x 16 mesh.

3001 -
o 2501 -
£
|_
o 2001 -
c 2
= < —&—FF
© 3 1501 -
= g —e— GABL
%5 1001 - —*— Paging(0)
o -=¢-- MBS
z 501 -

1 “_—H T T T 1

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

Load (jobs/time unit)

Figure 4.16: Average waiting time vs. System load fo r the random communication pattern and
uniform side lengths distribution in a 16 x 16 mesh

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 96

= 4001 -
c
>
o 3501 -
£
S, 3001
(]
£ 2501
~ —a—FF
o> 2001 -
5 —e— GABL
‘T 1501)
; —*— Paging(0)
o 1001 | --#-- MBS
[@)]
S 501 |
()
>
< l T T 1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Load (jobs/time unit)

Figure 4.17: Average waiting time vs. System load fo r the random communication pattern and
exponential side lengths distribution in a 16 x 16 mesh.

Utilisation:

Figures 4.18 and 4.19 depict the mean systemaitiis of the allocation strategies (GABL,
MBS, Paging(0), and FF) for the three communicatjmatterns tested and job size
distributions considered in this study. The simolatresults in these two figures are
presented for a heavy system load. The load is shahthe waiting queue is filled very
early, allowing each allocation strategy to reashupper limits of utilisation. For both job
size distributions, the non-contiguous allocatitiategies achieve a mean system utilisation
of 71% to 75%, but the contiguous FF strategy camxzeed 50% utilisation. This is
because contiguous allocation produces high edtéagmentation, which makes allocation
less likely to succeed. As a consequent, the mgstera utilisation is lower. The utilisation
of the three non-contiguous allocation strategsespiproximately the same for both job size
distributions. This is because the non-contigudlexation strategies have the same ability
to eliminate internal and external processor fragaigon. They always succeed to allocate
processors to a job when the number of free process greater than or equal to the

allocation request.

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

) . 97
orithm for Mesh-Connected Multicomputers
Algorithm for Mesh-C ted Mult t
98 - § é’ t;!?
86 - g E = a = ,@ %
= 2 2 » s 3 e i
\O ; - "‘ ? -y — <:<:
% 62 - el Bl [- < mFF
S T fee Boag [m e &EGABL
2 50 - e Bad | 25
N "l ’ﬁ.‘ Tele N BPaging(0)
E 38 i I.I.I‘ :** ><>c c:- H
= i e o OMBS
> 26 - | h‘* 250 s
el fd o oo
14 - = by [oo
i = e I i
2 [.| “ E I E I
One to All All to All Random

Figure 4.18: System utilisation of the non-contiguo us allocation strategies (GABL,
MBS, Paging(0)) and contiguous allocation strategy FF, for the three communication
patterns tested, and uniform side lengths distribut ionin a 16 x 16 mesh.

T Y
% & &
86 - a = 3 o
< s b S o
L 74 A B
~ ‘ [T 7] <><>
S 62 - ol mFF
= n T BGABL
@ 50 T T m _
N Sl QPaging(0)
S 38 -
5 BMBS
26 - i
14 - N
2 A : e
One to All All to All Random

Figure 4.19: System utilisation of the non-contiguo us allocation strategies (GABL,
MBS, Paging(0)) and contiguous allocation strategy FF, for the three communication
patterns tested, and exponential side lengths distr ibution in a 16 x 16 mesh.

Contiguous Ratio:

Figures 4.20 and 4.21 display the ratio of contigujpbs of the non-contiguous allocation
strategies (GABL, MBS, and Paging(0)) for the thoeenmunication patterns tested and
heavy system loads that allow each allocationegsato reach its upper limits of utilisation
under both the uniform and exponential job sizériistions. When the number of jobs that
are allocated contiguously increases, the conteniio the network decreases. This is
because only messages generated by the same joixpeeted within a sub-mesh and
therefore cause no inter-job contention in the oekw The results reveal that GABL

performs better than both MBS and Paging(0) stiased-or example, Figure 4.21 shows

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 98

that the ratio of jobs which allocated contiguouslyGABL is 60% approximately while it

is less than 5% for Paging(0) and less than 19988, so that GABL has a greater ability
than the remaining strategies, MBS and Paging(Dplieviate message contention in the
network and hence achieves better performancettigaprevious non-contiguous allocation
strategies in terms of average turnaround times €bnclusion is compatible with the values

of the performance parameters shown above.

80 -
—)))
LA g 5
o 60 - — — —
T 50 -
o EGABL
» 40 -
S BPaging(0)
g 30 A o o o
= | 2 2 2 OMBS
2 20 2 =z 2 z 2 =
c Q @© Q o) @ [ws)
o 10 - =3 2} =3 wn > wn
O 0 ~ < < ~ < < ~ < < <

7 N I O [Gog] [MW I RN
1o 23 kel
One to All All to All Random
Figure 4.20: Percent of jobs allocated contiguously in the non-contiguous allocation

strategies (GABL, MBS, Paging(0)), for the three co mmunication patterns tested, and
uniform side lengths distribution in a 16 x 16 mesh

80 1)
SICE > & 2
S = & z
o 60 -
T 50 -
?’f, a0 | e aen e BGABL
S BPaging(0
S 30 - - 2 £ » 2 ging(0)
g) Q) Q 7] Q " OMBS
= E 3 = >
g2 2 S Q e a =
(=) it o M o O
O 10 -+ ~ O ~ N ~ N
O 2 e 2i
0 - ot @ e % s
10 codl s et
One to All All to All Random
Figure 4.21: Percent of jobs allocated contiguously in the non-contiguous allocation

strategies (GABL, MBS, Paging(0)), for the three co mmunication patterns tested, and
exponential side lengths distribution in a 16 x 16 mesh.

Average Blocks per Job:

In addition to the performance parameters shownvebave have measured another

performance parameter for the non-contiguous dilmeastrategies that gave the best

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 99

performance (GABL and MBS), and that is the averilgeks per job. It is defined as the
average number of non-contiguous blocks allocateal job in each strategy. The higher the
average number of blocks the more likely it is ttiegt job’s messages visit nodes allocated

to other jobs, potentially causing higher contemiitside the network [85].

In Figures 4.22~4.27, the average blocks per jobloged against the system load for the
three communication patterns tested and for bdbhsjae distributions. The results reveal
that GABL has a lower average blocks per job tha@S\wver all loads. In Figure 4.25, for
example, the average blocks per job of GABL is 39380, and 75% of that of MBS when
the job arrival rates are 0.015, 0.03, and 0.05/johe unit, respectively. This conclusion is

compatible with the values of the average turnagidimes shown above.

6]
L

N
|

3

—a— GABL
2 —=— MBS
1 4

0 | : | : : : | ; ‘ .
0.0005 0.0025 0.0045 0.0065 0.0085 0.0105 0.0125 0.0145 0.0165 0.0185 0.0205
Load (jobs/time unit)

Average Blocks Per Job

Figure 4.22: Average blocks per job vs. system load for the one-to-all communication
pattern and uniform side lengths distribution.

a 8
o
™ 5 4
o
o 4 4
) —— —& —
X 5B ——a—7"
o —a— GABL
o, |
o 2 —=— MBS
(o))
© 1
g
X 0 ; ; ; .

0.005 0.01 0.015 0.02 0.025 0.03 0.035

Load (jobs/time unit)

Figure 4.23: Average blocks per job vs. system load for the one-to-all communication
pattern and exponential side lengths distribution.

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

: . 100
Algorithm for Mesh-Connected Multicomputers

6 .
3
= 5 A
B ._._._._._._._._.—.——._'*—.—._.—.—.
o 4
%]
4
g 3
o —a— GABL

2 -
g —&— MBS
©
o 14
>
<

0 . .

0.0005 0.0055 0.0105 0.0155 0.0205 0.0255 0.0305

Load (jobs/time unit)

Figure 4.24: Average blocks per job vs. system load for the all-to-all communication
pattern and uniform side lengths distribution.

1

6_
Ko)
o
= 5 4
@
2 4
4 N
83. = —
o —a— GABL
S 2 —=—MBS
@®©
=
g
<

0
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Load (jobs/time unit)

Figure 4.25: Average blocks per job vs. system load for the all-to-all communication
pattern and exponential side lengths distribution.

T]

— L

—a— GABL
5 | —=— MBS

1

Average Blocks Per Job

0 T T T T T T T)
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

Load (jobs/time unit)

Figure 4.26: Average blocks per job vs. system load for the random communication
pattern and uniform side lengths distribution.

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 101

ML: g

> - —=&—MBS

—a— GABL

Average Blocks Per Job
w

001 002 003 004 005 006 007 008 0.9 0.1
Load (jobs/time unit)

Figure 4.27: Average blocks per job vs. system load for the random communication
pattern and exponential side lengths distribution.

Number of Allocated Sub-meshes (m) in the Busy List and the Number of
Allocation Attempts (b) that Carried out in Step 6 in GABL Algorithm:

We have calculated the average number of allocaibemeshes in the busy list(and the
average number of allocation attempts) (that were carried out in Step 6 in the GABL
allocation algorithm. These experiments have besrdected to show thatn and b are
less sensitive to the size of the mesh systenmudh experiments, different mesh sizes have

been considered under both the uniform and expaigob size distributions.

In Figures 4.28~4.33, the average number of altatatib-meshesy() is plotted against the
system load for the three communication patterstetkand for both job size distributions
considered in this research. As expected, the geenamber of allocated sub-meshes is
largest when the side lengths follow the exponédigribution. This is because the average
sizes of jobs are smallest in this case. Morecamrd, as discussed in Section 4.3.1 on the
allocation and de-allocation time, the average remdb allocated sub-meshes{ is lower
than n for both job size distributions and the three camioation patterns tested under

different mesh system sizes.

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 102

5 10
§ 9 - b
oF &
2 - 7 4
— 0
GO 6 -
55 . —a— GABL 16x16(One-to-All)

@ 5
TE 4. —&— GABL 20x20(One-to-All)
: 1
Z35 3. GABL 24x24(One-to-All)
c n -
SRR
s 1 = ; . .

0.0005 0.0025 0.0045 0.0065 0.0085 0.0105 0.0125 0.0145 0.0165 0.0185 0.0205
Load (jobs/time unit)

Figure 4.28: Average number of allocated sub-meshes (m) in GABL for the one-to-all
communication pattern and uniform side lengths dist ribution in a 16 x 16 mesh, a 20
x 20 mesh, and a 24 x 24 mesh.

E 15 - _ _
8 13 Z
O ~~
= E
—
o9 9 -
T S —a— GABL16x16(One-to-All)
o9 il
== ! —&— GABL20x20(One-to-All)
: 1
Z58 51 GABL24x24(One-to-All)
c (%))
I 3 5
o ‘/
= 1 4 : : : .

0.005 0.01 0.015 0.02 0.025 0.03 0.035

Load (jobs/time unit)

Figure 4.29: Average number of allocated sub-meshes (m) in GABL for the one-to-all
communication pattern and exponential side lengths distribution in a 16 x 16 mesh, a
20 x 20 mesh, and a 24 x 24 mesh.

© 9 1
]
I 8 1
8 = 7
= E]
f_: n 6 1
o Q
E§ 5 A —a— GABL16x16(All-to-All)
o]
EE 47 —8— GABL20x20(All-to-All)
>
zg 3) GABL24x24(All-to-All)
% 2 1 ["‘/:h
% 1 == T

0.0005 0.0055 0.0105 0.0155 0.0205 0.0255 0.0305

Load (jobs/time unit)

Figure 4.30: Average number of allocated sub-meshes (m) in GABL for the all-to-all
communication pattern and uniform side lengths dist ribution in a 16 x 16 mesh, a 20
x 20 mesh, and a 24 x 24 mesh.

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 103

15 -
©
]
= 13 -
o ~~
<=“°: E 1 -
G
o g 9 -
S m - -
3 g - —a&— GABL16x16(All-to-All)
gb . —=— GABL20x20(All-to-All)
E 7 GABL24x24(All-to-All)
g =
= , — ; . . : :

0005 0.01 0015 0.02 0.025 003 0035 004 0.045 0.05

Load (jobs/time unit)

Figure 4.31: Average number of allocated sub-meshes (m) in GABL for the all-to-all
communication pattern and exponential side lengths distribution in a 16 x 16 mesh, a
20 x 20 mesh, and a 24 x 24 mesh.

=
o
)

—&— GABL16x16(Random)
—#— GABL20x20(Random)
GABL24x24(Random)

Mean Number of Allocated
sub-meshes (m)
P N W b~ 01O N 0O ©

0.005 0.015 0.025 0.035 0.045
Load (jobs/time unit)

Figure 4.32: Average number of allocated sub-meshes (m) in GABL for the random
communication pattern and uniform side lengths dist ribution in a 16 x 16 mesh, a 20
x 20 mesh, and a 24 x 24 mesh.

B 17 -

§ 15 1

%% 13 |

S o 11 1

T @ 9 | —a— GABL16x16(Random)
E g 7 —#— GABL20x20(Random)
2 % 5 | GABL24x24(Random)
= T :

0.01 0.02 0.03 0.04 0.05 0.06 0.07
Load (jobs/time unit)

Figure 4.33: Average number of allocated sub-meshes (m) in GABL for the random
communication pattern and exponential side lengths distribution in a 16 x 16 mesh, a
20 x 20 mesh, and a 24 x 24 mesh.

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 104

In Figures 4.34~4.39, the average number of aliocattempts) is plotted against the
system load for both job size distributions and samication patterns tested. The results
reveal that the average number of allocation attengp lower thann for both job size
distributions and the communication patterns cared in this study. Moreover,
experiments conducted for larger mesh system &iaes revealed thdi is less sensitive to
the size of the mesh system)(for the common job size distributions used irsthiudy.
Experiments that compute the average number oftiateps 4 and 5 are repeated have also
been conducted. Their results lead to the conalutiat Step 6 dominates Steps 4 and 5

when the average case behaviour of the allocatgorithm is considered.

17 -
.S 15
o N
= 818
o

o) £ 11 -
Eg
R 9 —a— GABL16x16(One-to-All)
(O]
%_g 7 —=— GABL20x20(One-to-All)
§ © 5 GABL24x24(One-to-All)
< % 3 -

1 E§ ; ; .

0.0005 0.0025 0.0045 0.0065 0.0085 0.0105 0.0125 0.0145 0.0165 0.0185 0.0205

Load (jobs/time unit)

Figure 4.34: Average number of allocation attempts (b) in GABL for the one-to-all

communication pattern and uniform side lengths dist ribution in a 16 x 16 mesh, a 20
x 20 mesh, and a 24 x 24 mesh.

17 -
.S 15 -
°% 13
2 o
S E 11 -
52
c 9 —a— GABL16x16(One-to-All)
c .
s 7 —#— GABL20x20(One-to-All)
— 5] }
%8 5 GABL24x24(0ne-to-All)
= 3 -
© v
1 ? T T T T 1
0.005 0.01 0.015 0.02 0.025 0.03 0.035
Load (jobs/time unit)

Figure 4.35: Average number of allocation attempts (b) in GABL for the one-to-all

communication pattern and exponential side lengths distribution in a 16 x 16 mesh, a
20 x 20 mesh, and a 24 x 24 mesh.

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 105

17 -
15 ~
13 A
11 A

—a— GABL16x16(All-to-All)
—=— GABL20x20(All-to-All)
GABL24x24(All-to-All)

attempts (b)

3 -

1 "A

¥ T 1

Average number of allocation

0.0005 0.0055 0.0105 0.0155 0.0205 0.0255 0.0305
Load (jobs/time unit)

Figure 4.36: Average number of allocation attempts (b) in GABL for the all-to-all
communication pattern and uniform side lengths dist ribution in a 16 x 16 mesh, a 20
x 20 mesh, and a 24 x 24 mesh.

17
c
i 15 -
IS
(8}
s} 13 -
Ea
5= 11
o 0
e 9 -
2E
ES 7. —&— GABL16x16(All-to-All)
S =
Cw 5 —#— GABL20x20(All-to-All)
° i
g 5 | GABL24x24(All-to-All)
o i ,
< 1 B : : : : .
0.005 0.01 0.015 0.2 0.025 0.03 0.035 0.04 0045 0.05
Load (jobs/time unit)

Figure 4.37: Average number of allocation attempts (b) in GABL for the all-to-all
communication pattern and exponential side lengths distribution in a 16 x 16 mesh, a
20 x 20 mesh, and a 24 x 24 mesh.

17 -
c
£ 15 -
3
8 13-
S 1 -
o N—r
g g 9 —a— GABL16x16(Random)
ES 7 —=— GABL20x20(Random)
=]
SCG 5 GABL24x24(Random)
8 3
% 17 . . .
0.005 0.015 0.025 0.035 0.045
Load (jobs/time unit)
Figure 4.38: Average number of allocation attempts (b) in GABL for the random

communication pattern and uniform side lengths dist ribution in a 16 x 16 mesh, a 20
x 20 mesh, and a 24 x 24 mesh.

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 106
17

c

£ 15

S

3 13 -

S 11

o N—r

2 9 —a— GABL16x16(Random)
Q

€S 7 —#— GABL20x20(Random)
S £

g © 5 7 GABL24x24(Random)
g 3

% 1%

0.01 0.02 0.03 0.04 0.05 0.06 0.07
Load (jobs/time unit)

Figure 4.39: Average number of allocation attempts (b) in GABL for random
communication pattern and exponential side lengths distribution in a 16 x 16 mesh, a

20 x 20 mesh, and a 24 x 24 mesh.

4.3.2.1 Performance Impact of Mesh System Size

In this section, we analyse the effects of the m®atem size on the performance of the
allocation strategies in terms of average turnadowime of jobs. For the sake of
conciseness, we have only concentrated on turndrtiome in this Section because it is
usually a good estimate of the performance of m®aeallocation strategies and it has been
used in the existing allocation strategies [9, 2@, 27, 33, 34, 51, 52, 65, 78, 85, 99]. The
parameters used in Section 4.3.2 are recalled déarept the change regarding the mesh

system size that is set to 16 x 16, 32 x 32, and 64 processor.

Figures 4.40~4.45 plot the average turnaround m@bs against the size of the mesh
system for both job size distributions consideredttiis chapter and all communication
patterns tested assuming heavy system loads tbat ehch allocation strategy to reach its
upper limits of utilisation. Figures 4.40 and 4.4%sume the one-to-all communication
pattern. Figures 4.42 and 4.43 assume the alltoemhmunication pattern, while Figures
4.44 and 4.45 assume a random communication pafféen side lengths of the requested

sub-meshes in these figures follow uniform and exptial distributions, respectively.

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 107

The results show that GABL performs better thanoélthe existing contiguous and non-
contiguous allocation strategies for all mesh syssézes, except that in Figures 4.44 and
4.45 where the random communication pattern is @ This is because the contention
for the random communication pattern is smallenttizat for the one-to-all and all-to-all
communication patterns, as the destinations areechcandomly and paths are less likely to
overlap. Message contention that results from aoan communication pattern is not
sufficient for differentiating among the non-conitis allocation strategies. For instance,
Figure 4.42 shows that the average turnaround twh&sABL are 20%, 24%, and 37% of
that of FF, Paging(0), and MBS, respectively, fghHoads and a 16 x 16 mesh system size,
while for a 64 x 64 mesh system size and high lpod@saverage turnaround times of GABL
are 23%, 34%, and 45% of that of FF, Paging(0), BI&5, respectively. Moreover, the
results have shown that significant drops in penfomce with increasingly larger systems. In
Figure 4.40, for instance, the average turnaround bf GABL for a 16 x 16 mesh system
size is 34% of that for a 64 x 64 mesh system dikés is because when the system size
increases, the allocated processors might be dar @ach other. This increases the distance
traversed by messages, and as a result increasesrttimunication overhead, leading to an

increases in the turnaround time of jobs.

61000 -
(]
£
= 51000 - FF
©
c Y
S < 41000 - & BGABL
55 2
o o Q
£ o 31000 - - & p e BMBS
S & £} ©
= é ® = ‘8 r
o = 21000 - z 3 > 5 2 Pas @ Paging(0)
g 2 5 2 5 o
= (@] ~ (]
¢ 11000 - = - - o mFF
N
< i
1000 - e
16x16 32x32 64x64
System Size (processor)

Figure 4.40: Average turnaround time vs. mesh syste m size for the one-to-all
communication pattern and the uniform side lengths distribution.

Chapter 4: Greedy Available Busy List (GABL): A NeWon-conti

guous Allocatior

Algorithm for Mesh-Connected Multicomputers 108
(] -
£ 41000 EF
= 36000 -
©
S _. 31000
= =
S S 26000 - D o B @GABL
Q o
£ 2 21000 2 Al =~ oMBS
€ 16000 - =] b3 i
S} 2] b EPaging(0)
© 11000 - ey
$ 6000 - el OFF
< I:I:l
1000 - hat’
16x16 32x32 64x64
System Size (processor)

Figure 4.41: Average turnaround time vs. mesh syste
communication pattern and the exponential side leng

m size for the one-to-all
ths distribution.

21000
19000 -
17000 -
15000 -
13000 -
11000 A

)
QD
G
>
«Q
C

9000 -

7000 -

5000 -

3000 -

1000 | Eie

FF

(0)Buibed

Average Turnaround Time
(time unit)

System Size (processor)

FF

BGABL
BMBS

O Paging(0)
mFF

Figure 4.42: Average turnaround time vs. mesh syste
communication pattern and the uniform side lengths

m size for the all-to-all
distribution.

17000 +
15000 -
13000 -
11000 -
9000 -
7000
5000 -
3000
1000 -

(0)buibed

Average Turnaround Time
(time unit)
(0)Buibed

System Size (processor)

FF

(0)Buibed

HGABL
BMBS

O Paging(0)
mFF

Figure 4.43: Average turnaround time vs. mesh syste
communication pattern and the exponential side leng

m size for the all-to-all
ths distribution.

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior 109
Algorithm for Mesh-Connected Multicomputers

o 30000 o
£ o S
= 25000 - > § 3
(=)

o — ~
S o 20000 1 e (23
= C o [n >:>: EGABL
g 5 15000 - o & FF o
S5 E > % Q [o GMBS
= £ 10000 - 2 n 3 o e ,
] - = 5 B Paging(0)
@ 5000 - . o o
g I:I:I >:>: mFF
< 0 x| "

16x16 32x32 64x64

System Size (processor)

Figure 4.44: Average turnaround time vs. mesh syste m size for the random
communication pattern and the uniform side lengths distribution.

26000

1000 -

()]

g - FF

= 8

= 21000 - o S

2 _ 5 5 2

2 < 16000 - - = BGABL
< S N

o |.:.: BMBS
E £ 11000 - :::::)
= e &1Paging(0)
g 6000 - = mEE

o e

<

System Size (processor)

Figure 4.45: Average turnaround time vs. mesh syste m size for the random
communication pattern and the exponential side leng ths distribution.

4.3.2.2 Performance Impact of Packet Length

In this section, we investigate the effect of vagythe packet length on the performance of
the allocation strategies in terms of average naunad time of jobs. As previously reported
in Section 4.3.2.1, turnaround time has been chaséhis Section because it is usually a
good estimate of the performance of processor ailoe strategies and it has been used in
the existing allocation strategies [9, 18, 20, 33, 34, 51, 52, 65, 78, 85, 99]. The
parameters used in Section 4.3.2 are recalled leept for the change regarding the

packet length that is set to 64 flits.

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 110

Figures 4.46 and 4.47 depict the performance of dlhecation strategies in terms of
turnaround times of jobs for the one-to-all comneation pattern. The results have revealed
that GABL has a lower turnaround time than all otkentiguous and non-contiguous
allocation strategies for both the exponential amdform job size distributions. As
previously reported in Section 4.3.2, the relapesformance merits of the non-contiguous
GABL strategy over the remaining contiguous and -oomtiguous allocation strategies
become more noticeable as the packet length inesedsor example, in Figure 4.6 in
Section 4.3.2 and for 8-flits packet length, th&fedence in performance in favour for
GABL could be as large as 36% over Paging(0) ar¥d 80er MBS for high loads while in
Figure 4.46 and for 64-flits packet length, thdetiénce in performance in favour for GABL

could be as large as 45% over Paging(0) and 40%MB& for high loads.

In Figures 4.48 and 4.49, the average turnaroumestiof jobs are plotted against the system
load for the all-to-all communication pattern. AgaGABL performs much better than all
other allocation strategies when the packet leimgtheases for both job size distributions.
Moreover, the difference in performance between GA&RBd the remaining non-contiguous
strategies increases when the packet length inese&sr example, in Figure 4.9 in Section
4.3.2 and for 8-flits packet length, the differericgperformance in favour for GABL could
be as large as 72% over Paging(0) and 49% over MBS8igh loads while in Figure 4.49
and for 64-flits packet length, the difference erfprmance in favour for GABL could be as

large as 85% over Paging(0) and 55% over MBS fgh hbads.

In Figures 4.50 and 4.51, the average turnaroundstiare plotted against the system load
for the random communication pattern. As previoushported in Section 4.3.2, the
contention for the random communication patteranmller than that for the one-to-all and
all-to-all communication patterns. This is becaudsstinations are chosen randomly and

paths are less likely to overlap. Again, for largarcket sizes, the contention that results

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 111

from the random communication pattern is not sidfic for differentiating among the non-
contiguous allocation strategies. As a consequeheedifference in performance between
the non-contiguous strategies considered in thiglysis not changed by increasing the

packet length.

To sum up, the above performance results demoesthat GABL is the most flexible
allocation strategy. Overall, it is superior to ather allocation strategies considered in this

research; including when contention is heavy (ttramunication pattern is all-to-all).

70900
60900

50900 - FF

40900 —&— GABL
30900 —e— Paging(0)

—¥— MBS

20900

10900

Average Turnaround Time
(time unit)

900 T
0.0002 0.0012 0.0022 0.0032 0.0042

Load (jobs/time unit)

Figure 4.46: Average turnaround time vs. system loa d for the one-to-all
communication pattern and uniform side lengths dist ribution with a 64-flits packet
length in a 16 x 16 mesh.

5700
700 T T]
0.0005 0.0015 0.0025 0.0035 0.0045 0.0055 0.0065

40700
[}
£ 35700
'; 30700
S o~ 25700 —®—FF
3=
=5 20700 —A— GABL
E g 15700 —8&— Paging(0)
o = 10700 —*— MBS
g
[}
>
<

Load (jobs/time unit)

Figure 4.47: Average turnaround time vs. system loa d for the one-to-all
communication pattern and exponential side lengths distribution with a 64-flits
packet length in a 16 x 16 mesh.

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 112

60500 -
£
= 50500 -
©
S . 40500 - —8&—FF
°o¢c —a— GABL
© 35 30500 -
g g —e— Paging(0)
=5 20500 A —¥— MBS
(]
& 10500 -
S
g
3 500 W — & .

0.0002 0.0012 0.0022 0.0032 0.0042 0.0052

Load (jobs/time unit)

Figure 4.48: Average turnaround time vs. system loa d for the all-to-all
communication pattern and uniform side lengths dist ribution with a 64-flits packet
length in a 16 x 16 mesh.

60500
(&)
S
= 50500
©
S ~ 40500 —8— GABL
o =
=5 —&— MBS
& o 30500
E = —e— Paging(0)
S, 20500
o —¥%—FF
(@)
® 10500
[¢]
>
< 500 . .
0.0005 0.002 0.0035 0.005 0.0065 0.008 0.0095

Load (jobs/time unit)

Figure 4.49: Average turnaround time vs. system loa d for the all-to-all
communication pattern and exponential side lengths distribution with a 64-flits
packet length in a 16 x 16 mesh.

12300
10300
8300 —&—FF
—&— GABL

6300
—@— Paging(0)

4300 —¥— MBS

2300

Average Turnaround Time
(time unit)

300
0.0015 0.0025 0.0035 0.0045 0.0055 0.0065 0.0075 0.0085 0.0095 0.0105
Load (jobs/time unit)

Figure 4.50:; Average turnaround time vs. system loa d for the random communication
pattern and uniform side lengths distribution with a 64-flits packet length in a 16 x 16
mesh.

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 113

2350 -

350 il
0001 0003 0005 0.007 0.009 0.011 0.013 0.015
Load (jobs/time unit)

g 16350

= 14350 A

|_

= 12350

> = —8—FF

O ‘= 10350 +

g =} 8350 —&— GABL
—_ o)

S —@— Paging(0
2 £ 60 - 9o
() —¥— MBS
= 4350

o

()

>

<

Figure 4.51: Average turnaround time vs. system loa d for the random communication
pattern and exponential side lengths distribution w ith a 64-flits packet length in a 16
x 16 mesh.

4.4 Conclusions

This chapter has investigated the performance mefithe non-contiguous allocation in the
2D mesh network. To this end, we have suggestamhanon-contiguous allocation strategy,
referred to as Greedy Available Busy List (GABL f&irort), which differs from the earlier
non-contiguous allocation strategies in the metheed for partitioning allocation requests.
The GABL strategy partitions the allocation reqedstsed on the sub-meshes available for
allocation. The major goal of the partitioning pees is to maintain a high degree of
contiguity among processors allocated to a jobsTddcreases the number of sub-meshes
allocated to a job, and hence decreases the distameersed by a message. This in turn
decreases the communication overhead. GABL achithissby using a busy list whose

length is often small even when the size of thehmsesles up.

The performance of GABL has been compared agdieétaf the existing non-contiguous
and contiguous strategies. Simulation results rehavn that GABL can greatly improve
performance despite the additional message conteimside the network that results from

the interference among the messages of differdrst [(BABL also produces superior system

Chapter 4: Greedy Available Busy List (GABL): A NeMWon-contiguous Allocatior

Algorithm for Mesh-Connected Multicomputers 114

utilisation than its contiguous counterpart as #nages to eliminate both internal and
external processor fragmentation. The results laéa@ revealed that GABL is substantially
superior over the previous well known non-contiga@llocation strategies, such as MBS
and Paging(0), in terms of turnaround times. Furtloge, experiments for larger packet
sizes and larger mesh system sizes have shownGABL outperforms the previous
contiguous and non-contiguous allocation strateghMsreover, GABL can be efficient
because it is implemented using a busy list appro@his approach can be expected to be
efficient in practice because when the mesh sysieza increases the requirement of
applications, in terms of the number of requestextgssors, often increases and in such a

case our algorithm is often expected to exhibit pettive performance levels.

Chapter 5

Comparative Evaluation of Contiguous
Allocation Strategies on Mesh-Connected
Multicomputers

5.1 Introduction

The performance of contiguous allocation strategésbe significantly affected by the type
of distribution adopted for job execution times][59he efficiency of the existing
contiguous allocation strategies has typically bemsessed under the assumption of
exponentially distributed job execution times [31, 33, 34, 35, 38, 48, 51, 52, 74, 78, 94,
99], which may not reflect all possible practicalesarios. For instance, a number of
measurement studies [22, 47, 57, 58, 59, 88, 98] hanvincingly shown that the execution
times of certain computational jobs are better ati@rised by heavy-tailed execution times;
that is, many jobs are short and fewer are long. f€wer jobs that have long execution time
account for more than half of the total jobs’ extemutime [59]. Heavy-tailed distributions
can capture this variability and have been showrbdbave quite differently from the
distributions more commonly used to evaluate théopmance of allocation strategies (e.g.,

the exponential distribution) [22, 57, 58]. In pewtar, when sampling random variables that

Chapter 5: Comparative Evaluation of Contiguousoddtion Strategies on Mesl

Connected Multicomputers 116

follow a heavy-tailed distribution, the probabilibf large observations occurring is non-
negligible. In order to gain a deeper understandihghe performance of the allocation
strategies under various job execution time distidms, this chapter conducts an extensive
comparison of the contiguous allocation stratefpes3D mesh-connected multicomputers,

considering different mesh system sizes and vasgstem loads.

Existing allocation strategies have typically bemyaluated with the assumption of First-
Come-First-Served (FCFS) job scheduling strategyL19 18, 20, 27, 31, 33, 34, 51, 52]. In
this chapter, in addition to FCFS, a Shortest-Seridemand (SSD) scheduling strategy is
also adopted because it is expected to reducerpaifee loss due to FCFS blocking. SSD
considers the shortest job to be the one havinghbetest total processors service demand
[63]. This strategy was found to improve systenfgramance in a some previous studies

[50, 73, 79].

Motivated by the above observations, this chaptakes the following contributions. We
first compare the performance of the contiguouscalion strategy proposed in Chapter 3 as
well as the existing contiguous allocation stragsdgor 3D mesh-connected multicomputers
when subjected to heavy-tailed and exponentiakp@xrution times, respectively, under the
FCFS strategy. We assess the effects of the hedeg-distribution on the performance of
the contiguous allocation strategies for varioustay loads and different scheduling
strategies and system sizes are investigated. & beht of our knowledge, this study is the
first to consider heavy-tailed distributions in tbentext of processor allocation in mesh-

connected multicomputers.

The performance of the allocation strategies issmesl in terms of the usual performance

parameters [27, 31, 33, 35, 73, 74, 77, 78, 79994including the average turnaround time

Chapter 5: Comparative Evaluation of Contiguousoddtion Strategies on Mesl

Connected Multicomputers 117

and mean system utilisation, as well as the meaasuaned allocation overhead, that
accounts for the time required for the allocatiod de-allocation of processors to jobs. The
results presented below will reveal that the pentomce of the allocation strategies degrades
when the distribution of job execution times areavetailed. As a consequence, an
appropriate scheduling strategy is required to deigh heavy-tailed distributions. Our
analysis reveals that SSD exhibits superior perdmee than FCFS in terms of average

turnaround time and mean system utilization.

The remainder of the chapter is organised as fall&ection 5.2 provides a brief overview
of the allocation strategies whereas Section 508iges a brief overview of the scheduling
strategies considered in this chapter. Sectionpbe$ents the results of the comparative

performance study. Finally, Section 5.5 concludiés ¢chapter.

5.2 Processor Allocation Strategies

The allocation strategies compared in this chapdeer a wide range of choices, including
traditional First Fit (FF), Turning First Fit (TFFa Busy List allocation strategy (BL) and

the Turning Busy List allocation strategy (TBL).

The FF strategy [34] allocates the first availabld-mesh that is found, but it does not
permit changing the orientation of the allocatieguests, hence it suffers from high
external processor fragmentation. The TFF straté®4] improves performance by
considering all possible orientations of the altowma request when needed, however its
allocation overhead (i.e., allocation and de-alfimeatime) is high; FF and TFF strategies
have been discussed in detail in Chapter 2 (plesaseSection 2.2.1). The BL strategy
maintains a list of allocated sub-meshes to detesrthie nodes that cannot be used as base

nodes for the requested sub-meshes and it redueeslocation overhead that FF and TFF

Chapter 5: Comparative Evaluation of Contiguousoddtion Strategies on Mesl

Connected Multicomputers 118

suffer from, but it does not permit the orientatmithe allocation request, hence it suffers
from high processor fragmentation. The TBL strategifempts to maintain good

performance in terms of mean system utilisation awdrage turnaround time, by
considering all the orientations of the allocatrequest when needed, with little allocation
overhead. BL and TBL strategies have been discusseetail in Chapter 3 (please see

Section 3.3).

5.3 Job Scheduling Strategies

The order in which jobs are scheduled can haveiderable effect on system performance
[34, 73, 79]. The scheduling strategies used & ¢hapter include FCFS and SSD. In FCFS
scheduling, the allocation request that arrivest fis considered for allocation first.

Allocation attempts stop when they fail for theremt FIFO queue head. In SSD scheduling,

the job with the shortest service demand is scleediuist [50, 73, 79].

Job scheduling is an important factor of proces#location in multicomputers. For meshes,
the results in [50, 73, 79] have shown that the S8Btegy results in significantly better
performance than FCFS. In this chapter we show $i&? could be used with other mesh
processor allocation strategies to yield improvemenperformance in terms of average

turnaround time and mean system utilisation.

The performance of the contiguous allocation casigsificantly affected by both the type
of the distribution adopted for job execution tingexl the scheduling strategy adopted for
determining the order in which jobs are selected égecution. To illustrate this, the
performance of the allocation strategies consideretis chapter has been evaluated in the

context of a heavy-tailed distribution and both f@FS and SSD strategies.

Chapter 5: Comparative Evaluation of Contiguousoddtion Strategies on Mesl

Connected Multicomputers 119

5.4 Simulation Results

Extensive simulation experiments have been carwed in order to compare the
performance of the allocation strategies considaeredis chapter, with and without change
of request orientation. The performance analysis baen conducted using the same

simulation model as outlined in Chapter 3 (pleaseSection 3.2).

The allocation and de-allocation algorithms, inaghgdthe busy list routines, have been
implemented in the C language, and integrated timosoftware ProcSimity; a simulation
tool that is widely used for processor allocatiom gob scheduling in parallel systems [50,
66]. The target mesh is a cube with widh, depthD and heightH . Jobs are assumed to
have exponential inter-arrival times. They are dcihed using the FCFS and SSD strategies.
FCFS is chosen because it is fair and it is widskyd in other similar studies [6, 33, 51, 52,
73,74, 77, 78, 79, 93], while SSD is used to aymitential performance loss due to FCFS
blocking [73, 79]. We assume that job executioneBrshow some maximum values. As a
consequence, job execution times are modelled Bpunded Pareto [53] (exhibiting a

heavy-tailed property but has an upper bound), vliadefined as follows:

wherek and g are the lower and upper limits of the job exeautine, anda is a factor

that reflects the variability of job execution timdn the experiments, these parameters are

set to k=150, q=42410 and a =10, as suggested in [53]. A Bounded Pareto
distribution shows very high variability wherk <<q and a =10. So, the values & q,

and a have been chosen as above to show this varialilidayever, wheno increases the

Chapter 5: Comparative Evaluation of Contiguousoddtion Strategies on Mesl

Connected Multicomputers 120

probability of large values decreases. For instanten a = 30 and k=10 the Bounded

Pareto distribution approaches the exponentiatidigion with a mean of 1 time unit.

As has been mentioned in the previous Chaptersdtstdbutions are used to generate the
width, depth and height of job requests. The fgghe uniform distribution over the range
from 1 to the mesh side length, where the widtiptldend height of the job requests are
generated independently. The second is the expahdigtribution, where the width, depth
and height of the job requests are exponentialiyributed with a mean of half the side
length of the entire mesh; the width, depth, arighteof the job requests are rounded to the
integer values using floor function and boundedtiy dimensions of the mesh. These
distributions have often been used in the liteeafd; 20, 27, 33, 34, 35, 51, 52, 73, 74, 76,
77,78, 79, 85, 94, 99]. Simulation parametersilarstrated in Table 5.1. It is worth noting
that most of the values of these parameters haame &dopted in the literature [9, 11, 20, 27,

33, 34, 38, 50, 51, 52, 53, 73, 77, 79, 85, 94, 99]

Table 5.1: The System Parameters Used in the Simula tion Experiments

Simulator Parameter Values
Dimensions of the Mesh Architecture 8x8x%x8,10x10x10,and 12 x 12 x 12
Allocation Strategy TBL, BL, TFF, and FF
Scheduling Strategy FCFS and SSD

Uniform: Job widths, depths, and heights
are uniformly distributed over the range
from 1 to the mesh side lengths.

Job Size Distribution]]
Exponential: Job widths, depths, and

heights are exponentially distributed with a
mean of half the side length of the entire
mesh.

Chapter 5: Comparative Evaluation of Contiguousoddtion Strategies on Mesl

Connected Multicomputers 121

Bounded Pareto with the following
Execution Time Distribution parameters: k=150, q=42410 and

a =10 [53].

Exponential with different values for the
mean. The values are determined through
experimentation with the simulator, ranged
from lower values to higher values.

Inter-arrival Time

The number of runs should be enough so
that the confidence level is 95% that

Number of Runs relative errors are below 5% of the means.
The number of runs ranged from dozens to
thousands.

Number of Jobs per Run 1000

Each simulation run consists of one thousand camgblgobs. Simulation results are
averaged over enough independent runs so thatothigdence level is 95% that relative
errors are below 5% of the means [7]. The batchnsi@aalysis has been used to calculate
confidence intervals [4, 66]. This method has beisoussed in detail in Chapter 3 (please
see Section 3.4.1). Table 5.2 shows the grand meamdidence intervals, and relative
errors that outline the results depicted, for eXemm Figure 5.3 for the load 0.035
jobs/time unit under SSD. In most of the casesgther bars are quite small. For the sake of

clarity of the figures, the error bars are not sham all the subsequent figures.

Table 5.2: The mean (i.e., mean turnaround time of job), 95% confidence interval, and
relative error for the results shown in Figure 5.3 for the load 0.035 jobs/time unit and
the SSD scheduling strategy

Algorithm TBL TFF BL FF
95%
Confidence| [572.11-585.45]| [569.01-588.22]| [657.04-669.14]| [640.43-660.82]
Interval
Mean A
i . 578.781626 578.614877 663.090303 650.626269
(time unit)
Relative 0.011 0.016 0.009 0.015
Error

Chapter 5: Comparative Evaluation of Contiguousoddtion Strategies on Mesl

Connected Multicomputers 122

The main performance parameters observed aravi@iage turnaround timef jobs,mean
system utilisatiomndaverage allocation overheads previously reported in Chapter 3, the
turnaround time is the time that a parallel jobrgjsein the mesh from arrival to departure.
The utilisation is the percentage of processors d@na utilized over time. The allocation
overhead is the time that the allocation algoritiakes for the allocation and de-allocation
operations per job. The important independent égian the simulation is theystem load

It is defined as the inverse of the mean intewatriime of jobs. Its range of values from
low to heavy loads has been determined through rewpetation with the simulator

allowing each allocation strategy to reach its upipsits of utilisation.

In what follows, the notation <allocation strate@yscheduling strategy>) is adopted to
represent the strategies in the performance figufes instance, TBL(SSD) refers to the
Turning Busy List allocation strategy under the $#s&t-Service-Demand scheduling

strategy.

5.4.1 Performance Comparison under Heavy-Tailed andExponential Job
Execution Times with the FCFS Scheduling Strategy.

To evaluate the impact of heavy-tailed distributmm the performance of the allocation
strategies, its performance is compared, in terinisepaverage turnaround time of jobs and
mean system utilisation when the job execution sini@low heavy-tailed distribution

according to the values specified in Table 5.1jreggahat of the exponential job execution
times with a mean of 83 time units. Figure 5.1 depthe average turnaround time of the
allocation strategies (TBL, TFF, BL, and FF) fortheavy-tailed and exponential job
execution times and FCFS scheduling strategy uadéorm side lengths distribution. The

simulation results in this figure are presented doheavy system load that allows each
allocation strategy to reach its upper limits oflisdation. The results reveal that the

performance of the allocation strategies degradesnwhe distribution of job execution

Chapter 5: Comparative Evaluation of Contiguousoddtion Strategies on Mesl
; 123
Connected Multicomputers

times is heavy-tailed. This is because the long’j@xecution times, resulting from the
heavy-tailed distribution, increase the averageartound time and consequently lead to a
degradation in system performance. For example, akerage turnaround time of
TBL(FCFS) under exponential job execution timeritsition is 49% of that of TBL(FCFS)

under heavy-tailed job execution time distribution.

@ m
— m
18000 - A e
O 0O
o 16000 - o 0
2 o 2
= 14000 - ® ul - - SN
2 12000 ;;; fi = i\ e
== a 32 i 3T % | MTBL(FCFS)
c et
= 510000 - = = a &
g 3 7 e @ 2o | mTFF(FCFS)
5 £ 8000 - 5 - S LhG
=) 0 0 i @i | BBL(FCFS)
© ~ 6000 - o o
=2 e & s =24 | BFF(FCFS)
E 4000 <:<:< <:<:<:
2 R e s
< 2000 Jmmﬂmll i e
0 7 <><>< . <><><}
Exponential Heavy Tailed

Figure 5.1: Turnaround time in BL, FF, TBL, and TFF under the exponential and

heavy-tailed job execution times with FCFS scheduli ng strategy and the uniform side

lengths distribution in an 8 x 8 x 8 mesh.
Figure 5.2 depicts the mean system utilisatiorhefdtrategies (TBL, TFF, BL, and FF) for
the heavy-tailed and exponential job execution siméth FCFS and uniform side lengths
distribution. The simulation results in this figuaee presented for a heavy system load. The
load is such that the waiting queue is filled vegyly, allowing each allocation strategy to
reach its upper limits of utilisation. The resuleveal that the utilisation of the allocation
strategies degrades when job execution times foleavy-tailed distribution, while it is
better for the exponential job execution times.slikibecause the long jobs’ execution times
due to the heavy-tailed distribution decrease tlobability of successful allocation to other

jobs, and this in turn degrades system performaRoe.example, the allocation strategies

with rotation, as in TBL and TFF, achieve a measteay utilisation of 49% for exponential

Chapter 5: Comparative Evaluation of Contiguousoddtion Strategies on Mesl

. 124
Connected Multicomputers
job execution times, but cannot exceed 39% for yréaNed job execution times.
04 3 T
= oy
01 & Q z T
~ ¢ ¢ B 3 5 =3
X 50 - T T O o - -
< 0 @)} m bl
c ﬁ 4 & ¢ ¢ 5 § | mTBL(FCFS)
0 » py
S 40 - = = o) Q
= s o B TFF(FCFS)
S 30 - I —
s ’ o] | BBL(FCFS)
20 1 i ol | BFF(FCFS)
10 - St % SICH
0 | PP . PRI
Exponential Heavy Tailed

Figure 5.2: Mean system utilisation in BL, FF, TBL, and TFF under the exponential
and heavy-tailed job execution times with FCFS sche duling strategy and the uniform
side lengths distribution in an 8 x 8 x 8 mesh.

5.4.2 Performance Comparison under Different Systenhoads and Scheduling
Strategies

In the figures that are presented below,¥ais represents the system load whileyHais
represents results of the performance metric adré@st. The results obtained have been
found to be similar to those observed when otheshnsystem sizes are considered (please

see Section 5.4.3).

Turnaround Time:

In Figures 5.3 and 5.4, the average turnaround ¢ihjebs is plotted against the system load
for both job size distributions and the two scheadylstrategies considered. The results
reveal that the allocation strategies with rotatiorder SSD scheduling (TBL(SSD) and
TFF(SSD)) have comparable performance, and thgtahe superior to all other strategies.
They are followed, in order, by the strategies BRI, FF(SSD), TBL(FCFS), TFF(FCFS),

BL(FCFS), and FF(FCFS). When compared to TBL(SSBY aFF(SSD) in Figure 5.3,

Chapter 5: Comparative Evaluation of Contiguousoddtion Strategies on Mesl

Connected Multicomputers 125

BL(SSD) increases the average turnaround timesbutal3% and 48% for the loads 0.03
and 0.045 jobs/time unit, respectively. In Figurd,3he increases are by about 21% and

32% for the loads 0.075 and 0.105 jobs/time uegpectively.

It can also be seen in the figures that the avetageround times of the strategies that
depend on a list of allocated sub-meshes for bédbation and de-allocation, as in TBL and
BL, is very close to that of the strategies thgtet® on the allocation states of processors,
as in TFF and FF, assuming that the same schedsirategy is used. For example, the
average turnaround time of TBL(SSD) is very clas¢hiat of TFF(SSD). It can also be seen
in the figures that the average turnaround timthefstrategies with rotation, as in TBL and
TFF, is substantially superior to that of the sgiés without rotation, as in BL and FF,
because it is more likely that a suitable contigusub-mesh is available for allocation to a
job when request rotation is allowed. It can alsmbticed in the figures that SSD is much
better than FCFS. In Figure 5.3, for instance,aherage turnaround time of TBL(SSD) is
7% of that of TBL(FCFS) in the presence of highdeaThis finding demonstrates that the
scheduling and allocation strategies both havetanbal effect on the performance of the

contiguous allocation strategies in the 3D mesh.

5000

Q
£ 4500
= 4000 —+— TBL(FCFS)
© i
c _ 3500 —s—— TFF(FCFS)
3 E 3000 -
T S5 2500 ---e--- TBL(SSD)
c
S g 2000 ---8--- TFF(SSD)
‘o & 1500 —*— BL(FCFS)
Q
g 10997 —e— FF(FCFS
5 500 | (FCFS)
Z 0 : . ---+--- BL(SSD)

0.005 001 0015 002 0025 003 0035 004 0045 | =---=--- FF(SSD)

Load (jobs/time unit)

Figure 5.3: Average turnaround time vs. system load for the contiguous allocation
strategies (BL, FF, TBL, TFF) under the scheduling strategies (FCFS and SSD) and
the uniform side lengths distribution in an 8 x 8 x 8 mesh.

Chapter 5: Comparative Evaluation of Contiguousoddtion Strategies on Mesl

Connected Multicomputers 126

—=— TBL(FCFS)
—— TFF(FCFS)
---e--- TBL(SSD)
---8--- TFF(SSD)
—»— BL(FCFS)
—e— FF(FCFS)
---+--- BL(SSD)
FF(SSD)

Average Turnaround Time

0.005 0.025 0.045 0.065 0.085 0.105
Load (jobs/time unit)

Figure 5.4: Average turnaround time vs. system load for the contiguous allocation
strategies (BL, FF, TBL, TFF) under the scheduling strategies (FCFS and SSD) and
the exponential side lengths distribution in an 8 x 8 x 8 mesh.

Utilisation:

In Figures 5.5 and 5.6, the mean system utilisatibthe allocation strategies is plotted
against the system loads under the uniform and rexg@l job size distributions,
respectively, and both scheduling strategies censd In these two figures, TBL(SSD) and
TFF(SSD) have almost identical performance, ang #Hre superior to the other strategies.
In Figure 5.5, for example, TBL(SSD) achieves systeilisation of 52%, but TBL(FCFS)
cannot exceed 39% system utilisation. Also, theiltesshow that the switching request
orientation improves performance substantially.sTisi indicated by the largely superior
mean system utilisation of the allocation strategikat can switch the orientation of
allocation requests when they are compared tottheegies without rotation. The strategies
with rotation, as in TBL(SSD) and TFF(SSD), achisystem utilisation of 44% under the
exponential distribution and 52% under uniform mlittion. But the strategies without
rotation, as in BL(SSD) and FF(SSD), cannot excd@e utilisation. Higher system
utilisation is achievable under heavy loads becahsewaiting queue is filled very early,

allowing each allocation strategy to reach its upipaits of utilisation.

Chapter 5: Comparative Evaluation of Contiguousoddtion Strategies on Mesl
; 127
Connected Multicomputers

—=— TBL(FCFS)
QQ, —&— TFF(FCFS)
< ---A--- TBL(SSD)
kS TFF(SSD)
N

b= —— BL(FCFS)
35

—&— FF(FCFS)
---+--- BL(SSD)

------ FF(SSD)
0.005 0.015 0.025 0.035 0.045

Load (jobs/time unit)

Figure 5.5: Mean System utilisation for the contigu ous allocation strategies (BL, FF,

TBL, TFF) under the scheduling strategies (FCFS and SSD) and the uniform side
lengths distribution in an 8 x 8 x 8 mesh.

47

—=— TBL(FCFS)
—— TFF(FCFS)
---a--- TBL(SSD)
---x--- TFF(SSD)
—=— BL(FCFS)

Utilization (%)

—e— FF(FCFS)
---+--- BL(SSD)

e N FF(SSD)
0.005 0.025 0.045 0.065 0.085 0.105

Load (jobs/time unit)

Figure 5.6: Mean System utilisation for the contigu ous allocation strategies (BL, FF,

TBL, TFF) under the scheduling strategies (FCFS and SSD) and the exponential side
lengths distribution in an 8 x 8 x 8 mesh.

Number of Allocated Sub-meshes (m):

In Figures 5.7~5.10, the average number of allacatigb-meshes in the strategies that
depend on a list of allocated sub-meshes for bidbation and de-allocation (TBL and BL)
is plotted against the system load. Different mgiges are considered under both job size
distributions and scheduling strategies examinedhis study. As expected, the average
number of allocated sub-meshes is largest whersithe lengths follow the exponential

distribution. This is because the average sizgsbsf are smallest in this case. Moreover, the

Chapter 5: Comparative Evaluation of Contiguousoddtion Strategies on Mesl

Connected Multicomputers 128

average number of allocated sub-meshes is much linae the number of processors in the
mesh systemr() for both job size distributions. Figure 5.7 dépithat the average number
of allocated sub-meshes in the busy list variethflol9 to 2.22 for the uniform side lengths
distribution and FCFS scheduling, and from 1.193t063 for the uniform side lengths
distribution and SSD scheduling. In Figure 5.8, dkierage number of allocated sub-meshes
varied from 1.22 to 4.72 for the exponential sidegths distribution and FCFS, and from
1.22 to 6.62 for the exponential side lengths iigtion and SSD. It can be seen in the
figures thatm is often less sensitive with. It can also be noticed that the average number
of allocated sub-meshes under SSD is higher thah uhder FCFS. In Figure 5.7, for
example, the average number of allocated sub-meghEBL(FCFS) for all mesh sizes are
84% and 75% of that of TBL(SSD) under the job airnates 0.04 and 0.105 jobs/time unit,
respectively. This is because in SSD, the job withshortest service demand is scheduled
first, meaning that allocation and de-allocatioemgtions are more numerous within a given

time period, resulting in more allocated sub-mesheke busy list.

As previously reported in Chapter 3, the averagmber of allocated sub-meshes for the
TBL strategy that use the rotation of the allocatiequest is a bit higher than that of the BL
strategy that does not use the rotation of thecation request. This is because it is highly
likely that a suitable contiguous sub-mesh is add for allocation to a job when the
request orientation is allowed, which in turn irases the number of allocated sub-meshes
in the busy list. In Figures 5.7 and 5.9, the ageraumber of allocated sub-meshes of
BL(FCFS) for all mesh system sizes is 74% of tHakBL(FCFS) under the job arrival rate
0.105 jobs/time unit, and the average number afcated sub-meshes of BL(SSD) for all
mesh system sizes is 80% of that of TBL(SSD) witmenjob arrival rate is 0.105 jobs/time

unit.

Chapter 5: Comparative Evaluation of Contiguousoddtion Strategies on Mesl

1

0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.105

Load (jobs/time unit)

. 129
Connected Multicomputers
35
3
o c
« n 3 geAe—A—Am— A ATTATTATIATTA
S g T : —e— TBL(FCFS)8x8x8
= % 2.5 —— TBL(FCFS)10x10x10
ﬁ n X —+—— TBL(FCFS)12x12x12
©
g g ---5--- TBL(SSD)8x8x8
[¢]
z 815 ---a--- TBL(SSD)10x10x10
<

TBL(SSD)12x12x12

Figure 5.7: Average number of allocated sub-meshes

scheduling strategies (FCFS and SSD) and the unifor
x8x8,10x 10 x 10 and 12 x 12 x 12 meshes.

(m) in TBL under the
m side lengths distribution in 8

Average Number of
Allocated Sub-meshes

7.4
6.6
5.8

5
4.2
3.4
2.6
1.8

&
17
0.005 0.025 0.045 0.065 0.085 0.105 0.125 0.145 0.165 0.185 0.205
Load (jobs/time unit)

/

Q—‘—ﬂ"" J

=

P o L -3

;| —»— TBL(FCFS)10x10x10

—a— TBL(FCFS)8x8x8

——— TBL(FCFS)12x12x12

---8--- TBL(SSD)8x8x8

---a--- TBL(SSD)10x10x10
TBL(SSD)12x12x12

Figure 5.8: Average number of allocated sub-meshes

scheduling strategies (FCFS and SSD) and the expone
in8x8x8,10x 10 x 10 and 12 x 12 x 12 meshes.

(m) in TBL under the

ntial side lengths distribution

Average Number of
Allocated Sub-meshes

N
o

N

=
o

1

0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.105
Load (jobs/time unit)

| —a— BL(FCFS)8x8x8

—»— BL(FCFS)10x10x10
—+—— BL(FCFS)12x12x12
---8--- BL(SSD)8x8x8
---4--- BL(SSD)10x10x10
BL(SSD)12x12x12

Figure 5.9: Average number of allocated sub-meshes
strategies (FCFS and SSD) and the uniform side leng

10 x 10 and 12 x 12 x 12 meshes.

(m) in BL under the scheduling
ths distribution in 8 x 8 x 8, 10 x

Chapter 5: Comparative Evaluation of Contiguousoddtion Strategies on Mesl

Connected Multicomputers 130

n 5.8 4

52

- 54 - G--3--0

S RS d) —e— BL(FCFS)8x8x8

g & 42 y&—,@ —*— BL(FCFS)10x10x10
=] K

ﬁ n 34 g —+— BL(FCFS)12x12x12
]

g £ 26 ---5--- BL(SSD)8x8x8

% 815 - ---a--- BL(SSD)10x10x10
< . BL(SSD)12x12x12

0.005 0.025 0.045 0.065 0.085 0.105 0.125 0.145 0.165 0.185 0.205
Load (jobs/time unit)
Figure 5.10: Average number of allocated sub-meshes (m) in BL under the

scheduling strategies (FCFS and SSD) and the expone ntial side lengths distribution
in8x8x8,10x 10 x 10 and 12 x 12 x 12 meshes.

Allocation Overhead (Allocation and De-allocation Time):

Figures 5.11~5.18 show the average allocation anralldcation timedllocation overheay

for the allocation strategies considered agairesidh arrival rate for an 8 x 8 x 8, a 10 x 10
x 10, and a 12 x 12 x 12 system sizes, when theestgide lengths follow the uniform and
exponential distributions, respectively. We obsehet the strategies that depend on a list
of allocated sub-meshes for both allocation andlieation, as in TBL and BL, have much
smaller allocation overhead than the strategiesdbpend on the number of processors in

the mesh system, as in TFF and FF, under both sthgdtrategies considered.

In Figure 5.11, for example, the allocation overhed TBL(FCFS) is 4% of that in
TFF(FCFS) under the job arrival rate 0.075 jobs#tumit. It can also be seen in the figures
that the time needed for both allocation and decalion for the strategies with rotation, as
in TBL and TFF, is higher than that of the stragsgivithout rotation, as in BL and FF. This
is because in the worst case, the allocation pspdeshe allocation strategies with rotation,
is repeated for all possible permutations (6 peatmns) of the job request while this
process is repeated only one time for the stradegiéhout rotation. In Figures 5.11 and

5.13, for example, the allocation overhead of BID}$& 37% of that in TBL(SSD) under

Chapter 5: Comparative Evaluation of Contiguousoddtion Strategies on Mesl

Connected Multicomputers 131

the job arrival rate 0.105 jobs/time unit.

The average size of a requested sub-mesh is edatsmall when the exponential
distribution is used for generating job side lesgthiherefore, the number of allocated sub-
meshes is larger in this case, meaning that theratlbn choices are more numerous.
Consequently, the time needed for both the allonaéind de-allocation operations of the
allocation strategies that depend on a list ofcalled sub-meshes is largest when the side

lengths follow the exponential distribution.

Also and as shown in Figures 5.15~5.22, when thabew of processors increases the
allocation overhead increases for the strategiasdbpend on the number of processors in
the mesh system, as in TFF and FF, while it do¢sneoease for the strategies that depend
on a list of allocated sub-meshes, as in TBL andIBIFigures 5.12 and 5.20, for example,
the allocation overhead of TFF(SSD) for an 8 x 8 mesh system size is 11% of that in
TFF(SSD) for a 12 x 12 x 12 mesh system size utigefob arrival rate 0.205 jobs/time
unit. Moreover, it can be noticed in the figuresttihe difference in allocation and de-
allocation time becomes more significant as théesydoad increases. Thus, the allocation
strategies that depend on a list of allocated sebh@s are more effective than the strategies

that depend on the size of the mesh system.

12 4
&%
= O 1 A
§ £ 0.8 -
=<0 —a&— TBL(FCFS)
<R
o g 967 —— TFF(FCFS)
(@) N /
g § 0.4 - / -=-A--- TBL(SSD)
20 o2 A TFF(SSD)

0 Craf T P T P Y Y

0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.105
Load (jobs/time unit)

Figure 5.11: Average allocation overhead for the co ntiguous allocation strategies
(TBL and TFF) under the scheduling strategies (FCFS and SSD) and uniform side
lengths distribution in an 8 x 8 x 8 mesh.

Chapter 5: Comparative Evaluation of Contiguousoddtion Strategies on Mesl

; 132
Connected Multicomputers
1.4

5 /g 1.2
§ o 1
3 E —=a— TBL(FCFS)
IS 08
o % o6 —+— TFF(FCFS)
g< ---A--- TBL(SSD)
g 2 04 TEF(SSD)
>
<0 g,

0

0.005 0.025 0.045 0.065 0.085 0.105 0.125 0.145 0.165 0.185 0.205

Load (jobs/time unit)

Figure 5.12: Average allocation overhead for the co

(TBL and TFF) under the scheduling strategies (FCFS

lengths distribution in an 8 x 8 x 8 mesh.

ntiguous allocation strategies
and SSD) and exponential side

o o
B = o
N o N

Overhead (msec)
2

Average Allocation

o
o
=

0

0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.105

/
/

/

Load (jobs/time unit)

—=— BL(FCFS)
—+— FF(FCFS)
---A--- BL(SSD)

FF(SSD)

Figure 5.13: Average allocation overhead for the co
and FF) under the scheduling strategies (FCFS and S SD) and uniform side lengths
distribution in an 8 x 8 x 8 mesh.

ntiguous allocation strategies (BL

© o
N N o
) o N

Average Allocation
o
o
[e3]

Overhead (msec)

©
o
=

o y
0.005 0.025 0.045 0.065 0.085 0.105 0.125 0.145 0.165 0.185 0.205

—a&— BL(FCFS)
—— FF(FCFS)
---A--- BL(SSD)

FF(SSD)

Load (jobs/time unit)

Figure 5.14: Average allocation overhead for the co
and FF) under the scheduling strategies (FCFS and S SD) and exponential side
lengths distribution in an 8 x 8 x 8 mesh.

ntiguous allocation strategies (BL

Chapter 5: Comparative Evaluation of Contiguousoddtion Strategies on Mesl
Connected Multicomputers

Average Allocation

4
35
3
2.5
2
1.5
1
0.5
0
-0.5

0

Overhead (msec)

133

—a— TBL(FCFS)

———— TFF(FCFS)

---a--- TBL(SSD)
TFF(SSD)

.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.105

Load (jobs/time unit)

Figure 5.15: Average allocation overhead for the co
(TBL and TFF) under the scheduling strategies (FCFS

ntiguous allocation strategies
and SSD) and uniform side

lengths distribution in a 10 x 10 x 10 mesh.

Average Allocation

4 A
35
© 3 - — s
g 25 -
= 24 —&— TBL(FCFS)
B 15 1
s) —+— TFF(FCFS)
o |
E 05 | ---A--- TBL(SSD)
O o T:‘._._._H—.-+l+l—I—I—I—I—I—.-H—l TFF(SSD)
05 - : ; ; : ‘

0.005 0.025 0.045 0.065 0.085 0.105 0.125 0.145 0.165 0.185 0.205

Load (jobs/time unit)

Figure 5.16: Average allocation overhead for the co
(TBL and TFF) under the scheduling strategies (FCFS

ntiguous allocation strategies
and SSD) and exponential side

lengths distribution in a 10 x 10 x 10 mesh.

Average Allocation
Overhead (msec)

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-0.1

0.

| /‘/ﬁ—ﬁ—‘—i—h—ﬁ——*’.—ﬁ—-i——‘—w‘—"—‘

] / —8— BL(FCFS)

7 /"M —— FF(FCFS)

/‘ ---A--- BL(SSD)
FF(SSD)

005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.105
Load (jobs/time unit)

Figure 5.17: Average allocation overhead for the co

ntiguous allocation strategies (BL

and FF) under the scheduling strategies (FCFS and S SD) and uniform side lengths
distribution in a 10 x 10 x 10 mesh.

Chapter 5: Comparative Evaluation of Contiguousoddtion Strategies on Mesl

Connected Multicomputers

134

0.65 ~
0.55 A

i

0.45 +
0.35
0.25 ~

0.15 /

Average Allocation
Overhead (msec)

—a— BL(FCFS)
—— FF(FCFS)
---A--- BL(SSD)

0.05

FF(SSD)

-0.05 -+

0.005 0.025 0.045 0.065 0.085 0.105 0.125 0.145 0.165 0.185 0.20
Load (jobs/time unit)

5

Figure 5.18: Average allocation overhead for the co

ntiguous allocation strategies (BL

and FF) under the scheduling strategies (FCFS and S SD) and exponential side

lengths distribution in a 10 x 10 x 10 mesh.

115

95 A

7.5 A

55 +

3.5 H

15 14

Average Allocation
Overhead (msec)

—=&— TBL(FCFS)

—+— TFF(FCFS)

---A--- TBL(SSD)
TFF(SSD)

05 *—I——.+H—I—I—H—I+I—I+I—I+I—H

0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.105
Load (jobs/time unit)

Figure 5.19: Average allocation overhead for the co
(TBL and TFF) under the scheduling strategies (FCFS
lengths distribution in a 12 x 12 x 12 mesh.

ntiguous allocation strategies
and SSD) and uniform side

115 -
89 %%
T

75
SE
<3 ss —&— TBL(FCFS)
% o —a— TFF(FCFS)
o 35 ---A--- TBL(SSD)
<0 15 TFF(SSD)

'0.5 T T T T T T T

0.005 0.025 0.045 0.065 0.085 0.105 0.125 0.145 0.165 0.185 0.205
Load (jobs/time unit)

Figure 5.20: Average allocation overhead for the co
(TBL and TFF) under the scheduling strategies (FCFS

ntiguous allocation strategies
and SSD) and exponential side

lengths distribution in a 12 x 12 x 12 mesh.

Chapter 5: Comparative Evaluation of Contiguousoddtion Strategies on Mesl

Connected Multicomputers

Average Allocation
Overhead (msec)

135

1.9 -
1.4 A //‘——F‘ — - Il -
/ —&— BL(FCFS)
0.9 1
/ —+— FF(FCFS)
/ ---A--- BL(SSD)
0.4 1 / FF(SSD)

01 ;—.——I—.—I——I—H—H—I—I—I—I—I—I—I—H—I—I

0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.105
Load (jobs/time unit)

Figure 5.21: Average allocation overhead for the co

ntiguous allocation strategies (BL

and FF) under the scheduling strategies (FCFS and S SD) and uniform side lengths
distribution in a 12 x 12 x 12 mesh.

Average Allocation

Overhead (msec)

[N
N
[
[
[
[
i
[
L
’

—a— BL(FCFS)

0.9 - —+— FF(FCFS)
/' ---A--- BL(SSD)
04 1 FF(SSD)

-0.1

0.005 0.025 0.045 0.065 0.085 0.105 0.125 0.145 0.165 0.185 0.205
Load (jobs/ time unit)

Figure 5.22: Average allocation overhead for the co

ntiguous allocation strategies (BL

and FF) under the scheduling strategies (FCFS and S SD) and exponential side

lengths distribution in a 12 x 12 x 12 mesh.

5.4.3 Impact of System Size

In this section, we investigate the effect of tire ©f the mesh system on the performance

of the allocation strategies considered in termsarage turnaround time of jobs under

both FCFS and SSD when job execution times foll@auy-tailed distributions. For the

sake of conciseness, we have only concentratedlriyrnaround time in this section

because it is usually a good estimate of the pmdoce of processor allocation strategies

and it has been used in the existing allocaticategies [9, 18, 20, 27, 33, 34, 51, 52, 65, 78,

Chapter 5: Comparative Evaluation of Contiguousoddtion Strategies on Mesl

Connected Multicomputers 136

85, 99].

Figure 5.23 assumes that the side lengths of theested sub-meshes follow a uniform
distribution, while an exponential distributionassumed in Figure 5.24. The results reveal
that the performance of the allocation strategiekittie affected by changes in the system
size in our considered scenarios. In Figure 5.2, average turnaround time of the
TBL(SSD) strategy for an 8 x 8 x 8 mesh system isi88% of that of TBL(SSD) for a 10 x
10 x 10 mesh system size and 91% of that of TBL(S®BDa 12 x 12 x 12 mesh system
size. Moreover, the allocation strategies thattheerotation of the allocation request, as in
TBL and TFF, perform much better than the allocagtrategies that do not use the rotation
of the allocation request, as in BL and FF, regasllof the mesh system size. Figure 5.23
shows that the average turnaround time of TBL(SSB3}% of that of BL(SSD) for a 12 x
12 x 12 mesh system size. The results also shawh@eSD scheduling strategy improves
the performance of the allocation strategies corgpan FCFS scheduling. In Figure 5.23,
the average turnaround time of TBL(SSD) is 8% ait thf TBL(FCFS) for a 12 x 12 x 12

mesh system size.

o8}
AL RE nE
Sl =T A5
Q9 09 3o
(0] a 7 n N 9 m
E 200009 = 2 e ®TBL(FCFS
= 18000 -] 5 x| (FCFS)
S _ 000 | [oH :» : BTFF(FCFS)
S E 14000 | @ 7 [][E @l =R=h gl
G S g i | 5 C ol Ik OFF(FCFS)
S o 12000 1 8 3| gl T BLECES
S [. : @
£ 10000 | 33 |8 8 3oL Fers
() < : z
8000 - <[1| : DmTBL(SSD)
g JH=-32 BAL 72 RAkEZ T2
g 6000 - 0 | e ,.%\,.%\ : @fg ALTHE 156 BTFF(SSD)
1 A0 W | THOY Y OO0
< 4000 o [‘é ‘éQQ : S8 | § @99 BFF(SSD)
2000 - JHE S o p - ar JHES S _
o kAl ,,IIIIQI - _,, b ||:|:|gI BBL(SSD)
8x8x8 10x10x10 12x12x12
Mesh System Size (processor)

Figure 5.23: Average turnaround time vs. size of th e mesh system for the contiguous
allocation strategies (BL, FF, TBL, TFF) and the un iform side lengths distribution
under FCFS and SSD scheduling strategies.

Chapter 5: Comparative Evaluation of Contiguousoddtion Strategies on Mesl

. 137
Connected Multicomputers
. n g
o 14000 -~ @ ﬂ = 5
= 75 s 39
E 120007 Jo 84 a3 ETBL(FCFS)
c PARY) = [
5 £10000 - 2 - . OTFF(FCFS)
e o il @ T OFF(FCFS
€ g 8000 | B AL z K A (FCFS)
> —_— > M >
|3 g =7 8 8 . el BBL(FCFS)
£ 6000 1 OO mon a oL
> & al sof: el mTBL(SSD)
S aollHZ 112 malblHz 332 REKHEIZRE
4000 {marml BLpURN JHE 55 AHE 115G |STFR(SSD)
< % pee o1 RS A2 888 |arrssp)
2000 | A HE G 2 2 oo == JHe e ==
«: S ; N7 ; 3%
o HHmeNA HREHEnsNA meNP @8ussD)
10x10x10 12x12x12
Mesh System Size (processor)

Figure 5.24: Average turnaround time vs. size of th e mesh system for the contiguous
allocation strategies (BL, FF, TBL, TFF) and the ex ponential side lengths distribution
under FCFS and SSD scheduling strategies.

5.5 Conclusions

We have compared the performance of processoratiboc strategies proposed for 3D
mesh-connected multicomputers for a wide rangeg/stem loads and system sizes when the
distribution of job execution times is heavy-tail@g., Bounded Pareto distribution). The
strategies examined in this chapter include Fiis{f), Turning First Fit (TFF), a Busy
List strategy (BL) and the Turning Busy List stig€TBL). BL maintains a list of allocated
sub-meshes to determine the nodes that cannotdoeassbase nodes for the requested sub-
meshes, whereas TBL attempts to maintain a godrpgnce in terms of mean system

utilisation and average turnaround time with liileocation overhead.

The heavy-tailed distribution has been adoptedhia study because many measurement
studies have convincingly demonstrated that thecwian times of certain computational

jobs can be characterised by heavy-tailed disfidbst that is, many jobs are short and
fewer are long. Heavy-tailed distributions can oaptthis variability and have been shown

to behave quite differently from the exponentiastdbution which may not reflect all

Chapter 5: Comparative Evaluation of Contiguousoddtion Strategies on Mesl

Connected Multicomputers 138

possible practical scenarios when compared toehgyhtailed distribution.

The performance of the allocation strategies issmesd in terms of usual performance
parameters that have been used in the existingegiea including the average turnaround
time and mean system utilisation, as well as thaswed allocation overhead, that the
allocation and de-allocation operations take pbr Moreover, the SSD scheduling strategy
has been used to deal with heavy-tailed job exectimes to avoid performance loss due to

FCFS blocking that results from large jobs.

The simulation results have shown that the perfageaf the allocation strategies in terms
of average turnaround time and mean system uidisadegrades considerably when the
distribution of job execution times is heavy-tail@this is because the long jobs’ execution
times that have been resulted from heavy-tailettibiigion increase the average turnaround
time of those jobs and which consequently degradesystem performance. Our analysis
has shown that when job executions times folloveavig-tailed distribution, SSD improves

the performance of the allocation strategies coegp@m FCFS in terms of the performance

metrics measured in this study.

The simulation results have also shown that thdopeance of TBL(SSD) is almost
identical to that of TFF(SSD) and is superior otlemt of the other allocation strategies.
Moreover, the performance of the TBL and BL stragedhat depend on a list of allocated
sub-meshes for both allocation and de-allocatioat ieast as good as that of the TFF and
FF strategies that depend on the number of processthe mesh system, assuming that the
same scheduling strategy is used. The results alseeshown that the average allocation
overhead of the TBL and BL strategies is lower ttieat of the TFF and FF strategies that

depend on the states of processors in the mesnsyst

Chapter 6

Conclusions and Future Directions

Parallel computers are often considered to be dtieeamost feasible ways of achieving the
enormous computational power required by many lialparallel applications found in
science, engineering, and a number of other fig¢t® 70, 90]. Distributed-memory
multicomputers are an important class of paralbehputers for building large-scale parallel
systems [83]. Among the various distributed-memonyiticomputers those based on the
mesh network have received much attention from rémearch community due to the
simplicity, structural regularity, partition-abiitand ease of implementation of this network
topology [9, 18, 20, 21, 27, 31, 33, 35, 51, 52,78, 85, 99]. Meshes are suited to a variety
of practical applications including matrix compinat image processing and problems
whose task graphs can be embedded naturally istm#sh [89, 95]. It has been used as the
underlying network in a number of commercial angdesknental multicomputers, including
the Intel Paragon [39], Cray XT3 [19, 60], MIT J-chane [61], Cray T3D [67], Cray T3E

[25], IWARP [15], IBM BlueGene/L [10, 55, 97, 98Ind Delta Touchstone [40].

Processor allocation in distributed-memory multiponers, particularly those based on the

Chapter 6: Conclusions and Future Directions 140

mesh network, has been the focus of a lot of rekeaver the past years [9, 11, 16, 24, 26,
28, 31, 33, 34, 35, 45, 51, 52, 71, 72, 73, 74,76, 77, 78, 79, 81, 93, 97]. Several
commercial and experimental parallel machines hased space sharing for processor
allocation [10, 15, 19, 25, 39, 40, 55, 61, 67,%98], In space sharing, the set of processors
in a system, e.g., mesh-connected multicomputeparsitioned into a set of sub-meshes
each of which is exclusively allocated to a single [6, 11, 17, 37]. Processor allocation
strategies based on space sharing can be divitdedwo broad categoriesontiguousand
non-contiguousin contiguous allocation [9, 20, 21, 26, 27, 33, 34, 35, 38, 48, 52, 65,
74, 75, 78, 94, 99], the allocated processors hysipally contiguous and have the same
topology as the underlying network, e.g. the maslorder to maintain low communication
overhead among the allocated processors. The dioasequence of contiguous allocation
is that good system utilisation is often diffictdtachieve due to thieagmentationproblem
which results from contiguous allocation [18, 8bhe fragmentation problem could be of
two types:internal and external Internal fragmentation occurs when more processoe
allocated to a job but not used, whereas extemagnientation occurs when there are a
sufficient number of free processors are availableatisfy a job request but they are not

allocated to it because they are not contiguous.

To solve the fragmentation problem, a number oéaeshers have adopted non-contiguous
allocation [18, 24, 49, 71, 72, 84, 85] where agab be executed on multiple disjoint sub-

meshes rather than waiting until a single sub-noféslequested size and shape is available.
In the past, non-contiguous allocation has notaet&d considerable research attention
because the communication latency was sensititleetdistance in the network employed in

the first generation of multicomputers [11]. Howevthe advances in routing technique

such aswormhole routing[2, 4, 11, 29, 71, 72, 83] have made non-contiguallbcation

plausible in networks characterised by long dianseseich as the mesh. Wormhole routing

Chapter 6: Conclusions and Future Directions 141

has been widely adopted in the second generatiorutiicomputers [25, 39, 40, 54, 67, 91].
An advantage of wormhole routing over earlier comioation schemes, mainly store-and-

forward, is that message latency has become lggendent on message distance [2, 43].

The main goal of a processor allocation strategyoiseduce job turnaround times and
maximize system utilisation [72]. A given allocatistrategy may have a partial or full sub-
mesh recognition ability [85, 99]. Having a fullbsmesh recognition ability increases the
time to allocate a sub-mesh to a new job, as has seown in the studies of [26, 31, 34, 94,
97]. With increased system size, the time to sefociree processors to satisfy an incoming
job might be comparable to the job’s execution tj{@#@]. Hence it is important to develop

allocation strategies that minimize the search t{adso referred to as the allocation time),
and as a result decrease the turnaround time af jebrthermore, the method used for
partitioning allocation requests in non-contigu@li®cation has a considerable impact on
the performance of non-contiguous allocation stiate [18, 71, 72, 85]. Hence, the
partitioning process in non-contiguous allocatitiodd aim to maintain a high degree of
contiguity between the processors allocated tovangiparallel job. This is so that the

communication overhead is kept to a minimum withadiersely affecting the overall

system performance [71, 72].

6.1 Summary of the Results

The major focus of the present research has beendévelopment of new efficient
contiguous and non-contiguous allocation stratefgiemesh-connected multicomputers that
overcome the limitations of the existing strategseggested for the 2D and the 3D mesh

networks. Summarised below are the major contidmstimade in this research study.

* There have been relatively few contiguous allocatsirategies that have been

Chapter 6: Conclusions and Future Directions 142

suggested for the 3D mesh-connected multicompulérese strategies achieve a
complete sub-mesh recognition capability at theeesp of a high allocation
overhead [31, 34, 94], that accounts for the tieguired to allocate and de-allocate
a set of processors to an incoming job. Furtherpmbiee allocation overhead in the
previously proposed contiguous allocation stratedias been shown to grow with
the system size [26, 31, 34, 94]. Motivated by ¢hebservations, the first part of
this dissertation has proposed a new contiguowsatibn strategy, referred to as
Turning Busy List (TBL for short), for the 3D mesbnanected multicomputers. The
TBL strategy exhibits a low allocation overhead aad identify a free sub-mesh of
the requested size as long as it exists in the regstem. It can do so because it
relies on a new approach that maintains a listlotated sub-meshes to determine
all the regions consisting of the nodes that catmeoused as base nodes for the
requested sub-mesh. These nodes are then subtfiamtethe right border plane of
the already allocated sub-meshes in order to deterthe nodes that can be used as

base nodes for the required sub-mesh size.

» Extensive simulation experiments under a varietgystem loads have been carried
out in order to compare the performance of the @sed TBL allocation strategy
against well-known contiguous allocation strated®4, with and without change
of request orientation. Our analysis has shown thanost circumstances TBL
strategy exhibits a lower allocation overhead ttien previous strategies [34]. For
instance, simulation results have revealed thatatloeation overhead in the TBL
strategy can be as low as 4% of that in the exstiarning First Fit (TFF) strategy
[34] in the presence of high loads. Moreover, whke number of processors
increases the allocation overhead increases foaltbeation strategies that depend

on the number of processors in the mesh system [EsF and FF) while it does not

Chapter 6: Conclusions and Future Directions 143

increase for the allocation strategies that depana list of allocated sub-meshes
(as in TBL and BL). For example, the allocation rinead of the existing TFF
strategy for a 12 x 12 x 12 mesh system size caease by up to 773% of that for
an 8 x 8 x 8 mesh system size. The allocation @athin the proposed TBL
strategy is kept low when the mesh system sizee@sas, while its performance, in
terms of the turnaround times and system utilisatis still as good as that of the
existing competing TFF strategy [34]. The new TBiategy is efficient because it
Is implemented using a busy list approach. In pradt is often the case that when
the system size scales up, the requirement ofgipans in terms of the number of
requested processors often increases to exploiavhiable computational power,
and in such scenarios our suggested strategy isceg to exhibit competitive

performance levels.

* Our results have also revealed that the contigudsis and TFF strategies that
employ request rotation have comparable performaamue are both superior to the
other strategies that do not employ rotation (eBd.,and FF). When compared
against TBL and TFF, BL increases the average taumal times by up to 65% in
the presence high loads. The allocation strategits rotation, notably, TBL and
TFF, achieve system utilisation of 47% under thpogential distribution and 49%
under uniform distribution. On the other hand, Bleand FF strategies that do not

employ rotation cannot exceed 37% utilisation fothjob size distributions.

* There have been many non-contiguous allocatiotegjies that have been suggested
for the 2D mesh network. However most of theseesifom several problems that
include internal fragmentation, external fragmdotat as well as message

contention inside the network [18, 24, 84, 85]. Btrer, the allocation of

Chapter 6: Conclusions and Future Directions 144

processors to job requests is not based on fregaoons sub-meshes in the existing
strategies [18, 85]. Instead, it is often basedadificial predefined geometric or

arithmetic patterns [18, 85]. Hence these strategiay fail to allocate an available
large sub-mesh, which in turn cause degradati@ystem performance in terms of
turnaround times [18, 72, 85]. Motivated by thebsasvations, the second part of
this dissertation has suggested a new non-contggabtocation algorithm, referred

to as Greedy Available Busy List (GABL for shortjor mesh-connected

multicomputers. The GABL strategy combines the naesirable features of both
the contiguous and non-contiguous allocation ggjreag2 Moreover, GABL is

general enough in that it could be applied to eithe 2D or 3D mesh. However, in
this research study the new proposed non-contigatiasation strategy has been
adapted to the 2D mesh in order to compare itsopeence against that of the
existing non-contiguous allocation strategies satggkfor the same network; it is
worth pointing out that we have opted to discussraw allocation strategy in the
context of the 2D mesh network because there has bardly any non-contiguous

allocation strategy which has been suggested éBEhmesh network.

* The proposed GABL strategy relies on a new apprdheh maintains a higher
degree of contiguity among the processors thandahtte previous non-contiguous
allocation strategies. This decreases the numbsuleimeshes allocated to a job,
hence decreases the distance traversed by messalgied, in turn decreases
communication overhead. Extensive simulation expents under a variety of
system operating conditions have been carried @gbtnpare the performance of
the proposed GABL strategy against that of the texjsnon-contiguous and
contiguous allocation strategies. The results t=navn that in most cases the new

strategy has better performance in terms of theatound time than the previous

Chapter 6: Conclusions and Future Directions 145

contiguous and non-contiguous allocation strate@és[85]. Moreover, when

message contention increases inside the network tduesing the all-to-all

communication pattern, for example, GABL exhibitpearior performance over the
previous contiguous and non-contiguous allocatiategies. For instance, under
high loads, the average turnaround times in GABL 2%, 24%, and 38% of that
of the contiguous First Fit (FF) [85, 99], non-dgabus Paging(0) [85], and non-
contiguous Multiple Buddy Strategy (MBS) [85], resgfively. Furthermore, the
proposed strategy exhibits high system utilisa@snit manages to eliminate both
internal and external fragmentation. For instanceler high loads, GABL achieves
a mean system utilisation of 71% to 75% under ttigoeential and uniform side
lengths distributions, respectively, but systenligdiion in the contiguous FF

allocation strategy cannot exceed 50%.

* Experiments for large packet sizes have been alsmlucted. The results have
shown that under most system loads GABL outperfottmes previous contiguous
and non-contiguous allocation strategies. For me#awhen the packet length is 8-
flits, the difference in performance in terms okeage turnaround times in favour
for the GABL strategy could be as large as 72% ®&aging(0) and 49% over MBS
under high loads. Similarly, when packet lengthinsreased to 64 flits, the
difference in performance in terms of average twguwad times in favour for the

GABL strategy could be as large as 85% over Pa@)rid 55% over MBS.

» Experiments for large system sizes in terms of ayeiturnaround times have also
been carried out. GABL has been found to perforntebethan the existing
contiguous and non-contiguous allocation stratedams all system sizes. For
instance, for a 16 x 16 mesh system size, the gedteinaround times of GABL can

be 20%, 24%, and 37% lower of that of FF, Pagingd0)l MBS, respectively. For a

Chapter 6: Conclusions and Future Directions 146

64 x 64 mesh system size, the average turnaroonad f GABL can be 23%, 34%,

and 45% lower of that of FF, Paging(0), and MBSpeztively. Moreover, the

results have shown a significant drop in perforneaas the system scales up. For
instance, the average turnaround time of GABL fa84ax 64 mesh system size
could increase by as much as 194% of that for & 16 mesh system size. This is
because when the system size increases, the ellbpatcessors might be far from
each other. This increases the distance travergethdssages, and as a result
increases the communication overhead, leading tnemeases in the turnaround

time of jobs.

» The performance evaluation of most allocation egigs, including those described
here [6, 11, 18, 27, 31, 33, 34, 35, 38, 48, 51,742 78, 85, 94, 99] have assumed
an exponential distribution for job execution timékwever, many measurement
studies [22, 47, 56, 57, 58, 59, 88, 96] have amingly demonstrated that the
execution times of certain computational jobs cobkl better characterised by
heavy-tailed distributions; that is, many jobs shert and fewer are long. The few
jobs that have long execution times can accouninimte than half of the total jobs’
execution time [59]. Heavy-tailed probability dibutions (e.g., Bounded Pareto)
can capture this variability in job execution timeesd have been shown to behave
quite differently from the traditional exponent@obability distribution, which has
been widely used to evaluate the performance otafion strategies [22, 57, 58,
75]. Most importantly, when sampling random varesbthat follow a heavy-tailed
distribution, the probability of large generatedues is non-negligible [22, 47, 56,

57, 58, 59, 88, 96].

* In the final part of this dissertation, the perfamoe of the existing contiguous

allocation strategies for 3D mesh-connected muttipoters, including the ones

Chapter 6: Conclusions and Future Directions 147

developed in this research, has been revisitechencbntext of heavy-tailed job
execution times. To the best of our knowledge, #tigly is the first to consider
heavy-tailed distributions in the context of pramsallocation on mesh-connected
multicomputers. As in [6, 9, 18, 21, 27, 31, 33,34, 38, 71, 72, 73, 74, 75, 77, 78,
79, 85, 94, 99], in this part, the performance ltdcation strategies is measured in
terms of the average turnaround time and mean raystaisation, as well as the
measured allocation overhead, that is, the timettieallocation and de-allocation
operations take per job. It is worth noting that wee limited our investigation to

contiguous allocation strategies in this researehtd time and resource limitations.

* Our study has revealed that in general the perfocenaf the allocation strategies
degrades considerably when the distribution ofgabcution times is heavy-tailed
(e.g., Bounded Pareto). This is because the lobg' jexecution times due to the
heavy-tailed distribution increase the averagearound time of those jobs, and
consequently degrade system performance. For eestehe average turnaround
time of TBL(FCFS) (i.e., TBL with the FCFS schedugfi strategy) under the
exponential job execution time distribution is 4@¥that of TBL(FCFS) under the
heavy-tailed job execution time distribution andthioads. Our analysis has also
shown that when job executions times follow a heaitgd distribution the
Shortest-Service-Demand (SSD) scheduling strategyaves the performance of
the allocation strategies compared to the FCFSdstimg strategy. For instance, the
average turnaround time of TBL(SSD) (i.e., TBL witle SSD scheduling strategy)
IS 7% of that of TBL(FCFS) in the presence of higlads. Also, TBL(SSD)
achieves system utilisation of 52%, but TBL(FCF&phmot exceed 39% system

utilisation.

* Having said the above, the allocation overheadhef TBL and BL allocation

Chapter 6: Conclusions and Future Directions 148

strategies is still much lower than that of the Tdffd FF allocation strategies when
the job execution times follow a heavy tailed disition. For instance, the
allocation overhead in the TBL(FCFS) strategy flor8ax 8 x 8 mesh system size is
4% of that in the TFF(FCFS) strategy. Moreover, mwitlee number of processors
increases the allocation overhead increases imltbeation strategies that depend
on the number of processors in the mesh system, ®sF and FF, while it does not
increase in the allocation strategies that depend list of allocated sub-meshes, as
in TBL and BL. For instance, the allocation overh@athe TFF(FCFS) strategy for
an 8 x 8 x 8 mesh system size is 11% of that inT#Ee(FCFS) strategy for a 12 x

12 x 12 mesh system size.

» Experiments to measure the average turnaround tianes also been conducted for
large system sizes. However, the main conclusiamsthe performance of the
allocation strategies remain unchanged. For exartipdeaverage turnaround time of
the TBL(SSD) strategy for an 8 x 8 x 8 mesh systerm is 98% of that for a 10 x

10 x 10 mesh system size and 91% for a 12 x 12melksh system size.

6.2 Directions for the Future Work

There are several interesting issues and opengmsbthat require further investigation.

These are briefly outlined below.

* In this research, the performance of the allocasivategies proposed in Chapters 3
and 4 has been evaluated assuming the First-CorseSéarved (FCFS) scheduling
strategy. A natural extension of this work wouldtbesvaluate the performance of
our allocation strategies with other possible sahiad approaches, such as smallest

job first (SJF) [66], Last Come First Served (LCH&)], Out of Order (OO) [34],

Chapter 6: Conclusions and Future Directions 149

and backfilling [93]. Backfilling allows a later lpoin the waiting queue to be chosen
to schedule as long as its execution does not deégarliest possible execution of
the earliest arriving job in the queue [93]. Thegjuirement imposes the need for an

estimation of job execution times.

e The results in Chapter 4 and in [85] have shown titm-contiguous allocation
strategies dramatically outperform contiguous altmn strategies in the 2D mesh
network. Greedy Available Busy List strategy (GABkpposed in Chapter 4 can be
applied to either the 2D or 3D mesh network. It tenadapted to 3D mesh by
exploiting an efficient approach, the Turning Blisst (TBL) approach described in
Chapter 3 for 3D mesh, for the detection of suchilable sub-meshes. It would be
interesting to investigate the performance of tba-contiguous allocation against
that of the contiguous allocation in 3D mesh nekwlwy comparing the performance
of the proposed GABL non-contiguous allocation alpon described in Chapter 4

against that of the TBL contiguous allocation algon described in Chapter3.

* The study conducted in Chapter 5 has examinedéhermance of the contiguous
allocation strategies in the context of heavy-thildistributions. It would be
interesting to conduct a similar performance stodythe non-contiguous allocation

strategies.

* The results in Chapter 5 have revealed that théoqmeance of the allocation
strategies degrades considerably when the disibuif job execution times is
heavy-tailed. A challenging continuation of this lwovould be to develop new

allocation strategies that can efficiently supgmavy-tailed job execution times.

* There have been a number of interconnection neswsukh as torus and hypercube

Chapter 6: Conclusions and Future Directions 150

networks which have been suggested for multicommpudeer the past years [93]. It
would be interesting to adapt the proposed allooasirategies to other well-known

network topologies and assess their performandbese networks.

* Throughout this research, it has been assumednisdages are routed according to
deterministic routing. Even though this form of tiog is simple to implement it
cannot react to a change in network conditionsadaptive routing, intermediate
nodes take current network conditions, such aspitesence of congestions or
failures, into account to determine a route thatessage should select to cross the
network. It would be interesting to extend the g allocation strategies to this

type of routing.

* Irregular networks have received considerable attenfrom the research
community due to the emergence of clusters of watik®s as a cost-effective
method for achieving parallel processing. A neweclion of research along the
broad lines of this dissertation would be to inigede the development of efficient
contiguous and non-contiguous allocation algorithiois this class of network

topologies.

* The performance of the proposed allocation stragegas well as the existing
strategies, has been traditionally carried out bgams of simulation based on
stochastic workload models to generate a streamcoiming jobs. To validate the
findings of the existing research, including thattlimed in this thesis, on the
performance properties of the existing allocatidggoathms, there is a need to
examine the performance of these strategies usialgworkload traces. Hence, it
would be very interesting to analyse the performeamicour strategies based on real

workload traces collected from practical parallgstems and contrast the results

Chapter 6: Conclusions and Future Directions 151

obtained against those obtained by means of simonlat

* Research efforts on processor allocation havedaie the simulation method to
analyse the performance behaviour of most suggestedegies. As in other
research endeavours, simulation cannot (due toamlecomplexity considerations)
predict results and provide insight for all possibtenarios. A natural extension to
the research efforts described in this dissertatwonld be to develop analytical
models that can capture the performance behavibuhe proposed allocation

strategies for cases that cannot be investigatesinimylations.

* There has been little research activity in the gremnce measurement of actual
parallel systems. Provided sufficient resourcesewavailable to materialise an
actual multicomputer, it would be useful to condomtasurements to verify the
conclusions that have been reported in the liteeatund which have largely been
reached by means of simulations. Apart from inegliconfidence in the existing
work, such an investigation might reveal issuesiigd in the assumptions of the

simulation model or otherwise not captured by pnesenulation tools.

Appendix A

The Components of the MBS
Allocation Algorithm

A.1 Introduction

In the MBS allocation strategy, a job request foprocessors is represented as a base 4 number

of the following form: p=d; x2' x2' +d;_yx2 =2+ . +dox2°%x2%. MBS is
composed of the following five parts [85]: systenitialisation, request factoring algorithm,

buddy generating algorithm, allocation algorithmgl ale-allocation algorithm.

A.2 System Initialisation

In this part, the mesh system is divided imiial blocks (i.e., sub-meshes), which are non-
overlapped square sub-meshes with side lengthd egpawers of 2. The concept fsee block

records (FBR) extends the notion of the free block ligtstihe 2DBS strategy [48]. FBR]

records the number (FBRplock_num) of available blocks of siz2l x2' and an ordered list

Appendix A: The Components of the MBS Allocatiorgétithm 153

(FBRJi].block_list) of the locations of such blocks. Ahet global variable, AVAIL, keeps track
of the current number of available processors énnlesh system, and is initialised to the number

of processors in the syster ().

A.3 The Request Factoring Algorithm

The number of processors requested by an incomimggquest has a base 4 representation of

|logs N | S
the form 24] d; x (2' x2') where0<d; <3. Thus any job request can be accommodated by
i=0

d; blocks of size2' x2' . At most [logs N'| distinct blocks are needed with a maximum of 3
blocks of a given size. THdaximum distinct block@MaxDB) of a given mesh system is defined
as |_Iog4 N-|. The factoring algorithm needs to take as an inpatjob size and produces as
output a request array (Request_Arrajf@xDB]). Request_Array] is the number of size

21 x 2! blocks that the job needs.

A.4 The Buddy Generating Algorithm

The buddy breaks a large block into 4 smaller adjablocks to satisfy the' x 2! requests. For

example, the 4 buddies of a large bikx 2} are 2/ ™1x 2171 plocks. The algorithm operates

in two phases. In the first phase, an availablelblis searched by examining the FBRs in

increasing order of block size fro@ ™t x 21*1 to 2M& x 2™ Dyring the second phase, the

block is repeatedly broken down into smaller budldiatil the desired size blocks are found. If
no block is found during the search phase, theritthgo breaks the request for2i x2' block

into 4 smaller requests f@ 1 x 271 plocks.

Appendix A: The Components of the MBS Allocatiorgétithm 154

A.5 The Allocation Algorithm

First, the request is factored and stored in Ragdesay. This strategy attempts to satisfy each

request for a block of siz8' x2' from FBR]]. Otherwise, MBS searches for a larger block in
FBR and repeatedly breaks it down into 4 adjacemtdtes until it produces blocks of the
desired size. The 4 buddies oRax 2 block are2) 1 x 2171 plocks. If that fails, MBS breaks
the request for @' x2' block into 4 smaller requests fat1x2' 1 blocks, which are stored in
Request_Arrayfl], and repeats the allocation process. In MB&cation always succeeds
when the number of free processors in the meskemsys sufficient. This is because the request

or parts of it can be partitioned into requestsiferl blocks.

A.6 The De-allocation Algorithm

The MBS strategy needs to return all the blocksemMpy the job to the system, and merge the

buddies up to restore the larger blocks.

Appendix B

The Possible Cases for Subtracting
Prohibited Regions from RBP’s in
the TBL Allocation Algorithm

The figures for all possible cases of subtractinghited Regions (PR) from a Right Border
Plane (RBP) introduced in Chapter 3 are presemeddch case. In all of the figures presented

in this Appendix, the coordinates of the RBP amesented by the addregs v, 7, X, Y2, 25)

while the coordinates of PR are represented badaeess(u;, vy, Wy, U, Vo, W) .

For example, Figure B.1 shows 6 possible situationsubtracting PR from RBP (please see
Case 3.3.1 in Figure 3.3, Chapter 3); in all okthsituations the subtraction process results in

the same RBP. As a consequence, all processotedRBP can be used as base processors for

an allocation sub-mesh. The 6 possible situationsne RBP in Figure B.1 arex<u;, x>u2,

Zy <Wp, 71 >Wa, Yo <Vq, Y1 >V).

Appendix B: The Possible Cases for Subtracting iBitell Regions from RBP’s in the TB
Allocation Algorithm

156

(Xy1,21)

5.

6.

. X<U1
. X>u2
. Zo <W

- >W2

Yo <Vp

y1>Vo

(X.¥2,2)

(x

(X!Ylvzl) /

Y2, 22)

(X Y2, 22)

\u21V21W2)

cpz)| |

- A -
1
1

(Ug, vy, W) d

(X,y1,21) / (X,¥2,22)

(X,y1,21)

(X,Y1,21)

(X< ug) or (x> W) or (< Wy) or (2> Wy) or (%< Vi) Or ((y1> Vy))

In this figure the result is RBP itself.

(X,yz, ZZ)

Figure B.1: Subtracting PR from RBP (Case 3.3.1 fro

m Figure 3.3 in Chapter 3)

Appendix B: The Possible Cases for Subtracting iBitell Regions from RBP’s in the TB

Allocation Algorithm 157

(X!yz 22) i I/'
E (va2,22,)1 e

(ug,vajwy) - ! T 2
3 1
(X,y1,21)

(X!ylvzl) (X,yl’zl

1. (u1=x<up) and (v1<y1<V;) and (v1<y,<V,) and (Wi<z,<w) and (z;<w)
RBP (X, Y, z, X, %5, Wi-1)

2. (h=x<tp) and (<y:<v) and (¥>V,) and (W<z:<w) and (z<w)
RBP1 (X, ¥, z, X, Y, Wi-1)
RBP2 (X, ¥+ 1, Wi, X, ¥, Z)

3. (W=<x<w,) and (M<Y»<v,) and (y<v,) and (W<z<w,) and (z<w;)
RBP1 (X, ¥, z, X, Y, Wi-1)

RBP2 (X, ¥, Wi, X, V-1, 2)

Figure B.2: Subtracting PR from RBP (Cases 3.3.2,3 .3.3, 3.3.4in Figure 3.3 in Chapter 3).

Appendix B: The Possible Cases for Subtracting iBitell Regions from RBP’s in the TB
Allocation Algorithm

158

(XHYZYZZ)
X,¥2,25)

(X!YszZ)

(U, Vo, W0)

7

(X!ylvzl)

(Ug,vi,Wy) -

1. (U=x<Up) and (v;1<y1<V,) and (vi<y,<V,) and (Wi<z;<w,) and (z2>w)
RBP (X, Y, Wot 1, X, ¥, 2)

2. (L=<X<up) and (U<y1<v,) and (y>V,) and (W<z;<ws) and (z>w.)
RBP1 (X, ¥+1, z, X, ¥, W)
RBP2 (X, y, Wot 1, X, ¥, 2)

3. (W<X<u,) and (V<y»<v») and (y<v1) and (W<z<w») and (z>W.,)
RBP1 (X, ¥, z, X, -1, W)

RBP2 (X, y, Wot 1, X, V5, 2)

Figure B.3: Subtracting PR from RBP (Cases 3.3.5,3 .3.6, 3.3.7 in Figure 3.3 in Chapter 3).

Appendix B: The Possible Cases for Subtracting iBitell Regions from RBP’s in the TB

Allocation Algorithm

159

(X!y2122)

(X!y’vZZ)
(X!yZYZZ)
(U fva, o)
3111 | 2
R N
(ug,vajwy) 1 '
(X,y1,21) A ol
1 Y141

1. (U1<X<Up) and (v1<y;<V,) and (v;<y,<V) and (z;<w1) and (zz>w>)
RBP1 (X, ¥, z, X, Y5, Wi-1)
RBP2 (X, y, W+ 1, X, ¥, 2)

2. (W=x<up) and (V<y1<V,) and (y>V) and (a<w) and (z>W.)
RBP1 (X, Y, , X, \b Wi-1)
RBP2 (X, ¥+ 1, z, X, s, 2)
RBP3 (X, ¥, Wt 1, X, b, 2)

3. (W=x<u,) and (V<y,<V,) and (y<vy) and (z<w1) and (z>w)
RBP1 (X, ¥ 2, X, U-1, 2)
RBP2 (X, ¥, z, X, Y5, Wi-1)

RBP3 (X, ¥, Wo+1, X, V5, 2)

Figure B.4: Subtracting PR from RBP (Cases 3.3.8,3 .3.9, 3.3.10 in Figure 3.3 in Chapter 3).

Appendix B: The Possible Cases for Subtracting iBitell Regions from RBP’s in the TB
Allocation Algorithm

160

(X,¥2,25)

(U2, V2, W)

‘_____________
[EEN

(ug,va,Wy)

(X,y1,21)
1. (ur<x<u,) and(y>>V,) and (y:<v1) and(z;<w;) and (z>W,)
RBP1 (X, ¥ z, X, M-1,) ; RBP2 (X, ¥+ 1, 7, X, \, %)

RBP3 (X, ¥, z, X, o, Wi-1) ; RBP4 (X, y, Wot+1, X, \b, 2)

Figure B.5: Subtracting PR from RBP (Case 3.3.11in Figure 3.3 in Chapter 3).

(X!yszZ)
(U2, Vo, W5)

(ug,vi, W) -

(X,y,21)
1. (u=<x<u,) and(y»>V,) and(y;<vi) and(z;>w,) and (z,<w.)

RBP1 (X, V¥, z, X, u-1,) ; RBP2 (X, ¥+ 1, 7, X, \, 2)

Figure B.6: Subtracting PR from RBP (Case 3.3.12in Figure 3.3 in Chapter 3).

Appendix B: The Possible Cases for Subtracting iBitell Regions from RBP’s in the TB

Allocation Algorithm 161

(X,Y2,22)

y (Up,Vip,Wy)
d

(Ug,v4,Wy)

(X WY zl)

1. (U1=<x<up) and (y->Vv,) and(y;<v;) and(z;<w;) and (w;< z;<w,)

RBP1 (X, ¥, z, X, M-1, z); RBP2 (X, ¥+1, z, X, %, 2); RBP3 (X, Y, z, X, \b, Wi-1)

Figure B.7: Subtracting PR from RBP (Case 3.3.13in Figure 3.3 in Chapter 3).

(X!y2122)

(uz,v2,Wy)

(A7A N

(Xw1.21)
1. (u=x<U) and (y2>V,) and (y1<vy) and(z>w») and (wi< z<wy)

RBP1 (X, ¥, z, X, M-1, 2); RBP2 (X, ¥+1, z, X, %, 2); RBP3 (X, ¥, Wot+1, X, \, 2)

Figure B.8: Subtracting PR from RBP (Case 3.3.14in Figure 3.3 in Chapter 3).

Appendix B: The Possible Cases for Subtracting iBitell Regions from RBP’s in the TB

Allocation Algorithm 162

(U2, V2, W5)
i (X,¥2,22)
A Yo2) ! P
. ! A(XYe,22) :
L ;
3! i L '
! : L (Xyz) v
x’ !Z /,/ ://,
(X:y1,21) , (X y1,z1) !

(ug, v, Wy)

1. (Us=X<Up) and (va<y:1<Vp) and (vi<y,<Vp) and (Wi <2;<W5) and (Wy<z,<w,)
No RBP in this case.

2. (W=<x<up) and (V<y;<v») and (y>V,) and (W<z<w,) and (W<z<W»)
RBP (X, ¥+1, 7, X, %,)

3. (W<x<Up) and (V<y»<\,) and (y<vi) and (W<z<w,) and (W<z<W»)

RBP (X, Y, 2, X, U-1, 2)

Figure B.9: Subtracting PR from RBP (Cases 3.3.15, 3.3.16, 3.3.17 in Figure 3.3 in Chapter 3).

Appendix C

Publications during the Course of
this Research

Journal Papers

e S. Bani-Mohammad, M. Ould-Khaoua and I. Ababn&h, Efficient Non-Contiguous
Processor Allocation Strategy for 2D Mesh Conneckéalticomputers Journal of
Information Sciences - Elsevier (INS), Elsevier,|Vb/7, No. 14, pp. 2867-2883, 15

July 2007.

* S. Bani-Mohammad, M. Ould-Khaoua and I. Ababn&hiNew Processor Allocation
Strategy with a High Degree of Contiguity in Mestn@ected Multicomputerdournal
of Simulation Modelling, Practice & Theory (SIMPRAg}Isevier Science, Vol. 15, No.

4, pp. 465-480, April 2007.

e S. Bani-Mohammad, M. Ould-Khaoua, |I. Ababneh andikeM. MackenzieProcessor

Allocation and Job Scheduling on 3D Mesh Intercatioa Networks International

Appendix C: Publications during the Course of RRésearch 164

Journal of Computers and Applications, (ACTA), V28, No. 3, pp. 309-317, Canada,

ACTA Press, 2007.

S. Bani-Mohammad, M. Ould-Khaoua, |. Ababneh andiikeM. Mackenzie A Fast
and Efficient Strategy for Sub-mesh Allocation witimimal Allocation Overhead in 3D
Mesh Connected Multicomputergdbiquitous Computing and Communication Journal

(UBICC), Vol.1, No. 1, pp. 26-36, ISSN 1992-842008.

S. Bani-Mohammad, M. Ould-Khaoua and |. Ababn&reedy-Available Non-
contiguous Processor Allocation Strategy and JobeS8aling for 2D Mesh Connected
Multicomputers Accepted to appear in International Journal om@aters and their
Applications (IJCA), International Society for Couotprs and Their Applications

(ISCA), 2008.

S. Bani-Mohammad, M. Ould-Khaoua, |. Ababneh, anewiks M. Mackenzie,
Comparative Evaluation of Contiguous Allocation aBtgies on 3D Mesh
Multicomputers Revised version under review for Journal of Systeand Software,

Elsevier Publishing, 2008.

Conference Papers

S. Bani-Mohammad, M. Ould-Khaoua, |. Ababneh, LeMs Mackenzie and J. D.
Ferguson;The Effect of Real Workloads and Stochastic Woddaan the Performance
of Allocation and Scheduling Algorithms in 2D Medhlticomputers Proceedings of
the 22¢ IEEE International Parallel and Distributed Prateg Symposium (IPDPS

2008). Hyatt Regency Hotel, Miami, Florida, USAEIE Computer Society Press, April

Appendix C: Publications during the Course of RRésearch 165

14-18, 2008.

S. Bani-Mohammad, M. Ould-Khaoua, |. Ababneh andwike M. Mackenzie,

Comparative Evaluation of the Non-Contiguous PreoesAllocation Strategies based
on a Real Workload and a Stochastic Workload ontibrhputers Proceedings of the
13" International Conference on Parallel and DistedutSystems (ICPADS'07),
Hsinchu, Taiwan, IEEE Computer Society Press, Veln, pp. 1-7, December 5-7,

2007.

S. Bani-Mohammad, M. Ould-Khaoua, |I. Ababneh andvieeM. Mackenzie, A

Performance Comparison of the Contiguous AllocatiStrategies in 3D Mesh
Connected Multicomputer®roceedings of thé"3nternational Symposium on Parallel
and Distributed Processing and Applications (ISPB07), Niagara Falls, ON,
CANADA, Springer-Verlag Berlin Heidelberg, LNCS 4% 4op. 645-656, August 29-21,

2007.

S. Bani-Mohammad, M. Ould-Khaoua, |I. Ababneh andviseM. Mackenzie,An

Efficient Processor Allocation Strategy that Maintg a High Degree of Contiguity
among Processors in 2D Mesh Connected Multicomgut@007 ACS/IEEE
International Conference on Computer Systems angdliégiions, (AICCSA 2007),

Amman, Jordan, IEEE Computer Society Press, pp9434 May 13-16, 2007.

S. Bani-Mohammad, M. Ould-Khaoua, |. Ababneh andviseM. Mackenzie,Non-
contiguous Processor Allocation Strategy for 2D MeSonnected Multicomputers
based on Sub-meshes Available for AllocatiBroceedings of the f2Iinternational

Conference on Parallel and Distributed SystemsAIR¥06), Minneapolis, Minnesota,

Appendix C: Publications during the Course of RRésearch 166

USA, IEEE Computer Society Press, Volume 2 , pp48,112-15 July, 2006.

S. Bani-Mohammad, M. Ould-Khaoua, |. Ababneh andikeM. Mackenzie Greedy-
Available Non-contiguous Processor Allocation Stat and Job Scheduling for 2D
Mesh Connected MulticomputeBroceedings of the Tlinternational CSI Computer
Conference (CSICC 2006%chool of Computer Science, IPM, Tehran, Iran, 1#2-
130, January 24-26, 2006. This paper has beentasgldor the special issue in

International Journal of Computers and their Apgiiians, ISCA Press.

S. Bani-Mohammad, M. Ould-Khaoua, |. Ababneh andviseM. Mackenzie,An
Efficient Turning Busy List Sub-mesh Allocationagtgy for 3D Mesh Connected
Multicomputers Proceedings of the"7Annual PostGraduate Symposium on the
Convergence of Telecommunications, Networking & @&fwasting, (PGNET 2006),

Liverpool John Moores University, UK, pp. 37-43-26 June 2006.

Bani-Mohammad S., Ould-Khaoua M., and AbabnehPerformance Evaluation of
Processor Allocation Strategies in the 2-Dimensiodesh Network N. Thomas
(editor), Proceedings of the 21K Performance Engineering Workshop (UKPEW
2005), School of Computing Science, Technical Referies, CS-TR-916, University

of Newcastle, UK, ISSN 1368-1060. pp. 177-188, B4}dly 2005.

Bani-Mohammad S., Ould-Khaoua M., and Ababneh A.,Simulation Study of
Allocation Strategies on the Mesh Interconnectioetwérks Proceedings of the™s
Annual PostGraduate Symposium on the ConvergenceTaécommunications,
Networking & Broadcasting, (PGNET 2005), Liverpalmhn Moores University, UK,

ISBN 1-902-56011-6, pp. 197-202, 27-28 June 2005.

Appendix C: Publications during the Course of RRésearch 167

Technical Reports

S. Bani-Mohammad, M. Ould-Khaoua, |. Ababneh an#iikeM. Mackenzie A Fast

and Efficient Processor Allocation Strategy whichnibines a Contiguous and Non-
contiguous Processor Allocation AlgorithmEechnical Report; TR-2007-229, DCS
Technical Report Series, Department of Computingri®e, University of Glasgow,

January 2007.

Bani-Mohammad S., Ould-Khaoua M., and AbabnehPerformance Analysis of
Processor Allocation Strategies on 2D-Mesh Intermmiion Networks Technical
Report; TR-2005-202, DCS Technical Report Seriegpddtment of Computing

Science, University of Glasgow, June 2005.

Bani-Mohammad S., Ould-Khaoua M., and Ababneh A.,Simulation Study of
Allocation Strategies on the Mesh Interconnecticetwdrks Technical Report; TR-
2005-194, DCS Technical Report Series, Departme@omputing Science, University

of Glasgow, April 2005.

References

[1]

[2]

[3]

[4]

[5]

[6]

A. A. Chien and J. K. Kim, Planar adaptive liogt low cost adaptive networks for
multiprocessorsProceedings of the ¥9International Symposium on Computer
Architecture pp. 268-277, 1992.

A. Al-Dubai, M. Ould-Khaoua, K. El-Zayyat, |. Babneh, and S. Al-Dobai,
Towards scalable collective communication for nmalthputer interconnection
networks Journal of Information Sciencegol. 163, no. 4, pp. 293-306, 2004.

A. Al-Dubai, M. Ould-Khaoua, and L. M. Mackemzi An efficient path-based
multicast algorithm for mesh network®roceedings of the ¥7International
Parallel and Distributed Processing Symposium (IFf)PNice, France, IEEE
Computer Society Press , pp. 283-290, 22 -26 APDID3.

A. Al-Dubai, Towards Efficient Collective Commication in Multicomputer
Interconnection Networks, Ph.D. Thesis, Departmeht Computing Science,
University of Glasgow, 2004.

A. Ferreira, A. G. vel Lejpbman, and S. W. SoBgyis-based parallel computers: a
viable way for massive parallelismRProceedings of Parallel Architectures
Languages Europe (PARLE '94), Lecture Notes in CoenScience 81pp. 553-
564, Springer-Verlag, 1994.

A. I. D. Bucur and D. H. J. Epema, Schedulirgi¢tes for Processor Coallocation
in Multicluster SystemslEEE Transaction on Parallel and Distributed Syssem

vol. 18, no. 7, pp. 958-972, 2007.

References 169

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

A. Law and W. Kelton, Simulation Modelling andnalysis, Third Edition,
McGraw-Hill, Inc., New York, 2000.

A. Louri and H. Sung, An Optical Multi-Mesh Hgpcube: A Scalable Optical
Interconnection Network for Massively Parallel Cautipg, IEEE/OSA Journal of
Lightwave Technologyol. 12, no. 4, pp. 704-716, 1994.

B.-S. Yoo and C.-R. Das, A Fast and Efficiembé&ssor Allocation Scheme for
Mesh-Connected Multicomputerf£EE Transactions on Parallel & Distributed
Systemgsvol. 51, no. 1, pp. 46-60, 2002.

Blue Gene Projechttp://www.research.ibm.com/bluegene/index.hgaD7.

C. A. F. De Rose, H.-U. Heiss, and B. Linnddistributed Dynamic processor
Allocation for MulticomputersParallel Computing vol. 33, no. 3, pp. 145-158,
2007.

C. G. Glass and L. M. Ni, The turn model falagtive routingProceedings of the
19" Annual International Symposium on Computer Archites pp. 278-287,
1992.

C. J. Drewes, Simulating Virtual Cut-throughdaWormhole Routing in a Clustered
Torus, M.Sc. Thesis, Laboratory of Computer Arattitee and Digital Techniques
(CARDIT), Faculty of Electrical Engineering, Delftniversity of Technology,
1996.

C. P. Kruskal and M. Snir, The performancemfitistage interconnection networks
for multiprocessordEE Trans. Computersol. 32, no. 12, pp. 1091-1098, 1983.
C. Peterson, J. Sutton, P. Wiley, iWARP: a -MBOS, LIW microprocessor for
multicomputerslEEE Micro, vol. 11, no. 3, pp. 26-29, 81-87, 199

C.-C. Hsu, /O processor Allocation for Meshugter Computers, M.Sc. Thesis,
Department of Computer Science and Information Bgwing, National Taiwan

University, 2004.

References 170

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

C.-S. Wu, Processor scheduling in multiprogreed shared memory NUMA
multiprocessors, M.Sc. Thesis, Department of Comp&cience, University of
Toronto, 1993.

C.-Y. Chang and P. Mohapatra, Performance awgment of allocation schemes
for mesh-connected computedgurnal of Parallel and Distributed Computing
vol. 52, no. 1, pp. 40-68, 1998.

Cray, Cray XT3 Datasheet, 2005.

D. Babbar and P. Krueger, A performance Corsparof Processor Allocation and
Job Scheduling Algorithms for Mesh-Connected MutigessorsProceedings of
the 6" IEEE Symposium on Parallel and Distributed Proaegspp. 46-53, 1994.

D. Das Sharma and D. K. Pradhan, Submesh atiae in Mesh-Multicomputers
Using Busy-List: A Best-Fit Approach with CompleRecognition Capability,
Journal of Parallel and Distributed Computingol. 36, no. 2, pp. 106-118, 1996.
D. G. Feitelson, Workload Modeling for Computé&ystems Performance
Evaluationshttp://www.cs.huji.ac.il/~feit/wimod/wimod.p&007.

D. Kulkarni, Deterministic and Adaptive Routiin k-ary n-cube Network€S 570
Project Report Department of Computer Science, Colorado Statedusity, Fort
Collins, Spring 2000.

D. P. Bunde, V. J. Leung and J. Mache, Comgation Patterns and Allocation
StrategiesSandia Technical Report SAND2003-45248,. 2004.

E. Anderson, J. Brooks, C. Grassl, S. Scotffd?mance of the Cray T3E
multiprocessorProceedings of the ACM/IEEE Supercomputing Contexgop. 1-
17, 1997.

E. Krevat, J. G. Castannos, and J. E. Moréiod, Scheduling for the BlueGene/L
System, Proceedings of the Job Scheduling Strategies foralRdh Processing

Workshop (JSSPPpp. 38-54, 2002.

References 171

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

F. Wu, C.-C. Hsu and L.-P. Chou, Processoro@dtion in the Mesh
Multiprocessors Using the Leapfrog MethdBEE Transactions on Parallel and
Distributed Systemsol. 14, no. 3, pp. 276-289, 2003.

G. Gabrani and T. Mulkar, A quad tree-basegbathm for processor allocation in
2D mesh-connected multicomputer§ournal of Computer Standards and
Interfaces vol. 27, no. 2, pp. 133-147, 2005.

G. Min, Performance Modelling and Analysis Multicomputer Interconnection
Networks, Ph.D. Thesis, Department of Computinge®oe, University of
Glasgow, 2003.

G.-M. Chiu, The odd-even turn model for ade@trouting,IEEE Transaction on
Parallel and Distributed Systemeol. 11, no. 7, pp. 729-738, 2000.

H. Choo, S. Yoo, and H.-Y. Youn, Processorestting and allocation for 3D torus
multicomputer system$EEE Transactions on Parallel & Distributed Systemal.
11, no. 5, pp. 475-484, 2000.

H. Fujii, Y. Yasuda, H. Akashi, Y. Inagami, Moga, O. Ishihara, M. Kashiyama,
H. Wada, and T. Sumimoto, Architecture and perfaroeaof the Hitachi SR2201
massively parallel processor systéPnoceedings of the international Parallel
Processing Symposium (IPPS'9fp. 233-241, IEEE Computer Society Press,
1997.

I. Ababneh, An efficient free-list submesh @dhtion Scheme for two-dimensional
mesh-connected multicomputedgurnal of Systems and Softwawel. 79, no. 8,
pp. 1168-1179, August 2006.

I. Ababneh, Job scheduling and contiguous ¢ssor allocation for three-
dimensional mesh multicomputerdMSE Advances in Modelling & Analysigol.

6, no. 4, pp. 43-58, 2001.

I. Ababneh and F. Fraij, Folding contiguousdamon-contiguous space sharing

References 172

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

policies for parallel computerdMu’tah Lil-Buhuth wad-Dirasat, Natural and
Applied Sciences Serjesl. 16, no. 3, pp. 9-34, 2001.

I. Foster, Designing and Building Parallel §mams, Concepts and Tools for
Parallel Software Engineering, Addison-Wesley, 1995

I. Ismail, Space sharing job scheduling pelcifor parallel computers, Ph.D.
Thesis, Department of Electrical and Computer Eegliimg, lowa State University,
1995.

I. Ismail and J. Davis, Program-based stalliccation policies for highly parallel
computersProceedings of the IPCCC 9EEEE Computer Society Press, pp. 61-68,
1995.

Intel Corp., Paragon XP/S product overviewp&eomputer Systems Division,
Beaverton, Oregon, 1991.

Intel Corporation, A Touchstone DELTA systemsdription, 1991.

J. Ding and L.-N. Bhuyan, An Adaptive Submesliocation Strategy for Two-
Dimensional Mesh Connected Syster®pceedings of the 1993 International
Conference on Parallel Processingpl. 2, pp. 193-200, 1993.

J. Duato, A new Theory of Deadlock-Free AdeptiRouting in Wormhole
Networks, IEEE Transaction on Parallel and Distributed Sys$enol. 4, no. 12,
pp. 1320-1331, 1993.

J. Duato, C. Yalamanchili, and L. Ni, Intercmction networks: an engineering
approach|EEE Computer Society Pres997.

J. Mache, V. Lo, and K. Windisch, Minimizing édsage-Passing Contention in
Fragmentation-Free Processor Allocati®troceedings of the f0International
Conference on Parallel and Distributed Computingt&ms pp. 120-124, 1997.

J. Mache, V. Lo, and S. Garg, Job Schedulid Minimizes Network Contention

due to both Communication and I/Proceedings ofhe 14" International Parallel

References 173

[46]

[47]

[48]

[49]

[50]

[51]

[52]

and Distributed Processing Symposium (IPDPS'pf),457-463, 2000.

J. Sua, Processor Allocation in Hypercube Caters, M.Sc. Thesis, Department of
Computer Engineering, Faculty of Engineering, FlarAtlantic University, 1993.

J. Wei, X. Zhou, and C-Z. Xu, Robust Procegdiate Allocation for Proportional
Slowdown Differentiation on Internet ServetEEE Transactions on Computers
vol. 54, no. 8, pp. 964-977, 2005.

K. Li and K.-H. Cheng, A Two-Dimensional Bud@ystem for Dynamic Resource
Allocation in a Partitionable Mesh Connected Systdournal of Parallel and
Distributed Computingvol. 12, no. 1, pp. 79-83, 1991.

K. Suzaki, H. Tanuma, S. Hirano, Y. Ichisu@, Connelly, and M. Tsukamoto,
Multi-tasking Method on Parallel Computers whichn@mnes a Contiguous and
Non-contiguous Processor Partitioning AlgorithrRroceedings of the '3
International Workshop on Applied Parallel Compagtinndustrial Computation
and OptimizationLecture Notes in Computer Science, Springer, bongp. 641-
650, 1996.

K. Windisch, J. V. Miller, and V. Lo, ProcSitgi an experimental tool for
processor allocation and scheduling in highly peralystemsProceedings of the
5" Symposium on the Frontiers of Massively Paralleinputation (Frontiers'95)
Washington, DC, USA, IEEE Computer Society Preps4i4-421, 1995.

K.-H. Seo, Fragmentation-Efficient Node Alldca Algorithm in 2D Mesh-
Connected System®roceedings of the"8International Symposium on Parallel
Architecture, Algorithms and Networks (ISPAN'OBJEE Computer Society Press,
pp. 318-323, 7-9 December, 2005.

K.-H. Seo and S.-C. Kim, Improving system penfiance in contiguous processor
allocation for mesh-connected parallel systefbe Journal of Systems and

Software vol. 67, no. 1, pp. 45-54, 2003.

References 174

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

L. He, S. Jarvis, D. Spooner, H. Jiang, D.lédiberger, and G. Nudd, Allocating
Non-Real-Time and Soft Real-Time Jobs in Multickust IEEE Transactions on
Parallel and Distributed Systemeol. 17, no. 2, pp. 99-112, 2006.

L. M. Ni and P. K. McKinley, A survey of wornathe routing techniques in direct
networksIEEE Computervol. 26, no. 2, pp. 62-76, 1993.

M. Blumrich, D. Chen, P. Coteus, A. Gara, Mia@papa, P. Heidelberger, S.
Singh, B. Steinmacher-Burow, T. Takken, and P. ¥sarDesign and Analysis of
the BlueGene/L Torus Interconnection NetwdilM Research Report RC23025
IBM Research Division, Thomas J. Watson ResearctieCeDec. 3, 2003.

M. E. Crovella and A. Bestavros, Self-Simitgrin World Wide Web Traffic:
Evidence and Possible Caus#EE/ACM Transactions on Networkingpl. 5, no.
6, pp. 835-846, 1997.

M. E. Crovella and L. Lipsky, Long-Lasting Trsient Conditions in Simulations
with Heavy-Tailed Workloads,Proceedings of the 1997 Winter Simulation
Conferencepp. 1005-1012, 7-10 Dec., 1997.

M. H.-Balter, M. E. Crovella, and C. D. Murt®n Choosing a Task Assignment
Policy for a Distributed Server Systerdpurnal of Parallel and Distributed
Computing vol. 59, no. 2, pp. 204-228, 1999.

M. H.-Balter, The Effect of Heavy-Tailed Johiz& Distributions on Computer
System DesignProceedings of ASA-IMS Conference on Applicationsieavy
Tailed Distributions in Economics, Engineering a8thtistics Washington, DC,
June 1999.

M. Levine, CRAY XT3 at the Pittsburgh Superqmuting Centre, DEISA
SymposiumBologna, 4-5 May 2006.

M. Noakes, D. A. Wallach, and W. J. Dally, Themachine multicomputer: an

architecture evaluatiofProceedings of the #0nternational Symposium Computer

References 175

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Architecture pp. 224-235, 1993.

N. Alzeidi, Performance Analysis of Wormholewi&hed Interconnection
Networks with Virtual Channels and Finite Buffe).D. Thesis, Department of
Computing Science, University of Glasgow, 2007.

P. Krueger, T. Lai, and V. A. Radiya, Job ddlieng is more important than
processor allocation for hypercube computlE&E Transactions on Parallel and
Distributed Systemwol. 5, no. 5, pp. 488-497, 1994.

P. Mohapatra, Wormhole routing techniques imltrmomputer systemsACM
Computing Surveysol. 30, no. 3, pp. 375-411, 1998.

P.-J. Chuang and N.-F. Tzeng, Allocating mecsubmeshes in mesh connected
systemsJEEE Transactions on Parallel and Distributed Systevol. 5, no. 2, pp.
211-217, 1994.

ProcSimity V4.3 User’'s Manudlniversity of Oregonl1997.

R. E. Kessler and J. L. Swarszmeier, Cray T@8Dew dimension for Cray research,
Proceedings of the $8Annual International Computer Conference (COMPCON
SPRING’93) pp. 176-182, IEEE Computer Society Press, 1993.

R. Jan, The Art of Computer Systems Perforreafnalysis, John Wiley & Sons,
Inc., New York, 1991.

R. V. Boppana and S. Chalasani, Frameworldésigning deadlock-free wormhole
routing algorithms]JEEE Transaction on Parallel and Distributed Systenol. 7,
no. 2, pp. 169-183, 1996.

S. A. Ghozati and H. C. Wasserman, Tkary n-cube network: modelling,
topological properties and routing strategie§omputers and Electrical
Engineering vol. 25, no. 3, pp. 155-168, May 1999.

S. Bani-Mohammad, M. Ould-Khaoua, and |. Abalbbn A New Processor

Allocation Strategy with a High Degree of Contiguiin Mesh-Connected

References 176

[72]

[73]

[74]

[75]

[76]

[77]

Multicomputers,Journal of Simulation Modelling, Practice & Theompol. 15, no.
4, pp. 465-480, 2007.

S. Bani-Mohammad, M. Ould-Khaoua, and 1. Abalbn An Efficient Non-
Contiguous Processor Allocation Strategy for 2D ME€snnected Multicomputers,
Journal ofinformation Sciencewol. 177, no. 14, pp. 2867-2883, 2007.

S. Bani-Mohammad, M. Ould-Khaoua, I. Ababnehd L. Machenzie, A Fast and
Efficient Processor Allocation Strategy which Conmds a Contiguous and Non-
contiguous Processor Allocation Algorithmigchnical Report; TR-2007-22BCS
Technical Report Series, Department of Computinderfee, University of
Glasgow, January 2007.

S. Bani-Mohammad, M. Ould-Khaoua, I. Ababnehd L. Machenzie, A Fast and
Efficient Strategy for Sub-mesh Allocation with Nhmal Allocation Overhead in
3D Mesh Connected Multicomputendbiquitous Computing and Communication
Journal, vol. 1, no. 1, pp. 26-36, ISSN 1992-8424, 2006.

S. Bani-Mohammad, M. Ould-Khaoua, |. Ababnedmd L. Machenzie, A
Performance Comparison of the Contiguous Allocat®irategies in 3D Mesh
Connected Multicomputer®?roceedings of The"SInternational Symposium on
Parallel and Distributed Processing and ApplicatlofiISPA’07) LNCS 4742,
Springer-Verlag Berlin Heidelberg, pp. 645-656, 200

S. Bani-Mohammad, M. Ould-Khaoua, |. Ababnebnd L. Machenzie,
Comparative Evaluation of the Non-Contiguous Prsgedillocation Strategies
based on a Real Workload and a Stochastic WorkloadMulticomputers,
Proceedings of the I3International Conference on Parallel and Distribdte
Systems (ICPADS'0O7)Yyol. 2, pp. 1-7, IEEE, Hsinchu, Taiwan, December,
2007.

S. Bani-Mohammad, M. Ould-Khaoua, |. Ababneind L. Machenzie, Non-

References 177

[78]

[79]

[80]

[81]

[82]

contiguous Processor Allocation Strategy for 2D ME€»nnected Multicomputers
Based on Sub-meshes Available for AllocatioRroceedings of the 2
International Conference on Parallel and DistribdteSystems (ICPADS'06)
Minneapolis, Minnesota, USA, IEEE Computer Societess, vol. 2 , pp. 41-48,
2006.

S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneahd Lewis M. Mackhenzie, An
Efficient Turning Busy List Sub-mesh Allocation &gy for 3D Mesh Connected
Multicomputers,Proceedings of the™Annual PostGraduate Symposium on the
Convergence of Telecommunications, Networking &aBeasting, (PGNET 2006)
Liverpool John Moores University, UK, pp. 37-43-2% June 2006.

S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneahd Lewis M. Mackhenzie, An
Efficient Processor Allocation Strategy that Mainsaa High Degree of Contiguity
among Processors in 2D Mesh Connected Multicomput2007 ACS/IEEE
International Conference on Computer Systems argliggtions (AICCSA 2007,)
IEEE Computer Society Press, Phiadelphia Univergityman, Jordan, pp. 934-
941, 13-16 May 2007.

T. Liu, W.-K. Huang, F. Lombardi, and L. N. Byan, A Submesh Allocation
Scheme for Mesh-Connected Multiprocessor SystePjceedings of the
International Conference Parallel Processingpp. 159-163, 1995.

T. Srinivasan, J. Seshadri, A. Chandraseklzarg J. Jonathan, A Minimal
Fragmentation Algorithm for Task Allocation in Me€lonnected Multicomputers,
Proceedings of the IEEE International Conference Advances in Intelligent
Systems — Theory and Applications — AISTAISBN 2-9599-7768-8, 15-18 Nov,
Luxembourg, Western Europe, IEEE Computer SocletgE Press, 2004.

V. Adve and M. K. Vernon, Performance analysis mesh interconnection

networks with deterministic routingEEE Trans. Parallel & Distributed Systems

References 178

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

vol. 5, no. 3, pp. 225-246, 1994.

V. Kumar, A. Grama, A. Gupta, and G. Karypikitroduction to Parallel
Computing, The Benjamin/Cummings publishing Compang., Redwood City,
California, 2003.

V. Leung, E. Arkin, M. Bender, D. Bunde, J.hdgton, A. Lal, J. Mitchell, C.
Phillips, and S. Seiden, Processor Allocation onlafp Achieving General
Processor Locality Using One-Dimensional Allocati®trategiesProceedings of
the 4" IEEE International Conference on Cluster Computifi§EE Computer
Society Press , pp. 296-304, 2002.

V. Lo, K. Windisch, W. Liu, and B. Nitzberg,dw-contiguous processor allocation
algorithms for mesh-connected multicomputéE& E Transactions on Parallel and
Distributed Systemsol. 8, no. 7, pp. 712-726, 1997.

V. Lo and J. Mache, Job Scheduling for Primen& vs. Non-prime Time,
Proceedings ofthe IEEE International Conference on Cluster Cormaut
(CLUSTER'02)pp. 488-493, 2002.

V. Naik, S. Setia, and M. Squillante, Schedglbf large scientific applications on
distributed memory multiprocessor systenBroceedings of the "6 SIAM
Conference on Parallel Processing for Scientifiax@aoiting pp. 913-922, 1993.

V. Tabatabaee, A. Tiwari, and J. K. Hollingstig Parallel Parameter Tuning for
Applications with Performance Variabilit$C'05 Seattle WA, November 2005.

V. Varavithya, Multicasting in wormhole routemiulticomputers, Ph.D. Thesis,
Department of Electrical and Computer Engineeriogga State University, 1998.
W. Athas and C. Seitz, Multicomputers: messpggsing concurrent computers,
IEEE Computervol. 21, no. 8, pp. 9-24, 1988.

W. J. Dally and C. L. Seitz, Deadlock-Free samge routing in multiprocessor

interconnection network$EEE Transaction on Computergol. 36, no. 5, pp. 547-

References 179

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

553, 1987.

W. J. Dally and H. Aoki, Deadlock-Free AdagmivRouting in Multicomputer
Networks Using Virtual Channel$£EE Transaction on Parallel and Distributed
Systemgsvol. 4, no. 4, pp. 466-475, 1993.

W. Mao, J. Chen, and W. Watson, Efficient Subs Processor Allocation in a
Multi-Dimensional TorusProceedings of the"8nternational Conference on High-
Performance Computing in Asia-Pacific Region (HP@¥AE), IEEE Computer
Society Press, pp. 53-60, 30 November - 3 Decen2b@5.

W. Qiao and L. Ni, Efficient processor alloiat for 3D tori,Proceedings of the™
International Conference on Parallel Processing fgsium IEEE Computer
Society Press, pp. 466-471, 1995.

X. Lin, P. McKinley, and L. M. Ni, Deadlockd#e multicast wormhole routing in
2D mesh multicomputer$iEE Transactions on Parallel and Distributed Syste
vol. 5, no. 8, pp. 793-804, 1994.

X. Tang and S. T. Chanson, Optimizing Statib Scheduling in a Network of
Heterogeneous ComputeRroceedings of the 2000 International Conference on
Parallel Processing (ICPR)EEE Computer Society Press, pp. 373-382, 2000.
Y. Aridor, T. Domany, O. Goldshmidt, J. Morajrand E. Shmueli, Resource
allocation and utilization in the BlueGene/L sumenputer, IBM Journal of
Research and Developmewbl. 49, no. 2/3, pp. 425-436, 2005.

Y. Aridor, T. Domany, O. Goldshmidt, Y. Kliteyk, J. Moreira, and E. Shmueli,
Open Job Management Architecture for the Blue Gen8Upercomputer,
Proceedings of the 11Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP’05June 19, Cambridge, pp. 91-107, 2005.

Y. Zhu, Efficient processor allocation straegy for mesh-connected parallel

computers,Journal of Parallel and Distributed Computingol. 16, no. 4, pp. 328-

References 180

337, 1992.

[100] Y.-J. Tsai and P. McKinley, An extended dominatmgfe approach to broadcast
and global combine in multiport wormhole-routed mMmesetworks, IEEE

Transactions on Parallel & Distributed Systemsl. 8, no. 1, pp. 41-58, 1997.

