

Efficient Processor Allocation Strategies for

Mesh-Connected Multicomputers

A Thesis Submitted

by

Saad O. Bani Mohammad

for

The Degree of Doctor of Philosophy

to

The Faculty of Information and Mathematical Sciences

University of Glasgow

© Saad Bani Mohammad, February 2008

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Glasgow Theses Service

https://core.ac.uk/display/370517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Abstract

Efficient processor allocation and job scheduling algorithms are critical if the full
computational power of large-scale multicomputers is to be harnessed effectively. Processor
allocation is responsible for selecting the set of processors on which parallel jobs are
executed, whereas job scheduling is responsible for determining the order in which the jobs
are executed. Many processor allocation strategies have been devised for mesh-connected
multicomputers and these can be divided into two main categories: contiguous and non-
contiguous. In contiguous allocation, jobs are allocated distinct contiguous processor sub-
meshes for the duration of their execution. Such a strategy could lead to high processor
fragmentation which degrades system performance in terms of, for example, the turnaround
time and system utilisation. In non-contiguous allocation, a job can execute on multiple
disjoint smaller sub-meshes rather than waiting until a single sub-mesh of the requested size
and shape is available. Although non-contiguous allocation increases message contention
inside the network, lifting the contiguity condition can reduce processor fragmentation and
increase system utilisation.

Processor fragmentation can be of two types: internal and external. The former occurs when
more processors are allocated to a job than it requires while the latter occurs when there are
free processors enough in number to satisfy another job request, but they are not allocated to
it because they are not contiguous. A lot of efforts have been devoted to reducing
fragmentation, and a number of contiguous allocation strategies have been devised to
recognize complete sub-meshes during allocation. Most of these strategies have been
suggested for 2D mesh-connected multicomputers. However, although the 3D mesh has
been the underlying network topology for a number of important multicomputers, there has
been relatively little activity with regard to designing similar strategies for such a network.
The very few contiguous allocation strategies suggested for the 3D mesh achieve complete
sub-mesh recognition ability only at the expense of a high allocation overhead (i.e.,
allocation and de-allocation time). Furthermore, the allocation overhead in the existing
contiguous strategies often grows with system size. The main challenge is therefore to
devise an efficient contiguous allocation strategy that can exhibit good performance (e.g., a
low job turnaround time and high system utilisation) with a low allocation overhead.

The first part of the research presents a new contiguous allocation strategy, referred to as
Turning Busy List (TBL), for 3D mesh-connected multicomputers. The TBL strategy
considers only those available free sub-meshes which border from the left of those already
allocated sub-meshes or which have their left boundaries aligned with that of the whole
mesh network. Moreover TBL uses an efficient scheme to facilitate the detection of such
available sub-meshes while maintaining a low allocation overhead. This is achieved through
maintaining a list of allocated sub-meshes in order to efficiently determine the processors
that can form an allocation sub-mesh for a new allocation request. The new strategy is able
to identify a free sub-mesh of the requested size as long as it exists in the mesh. Results from
extensive simulations under various operating loads reveal that TBL manages to deliver
competitive performance (i.e., low turnaround times and high system utilisation) with a
much lower allocation overhead compared to other well-known existing strategies.

Most existing non-contiguous allocation strategies that have been suggested for the mesh
suffer from several problems that include internal fragmentation, external fragmentation,

ii

and message contention inside the network. Furthermore, the allocation of processors to job
requests is not based on free contiguous sub-meshes in these existing strategies. The second
part of this research proposes a new non-contiguous allocation strategy, referred to as
Greedy Available Busy List (GABL) strategy that eliminates both internal and external
fragmentation and alleviates the contention in the network. GABL combines the desirable
features of both contiguous and non-contiguous allocation strategies as it adopts the
contiguous allocation used in our TBL strategy. Moreover, GABL is flexible enough in that
it could be applied to either the 2D or 3D mesh. However, for the sake of the present study,
the new non-contiguous allocation strategy is discussed for the 2D mesh and compares its
performance against that of well-known non-contiguous allocation strategies suggested for
this network. One of the desirable features of GABL is that it can maintain a high degree of
contiguity between processors compared to the previous allocation strategies. This, in turn,
decreases the number of sub-meshes allocated to a job, and thus decreases message
distances, resulting in a low inter-processor communication overhead. The performance
analysis here indicates that the new proposed strategy has lower turnaround time than the
previous non-contiguous allocation strategies for most considered cases. Moreover, in the
presence of high message contention due to heavy network traffic, GABL exhibits superior
performance in terms of the turnaround time over the previous contiguous and non-
contiguous allocation strategies. Furthermore, GABL exhibits a high system utilisation as it
manages to eliminate both internal and external fragmentation.

The performance of many allocation strategies including the ones suggested above, has been
evaluated under the assumption that job execution times follow an exponential distribution.
However, many measurement studies have convincingly demonstrated that the execution
times of certain computational applications are best characterized by heavy-tailed job
execution times; that is, many jobs have short execution times and comparatively few have
very long execution times. Motivated by this observation, the final part of this thesis reviews
the performance of several contiguous allocation strategies, including TBL, in the context of
heavy-tailed distributions. This research is the first to analyze the performance impact of
heavy-tailed job execution times on the allocation strategies suggested for mesh-connected
multicomputers. The results show that the performance of the contiguous allocation
strategies degrades sharply when the distribution of job execution times is heavy-tailed.
Further, adopting an appropriate scheduling strategy, such as Shortest-Service-Demand
(SSD) as opposed to First-Come-First-Served (FCFS), can significantly reduce the
detrimental effects of heavy-tailed distributions. Finally, while the new contiguous
allocation strategy (TBL) is as good as the best competitor of the previous contiguous
allocation strategies in terms of job turnaround time and system utilisation, it is substantially
more efficient in terms of allocation overhead.

iii

To my parents,

To my wife and children,

To my brothers and my sister

for their endless love, support and encouragement

iv

Acknowledgments

I would like to express my deep gratitude to my supervisors, Dr. Mohamed Ould-Khaoua

and Dr. Lewis M. Mackenzie for their inspiring guidance, valuable advice and constant

encouragement throughout the progress of this work. Their suggestions, criticism and their

frequent questions motivated this research and they never failed to provide their help at all

stages of this research.

I would also like to thank Dr. Ismail Ababneh for his help and advice at the early stages of

my Ph.D. program and for the time reviewing my papers and giving me constructive and

insightful comments and reviews. My gratitude also goes to Prof. Joe Sventek for his helpful

comments and the time for reading my first year report through my first year VIVA.

I am highly indebted to the Al al-Bayt University, Jordan, for the financial support and for

granting me a scholarship to pursue my higher studies and give my thanks to my colleagues

there. My thanks are also to all the staff of the Department of Computing Science,

University of Glasgow, for their kind and friendly support. I am also grateful to my caring

colleagues and friends here in the UK and back home for their friendship and

encouragement during my time at Glasgow University.

I would like to dedicate this thesis to my family: my parents, my brothers and my sister,

whose love and encouragement from a distant land were the motivating factors for

completion of this work. Finally, I would like to express my dearest gratitude to my wife,

whose unconditional love, support, patience, and caring were and always will be a source of

inspiration, my son Yamen and my daughter Salma, who are the blessings of my life. This

thesis would not have been possible without the help of my family. I could never be as

happy as I am without each of you. You are all very precious to me.

v

Contents

1. Introduction 1

1.1 Processor Allocation 5

1.2 Motivations 10

1.3 Thesis Statement 12

1.4 Main Contributions 13

1.5 Outline of the Thesis 16

2. Background and Preliminaries 18

2.1 Introduction 18

2.2 Related Allocation Strategies 21

2.2.1 Contiguous Allocation Strategies for 2D and 3D mesh 21

2.2.2 Non-contiguous Allocation Strategies for 2D mesh 27

2.3 System Model 34

2.3.1 Switching Method 37

2.3.2 Routing Algorithm 39

2.3.3 Communication Patterns 41

2.4 Assumptions 42

2.5 The Simulation Tool (ProcSimity Simulator) 43

2.6 Justification of the Method of Study 45

vi

2.7 Summary 46

3. Turning Busy List (TBL): A New Contiguous Allocation Algorithm for Mesh-

Connected Multicomputers

49

3.1 Introduction 49

3.2 Preliminaries 51

3.3 The Proposed Turning Busy List Allocation Strategy (TBL) 53

3.4 Performance Evaluation 59

3.4.1 Simulation Results 59

3.4.1.1 Performance Impact of Mesh System Size 71

3.5 Conclusion 73

4. Greedy Available Busy List (GABL): A New Non-contiguous Allocation

Algorithm for Mesh-Connected Multicomputers

75

4.1 Introduction 75

4.2 The Proposed Greedy Available Busy List Allocation Strategy (GABL) 78

4.3 Performance Evaluation 84

4.3.1 Allocation and De-allocation Time in GABL 84

4.3.2 Simulation Results 85

4.3.2.1 Performance Impact of Mesh System Size 106

4.3.2.2 Performance Impact of Packet Length 109

4.4 Conclusion 113

5. Comparative Evaluation of Contiguous Allocation Strategies on Mesh-

Connected Multicomputers

115

5.1 Introduction 115

5.2 Processor Allocation Strategies 117

5.3 Job Scheduling Strategies 118

vii

5.4 Simulation Results 119

5.4.1 Performance Comparison under Heavy-Tailed and Exponential Job

Execution Times with the FCFS Scheduling Strategy

122

5.4.2 Performance Comparison under Different System Loads and Scheduling

Strategies

124

5.4.3 Impact of System Size 135

5.5 Conclusion 137

6. Conclusions and Future Directions 139

6.1 Summary of the Results 141

6.2 Directions for the Future Work 148

Appendix A. The Components of the MBS Allocation Algorithm 152

A.1 Introduction 152

A.2 System Initialisation 152

A.3 The Request Factoring Algorithm 153

A.4 The Buddy Generating Algorithm 153

A.5 The Allocation Algorithm 154

A.6 The De-allocation Algorithm 154

Appendix B. The Possible Cases for Subtracting Prohibited Regions from RBP’s in

the TBL Allocation Algorithm

155

Appendix C. Publications during the Course of this Research 163

References 168

viii

List of Figures

Figure 1.1: An Example of a 4×4 2D mesh 4

Figure 2.1: An internal fragmentation of 2 processors 20

Figure 2.2: An external fragmentation of 4 processors assuming that the allocation

strategy is contiguous

20

Figure 2.3: An allocation using the frame sliding strategy 22

Figure 2.4: An allocation using First Fit and Best Fit strategies 24

Figure 2.5: Outline of the FF Contiguous Allocation Strategy 24

Figure 2.6: Outline of FF de-allocation algorithm 25

Figure 2.7: Allocation with rotation to request (2, 3, 2) followed by request (3, 2, 1) 27

Figure 2.8: Paging(0) using different indexing schemes: (a) Row-major indexing, (b)

Shuffled row-major indexing, (c) Snake-like indexing, and (d) Shuffled

snake-like indexing

29

Figure 2.9: Outline of the Paging allocation algorithm 30

Figure 2.10: Outline of the Paging de-allocation algorithm 30

Figure 2.11: An 8 × 8 2D mesh receiving an allocation request for 16 processors in MBS

strategy

34

Figure 2.12: A deadlock in wormhole routing caused by 4 messages 40

Figure 3.1: An example of a 4 × 2 × 2 3D mesh 51

ix

Figure 3.2: A sub-mesh inside the 3D mesh 52

Figure 3.3: All possible cases for subtracting a prohibited region from a right border

plane

54

Figure 3.4: Outline of the Detect Procedure in the proposed Contiguous Allocation

Strategy

55

Figure 3.5: Outline of the proposed Contiguous Allocation Strategy 57

Figure 3.6: Allocation Example 58

Figure 3.7: Outline of the proposed de-allocation algorithm 59

Figure 3.8: Average turnaround time vs. system load for the contiguous allocation

strategies (BL, FF, TBL, TFF) and the uniform side lengths distribution in an

8 × 8 × 8 mesh

64

Figure 3.9: Average turnaround time vs. system load for the contiguous allocation

strategies (BL, FF, TBL, TFF) and the exponential side lengths distribution

in an 8 × 8 × 8 mesh

64

Figure 3.10: Mean System utilisation for the contiguous allocation strategies (BL, FF,

TBL, TFF) and the uniform side lengths distribution in an 8 × 8 × 8 mesh

65

Figure 3.11: Mean System utilisation for the contiguous allocation strategies (BL, FF,

TBL, TFF) and the exponential side lengths distribution in an 8 × 8 × 8 mesh

65

Figure 3.12: Average number of allocated sub-meshes (m) in TBL and the uniform side

lengths distribution in 8 × 8 × 8, 10 × 10 × 10, and 12 × 12 × 12 meshes

66

Figure 3.13: Average number of allocated sub-meshes (m) in BL and the uniform side

lengths distribution in 8 × 8 × 8, 10 × 10 × 10, and 12 × 12 × 12 meshes

66

Figure 3.14: Average number of allocated sub-meshes (m) in TBL and the exponential

side lengths distribution in 8 × 8 × 8, 10 × 10 × 10, and 12 × 12 × 12 meshes

67

x

Figure 3.15: Average number of allocated sub-meshes (m) in BL and the exponential

side lengths distribution in 8 × 8 × 8, 10 × 10 × 10, and 12 × 12 × 12 meshes

67

Figure 3.16: Average allocation overhead for the allocation strategies (TBL, TFF, BL,

and FF) and uniform side lengths distribution in an 8 × 8 × 8 mesh

70

Figure 3.17: Average allocation overhead for the allocation strategies (TBL, TFF, BL,

and FF) and exponential side lengths distribution in an 8 × 8 × 8 mesh

70

Figure 3.18: Average allocation overhead for the allocation strategies (TBL, TFF, BL,

and FF) and uniform side lengths distribution in a 10 × 10 × 10 mesh

70

Figure 3.19: Average allocation overhead for the allocation strategies (TBL, TFF, BL,

and FF) and exponential side lengths distribution in a 10 × 10 × 10 mesh

71

Figure 3.20: Average allocation overhead for the allocation strategies (TBL, TFF, BL,

and FF) and uniform side lengths distribution in a 12 × 12 × 12 mesh

71

Figure 3.21: Average allocation overhead for the allocation strategies (TBL, TFF, BL,

and FF) and exponential side lengths distribution in a 12 × 12 × 12 mesh

71

Figure 3.22: Average turnaround time vs. size of the mesh system for the contiguous

allocation strategies (BL, FF, TBL, TFF) and the uniform side lengths

distribution

72

Figure 3.23: Average turnaround time vs. size of the mesh system for the contiguous

allocation strategies (BL, FF, TBL, TFF) and the exponential side lengths

distribution

72

Figure 4.1: Outline of the Detect Procedure in TBL Contiguous Allocation Strategy for

2D Mesh

79

Figure 4.2: Outline of the TBL Contiguous Allocation Strategy for 2D Mesh 80

Figure 4.3: A 6 × 6 sub-mesh with 19 free processors forming several free sub-meshes 83

Figure 4.4: Outline of the Greedy Available Busy List allocation algorithm 83

xi

Figure 4.5: Outline of the Greedy Available Busy List de-allocation algorithm 84

Figure 4.6: Average turnaround time vs. system load for the one-to-all communication

pattern and uniform side lengths distribution in a 16 × 16 mesh

91

Figure 4.7: Average turnaround time vs. system load for the one-to-all communication

pattern and exponential side lengths distribution in a 16 × 16 mesh

91

Figure 4.8: Average turnaround time vs. system load for the all-to-all communication

pattern and uniform side lengths distribution in a 16 × 16 mesh

91

Figure 4.9: Average turnaround time vs. system load for the all-to-all communication

pattern and exponential side lengths distribution in a 16 × 16 mesh

92

Figure 4.10: Average turnaround time vs. system load for the random communication

pattern and uniform side lengths distribution in a 16 × 16 mesh

92

Figure 4.11: Average turnaround time vs. system load for the random communication

pattern and exponential side lengths distribution in a 16 × 16 mesh

92

Figure 4.12: Average waiting time vs. System load for the one-to-all communication

pattern and uniform side lengths distribution in a 16 × 16 mesh

94

Figure 4.13: Average waiting time vs. System load for the one-to-all communication

pattern and exponential side lengths distribution in a 16 × 16 mesh

94

Figure 4.14: Average waiting time vs. System load for the all-to-all communication

pattern and uniform side lengths distribution in a 16 × 16 mesh

95

Figure 4.15: Average waiting time vs. System load for the all-to-all communication

pattern and exponential side lengths distribution in a 16 × 16 mesh

95

Figure 4.16: Average waiting time vs. System load for the random communication pattern

and uniform side lengths distribution in a 16 × 16 mesh

95

Figure 4.17: Average waiting time vs. System load for the random communication pattern

and exponential side lengths distribution in a 16 × 16 mesh

96

xii

Figure 4.18: System utilisation of the non-contiguous allocation strategies (GABL, MBS,

Paging(0)) and contiguous allocation strategy FF, for the three

communication patterns tested, and uniform side lengths distribution in a 16

× 16 mesh

97

Figure 4.19: System utilisation of the non-contiguous allocation strategies (GABL, MBS,

Paging(0)) and contiguous allocation strategy FF, for the three

communication patterns tested, and exponential side lengths distribution in a

16 × 16 mesh

97

Figure 4.20: Percent of jobs allocated contiguously in the non-contiguous allocation

strategies (GABL, MBS, Paging(0)), for the three communication patterns

tested, and uniform side lengths distribution in a 16 × 16 mesh

98

Figure 4.21: Percent of jobs allocated contiguously in the non-contiguous allocation

strategies (GABL, MBS, Paging(0)), for the three communication patterns

tested, and exponential side lengths distribution in a 16 × 16 mesh

98

Figure 4.22: Average blocks per job vs. system load for the one-to-all communication

pattern and uniform side lengths distribution

99

Figure 4.23: Average blocks per job vs. system load for the one-to-all communication

pattern and exponential side lengths distribution

99

Figure 4.24: Average blocks per job vs. system load for the all-to-all communication

pattern and uniform side lengths distribution

100

Figure 4.25: Average blocks per job vs. system load for the all-to-all communication

pattern and exponential side lengths distribution

100

Figure 4.26: Average blocks per job vs. system load for the random communication

pattern and uniform side lengths distribution

100

xiii

Figure 4.27: Average blocks per job vs. system load for the random communication

pattern and exponential side lengths distribution

101

Figure 4.28: Average number of allocated sub-meshes (m) in GABL for the one-to-all

communication pattern and uniform side lengths distribution in a 16 × 16

mesh, a 20 × 20 mesh, and a 24 × 24 mesh

102

Figure 4.29: Average number of allocated sub-meshes (m) in GABL for the one-to-all

communication pattern and exponential side lengths distribution in a 16 × 16

mesh, a 20 × 20 mesh, and a 24 × 24 mesh

102

Figure 4.30: Average number of allocated sub-meshes (m) in GABL for the all-to-all

communication pattern and uniform side lengths distribution in a 16 × 16

mesh, a 20 × 20 mesh, and a 24 × 24 mesh

102

Figure 4.31: Average number of allocated sub-meshes (m) in GABL for the all-to-all

communication pattern and exponential side lengths distribution in a 16 × 16

mesh, a 20 × 20 mesh, and a 24 × 24 mesh

103

Figure 4.32: Average number of allocated sub-meshes (m) in GABL for the random

communication pattern and uniform side lengths distribution in a 16 × 16

mesh, a 20 × 20 mesh, and a 24 × 24 mesh

103

Figure 4.33: Average number of allocated sub-meshes (m) in GABL for the random

communication pattern and exponential side lengths distribution in a 16 × 16

mesh, a 20 × 20 mesh, and a 24 × 24 mesh

103

Figure 4.34: Average number of allocation attempts (b) in GABL for the one-to-all

communication pattern and uniform side lengths distribution in a 16 × 16

mesh, a 20 × 20 mesh, and a 24 × 24 mesh

104

xiv

Figure 4.35: Average number of allocation attempts (b) in GABL for the one-to-all

communication pattern and exponential side lengths distribution in a 16 × 16

mesh, a 20 × 20 mesh, and a 24 × 24 mesh

104

Figure 4.36: Average number of allocation attempts (b) in GABL for the all-to-all

communication pattern and uniform side lengths distribution in a 16 × 16

mesh, a 20 × 20 mesh, and a 24 × 24 mesh

105

Figure 4.37: Average number of allocation attempts (b) in GABL for the all-to-all

communication pattern and exponential side lengths distribution in a 16 × 16

mesh, a 20 × 20 mesh, and a 24 × 24 mesh

105

Figure 4.38: Average number of allocation attempts (b) in GABL for the random

communication pattern and uniform side lengths distribution in a 16 × 16

mesh, a 20 × 20 mesh, and a 24 × 24 mesh

105

Figure 4.39: Average number of allocation attempts (b) in GABL for random

communication pattern and exponential side lengths distribution in a 16 × 16

mesh, a 20 × 20 mesh, and a 24 × 24 mesh

106

Figure 4.40: Average turnaround time vs. mesh system size for the one-to-all

communication pattern and the uniform side lengths distribution

107

Figure 4.41: Average turnaround time vs. mesh system size for the one-to-all

communication pattern and the exponential side lengths distribution

108

Figure 4.42: Average turnaround time vs. mesh system size for the all-to-all

communication pattern and the uniform side lengths distribution

108

Figure 4.43: Average turnaround time vs. mesh system size for the all-to-all

communication pattern and the exponential side lengths distribution

108

Figure 4.44: Average turnaround time vs. mesh system size for the random

communication pattern and the uniform side lengths distribution

109

xv

Figure 4.45: Average turnaround time vs. mesh system size for the random

communication pattern and the exponential side lengths distribution

109

Figure 4.46: Average turnaround time vs. system load for the one-to-all communication

pattern and uniform side lengths distribution with a 64-flits packet length in

a 16 × 16 mesh

111

Figure 4.47: Average turnaround time vs. system load for the one-to-all communication

pattern and exponential side lengths distribution with a 64-flits packet length

in a 16 × 16 mesh

111

Figure 4.48: Average turnaround time vs. system load for the all-to-all communication

pattern and uniform side lengths distribution with a 64-flits packet length in

a 16 × 16 mesh

112

Figure 4.49: Average turnaround time vs. system load for the all-to-all communication

pattern and exponential side lengths distribution with a 64-flits packet length

in a 16 × 16 mesh

112

Figure 4.50: Average turnaround time vs. system load for the random communication

pattern and uniform side lengths distribution with a 64-flits packet length in

a 16 × 16 mesh

112

Figure 4.51: Average turnaround time vs. system load for the random communication

pattern and exponential side lengths distribution with a 64-flits packet length

in a 16 × 16 mesh

113

Figure 5.1: Turnaround time in BL, FF, TBL, and TFF under the exponential and heavy-

tailed job execution times with FCFS scheduling strategy and the uniform

side lengths distribution in an 8 × 8 × 8 mesh

123

xvi

Figure 5.2: Mean system utilisation in BL, FF, TBL, and TFF under the exponential and

heavy-tailed job execution times with FCFS scheduling strategy and the

uniform side lengths distribution in an 8 × 8 × 8 mesh

124

Figure 5.3: Average turnaround time vs. system load for the contiguous allocation

strategies (BL, FF, TBL, TFF) under the scheduling strategies (FCFS and

SSD) and the uniform side lengths distribution in an 8 × 8 × 8 mesh

125

Figure 5.4: Average turnaround time vs. system load for the contiguous allocation

strategies (BL, FF, TBL, TFF) under the scheduling strategies (FCFS and

SSD) and the exponential side lengths distribution in an 8 × 8 × 8 mesh

126

Figure 5.5: Mean System utilisation for the contiguous allocation strategies (BL, FF,

TBL, TFF) under the scheduling strategies (FCFS and SSD) and the uniform

side lengths distribution in an 8 × 8 × 8 mesh

127

Figure 5.6: Mean System utilisation for the contiguous allocation strategies (BL, FF,

TBL, TFF) under the scheduling strategies (FCFS and SSD) and the

exponential side lengths distribution in an 8 × 8 × 8 mesh

127

Figure 5.7: Average number of allocated sub-meshes (m) in TBL under the scheduling

strategies (FCFS and SSD) and the uniform side lengths distribution in 8 × 8

× 8, 10 × 10 × 10 and 12 × 12 × 12 meshes

129

Figure 5.8: Average number of allocated sub-meshes (m) in TBL under the scheduling

strategies (FCFS and SSD) and the exponential side lengths distribution in 8

× 8 × 8, 10 × 10 × 10 and 12 × 12 × 12 meshes

129

Figure 5.9: Average number of allocated sub-meshes (m) in BL under the scheduling

strategies (FCFS and SSD) and the uniform side lengths distribution in 8 × 8

× 8, 10 × 10 × 10 and 12 × 12 × 12 meshes

129

xvii

Figure 5.10: Average number of allocated sub-meshes (m) in BL under the scheduling

strategies (FCFS and SSD) and the exponential side lengths distribution in 8

× 8 × 8, 10 × 10 × 10 and 12 × 12 × 12 meshes

130

Figure 5.11: Average allocation overhead for the contiguous allocation strategies (TBL

and TFF) under the scheduling strategies (FCFS and SSD) and uniform side

lengths distribution in an 8 × 8 × 8 mesh

131

Figure 5.12: Average allocation overhead for the contiguous allocation strategies (TBL

and TFF) under the scheduling strategies (FCFS and SSD) and exponential

side lengths distribution in an 8 × 8 × 8 mesh

132

Figure 5.13: Average allocation overhead for the contiguous allocation strategies (BL and

FF) under the scheduling strategies (FCFS and SSD) and uniform side

lengths distribution in an 8 × 8 × 8 mesh

132

Figure 5.14: Average allocation overhead for the contiguous allocation strategies (BL and

FF) under the scheduling strategies (FCFS and SSD) and exponential side

lengths distribution in an 8 × 8 × 8 mesh

132

Figure 5.15: Average allocation overhead for the contiguous allocation strategies (TBL

and TFF) under the scheduling strategies (FCFS and SSD) and uniform side

lengths distribution in an 10 × 10 × 10 mesh

133

Figure 5.16: Average allocation overhead for the contiguous allocation strategies (TBL

and TFF) under the scheduling strategies (FCFS and SSD) and exponential

side lengths distribution in an 10 × 10 × 10 mesh

133

Figure 5.17: Average allocation overhead for the contiguous allocation strategies (BL and

FF) under the scheduling strategies (FCFS and SSD) and uniform side

lengths distribution in an 10 × 10 × 10 mesh

133

xviii

Figure 5.18: Average allocation overhead for the contiguous allocation strategies (BL and

FF) under the scheduling strategies (FCFS and SSD) and exponential side

lengths distribution in an 10 × 10 × 10 mesh

134

Figure 5.19: Average allocation overhead for the contiguous allocation strategies (TBL

and TFF) under the scheduling strategies (FCFS and SSD) and uniform side

lengths distribution in a 12 × 12 × 12 mesh

134

Figure 5.20: Average allocation overhead for the contiguous allocation strategies (TBL

and TFF) under the scheduling strategies (FCFS and SSD) and exponential

side lengths distribution in a 12 × 12 × 12 mesh

134

Figure 5.21: Average allocation overhead for the contiguous allocation strategies (BL and

FF) under the scheduling strategies (FCFS and SSD) and uniform side

lengths distribution in a 12 × 12 × 12 mesh

135

Figure 5.22: Average allocation overhead for the contiguous allocation strategies (BL and

FF) under the scheduling strategies (FCFS and SSD) and exponential side

lengths distribution in a 12 × 12 × 12 mesh

135

Figure 5.23: Average turnaround time vs. size of the mesh system for the contiguous

allocation strategies (BL, FF, TBL, TFF) and the uniform side lengths

distribution under FCFS and SSD scheduling strategies

136

Figure 5.24: Average turnaround time vs. size of the mesh system for the contiguous

allocation strategies (BL, FF, TBL, TFF) and the exponential side lengths

distribution under FCFS and SSD scheduling strategies

137

xix

List of Tables

Table 3.1: The System Parameters Used in the Simulation Experiments 60

Table 3.2: The mean (i.e., mean turnaround time of job), confidence interval, and relative

error for the results shown in Figure 3.8 for the load 5.8 jobs/time unit

62

Table 4.1: The System Parameters used in the Simulation Experiments 87

Table 4.2: The mean (i.e., mean turnaround time of job), confidence interval, and relative

error for the results shown in Figure 4.6 for the load 0.0185 jobs/time unit

88

Table 5.1: The System Parameters Used in the Simulation Experiments 120

Table 5.2: The mean (i.e., mean turnaround time of job), confidence interval, and relative

error for the results shown in Figure 5.3 for the load 0.035 jobs/time unit and

the SSD scheduling strategy

121

Chapter 1

Introduction

Parallel computers are generally considered to be one of the most feasible ways of achieving

the ever-growing computational power required by many real-life parallel applications,

especially in the fields of science and engineering [43, 70, 90]. A Parallel Computer consists

of a set of processors that cooperate with each other to find a solution to a given problem

[36]. The inter-processor communication may be based on either the shared-memory or

distributed-memory model. In shared-memory architectures, also known as multiprocessors,

processors communicate via shared memory. However, in distributed-memory parallel

computers, also known as multicomputers, processors communicate by means of

interchanging messages through an interconnection network [4, 29, 64, 83].

Generally, interconnection networks can be divided into two categories: indirect and direct

networks [4, 5, 14, 29, 32, 64, 83]. In indirect networks, multiple intermediate stages of

switches are used to interconnect the nodes (i.e., processors) of a multiprocessor; examples

of indirect networks include the crossbar [32, 83], bus [5, 83], and multistage

interconnection networks [14, 83]. In direct networks, each node has a point-to-point

Chapter 1: Introduction 2

connection to one or more nodes (known as its neighbours), allowing for direct

communication between these nodes; examples of direct networks include the mesh [4, 82],

k-ary n-cube [29], and hypercube [43]. Direct networks have been extensively employed in

large-scale multicomputers because of their scalability; they can be scaled up by adding

nodes and channels based on the predefined network structure [4, 29, 64, 90]. Moreover,

direct networks are able to exploit communication locality (nearest neighbour

communication) that is exhibited by many real-world applications.

Among the various multicomputer architectures, those based on the mesh network have

received much attention due to the simplicity, structural regularity, partition-ability, and ease

of implementation of this network [9, 18, 20, 21, 27, 31, 33, 35, 51, 52, 77, 78, 85, 99].

Meshes are suited to a variety of applications, including matrix computations, image

processing and problems whose task graphs can be embedded naturally into the mesh [27,

89, 95]. Moreover, the mesh has been used as the underlying network in a number of

practical and experimental parallel machines, such as the Intel Paragon [39], the Cray XT3

[19, 60], the MIT J-machine [61], the Cray T3D [67], the Cray T3E [25], the iWARP [15],

the IBM BlueGene/L [10, 55, 97, 98], and the Delta Touchstone [40].

Definition 1.1: An n-dimensional mesh has 1210 −− ×××× nn kkkk nodes, where

ik is the number of nodes along the thi dimension and 2≥ik . Each node a is identified by

n coordinates,)(),(.....,),........(),(1210 aaaa nn −− ρρρρ , where ii ka <≤)(0 ρ for

ni <≤0 . Two nodes a and b are neighbours if and only if)()(ba ii ρρ = for all

dimensions, except for one dimension j , where 1)()(±= ab jj ρρ . Each node in a mesh

refers to a processor, and any two neighbours are interconnected by a direct

communication link.

Chapter 1: Introduction 3

Definition 1.2: A 2D mesh, referred to as),(LWM , consists of LW × processors, where

W is the width of the mesh and L is its length. Every processor is denoted by a pair of

coordinates),(yx , where Wx <≤0 and Ly <≤0 . A processor is connected by a

bidirectional communication link to each of its neighbours.

Definition 1.3: In a 2D mesh,),(LWM , a sub-mesh),(lwS is a two-dimensional sub-mesh

of nodes belonging to),(LWM with width w and length l , where Ww ≤<0 and

Ll ≤<0 .),(lwS is represented by the coordinates),,,(yxyx ′′ , where),(yx is the lower

left corner of the sub-mesh, and),(yx ′′ is its upper right corner. The lower left corner node

is called the base node of the sub-mesh, whereas the upper right corner node is the end

node. Here, 1+−′= xxw and 1+−′= yyl . The size of),(lwS is lw× processors.

Definition 1.4: In a 2D mesh,),(LWM , a suitable sub-mesh),(lwS is a free sub-mesh that

satisfies the conditions: α≥w and β≥l assuming that the allocation of),(βαS is

requested, where the allocation refers to selecting a set of processors to an incoming job.

Figure 1.1 shows an example of a 4 × 4 2D mesh, where allocated processors are denoted by

shaded circles and free processors are denoted by clear circles. The mesh network has the

desirable property of being partitionable into smaller sub-meshes [18, 49, 73, 77, 79, 85].

For example, (0, 0, 2, 1) represents the 3 × 2 sub-mesh S in Figure 1.1, where (0, 0) are the

coordinates of the base of the sub-mesh and (2, 1) are the coordinates of its end. A

partitionable system has the advantage of enabling the allocation of multiple simultaneous

jobs, which can result in good processor utilisation [18, 77, 85]. The execution time of a job

can often be reduced by allocating as many processors to the job as possible. In the presence

of multiple jobs, the mesh can be partitioned into sub-meshes so that each job can be

Chapter 1: Introduction 4

allocated its own sub-mesh [85]. When a job departs the mesh system, its allocated

processors need to be combined with other idle processors in the mesh system. Otherwise,

severe processor fragmentation may arise, causing degradation in the overall system

performance [18, 49, 73, 77, 79, 85].

In this research, we assume that jobs executing on mesh-connected multicomputers are

parallel programs consisting of tasks that communicate with each other via message passing.

Upon arrival, a job requests the allocation of a sub-mesh of a given size. As previously

reported in definition 1.4, the selection of the processors to be allocated to the job is referred

to as processor allocation.

The remainder of this chapter is organized as follows. Section 1.1 describes the different

types of processor allocation algorithms and provides an overview of the processor

allocation strategies proposed previously for 2D and 3D mesh-connected multicomputers.

We limit our attention to these low-dimensional meshes because they have received much

consideration by researchers recently [9, 11, 16, 24, 26, 28, 31, 33, 34, 35, 45, 51, 52, 71, 72,

73, 74, 75, 76, 77, 78, 79, 81, 97]. Furthermore, many parallel machines in the real world,

such as the iWARP [15], the MIT J-machine [61], the Intel Paragon [39], the Cray T3D [67],

 (0,1) (1,1) (2,1) (3,1)
: Free Node

: Allocated Node

Figure 1.1: An Example of a 4 ××××4 2D mesh

S

 (0,3) (1,3) (2,3) (3,3)

 (0,2) (1,2) (2,2) (3,2)

 (0,0) (1,0) (2,0) (3,0)

Chapter 1: Introduction 5

the IBM BlueGene/L [10, 55, 97, 98], and the Cray T3E [25] have used these low-

dimensional meshes as their underlying topology. Section 1.2 presents the motivations for

the present research. Section 1.3 presents the thesis statement. Section 1.4 presents the main

contributions of this research. Finally, Section 1.5 provides an outline of the rest of the

thesis.

1.1 Processor Allocation

Efficient processor allocation and job scheduling are critical if the full computational power

of large-scale multicomputers is to be harnessed effectively [9, 27, 31, 78, 94]. Processor

allocation is responsible for selecting the set of processors on which a parallel job is

executed, whereas job scheduling is responsible for determining the order in which jobs are

selected for execution [9, 11, 20]. The job scheduler selects the next job to execute using the

scheduling policy, and then the processor allocator finds free processors for the selected job

[50, 66]. If an arriving job cannot be run immediately, due to a lack of free processors or the

existence of other waiting jobs, for example, it is diverted to the waiting queue. Once

processors are allocated to a job, the job holds these processors exclusively until it finishes

running. At this time, it departs from the system and the processors are freed for use by

other jobs.

A processor allocation strategy may have a partial or full sub-mesh recognition capability

[85, 99]. Full sub-mesh recognition capability means that the allocation strategy can identify

a free sub-mesh of the requested size as long as it exists in the mesh system, while partial

recognition capability means that the allocation strategy may fail to identify a free sub-mesh

of the requested size although one exists. Having full sub-mesh recognition capability

improves system performance, but increases the time needed to allocate a sub-mesh to a new

job, as has been shown in [26, 31, 34, 94, 97]. With increased system size, the time to search

Chapter 1: Introduction 6

for free processors that satisfy an incoming request might be comparable to the job’s

execution time [46]. Hence it is important to develop techniques for minimizing the search

time (also referred to as the allocation time). Minimization of the allocation time in mesh-

connected multicomputers is fundamental. This is because a major goal of parallel execution

is to minimize the turnaround time of jobs (i.e., the time that a job is expected to spend in

the mesh system from arrival to departure). However, the allocation time of many existing

allocation strategies [26, 31, 34, 94, 97] increases when the number of processors in the

mesh increases.

Processor allocation strategies can be divided into two main categories: contiguous and non-

contiguous [18, 49, 71, 72, 73, 77, 79, 85]. In the contiguous allocation strategy, jobs are

allocated distinct contiguous processor sub-meshes for the duration of their execution [9, 11,

21, 27, 31, 33, 35, 38, 48, 65, 74, 78, 80, 94, 99]. Such a strategy can lead to high processor

fragmentation, as has been shown in [99]. High processor fragmentation degrades system

performance parameters, such as the average turnaround time of jobs and the mean system

utilisation (i.e., the percentage of processors that are utilized over a given period of time).

Processor fragmentation is of two types: internal and external [11, 85]. Internal

fragmentation occurs when more processors are allocated to a job than it requires, whereas

external fragmentation occurs when there are free processors sufficient in number to satisfy

a pending allocation request, but they are not allocated because they are not contiguous.

Examples of contiguous allocation strategies1 that have been developed for 2D mesh-

connected multicomputers include the Two Dimensional Buddy System (2DBS) [48], Frame

Sliding (FS) [65], Adaptive Scan (AS) [41], and First Fit (FF) and Best Fit (BF) [99]. The

Chapter 1: Introduction 7

2DBS [48] is simple, but it applies to square mesh systems only and suffers from internal

and external processor fragmentation. The FS strategy [65] is applicable to a mesh of any

size and any sub-mesh shape, but it suffers from external fragmentation as it cannot

recognize all free sub-meshes. The frame sliding operation is such that it may skip over a

large-enough free sub-mesh because the frame sliding operation is by the job’s width and

length. The AS strategy [41] has been shown to improve system performance by switching

the orientation (i.e., rotation) of any allocation request that cannot be accommodated in the

requested orientation. A job that requests an βα × sub-mesh may be allocated a αβ × sub-

mesh. However, the allocation time of AS is high compared to FS because the AS strategy

scans processors in the mesh system with a vertical stride distance of 1 processor (i.e.,

Jumps to successive processors are by 1 processor). The FF and BF strategies [99] can

detect all large-enough free sub-meshes, but they lack complete sub-mesh recognition ability

in that they do not consider switching the orientation of requests.

Examples of contiguous allocation strategies that have been suggested for 3D mesh-

connected multicomputers include First Fit (FF) and Best Fit (BF) [34], Turning First Fit

(TFF) and Turning Best Fit (TBF) [34], and the Allocation Algorithm for the IBM

BlueGene/L [97]. The FF and BF strategies [34] are simple, but they do not permit changing

the orientation of requests, hence they suffer from high external processor fragmentation.

The TFF and TBF [34] improve performance by considering all orientations of the request

when needed, however their allocation overhead (i.e., allocation and de-allocation time) is

high. The Allocation Algorithm for the IBM BlueGene/L [97] assumes that a job can utilize

an integer number of midplanes (a midplane is a page of 8 × 8 × 8 processors). Otherwise,

there is internal processor fragmentation, which can be severe because this allocation unit is

1 The details of the existing contiguous allocation strategies will be provided in Chapter 2.

Chapter 1: Introduction 8

rather large.

Although contiguous allocation suffers from low overall system utilisation [31, 33, 85], it

has been proposed for use in the IBM BlueGene/L for security reasons; because of the

sensitive nature of some of its applications, a BlueGene/L job is allocated a sub-mesh of

processors that is isolated from sub-meshes allocated to other jobs [97].

So as to reduce the processor fragmentation that contiguous allocation suffers from, non-

contiguous allocation has been proposed [18, 44, 49, 71, 72, 77, 85]. In non-contiguous

allocation, a job can execute on multiple disjoint smaller sub-meshes rather than always

waiting until a single sub-mesh of the requested size and shape is available [18, 44, 49, 71,

72, 77, 85]. In Figure 1.1 above, if a job requests the allocation of a sub-mesh of size 2 × 2,

contiguous allocation fails because no 2 × 2 sub-mesh of free processors is available.

However, the four free processors (depicted in the figure by white circles) can be allocated

to the job when the non-contiguous allocation is adopted. Although non-contiguous

allocation can increase message contention in the network, lifting the contiguity condition is

expected to reduce processor fragmentation and increase processor utilisation, as has been

shown in [85].

The wide adoption of wormhole routing2 [11, 18, 83] in practical systems has encouraged

researchers to consider non-contiguous allocation for multicomputers that use networks

characterised by long communication distances (e.g., the mesh) [18, 49, 71, 72, 77, 85]. A

major advantage of wormhole routing over earlier switching techniques, especially store-

and-forward, is that message latency is less sensitive to message distance, especially under

2 Wormhole routing is a switching technique which has been used in multicomputers. The detailed operation of

wormhole routing will be provided in Chapter 2.

Chapter 1: Introduction 9

light to moderate traffic conditions [2, 43]. Recognising that wormhole routing can mitigate

the additional communication overhead, non-contiguous allocation has received increased

interest from the research community due to its ability to allocate small sub-meshes of free

processors scattered throughout the mesh-connected multicomputer instead of waiting until

a single large free sub-mesh is available, which significantly decreases external processor

fragmentation [11, 18, 71, 72, 77, 85]. Experiments on a 208-processor Paragon, a

multicomputer based on a 2D mesh with wormhole routing, have indicated that the

communication overhead in non-contiguous allocation may not be so severe as to offset the

benefits of reduced fragmentation [85].

The method used for partitioning allocation requests has considerable impact on the

performance of non-contiguous allocation [71, 72]. In particular, the partitioning process

should aim to maintain a high degree of contiguity between the processors allocated to a

parallel job. This is so that the communication overhead is reduced without adversely

affecting the overall system performance [71, 72, 73, 79].

Existing non-contiguous allocation strategies3 include Random [85], Paging [85], Multiple

Buddy Strategy (MBS) [85], Adaptive Non-Contiguous Allocation (ANCA) [18], Adaptive

Scan and Multiple Buddy (AS&MB) [49], and several recent Paging variants [24]. In

Random [85], both internal and external fragmentations are eliminated, but high

communication interference amongst jobs is to be expected. In Paging [85], there is some

degree of contiguity among processors allocated to a parallel job, and contiguity can be

increased by using larger pages. However, there can be internal processor fragmentation for

page sizes larger than one. MBS [85] has been shown to improve performance compared to

the earlier strategies, but it may fail to allocate a contiguous sub-mesh of free processors

Chapter 1: Introduction 10

although one exists. Hence, it can increase the communication overhead. ANCA [18]

subdivides the request into i2 equal parts during the thi iteration. Also, it requires that

allocation to all parts occur in the same partitioning and allocation iteration, which can

result in skipping over the possibility of allocating larger sub-meshes for a large part of the

request in a previous iteration. This can increase the communication overhead. Moreover,

allocation fails if a side length of the sub-parts reaches one, which can cause external

fragmentation. The performance of AS&MB [49] in terms of response times and service

times can be almost identical to that of MBS [85] as has been shown in [44]. However,

AS&MB suffers from high allocation overhead for large meshes. In the Paging variants [24],

the unit of allocation is a single processor, whereas it can be larger in MBS [85] and ANCA

[18]. As a consequence, the Paging variants can require a long time to reach an allocation

decision in large machines [97].

1.2 Motivations

The results of previous research suggest that new contiguous as well as non-contiguous

allocation strategies for mesh-connected multicomputers are needed. The motivation for the

development of a new contiguous allocation strategy for the 3D mesh network has been

driven by the observation that the existing contiguous allocation strategies suggested for the

3D mesh achieve complete sub-mesh recognition capability only at the expense of a high

allocation overhead [31, 34, 94, 97] that accounts for the time required to allocate and de-

allocate processors to an incoming job. The allocation overhead of the previously proposed

algorithms for contiguous allocation in 3D meshes and tori grow with the system size [26,

31, 34, 94].

3 The details of the existing non-contiguous allocation strategies will be provided in Chapter 2.

Chapter 1: Introduction 11

The motivation for the development of a new non-contiguous allocation strategy for the 2D

mesh has been driven by the observation that the existing non-contiguous allocation

strategies suggested for the 2D mesh network suffer from several problems that include

internal fragmentation, external fragmentation, and message contention inside the network

[18, 24, 84, 85]. Furthermore, the allocation of processors to job requests is not based on

free contiguous sub-meshes in all of the existing strategies [18, 85] but rather on artificial

predefined geometric or arithmetic patterns [18, 85]. For example, in [18], ANCA

subdivides the job request into two equal parts, and the subparts are successively subdivided

in a similar fashion if allocation fails for any of them. In [85], MBS bases partitioning on a

base-4 representation of the number of processors requested, and partitioning in Paging [85]

is based on the characteristics of the page, which is globally predefined independently from

the request. Hence these strategies may fail to allocate an available large sub-mesh, which in

turn can cause degradation in system performance, such as the turnaround times of jobs.

Many previous studies [6, 11, 18, 27, 31, 33, 34, 35, 38, 48, 49, 51, 52, 74, 78, 85, 94, 99]

have used the exponential distribution for job execution times when evaluating the

performance of a new allocation strategy. Therefore, an exponential distribution has been

assumed for our suggested allocation strategies in order to evaluate their performance

properties against those of the existing strategies. However, many measurement studies [22,

47, 56, 57, 58, 59, 88, 96] have convincingly demonstrated that the execution times of

certain computational jobs can be characterised by heavy-tailed distributions; that is, many

jobs are short and fewer are long. Heavy-tailed distributions can capture this variability and

have been shown to behave quite differently from the exponential distribution [22, 57, 58,

75]. In particular, when sampling random variables that follow a heavy-tailed distribution,

the probability of large generated values is non-negligible [22, 47, 56, 57, 58, 59, 88, 96].

Chapter 1: Introduction 12

1.3 Thesis Statement

Current allocation strategies used in mesh-connected multicomputers can be classified into

two categories: contiguous and non-contiguous. The existing contiguous allocation

strategies manage to achieve complete sub-mesh recognition capability but at the expense of

high allocation overhead. On the other hand, existing non-contiguous allocation strategies

suffer from several problems that include internal fragmentation, external fragmentation,

and message contention inside the network. Also, they do not exploit knowledge of the

current state of the system (e.g., currently available sub-meshes).

A number of measurement studies have convincingly demonstrated that the execution times

of many computational jobs can be characterised by heavy-tailed distributions (e.g.,

Bounded Pareto). However, the effectiveness of most suggested allocation strategies have

been evaluated under the assumption of exponentially distributed execution times, which

may not reflect all possible practical scenarios.

This thesis will justify the following key claims:

T1: A contiguous allocation strategy can be developed that exhibits competitive system

performance (e.g., a low job turnaround time and high system utilisation) with a

lower allocation overhead compared to existing strategies for 3D mesh-connected

multicomputers. This is achieved by maintaining a list of allocated sub-meshes in

order to efficiently determine the processors that can form an allocation sub-mesh

for a new allocation request.

T2: A non-contiguous allocation strategy for 2D mesh-connected multicomputers can be

developed where requests are partitioned by tracking free sub-meshes so as to

Chapter 1: Introduction 13

maintain a high degree of contiguity. This strategy is free from both internal and

external fragmentation, and reduces message contention. It also improves system

performance in terms of job turnaround times compared to the existing strategies

and exhibits a high system utilisation as it manages to eliminate both internal and

external fragmentation.

T3: The performance of contiguous allocation strategies can be significantly affected by

both the type of the distribution adopted for job execution times and the scheduling

strategy adopted for determining the order in which jobs are selected for execution.

To date, no study has been reported that analyses the impact of heavy-tailed job

execution on the performance of the allocation strategies. When the performance of

the new contiguous allocation strategy described in T1, as well as the traditional

allocation strategies, is re-visited in the context of jobs with execution times

following both heavy-tailed and exponential distributions, using First-Come-First-

Served (FCFS) scheduling strategy, the performance of the allocation strategies

degrades when the distribution of job execution times is heavy-tailed, an appropriate

scheduling strategy should be adopted to deal with heavy-tailed distributions and, in

this regard, our analysis will demonstrate that the Shortest-Service-Demand (SSD)

scheduling strategy exhibits superior performance over the FCFS scheduling

strategy.

 1.4 Main Contributions

To address the above research concerns listed in the motivations section, this thesis presents

efficient contiguous and non-contiguous allocation strategies that overcome the limitations

of the existing strategies suggested previously for the 2D and 3D mesh networks.

Chapter 1: Introduction 14

In the first part of this research, an efficient contiguous allocation algorithm, referred to as

Turning Busy List (or TBL for short), for 3D mesh-connected multicomputers is proposed.

The TBL strategy considers only those available free sub-meshes which border from the left

of those already allocated sub-meshes or which have their left boundaries aligned with that

of the whole mesh network.The TBL strategy can identify a free sub-mesh of the requested

size as long as it exists in the mesh system. It can do so because it relies on a new approach

that maintains a list of allocated sub-meshes to determine the processors that can form an

allocation sub-mesh for a new allocation request. The TBL strategy is shown to exhibit a

lower allocation overhead than that in the previous strategies [34]. Moreover, simulation

results show that system performance, in terms of parameters such as turnaround times and

system utilisation, is as good as that of the previously promising proposed strategies [34].

In the second part of this research, a new non-contiguous allocation algorithm, referred to as

Greedy Available Busy List (or GABL for short), for the 2D mesh-connected multicomputer

is suggested. The GABL strategy combines the desirable features of both contiguous and

non-contiguous allocation. For example, the desirable features of contiguous allocation

include the elimination of the communication overhead between processors allocated to a

parallel job, and achieving complete sub-mesh recognition capability with low allocation

overhead. The desirable features of non-contiguous allocation are reducing processor

fragmentation and alleviating the communication overhead between processors allocated to

a job by maintaining a high degree of contiguity between them. Moreover, GABL is general

enough in that it could be applied to either the 2D or 3D mesh. However, for the sake of the

present discussion, the new non-contiguous allocation strategy is adapted for the 2D mesh in

order to compare its performance against that of the existing non-contiguous allocation

strategies suggested for the 2D mesh; it is worth pointing out that there has been hardly any

non-contiguous allocation strategy which has been suggested for the 3D mesh network.

Chapter 1: Introduction 15

The proposed GABL strategy relies on a new approach that maintains a higher degree of

contiguity among processors than that of the previous non-contiguous allocation strategies.

This decreases the number of sub-meshes allocated to a job, hence the distance traversed by

messages is decreased, which in turn decreases the communication overhead. Our simulation

results indicate that GABL has better performance in terms of the turnaround time than the

previous non-contiguous allocation strategies proposed in [85]. Moreover, when message

contention is increased inside the network due to using all-to-all communication patterns,

for example, GABL exhibits superior performance over previous contiguous and non-

contiguous allocation strategies. Furthermore, GABL is able to eliminate internal as well as

external fragmentation from which several previous allocation strategies suffer.

In the Final part of this research, the performance of the existing contiguous allocation

strategies for 3D mesh-connected multicomputers, including the ones proposed in this

research, is revisited in the context of heavy-tailed job execution times. To the best of our

knowledge, this research is the first to consider heavy-tailed distributions in the context of

processor allocation in mesh-connected multicomputers. In this part, the performance of

allocation strategies is measured in terms of the usual performance parameters [6, 9, 18, 21,

27, 31, 33, 34, 35, 38, 71, 72, 73, 74, 75, 76, 77, 78, 79, 85, 94, 99], including the average

turnaround time and mean system utilisation, as well as the measured allocation overhead,

that is, the time that the allocation and de-allocation operations take per job. Our results

show that the system performance of the allocation strategies degrades considerably when

the distribution of job execution times is heavy-tailed. Our analysis also shows that when

job execution times follow a heavy-tailed distribution, the SSD scheduling strategy

improves the performance of the allocation strategies compared to the FCFS scheduling

strategy. In addition, the results show that our suggested contiguous allocation strategy has a

low allocation overhead and its system performance in terms of average turnaround time and

Chapter 1: Introduction 16

mean system utilisation is as good as the best competitor of the previous contiguous

allocation strategies.

1.5 Outline of the Thesis

The rest of the thesis is organised as follows. Chapter 2 describes well-known contiguous

and non-contiguous allocation strategies that have been proposed for mesh-connected

multicomputers and presents the system model assumed in this research. A list of

assumptions used in this research is also provided. Finally, the chapter describes the method

of study used in this research and justifies the selection of simulation as a study tool.

Chapter 3 introduces the Turning Busy List (TBL) as a new contiguous allocation algorithm

for 3D mesh-connected multicomputers, and discusses the main features of this algorithm.

Also, extensive simulation experiments are carried out in order to compare the performance

of the proposed allocation strategy against well-known contiguous allocation strategies.

Chapter 4 introduces the Greedy Available Busy List (GABL) strategy as a new non-

contiguous allocation algorithm for 2D mesh-connected multicomputers. The main features

of the GABL strategy are also discussed, and extensive simulation experiments are carried

out in order to evaluate the performance of the this strategy and compare it against existing

well-known contiguous and non-contiguous allocation strategies.

Chapter 5 conducts an extensive performance study of the existing contiguous allocation

strategies, including the one proposed in Chapter 3 for 3D mesh-connected multicomputers

when the job execution times follow a heavy-tailed distribution. The strategies are evaluated

using simulation experiments for both FCFS and SSD scheduling strategies under a variety

of system loads and system sizes.

Chapter 1: Introduction 17

Chapter 6 summarises the main results presented in this research and outlines possible

directions to continue this work in the future.

Chapter 2

Background and Preliminaries

2.1 Introduction

Space sharing can be used in addition to time sharing in parallel computers due to the

presence of multiple processors in such computers [11, 17, 37]. In space sharing, a job is

allocated a distinct subset of processors; that is, no processor is concurrently assigned to

more than one job [6, 11, 17, 37]. In time sharing, a processor spends an interval of time

executing a job, then it switches to the execution of another one [6, 11, 17, 37]. The

overhead that results from the context switches1 in time sharing degrades system

performance, and as a result it has become less popular in practical systems [11, 17].

Most existing allocation strategies employ space sharing [9, 11, 18, 20, 21, 24, 26, 27, 31,

33, 34, 35, 38, 48, 49, 51, 52, 65, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 85, 94, 99] and can

be categorised as contiguous and/or non-contiguous. In contiguous allocation [9, 20, 21, 26,

1 A context switch is the process of storing and restoring the state (context) of processors such that multiple jobs

can share these processors.

Chapter 2: Background and Preliminaries 19

27, 31, 33, 34, 35, 38, 48, 52, 65, 74, 75, 78, 94, 99], the allocated processors are physically

contiguous and have the same topology as the underlying multicomputer network (i.e.,

mesh) in order to keep minimal the communication overhead between allocated processors.

A direct consequence of contiguous allocation is that good system utilization is not

achievable due to the fragmentation problem that contiguous allocation suffers from [18,

85]. As previously reported in Chapter 1, the fragmentation problem is of two types: internal

and external processor fragmentation. Internal fragmentation occurs when some of the

processors allocated to a job are not used, whereas external fragmentation occurs when a

sufficient number of free processors are available to satisfy a job request but they are not

allocated to it because they are not contiguous.

Figure 2.1 shows a job that requested 2 processors and was allocated 4 processors; hence

there is an internal fragmentation of 50%. Figure 2.2 shows the existence of an external

fragmentation of 4 processors due to processor non-contiguity, assuming that the allocation

strategy is contiguous. The 4 free processors are not allocated to the request because they

are not contiguous. To solve this problem, some researchers [18, 24, 49, 71, 72, 84, 85] have

opted for non-contiguous allocation where a job can be executed on multiple disjoint sub-

meshes rather than waiting until a single sub-mesh of the requested size is available.

Initially, non-contiguous allocation did not receive much attention from researchers. This is

because the communication latency was very sensitive to the distance between

communicating nodes when store-and-forward switching was dominant in the first

generation of multicomputer networks [11]. However, advances in switching technique,

such as wormhole switching (also widely known as wormhole routing) [2, 4, 11, 13, 29, 71,

72, 83], have made non-contiguous allocation plausible in mesh-connected multicomputers.

This is because one of the advantages of wormhole switching over earlier switching

schemes, mainly store-and-forward, is that message latency depends less on the message

distance [2, 43].

Chapter 2: Background and Preliminaries 20

The main objective of this chapter is to describe some of the existing contiguous and non-

contiguous allocation strategies that have been proposed in the literature [18, 24, 34, 41, 48,

49, 65, 84, 85, 97, 99] for mesh-connected multicomputers. This chapter also describes the

system model assumed in this study. Such background is necessary for understanding the

subsequent chapters. The remainder of this chapter is organized as follows. Section 2.2

describes the existing allocation strategies. Section 2.3 provides the system model assumed

in this research. Section 2.4 outlines the list of assumptions used in this research. Section 2.5

describes the simulation tool (ProcSimity Simulator) while Section 2.6 justifies the selection

of simulation as a tool of study. Finally, Section 2.7 summarises this chapter.

 : Allocated Node

 : Free Node

 : Allocated to request

Figure 2.2: An external fragmentation of 4 processo rs assuming that
the allocation strategy is contiguous.

A job requests a
2 × 2 sub-mesh

processors as a

 : Allocated Node

 : Free Node

 : Allocated to request

A job requests 2
processors

Figure 2.1: An internal fragmentation of 2 processo rs

Chapter 2: Background and Preliminaries 21

2.2 Related Allocation Strategies

This section provides a brief overview of some existing contiguous and non-contiguous

allocation strategies that have been suggested for both the 2D and the 3D mesh-connected

multicomputers.

2.2.1 Contiguous Allocation Strategies for 2D and 3D Mesh

Contiguous allocation has been extensively investigated for mesh-connected multicomputers

[9, 20, 21, 27, 31, 33, 34, 38, 48, 51, 52, 65, 78, 80, 94, 99]. Most of the previous studies

have focused on reducing the degrading effects of high processor fragmentation caused by

contiguous allocation. Below we describe some of the well-known strategies.

Two Dimensional Buddy System (2DBS): The 2DBS allocation [48] applies to square mesh

systems with power of two side lengths. Processors allocated to jobs also form square sub-

meshes with power of two side lengths. If a job requests a sub-mesh of size βα × such that

βα ≤ , the 2DBS allocates a sub-mesh of size ss× , where ()() βα ,maxlog22=s . For

example, if a job requests 2 processors it is allocated a square sub-mesh of processors with a

side length of 2, resulting in 2 idle processors and an internal fragmentation of 50% as

shown in Figure 2.1 above. This strategy suffers from internal and external processor

fragmentation [18, 20, 77, 85, 99]. Furthermore, it cannot be used for non-square meshes

[18, 77, 85].

Frame Sliding (FS): The frame sliding strategy [65] is applicable to a mesh of any size and

shape. FS searches for an appropriate allocation using a set of sequenced non-overlapping

processor frames (i.e., processor sub-meshes). It is assumed that an arriving job requests a

Chapter 2: Background and Preliminaries 22

processor sub-mesh of rectangular shape. Processor frames of the same side lengths as the

requested sub-mesh are searched from left to right and from bottom to top. Jumps to

successive frames are by the job's width and length. The goal of searching is to find a

suitable frame for allocation; i.e., all its processors are free and it is large enough to

accommodate the allocation request. This process ends with either finding a suitable

allocation or when all frames are scanned and no appropriate frame is found. Figure 2.3

gives the states of a 6 × 5 mesh and the allocation algorithm is invoked for a 3 × 2 request.

An allocation process starts with the first free processor found starting from the lowest-

leftmost corner of the sub-mesh. It can be seen from this figure that the first frame

considered is not allocated because there is an allocated processor inside that frame. The

request then slides horizontally by the width of the job request, which goes outside of the

mesh. After that, the requested frame slides vertically to the top of the mesh by the length of

the job request, but again the new frame of processors is not allocated because it contains

allocated processors. This process continues, and we notice that it ends without finding a

suitable frame for allocation. The allocation strategy fails to allocate a sub-mesh to the job

request although one exists. A problem with this strategy is that it may not recognise free

sub-meshes because the jumps are by the job's width and length [85].

A job requests
6 processors

Figure 2.3: An allocation using the frame sliding s trategy

 : Allocated Node : Free Node

Chapter 2: Background and Preliminaries 23

Adaptive Scan (AS): This strategy [41] is an improvement of the FS strategy [65] and uses

scanning instead of a sliding operation. That is, it moves a frame vertically with a stride

distance of 1 processor and horizontally based on the allocated sub-meshes. Moreover, this

strategy supports the re-orientation (i.e., rotation) of the allocation request when allocation

fails for the requested orientation. A job that requests an βα × sub-mesh may be allocated a

αβ × sub-mesh. However, the shorter stride distance increases the allocation time and

hence AS is not suitable for large meshes. For the remainder of this dissertation, the terms

rotation and re-orientation will be used interchangeably.

First Fit (FF) and Best Fit (BF) for 2D Meshes: The problem of missing an existing

possible allocation encountered in previous strategies is solved in the FF and BF strategies

[99]. The processors that can serve as base nodes for the free sub-meshes that can

accommodate the current job request are represented by an array of size N , where N is the

number of processors in the mesh system. In FF, the first such base is chosen as the

allocation base. In BF, a base that has the largest number of busy neighbours and smallest

surrounding free area is selected as the allocation base. Given a request for a 2 × 2 sub-mesh

and the mesh shown in Figure 2.4, FF and BF allocate the sub-meshes 1S and 2S ,

respectively. The FF and BF strategies [99] can detect all large-enough free sub-meshes, but

they lack complete sub-mesh recognition ability in that they do not consider switching the

orientation of requests. An in-depth discussion of FF and BF allocation and de-allocation

algorithms can be found in [99].

First Fit (FF) and Best Fit (BF) for 3D Meshes: In these two strategies [34], the free sub-

meshes are scanned and FF allocates the first sub-mesh that is large enough to hold the job,

whereas BF allocates the smallest suitable sub-mesh. Simulation results have shown that

these two strategies have comparable performance in terms of average turnaround time and

Chapter 2: Background and Preliminaries 24

mean scheduling effectiveness2; the performance of FF is close to that of BF, therefore we

only consider the FF strategy for the purpose of this study. The strategies FF and BF are not

recognition-complete; an allocation request is accommodated only if there exists a large

enough sub-mesh with the same orientation as the allocation request, hence they suffer from

high external processor fragmentation. Bit arrays are used for the scanning of available

processors. The allocation and de-allocation algorithms for the FF strategy are presented in

Figures 2.5 and 2.6, respectively.

Procedure FF_Allocate (α, β, γ):

{

W = Mesh Width; D = Mesh Depth; H = Mesh Height

Mesh Size = W × D ×H

Job Size = α × β × γ

int wi, dj, hk, wx, dy, hz

int Avail;// To determine the number of processors for an incoming job.

if (Job Size > free processors) return failure

for each wi from 0 to W - 1

2 The scheduling effectiveness measures the ability of an allocation algorithm to avoid processor fragmentation

[38].

2S 1S

Figure 2.4: An allocation using First Fit and Best Fit strategies

A job requests 4
processors

 : Allocated Node : Free Node : Allocated to request

FF BF

Chapter 2: Background and Preliminaries 25

for each dj from 0 to D - 1

for each hk from 0 to H - 1

if the node (wi, dj, hk) is free then {

Avail = 0

for each wx from wi to wi + α – 1 provided that wx < W

for each dy from dj to dj + β – 1 provided that dy < D

for each hz from hk to hk + γ – 1 provided that hz < H

if the node (wx, dy, hz) is free then Avail++;

if (Avail==Job Size){

for each wx from wi to wi + α – 1

for each dy from dj to dj + β – 1

for each hz from hk to hk + γ – 1

allocate the node(wx, dy, hz) to the current job by
setting node’s ID to job ID.

return success.

}

}

return failure

}

Figure 2.5: Outline of the FF Contiguous Allocation Strategy.

Procedure FF_De-allocation ():

{

 jid = id of the departing job;

For all nodes in the mesh system

if (nodes’ id == jid)

de-allocate it.

}

Figure 2.6: Outline of FF de-allocation algorithm

Turning First Fit (TFF) and Turning Best Fit (TBF) for 3D Meshes: The problem of

missing an existing possible allocation mentioned in FF and BF above is solved using TFF

and TBF [34]. The TFF and TBF strategies [34] support the rotation of the job request. They

consider all orientations of the request when needed. Let),,(γβα be the width, depth and

Chapter 2: Background and Preliminaries 26

height of a sub-mesh allocation request. The six permutations),,(γβα ,),,(βγα ,),,(γαβ ,

),,(αγβ ,),,(βαγ and),,(αβγ are, in turn, considered for allocation. If allocation

succeeds for any of these permutations the process stops. For example, assume a free mesh

(3, 3, 2) and the job requests (2, 3, 2) and (3, 2, 1) arrive in this order. The second job

request cannot be accommodated until it is rotated to (1, 3, 2), as shown in Figure 2.7.

Simulation results have shown that the TFF strategy can greatly improve performance in

terms of average turnaround time and mean scheduling effectiveness. Changing the

orientation of allocation requests can alleviate external fragmentation. Moreover, the

performance of TFF is almost identical to that of TBF; therefore only the TFF strategy is

considered in this research. In [34], different scheduling strategies, such as First-Come-First-

Served (FCFS) and Out-of-Order3 (OO) have been studied. The goal of OO scheduling is to

avoid performance loss due to blocking associated with the head of the FCFS queue.

Allocation Algorithm for the IBM BlueGene/L: In this algorithm [97], the allocation unit is

the midplane, which consists of 8 × 8 × 8 processors. The goal of using this large allocation

unit is to decrease the allocation overhead. The algorithm supports the rotation of the

allocation request. The system is scanned for all 3D rectangular and spatially contiguous

sets of free midplanes that match the shape and size of the request. This algorithm assumes

that a job can utilize an integer number of midplanes. Otherwise, there is internal processor

fragmentation, which can be severe as this allocation unit is rather large, hence the

degradation of system utilization can be severe. Furthermore, the allocation overhead

depends on the number of midplanes in the mesh system, and it increases when the number

of midplanes increases.

3 In the OO scheduling strategy, the requests in the FIFO waiting queue are considered for allocation in the order

of their arrival, this process is stopped when the end of the queue is reached, or when there are no more free
processors.

Chapter 2: Background and Preliminaries 27

The above allocation strategies consider only contiguous regions for the execution of a job.

As a consequence, the length of the communication paths is expected to be minimized in

contiguous allocation. Only messages generated by the same job are expected within a sub-

mesh and therefore there is no inter-job contention in the network. On the other hand, the

restriction that jobs have to be allocated to contiguous processors reduces the chance of

successful allocation. It is possible that allocation fails in the contiguous allocation

strategies while there is a sufficient number of free processors [18, 85], i.e., fragmentation

occurs in these strategies.

2.2.2 Non-Contiguous Allocation Strategies for 2D Meshes

Advances in routing techniques such as wormhole routing [4, 29, 83], have made

communication latency less sensitive to the distance between communicating nodes [2, 18,

43, 71, 72, 77]. This has made allocating a job to non-contiguous processors plausible in

networks characterised by long-diameter, such as the 2D mesh. Non-contiguous allocation

Allocation to request (2, 3, 2) Allocation to request (3, 2, 1)
after rotation to (1, 3, 2)

Figure 2.7: Allocation with rotation to request (2, 3, 2) followed by request (3, 2, 1)

Chapter 2: Background and Preliminaries 28

allows jobs to be executed when the number of available processors is sufficient [18, 44, 49,

71, 72, 77, 85]. Some of the non-contiguous allocation strategies that have been suggested in

the literature are described below.

Random: Random allocation is a straightforward strategy in which a request for a given

number of processors is satisfied with a number of processors selected randomly [85]. Both

internal and external fragmentations are eliminated since all jobs are assigned exactly the

requested number of processors, if available. Because no type of contiguity is enforced in

this strategy, high communication interference amongst jobs would be expected.

Paging: In the Paging strategy [85], the entire 2D mesh is divided into pages that are sub-

meshes with equal side lengths of indexsize_2 , where indexsize_ is a positive integer. A

page is the allocation unit. The pages are indexed according to several indexing schemes

(row-major, shuffled row-major, snake-like and shuffled snake-like indexing), as shown in

Figure 2.8. An ordered list is used to keep track of all unallocated pages. The pages are

sorted in the increasing order of their order indices, assigned by the indexing scheme. Each

entry in the list contains the corresponding page’s row and column indices, and the page’s

order index. The number of pages a job requests is computed as:

 () PsizePrequest /βα ×= …………………………………………..….…………… (2.1)

where Psize is the size of the page, and α and β are the side lengths of the requested sub-

mesh. If the number of free pages is greater than or equal to requestP , the first requestP

unallocated pages are removed from free list and allocated to the requesting job. When a job

is de-allocated, pages occupied by it are merged back into the free page list. A paging

strategy is denoted as Paging(indexsize_). For example, Paging(2) means that the pages are

4 × 4 sub-meshes.

Chapter 2: Background and Preliminaries 29

Paging suffers from internal fragmentation when 0_ >indexsize . The internal fragmentation

of running jobs is given by:

Internal_Fragmentation =
∑

∑

jobs

jobs

ocessorsAllocated

ocessorsLost

Pr_

Pr_

 ……………………………..…. (2.2)

where ocessorsLost Pr_ is for a parallel job that requests SizeJob_ processors, but is

allocated PagesAllocatedofNumber ___ . It is calculated using:

SizeJobPsizePagesAllocatedofNumberocessorsLost ____Pr_ −×= …….. (2.3)

To illustrate this, consider a paging strategy with 1_ =indexsize , and suppose a parallel job

requests the allocation of a 3 × 3 sub-mesh. When allocation is carried out for the job it is

allocated 3 pages (12 processors). Since only 9 processors are needed there is an internal

fragmentation of 25%.

(d)

(b) (a)

(c)

Figure 2.8: Paging(0) using different indexing schemes: (a) Row -major indexing, (b)
Shuffled row-major indexing, (c) Snake-like indexin g, and (d) Shuffled snake-like indexing

2 3 6 7

13 12 9 8

14 15 10 11

1 0 5 4

3 2 7 6

9 8 13 12

11 10 15 14

1 0 5 4

5 4 7 6

9 8 11 10

13 12 15 14

1 0 3 2

6 7 4 5

9 8 11 10

14 15 12 13

1 0 3 2

Chapter 2: Background and Preliminaries 30

In this research, only the row-major indexing scheme is considered because the remaining

indexing schemes exhibit only a slight impact on the performance of paging, as revealed in

[85]. The Paging allocation and de-allocation algorithms are presented in Figures 2.9 and

2.10, respectively.

// indexsizeSidePage _2_ = ; SidePageSidePagePsize __ ×=

// The parameter jid is the id of the job that is being considered for allocation

// α and β are the side lengths of the job’s allocation request

Procedure Paging_Allocation (jid, α, β)

Begin {

βα ×=SizeJob_

requestP =  PsizeSizeJob /_

// Allocation:

Step1. if (number of free pages < requestP) return failure else go to step 2

Step2. allocate the first requestP pages from the list of unallocated pages to the job,

setting the IDs of these pages to jid, and return success.

} End

Figure 2.9: Outline of the Paging allocation algori thm

// jid: id of departing job;

Procedure Paging_De-allocation (jid):

Begin {

for all allocated pages

if (page’s id == jid)

de-allocate the page and add it to the list of unallocated pages

} End

Figure 2.10: Outline of the Paging de-allocation al gorithm

Multiple Buddy Strategy (MBS): In MBS [85], the mesh is divided into non-overlapping

square sub-meshes with side lengths equal to powers of 2 upon initialization. MBS

maintains free block records (FBR) for all free processor squares of the same size. The entry

Chapter 2: Background and Preliminaries 31

FBR[i] contains the number of available squares of size ii 22 × , and an ordered list of the

locations of these squares. The number of processors, p , requested by an incoming job is

represented as a base 4 number of the following form:

 00
0

11
1 22............2222 ××++××+××= −−

− dddp ii
i

ii
i …………………..…….. (2.4)

where the factors }.3,2,1,0{.....0 ∈idd This strategy attempts to satisfy every term i in the

request with id free processor blocks of sizes equal to ii 22 × processors using FBR. If a

required block is unavailable, MBS searches for a larger block in FBR and repeatedly breaks

it down into 4 adjacent buddies until it produces blocks of the desired size. The 4 buddies of

a jj 22 × block are 11 22 −− × jj blocks. If that fails, MBS breaks the request for a ii 22 ×

block into 4 smaller requests for 11 22 −− × ii blocks and repeats the allocation process. In

this algorithm, allocation always succeeds when the number of free processors in the mesh

system is sufficient. This is because the request, or parts of it, can be partitioned into

requests for 1 × 1 blocks. The MBS strategy is composed of five parts: system initialization,

request factoring algorithm, buddy generating algorithm, allocation algorithm, and de-

allocation algorithm. The detailed operations of these parts are included in Appendix A.

Adaptive Non-contiguous Allocation (ANCA): In [18], ANCA first attempts to allocate a

job contiguously. When contiguous allocation fails, it breaks a job request into two equal-

sized sub-frames (i.e., sub-requests). For example, an 8 × 3 request is partitioned into two 4

× 3 sub-frames. These sub-frames are then allocated available sub-meshes, if possible.

Otherwise, each of these sub-frames is broken into two equal-sized sub-frames, and then

ANCA tries to assign all sub-frames to available locations and thus take advantage of non-

contiguous allocation, and so on. This process terminates if allocation succeeds for all sub-

frames, or it has repeated a specified number of times. Moreover, allocation fails if a side

length of the sub-frames reaches 1, which can cause external fragmentation.

Chapter 2: Background and Preliminaries 32

Adaptive Scan and Multiple Buddy (AS&MB): AS&MB is a hybrid strategy [49]. Firstly, it

attempts to allocate a job contiguously using the adaptive scan strategy [41]. When the

adaptive scan strategy fails to allocate a job request, it employs the non-contiguous

allocation strategy MBS [85] for allocation. Simulation results in [44] show that the

performance of AS&MB is almost identical to that of MBS [85] in terms of average

response time and average service time (i.e., the average time it takes for jobs to execute

once allocated to processors in the mesh system). However, the shorter stride distance in AS

increases the allocation time and hence AS&MB is not suitable for large meshes; therefore

we do not consider it in this research.

Paging variants: In addition to the four indexing schemes considered in [85], the Hilbert

and H-indexing space-filling curves have been proposed for ordering processors [24, 84]. In

these studies, different page selection heuristics have been used. Given a request for

allocating p processors, an attempt is first made to find a set of at least p consecutive free

processors. If this fails, the set of p processors with the smallest range of processor ranks is

allocated to the request. The algorithm that looks for the consecutive free processors is First

Fit if it looks for the first large enough set, and it is Best Fit if it looks for the smallest one

that is large enough for the request. The snake-like, Hilbert and H-indexing orderings, when

used with First Fit and Best Fit consecutive set selection, have been evaluated using

simulation [24]. They have also been compared to a strategy that minimises the average pair-

wise distance between the processors allocated to a request (see Gen-Algorithm in [24]).

The results have shown that the Gen-Algorithm performs relatively poorly, and the relative

performance of the strategies depends on the communication pattern used.

In the above non-contiguous allocation strategies, the random strategy ignores the contiguity

of processors allocated to a job, leading to increases in communication delays. In Paging,

Chapter 2: Background and Preliminaries 33

there is some degree of contiguity because of the indexing schemes used. Contiguity can

also be increased by increasing the parameter indexsize_ . However, there is internal

processor fragmentation for 1_ ≥indexsize , and it increases with indexsize_ [85]. An issue

with MBS is that it may fail to allocate a contiguous sub-mesh, although one exists. For

example, if a job requests the allocation of 16 processors in the mesh system shown in

Figure 2.11. Initially, the request is factorised as 4 × 4 number, but because there are no 4 ×

4 or larger free blocks the request is partitioned into 4 requests for 2 × 2 blocks. The 4

lightly-shaded non-contiguous 2 × 2 blocks shown in this figure may be assigned to the

request although a large enough single contiguous free sub-mesh 2 × 8, denoted in the figure

by a dashed rectangle, is available. We can notice from the figure that communication

between processors belonging to blocks assigned to this job can interfere with the

communication of other jobs. In fact, contiguous allocation is explicitly sought in MBS only

for requests with sizes of the formn22 , where n is a positive integer. As for ANCA, it can

disperse the allocated sub-meshes more than is necessary. It requires that allocation to all

sub-frames occur in the same partitioning and allocation iteration, skipping over the

possibility of allocating larger sub-meshes for a large part of the request in a previous

iteration. Moreover, ANCA halts the partitioning and search processes when a side length

reaches 1, which can cause external fragmentation. In the Paging variant that uses

0_ =indexsize , the unit of allocation is a single processor, whereas it can be larger in MBS

[85] and ANCA [18]. Any processor allocation strategies like Paging variants that operate at

this level of granularity (i.e., a single processor) require a long time to reach the allocation

decision [97]. For large machines such as IBM BuleGene/L, allocation strategies that take a

reasonable time for allocation and de-allocation operations were proposed [97]. It is to avoid

low allocation granularity that the allocation unit in the IBM BlueGene/L, for example, is

the midplane, which is an 8 × 8 × 8 three-dimensional page [97]. Therefore, the time that the

allocation and de-allocation operations take can be reasonable. The drawback with this

Chapter 2: Background and Preliminaries 34

approach to solving the granularity problem is that internal processor fragmentation can be

high.

2.3 System Model

The topology of the interconnection network describes the way in which the nodes in the

network are connected and can be described using an interconnection graph. The vertices of

this graph are the nodes while the edges are the physical channels that connect the nodes

[23, 83]. The network diameter, node degree, and network degree are often used to

characterize a given topology [4, 23, 29]. The diameter is the maximum value of the shortest

path lengths between any two nodes. The number of links connecting a node to its

neighbours is known as the node degree while the network degree is the maximum node

degree in the network.

Many topologies have been proposed for parallel computers, including the hypercube [8, 43]

and the mesh [4, 8, 82]. In a hypercube with d dimensions we have dN 2= nodes each of

Figure 2.11: An 8 × 8 2D mesh receiving an allocati on request for 16
processors in MBS strategy

 : Allocated Node

 : Free Node

 : Allocated to request

A job requests 16
processors

Chapter 2: Background and Preliminaries 35

degree d . The advantage of the hypercube topology is its small diameter. However, a major

drawback of the hypercube network is its lack of scalability, which limits its use in building

large-size multicomputers [8]. Among important parameters of an interconnection network

of a multicomputer system are its scalability and modularity. Scalable networks have the

property that the size of the system (i.e., the number of communicating nodes) can be

increased with minor or no change in the existing configuration [8]. Also, the increase in the

system size is expected to result in an increase in performance to the extent of the increase

in size [8]. The lack of scalability of the hypercube stems from the fact that the node degree

is not bounded and varies by the number of processors in the system (N) (i.e., as the

dimension of the hypercube is increased by one, one more links needs to be added to every

node in the network). This property makes the hypercube cost prohibitive for large N [8,

83]. In addition to the changes in the node configuration, a doubling of the size is required

for the regular hypercube network to expand and to remain as a hypercube [8].

Moreover, because a computer must be placed in the world we live in (a 3D space), some

links in the hypercube, when the number of dimensions > 3, must be longer than others, and

longer than link lengths in 2D and 3D meshes. Consequently the longer links in hypercube

networks have an adverse effect on the network latency as shown in [62]. Unlike hypercube,

links in 2D and 3D meshes can be of the same length, and the length is independent of the

size of the mesh system. Furthermore, as the number of nodes increases in the network the

average number of hops in the mesh networks, for example, increases more rapidly

compared to the hypercube [62]. This allows the mesh networks to exploit the available

buffer size to reduce the number of channels that a message occupies, thus reducing the

blocking delays. Whereas, in the hypercube, due to the smaller average number of hops,

messages occupy almost all the channels between the source and destination nodes

increasing the probability of blocking, even with large buffer sizes [62]. Nevertheless, the

Chapter 2: Background and Preliminaries 36

mesh network is able to exploit the increase in the buffer size more efficiently compared to

the hypercube [62].

Motivated by the above observations, the network topology assumed in this research is the

mesh interconnection network. Mesh networks are easily implemented because of the simple

regular connection and small number of links per node. Due to the constant node degree, the

mesh network is highly scalable. Moreover, the mesh has been widely used in practical

multicomputers due to its advantages such as simplicity, scalability, structural regularity,

ease of implementation, and partition-ability [8, 9, 18, 21, 27, 31, 33, 35, 51, 52, 77, 78, 85,

99].

The nodes in the mesh are connected to their immediate neighbours by bidirectional links.

Each node in the mesh network consists of a processing element (PE) and a router. The PE

contains a processor and some local memory. A router in an n-dimensional mesh has n2

input and n2 output channels that connect the router to its neighbouring routers. There are 2

input and 2 output channels per dimension. A router is connected to its local processor via

internal channels, or ports. When each node has one pair of internal channels, it is referred

to as one-port architecture. In this model, one internal channel is used by the processor to

output messages to the network, while the other is used to input messages from the network.

A crossbar switch is used to establish a connection between any of the input channels and

any of the output channels. In this model, when messages destined for the local node arrive

at a router on input channels, they are transmitted to the local node sequentially. The all-

port architectural model differs from the one-port model in that a node can process (i.e.,

send/receive) n messages (which equals the number of ports) simultaneously. The

discussion can be easily extended to the nodes situated at the corners and edges of the

network.

Chapter 2: Background and Preliminaries 37

2.3.1 Switching Method

The switching method determines the way messages are handled as they travel through

intermediate nodes. Switching takes place in the router and consists of the receipt of a

message, determining the appropriate output channel, and then sending the message through

this channel. Various switching methods have been described in the literature for

multicomputer networks, of which the three most important ones are store-and-forward

[83], virtual cut-through [13, 29] and wormhole switching [13, 16, 18, 54, 83, 85].

Store-and-forward switching: In store-and-forward switching, the message is divided into

fixed-length packets that are routed from source to destination. Each packet contains a

header that contains the data needed for routing the packet. A packet is completely stored in

each intermediate node before it is forwarded to the next node along its path to the

destination. This switching method has two major disadvantages: large buffer spaces are

required to store entire packets and the time to transmit a message is directly proportional to

the distance between the source and destination nodes [64].

Virtual cut-through switching: Virtual cut-through [13, 29] has been introduced as an

enhancement to store-and-forward switching in order to reduce the transmission time. In this

switching method, a message header (i.e., the part of the message that contains routing

information) is examined upon arrival at an intermediate node, if the next channel requested

is busy; the message is entirely stored at the node at location of lead message. Otherwise, it

is transmitted to the next node without buffering. The network latency, especially under low

and moderate traffic loads, is noticeably reduced as blocked messages are removed from the

network and the channels are simultaneously utilised to transmit unblocked messages.

However, the nodes must provide sufficient buffer spaces for all blocked messages passing

through it and multiple messages may become blocked simultaneously, so a very large

Chapter 2: Background and Preliminaries 38

buffer space is required at each node. Therefore, virtual cut-through might be costly to

implement due to the high buffer requirement which also has a strong adverse effect on the

router speed and on the cost and size of multicomputer systems [29, 43, 64].

Wormhole switching: The disadvantage of virtual cut-through has motivated the use of its

variant wormhole switching. Wormhole switching (also called wormhole routing [29, 43,

54]) has been widely used in practical multicomputers [13, 43] due to its low buffering

requirement and good performance. Experimental results in [64] have revealed that network

latency in wormhole-switched networks is almost independent from message distance in the

absence of message contention for network resources (buffers and channels). In wormhole

switching, a message is divided into a sequence of fixed-size units, called flits. A flit

typically consists of a few bytes. A message starts with a header flit that is used for message

transmission and flow control, and each channel buffer needs only to hold one flit. A flit is

the smallest unit of data transmission in a wormhole routing network. The header flit

(containing routing information) establishes the path through the network while the

remaining data flits follow it in a pipelined fashion. If a channel transmits the header of a

message, it must transmit all the remaining flits of the same message before transmitting flits

of another message. If the header cannot be routed (i.e., blocked) in the network due to

contention for resources, the data flits stop moving and remain spread across the channels

where they are, keeping all allocated channels and buffers occupied. As a result, they

prevent other messages from using these channels, and this in turn leads to chained blocking

in the network with the possibility of serious performance degradation under moderate and

heavy loads [4]. One common solution to this problem, especially in meshes, is to force the

messages to pass through pre-ordered channels so that a blocking chain can be avoided [4].

Since wormhole routing uses pipelined transmission [29], it can perform well even in high-

Chapter 2: Background and Preliminaries 39

diameter networks, such the mesh [29]. Many experimental machines, such as the iWARP

[15] and the MIT J-machine [61]; and commercial ones including the Intel Paragon [39], the

Cray T3D [67], the IBM BlueGene/L [10, 55, 97, 98], and the Cray T3E [25] have used

wormhole switching. Wormhole switching is used in this research when examining the

performance of the non-contiguous allocation algorithms. We have limited ourselves to

wormhole switching because it has been used in the existing non-contiguous allocation

strategies [44, 49, 71, 72, 77, 85].

2.3.2 Routing Algorithm

Many existing networks, including meshes, provide multiple physical paths for routing a

message between any two nodes. The routing algorithm determines the path used by each

message in the network. Routing algorithms are divided into two classes, deterministic and

adaptive, according to their ability to modify routing paths based on dynamic network

conditions [23, 54, 83]. In deterministic routing, a message always uses the same path

between the source and destination; intermediate nodes are unable to redirect messages to

any alternative paths. In adaptive routing, intermediate nodes can take the actual network

conditions, such as the presence of congestion or failures, into account and determine

accordingly to which node a message should be sent [29]. An important issue for any routing

algorithm is to ensure freedom from deadlocks; deadlock occurs when no message can

advance towards its destination because of busy channels and buffers [29, 43]. Many studies

[42, 69, 91, 92] have been devoted to addressing this issue in wormhole switched

interconnection networks, including meshes [42, 69, 92].

Figure 2.12 illustrates a deadlock situation where each of the 4 messages (M1, M2, M3, and

M4) waits for a communication link that is held by another message, and waiting is circular.

It is assumed in the figure that the messages M1, M2, M3, and M4 are destined respectively to

Chapter 2: Background and Preliminaries 40

the nodes C, D, A, and B. The messages are in a waiting cycle, and none of them can

progress. Deadlock is a disastrous state because the communication can never be completed.

Deterministic routing has been widely employed in wormhole switched interconnection

networks as it offers a simple way to avoid message deadlock. This is achieved by forcing

messages to visit the channels in a strict order. Dimension-ordered routing [13, 43, 91] is a

well-known example of deterministic routing where messages cross network dimensions in a

pre-defined order, reducing to zero the offset in one dimension before visiting the next.

Consequently, messages always take the same path between a given pair of nodes. For mesh

networks, dimension-ordered routing ensures deadlock-freedom. This type of routing is also

widely known as XY routing when the interconnection topology is the 2D mesh [13, 16, 43,

85]. Dimension-ordered routing is used in this research when examining the performance of

the non-contiguous allocation algorithms. We have limited ourselves to dimension-ordered

routing because it has been used in the existing non-contiguous allocation strategies [44, 49,

71, 72, 77, 85].

A D

B C

M 1

M 4

M 3

 M 2

M3 Blocked

M4 Blocked

M1 Blocked

M2 Blocked

Buffer occupied by M1

Buffer occupied by M2

Buffer occupied by M3

 Buffer occupied by M4

Figure 2.12: A deadlock in wormhole routing caused by 4 messages.

Chapter 2: Background and Preliminaries 41

In contrast to deterministic routing, adaptive routing algorithms enable messages to use

alternative paths to advance through the network when a communication link is congested or

it has failed, for example [42, 92]. The main disadvantage of adaptive routing is the

requirement for extra hardware resources, e.g., virtual channels, to deal with the problem of

deadlock. A physical channel is divided into two or more virtual channels, where each

virtual channel has its own queue, but shares the bandwidth of the physical channel with the

other virtual channels. Virtual channels often increase hardware complexity, which can

significantly reduce router speed, decreasing overall network performance [12, 30, 43]. This

increase in hardware cost has motivated researchers to develop algorithms that can achieve

adaptive routing without using virtual channels, leading to more efficient router

implementation [1, 12, 30, 54].

2.3.3 Communication Patterns

Processors allocated to a parallel job often exchange messages with each other according to

a given communication pattern [85]. When non-contiguous allocation is employed, we are

interested in measuring message contention that results from exchanging messages and its

effects on overall system performance. Three communication patterns have been considered

in this research work in order to evaluate the performance of the proposed non-contiguous

allocation algorithms. In the one-to-all communication pattern, a randomly selected

processor sends a message to all other processors allocated to the same job. In all-to-all

communication, each processor allocated to a job sends a message to all other processors

allocated to the same job. This communication pattern causes much message contention and

is considered as the weak point for non-contiguous allocation algorithms [49]. In the random

communication pattern, randomly selected processors send messages to randomly selected

destinations within the set of processors allocated to the same job. These three

communication patterns were used in previous related studies [44, 49, 85].

Chapter 2: Background and Preliminaries 42

2.4 Assumptions

In the subsequent chapters, extensive simulation results will be presented to evaluate the

performance of our allocation strategies. In this study, we make the following assumptions

which have been commonly used in the literature [6, 9, 11, 18, 20, 24, 27, 31, 33, 34, 35, 38,

44, 49, 51, 52, 66, 71, 72, 73, 74, 75, 76, 77, 78, 79, 85, 94, 99]; it is worth mentioning that

the last two assumptions are made when examining the performance of the non-contiguous

allocation algorithms.

• The inter-arrival times of jobs are independent and follow an exponential

distribution.

• Jobs are scheduled on a First-Come-First-Served (FCFS) basis, unless stated

otherwise.

• The execution times of jobs are independent and follow an exponential distribution,

unless stated otherwise.

• The side lengths of the sub-meshes requested by jobs are generated independently

and follow a given probability distribution. Two distributions have been considered

in this research. The first is the uniform distribution over the range from one to the

mesh side length. The second is the exponential distribution, where the side lengths

of the requested sub-meshes are exponentially distributed with a mean of half the

side length of the entire mesh.

• Messages are transmitted inside the network using wormhole switching along with

XY routing [2, 4, 11, 13, 29, 71, 72, 83].

• Messages are of a fixed length (i.e., a fixed number of flits). Moreover, the number

of messages that are generated by a given job is exponentially distributed.

Chapter 2: Background and Preliminaries 43

2.5 The Simulation Tool (ProcSimity Simulator)

This section introduces briefly the well-known ProcSimity simulation tool [50, 66].

ProcSimity is a discrete-event simulation tool [7, 68] that has been developed as a research

tool in the area of processor allocation and job scheduling in multicomputers [50, 66].

ProcSimity was developed at the University of Oregon [66], and the development efforts of

the simulator have been supported by OACIS and NSF [50]. The tool was written in the C

programming language and has been extensively used for processor allocation and job

scheduling in mesh-connected multicomputers [24, 33, 35, 44, 45, 50, 51, 71, 72, 73, 74, 75,

76, 77, 78, 79, 85, 86]. This is due to the fact that it is open-source and includes detailed

simulation of important operations of multicomputer networks [50, 66]. It is worth noting

that the simulator has been extensively validated in [66].

The overall purpose of the ProcSimity is to provide a convenient environment for

performance analysis of processor allocation and scheduling algorithms. In particular,

ProcSimity has been designed to investigate some of the processor allocation problems, such

as fragmentation and communication overhead problems [24, 33, 35, 44, 45, 50, 51, 71, 72,

73, 74, 75, 76, 77, 78, 79, 85, 86]. The architecture modelled by ProcSimity consists of a

network of processors interconnected through message routers at each node. Adjacent nodes

are connected by bidirectional communication links, and messages may be routed by either

store-and-forward or wormhole switching. The ProcSimity supports both the mesh and k-ary

n-cube interconnection topologies with dimension-ordered routing [50, 66].

The ProcSimity simulator specifies the target machine environment, including the network

topology, routing, and flow control mechanism, and it involves the selection of a scheduling

and an allocation algorithm from a set of provided algorithms [50, 66]. In addition, third-

party scheduling and allocation strategies can be integrated into ProcSimity. ProcSimity also

Chapter 2: Background and Preliminaries 44

involves the specification of the simulation experiments; it supports both stochastic job

streams as well as communication patterns from actual parallel applications [50, 66]. In

ProcSimity, the user can specify the detailed simulation of message-passing overhead at the

flit level [50, 66].

When ProcSimity simulates a mesh-connected multicomputer, independent user jobs that

arrive at the system, request sub-meshes of free processors. If the number of free processors

in the mesh system is not enough to satisfy the job request, or there are other waiting jobs in

the queue, the job is diverted to the waiting queue. The job is selected to be executed from

the waiting queue based on the underlying scheduling strategy, and then the processor

allocation algorithm determines and allocates the set of processors on which the job will

execute. The allocated processors may be contiguous or non-contiguous based on the

allocation strategy used. When a job is allocated a set of processors, it runs there to

completion. It may not be moved to other locations during execution [18, 24, 33, 35, 44, 50,

51, 71, 72, 73, 74, 75, 76, 77, 78, 79, 85]. Once a job departs from the system the sub-

meshes it is allocated are freed for use by another incoming job.

In ProcSimity, the overhead of allocation and de-allocation (i.e., the time that the allocation

and de-allocation operations take per job) is ignored. To compare the allocation strategies in

terms of the allocation overhead associated with the allocation and de-allocation operations,

we measured the average actual time taken by these operations on a Pentium machine

running under Windows XP. The clock cycle of the machine is 3 GHz and the RAM size is

504 MB. The per-job average allocation overhead was computed in milliseconds over

enough independent runs so that the confidence level is 95% that relative errors are below

5% of the mean.

Chapter 2: Background and Preliminaries 45

2.6 Justification of the Method of Study

In this research, extensive simulation experiments have been conducted to explore

performance-related issues of processor allocation in mesh-connected multicomputers. This

section discusses briefly the choice of simulation as a tool of study for the purpose of this

research, justifies the adoption of ProcSimity as the preferred simulation tool, and further

provides information on the techniques used to reduce the opportunity of simulation errors.

After some consideration, simulation has been selected as the method of study in this

research. In general, in addition to conducting measurements on a real practical system or

testbed, there exist two techniques for system performance evaluation: analytical modelling

and simulation [68]. One of the key considerations when adopting a given evaluation

technique is the level of the desired accuracy. In general, analytical models have often low

requirements in terms of computation costs, but they often rely on many assumptions and

simplifications that restrict their applicability to a limited number of scenarios. In contrast,

simulation models can easily incorporate details to the desired level of accuracy in order to

mimic more closely the behaviour of the real system. The consequence of this is that

simulations often require a longer time to develop and run the code, compared to analytical

modelling. However, as we have used the ProcSimity simulator that has already been

developed and extensively validated [50, 66], we have easily incorporated our suggested

algorithms into the simulator. This has helped to considerably cut down the development

time and debugging of the code. Most often cost, along with the ease of being able to change

configurations, is the prime motivation for developing simulations for expensive systems,

such as multicomputers. The processor allocation algorithms designed and analysed in this

study are for mesh-connected multicomputers, which could consist of a large number of

processors. Such a study could not be easily carried out on a practical system, as the

Chapter 2: Background and Preliminaries 46

experimental setup would require substantial and expensive resources.

ProcSimity has been widely used to evaluate the performance of processor allocation

algorithms suggested for 2D mesh-connected multicomputers. However, the current version

of ProcSimity does not support the 3D mesh network. So, we have modified the existing

simulator by adding our proposed processor allocation algorithms for both the 2D and the

3D mesh-connected multicomputers. While incorporating the modifications into the

simulator, special care has been taken to ensure that the algorithms implemented would

function as designed and that the simulator would not exhibit unwanted side-effects; this has

been accomplished through implementing one of our algorithms using another simulator

[34] and comparing the outputs against those obtained by ProcSimity. Moreover, we have

carried out the validation of the simulator for a number of cases and compared the

performance results obtained for some-well known strategies (e.g., the FF allocation

strategy) against those obtained by other researchers using another simulator [34].

It is worth mentioning that we have evaluated the performance of our processor allocation

algorithms based on a real workload trace and compared the results against those obtained

from our simulation study based on stochastic workloads. The results of the comparison

have revealed that the conclusions reached on the performance merits of the allocation

strategies when a real workload trace is used are in general compatible with those obtained

when a stochastic workload is used; please see [76] for more details.

2.7 Summary

A number of allocation strategies that use space-sharing strategies have been discussed in

this chapter. These strategies can be divided into two types: contiguous and non-contiguous.

In contiguous allocation, processors allocated to jobs are physically contiguous and have the

Chapter 2: Background and Preliminaries 47

same topology as the underlying system network. Doing so has the potential of eliminating

inter-job communication contention as each job’s messages can be routed within the set of

processors allocated to that job. However, the restriction that the jobs have to be allocated

contiguously reduces the chance of successful allocation, resulting in high processor

fragmentation which degrades system performance.

Some researchers have suggested non-contiguous allocation as a way to reduce processor

fragmentation that results from contiguous allocation. Wormhole switching techniques have

also encouraged the adoption of non-contiguous allocation because it has made

communication latency less sensitive to the distance between communication processors. In

non-contiguous allocation, a job can execute on multiple disjoint sub-meshes rather than

waiting until a single sub-mesh of free processors is available. This increases the number of

possible allocations that may be considered, which can reduce processor fragmentation and

improve system utilization. However, messages generated from some jobs may pass through

the processors allocated to other jobs, which increases message contention inside the

network. Nonetheless, lifting the contiguity condition is expected to reduce processor

fragmentation and increase processor utilization substantially.

This chapter has provided the system model used in this research. It also includes an outline

of assumptions that apply throughout the thesis. Finally, it contains a brief description of the

simulation tool (the ProcSimity Simulator) that is used to conduct the performance

evaluation of processor allocation strategies. Moreover, a brief discussion of the choice of

simulation as a tool of study in this research is included.

In the subsequent chapter, we will describe a new contiguous allocation algorithm for the

3D mesh-connected multicomputers that can overcome the limitations of the existing

Chapter 2: Background and Preliminaries 48

contiguous allocation strategies for this class of multicomputers. Our simulation results will

reveal that the new algorithm manages to deliver competitive performance (i.e., low

turnaround times and high system utilization) with a low allocation overhead compared to

previous strategies.

Chapter 3

Turning Busy List (TBL): A New
Contiguous Allocation Algorithm for Mesh-
Connected Multicomputers

3.1 Introduction

In distributed-memory multicomputers, jobs are often allocated distinct contiguous

processor sub-meshes for the duration of their execution to reduce inter-processor

communication overhead [9, 20, 26, 27, 31, 33, 34, 48, 51, 52, 65, 75, 78, 94, 97, 99]. Most

existing studies [9, 20, 27, 33, 48, 51, 52, 65, 99] on contiguous allocation have been carried

out mostly in the context of the 2D mesh network. There has been relatively very little work

on the 3D version of the mesh. Although the 2D mesh has been used in a number of parallel

machines, such as the iWARP [15] and Delta Touchstone [40], most practical

multicomputers, like the Cray XT3 [19, 60], MIT J-Machine [61], Cray T3D [67], IBM

BlueGene/L [10, 55], and Cray T3E [25], have used the 3D mesh network as the underlying

topology due to its lower diameter and average communication distance [90].

The main shortcoming of existing contiguous allocation strategies for 3D mesh-connected

Chapter 3: Turning Busy List (TBL): A New Contiguous Allocation Algorithm for Mesh-
Connected Multicomputers

50

multicomputers [31, 34, 94, 97] is that they achieve complete sub-mesh recognition

capability but with high allocation overhead, that accounts for the time required for the

allocation and de-allocation of processors to jobs. Furthermore, the time for both the

allocation and de-allocation operations in the previous contiguous allocations strategies [31,

34, 94, 97] tends to grow with the system size.

Motivated by the above observations, this chapter makes the following contributions. It

presents a new efficient contiguous allocation strategy that supports the rotation of job

requests, referred to as Turning Busy List (TBL for short), which can identify a free sub-

mesh of the requested size as long as it exists in the mesh system; The term “turning” refers

to the fact that the orientation of an allocation request could be changed when no sub-mesh

is available in the requested orientation (please see Section 2.2.1 in Chapter 2). The new

proposed allocation algorithm without rotation is used in this chapter for comparison

purposes and is referred to as Busy List (BL for short). The proposed allocation strategy

relies on a new approach that maintains a list of allocated sub-meshes to determine all the

regions consisting of the network nodes (i.e., processors) that cannot be used as base nodes

for the requested sub-mesh. These nodes are then subtracted from the right border plane

(please see Section 3.2 for the definition of right border plane) of the allocated sub-meshes

to find the nodes that can be used as base nodes for the required sub-mesh size.

This chapter also conducts a performance evaluation of the contiguous allocation strategies,

including our suggested strategy, in terms of the average turnaround time and mean system

utilisation, as well as the allocation overhead that the allocation and de-allocation operations

take per job. The results reveal that our proposed allocation strategy has a lower allocation

and de-allocation time (i.e., allocation overhead) than well-known existing strategies. The

simulation results show this reduction is achieved without scanting other important

Chapter 3: Turning Busy List (TBL): A New Contiguous Allocation Algorithm for Mesh-
Connected Multicomputers

51

performance metrics in that system performance is still as good in terms of turnaround time

and system utilisation as that of existing competing strategies.

The remainder of the chapter is organised as follows. Section 3.2 provides preliminary

background information that is relevant to the present study. Section 3.3 outlines the new

proposed contiguous allocation algorithm for the 3D mesh network. Section 3.4 conducts a

comparative performance evaluation of the new strategy against well-known existing ones.

Finally, Section 3.5 concludes this chapter.

3.2 Preliminaries

The target system is a 3D mesh-connected multicomputer, where the network is referred to

as),,(HDWM , where W is the width of the cubic mesh, D its depth and H its height.

Each processor is denoted by a coordinate triple),,(zyx , where Wx <≤0 , Dy <≤0 and

Hz <≤0 [78]. A processor is connected by bidirectional communication links to its

neighbour processors, as depicted in Figure 3.1. The figure shows an example of a 4 × 2 × 2

3D mesh, where the allocated processors are denoted by shaded circles, while the free

processors are denoted by white circles. We assume that a parallel job requests the

allocation of a 3D sub-mesh),,(hdwS of width Ww ≤ , depth Dd ≤ and height Hh ≤ .

The following definitions have been adopted from [27, 77, 78].

 Figure 3.1: An example of a 4 ×××× 2 ×××× 2 3D mesh

Chapter 3: Turning Busy List (TBL): A New Contiguous Allocation Algorithm for Mesh-
Connected Multicomputers

52

Definition 1: A sub-mesh),,(hdwS of width w , depth d , and height h , where Ww ≤<0 ,

Dd ≤<0 and Hh ≤<0 is specified by the coordinates),,,,,(zyxzyx ′′′ , where),,(zyx

are the coordinates of the base of the sub-mesh allocated to a parallel job and),,(zyx ′′′

are the coordinates of its end, as shown in Figure 3.2.

Definition 2: The size of),,(hdwS is hdw ×× processors.

Definition 3: An allocated sub-mesh is one whose processors are all allocated to a parallel

job.

Definition 4: A free sub-mesh is one whose processors are all unallocated.

Definition 5: A suitable sub-mesh),,(hdwS is a free sub-mesh that satisfies the conditions:

α≥w , β≥d and γ≥h assuming that the allocation of),,(γβαS is requested.

Definition 6: A list of all sub-meshes that are currently allocated to jobs and are not

available for allocation to other jobs is called busy list.

Definition 7: A prohibited region is a region consisting of nodes that cannot be used as

base nodes for the requested sub-mesh. The prohibited region of job)(γβα ××J with

respect to an allocated sub-mesh),,,,,(222111 zyxzyxS is defined as the sub-mesh

represented by the address),,,,,(222 zyxzyx ′′′ , where)0,1max(1 +−=′ αxx ,

)0,1max(1 +−=′ βyy and)0,1max(1 +−=′ γzz . For example, if a job J requests the

base

end

Z

X

Figure 3.2: A sub-mesh inside the 3D mesh.

Y

Chapter 3: Turning Busy List (TBL): A New Contiguous Allocation Algorithm for Mesh-
Connected Multicomputers

53

allocation of a sub-mesh of size 2 × 2 × 2, the prohibited region of)222(××J with respect

to the allocated sub-mesh (1, 1, 0, 2, 2, 1), is the sub-mesh (0, 0, 0, 2, 2, 1).

Definition 8: The three sub-meshes)1,1,1,0,0,1(−−−+− HDWW α ,

)1,1,1,0,1,0(−−−+− HDWD β , and)1,1,1,1,0,0(−−−+− HDWH γ are automatically

not available for accommodating the base node of a free γβα ×× sub-mesh for

)(γβα ××J , whether the nodes in these sub-meshes are free or not; otherwise the sub-

mesh would grow out of the corresponding mesh boundary plane (rightmost, deepest and

highest planes) of),,(HDWM . These three sub-meshes are called automatic prohibited

regions of)(γβα ××J and must always be excluded during the sub-mesh allocation

process.

Definition 9: The Right Border Plane (RBP) of a sub-mesh),,,,,(222111 zyxzyxS with

respect to a job)(γβα ××J is defined as the collection of nodes with address

),,1(2 zyx ′′+ where 21)0,1max(yyy ≤′≤+− β and 21)0,1max(zzz ≤′≤+− γ . A RBP of

sub-mesh S is a plane located just off the right boundary of S .

3.3 The Proposed Turning Busy List Allocation Strategy (TBL)

The proposed TBL allocation strategy is based on maintaining a list of allocated sub-

meshes; referred hereafter as the busy list. The list is scanned to determine all prohibited

regions. All prohibited regions that result from the allocated sub-meshes are subtracted from

each RBP of the allocated sub-meshes to determine the nodes that can be used as base nodes

for the required sub-mesh size. A job)(γβα ××J is allocatable if there exists at least one

node that does not belong to any of the prohibited regions and the three automatic prohibited

regions of)(γβα ××J . Figure 3.3 shows all possible cases for subtracting prohibited

regions from a RBP; please see Appendix B where the figures are provided for each case.

Chapter 3: Turning Busy List (TBL): A New Contiguous Allocation Algorithm for Mesh-
Connected Multicomputers

54

The allocated sub-meshes in the busy list are sorted in the decreasing order of the third

coordinates of their upper right corner node (i.e., end node); so that the number of

subtraction operations required can be reduced. The algorithm that is used to detect the base

nodes for any allocation request is formally presented in Figure 3.4, and the new proposed

allocation algorithm is outlined in Figure 3.5. For the illustration, we assume that there is a

hypothetical allocated sub-mesh 0b with address)1,1,1,0,0,1(−−−− HD at the head of the

busy list. The RBP of the hypothetical allocated sub-mesh is the left boundary plane of the

mesh. A list, NodesRBP_ contains a plane if the nodes of the plane are available for

allocation to the job)(γβα ××J selected for execution.

3.3.1 ((x< u1)||(x> u2)||(z2< w1)||(z1> w2)||(y2< v1)||(y1> v2))

In this case the result is RBP itself.

3.3.2 (u1≤x≤u2)&&(v 1≤y1≤v2)&&(v 1≤y2≤v2)&&(w 1≤z2≤w2)&&(z 1<w1)

RBP (x, y1, z1, x, y2, w1-1)

3.3.3 (u1≤x≤u2)&&(v 1≤y1≤v2) && (y 2>v2)&&(w 1≤z2≤w2)&&(z 1<w1)

RBP1 (x, y1, z1, x, y2, w1-1); RBP2 (x, v2+1, w1, x, y2, z2)

3.3.4 (u1≤x≤u2)&&(v 1≤y2≤v2)&&(y 1<v1)&&(w 1≤z2≤w2)&&(z 1<w1)

RBP1 (x, y1, z1, x, y2, w1-1); RBP2 (x, y1, w1, x, v1-1, z2)

3.3.5 (u1≤x≤u2)&&(v 1≤y1≤v2)&&(v 1≤y2≤v2)&&(w 1≤z1≤w2)&&(z 2>w2)

RBP (x, y1, w2+1, x, y2, z2)

3.3.6 (u1≤x≤u2)&&(v 1≤y1≤v2)&&(y 2>v2)&&(w 1≤z1≤w2)&&(z 2>w2)

RBP1 (x, v2+1, z1, x, y2, w2); RBP2 (x, y1, w2+1, x, y2, z2)

3.3.7 (u1≤x≤u2)&&(v 1≤y2≤v2)&&(y 1<v1)&&(w 1≤z1≤w2)&&(z 2>w2)

RBP1 (x, y1, z1, x, v1-1, w2); RBP2 (x, y1, w2+1, x, y2, z2)

3.3.8 (u1≤x≤u2)&&(v 1≤y1≤v2)&&(v 1≤y2≤v2)&&(z 1<w1)&&(z 2>w2)

RBP1 (x, y1, z1, x, y2, w1-1); RBP2 (x, y1, w2+1, x, y2, z2)

RBP Prohibited
Region

(u1,v1,w1)

(u2,v2,w2)

(x,y1,z1)

(x,y2,z2)

Chapter 3: Turning Busy List (TBL): A New Contiguous Allocation Algorithm for Mesh-
Connected Multicomputers

55

3.3.9 (u1≤x≤u2)&&(v 1≤y1≤v2)&&(y 2>v2)&&(z 1<w1)&&(z 2>w2)

RBP1 (x, y1, z1, x, v2, w1-1); RBP2 (x, v2+1, z1, x, y2, z2); RBP3 (x, y1, w2+1, x, v2, z2)

3.3.10 (u1≤x≤u2)&&(v 1≤y2≤v2)&&(y 1<v1)&&(z 1<w1)&&(z 2>w2)

RBP1 (x, y1, z1, x, v1-1, z2); RBP2 (x, v1, z1, x, y2, w1-1); RBP3 (x, v1, w2+1, x, y2, z2)

3.3.11 (u1≤x≤u2)&&(y 2>v2)&&(y 1<v1)&&(z 1<w1)&&(z 2>w2)

RBP1 (x, y1, z1, x, v1-1, z2); RBP2 (x, v2+1, z1, x, y2, z2); RBP3 (x, v1, z1, x, v2, w1-1)

RBP4 (x, v1, w2+1, x, v2, z2)

3.3.12 (u1≤x≤u2)&&(y 2>v2)&&(y 1<v1)&&(z 1≥w1)&&(z 2≤w2)

RBP1 (x, y1, z1, x, v1-1, z2); RBP2 (x, v2+1, z1, x, y2, z2)

3.3.13 (u1≤x≤u2)&&(y 2>v2)&&(y 1<v1)&&(z 1<w1)&&(w 1≤ z2≤w2)

RBP1 (x, y1, z1, x, v1-1, z2); RBP2 (x, v2+1, z1, x, y2, z2); RBP3 (x, v1, z1, x, v2, w1-1)

3.3.14 (u1≤x≤u2)&&(y 2>v2)&&(y 1<v1)&&(z 2>w2)&&(w 1≤ z1≤w2)

RBP1 (x, y1, z1, x, v1-1, z2); RBP2 (x, v2+1, z1, x, y2, z2); RBP3 (x, v1, w2+1, x, v2, z2)

3.3.15 (u1≤x≤u2)&&(v 1≤y1≤v2) &&(v 1≤y2≤v2)&&(w 1≤z1≤w2)&&(w 1≤z2≤w2)

No RBP in this case.

3.3.16 (u1≤x≤u2)&&(v 1≤y1≤v2)&&(y 2>v2)&&(w 1≤z1≤w2)&&(w 1≤z2≤w2)

RBP (x, v2+1, z1, x, y2, z2)

3.3.17 (u1≤x≤u2)&&(v 1≤y2≤v2)&&(y 1<v1)&&(w 1≤z1≤w2)&&(w 1≤z2≤w2)

RBP (x, y1, z1, x, v1-1, z2)

Figure 3.3: All possible cases for subtracting a pr ohibited region from a right border

plane.

Procedure Detect (α, β, γ):

Begin {

{Mesh M(W, D, H); incoming job J requests for an α×β×γ free sub-mesh;

Busy List B = {b0, b1, b2, ….., bm} where b0 is a hypothetical allocated sub-mesh and
bi,1≤i≤m, are the m already allocated sub-meshes; Both sub-meshes (W–α+1, 0, 0, W–
1, D–1, H-1), (0, D-β+1, 0, W–1, D–1, H–1), and (0,0,H-γ+1,W-1,D-1,H-1) are
automatic prohibited regions and automatically not available for accommodating the
base node of a free α×β×γ sub-mesh for J.}

Step 1. RBP_Nodes←NULL.

Step 2. for each allocated sub-mesh bi (x1, y1, z1, x2, y2, z2) from i = 0 to m

Step 2.1. Construct RBP of bi, denoted as RBPi= (xr, yr1, zr1, xr, yr2, zr2), with respect to
J(α×β×γ), where xr=x2+1, yr1=max(y1-β+1, 0), zr1=max(z1-γ+1,0), yr2=y2 and zr2=z2.

Step 2.2. if RBPi is within any automatic prohibited region then goto Step2.

Step 2.3. for each allocated sub-mesh bj (x1, y1, z1, x2, y2, z2) from j = 1 to m

Construct prohibited region of J with respect to bj, denoted as Pj = (xp1, yp1,
zp1, xp2, yp2, zp2) where xp1=max(x1-α+1, 0), yp1=max(y1-β+1, 0), zp1=max(z1-
γ+1, 0), xp2=x2, yp2=y2 and zp2=z2.

Chapter 3: Turning Busy List (TBL): A New Contiguous Allocation Algorithm for Mesh-
Connected Multicomputers

56

Subtract Pj from RBPi as follows:

Determine the case to which the subtraction belongs by comparing the
coordinates of RBPi and Pj as shown in Figure 3.3.

Switch (subtraction case)

{

case (1): if (zr1> zp2) then

begin

add the RBP in Figure 3.3.1 to RBP_Nodes.

goto Step 2.

end

break.

case (2): adjust RBPi as shown in Figure 3.3.2; break.

case (3): adjust RBPi as shown in Figure 3.3.3; break.

case (4): adjust RBPi as shown in Figure 3.3.4; break.

case (5): add the whole RBP in Figure 3.3.5 to RBP_Nodes; goto Step 2.

case (6): add RBP(x, y1, w2+1, x, y2, z2) in Figure 3.3.6 to RBP_Nodes

adjust RBPi as shown in Figure 3.3.6; break.

case (7): add RBP(x, y1, w2+1, x, y2, z2) in Figure 3.3.7 to RBP_Nodes

adjust RBPi as shown in Figure 3.3.7; break.

case (8): add RBP(x, y1, w2+1, x, y2, z2) in Figure 3.3.8 to RBP_Nodes

 adjust RBPi as shown in Figure 3.3.8; break.

case (9): add RBP(x, y1, w2+1, x, v2, z2) in Figure 3.3.9 to RBP_Nodes

adjust RBPi as shown in Figure 3.3.9; break.

case (10): add RBP(x, v1, w2+1, x, y2, z2) in Figure 3.3.10 to RBP_Nodes

adjust RBPi as shown in Figure 3.3.10; break.

case (11): add RBP(x, v1, w2+1, x, v2, z2) in Figure 3.3.11 to RBP_Nodes

adjust RBPi as shown in Figure 3.3.11; break.

case (12): adjust RBPi as shown in Figure 3.3.12; break.

case (13): adjust RBPi as shown in Figure 3.3.13; break.

case (14): add RBP(x, v1, w2+1, x, v2, z2) in Figure 3.3.14 to RBP_Nodes

adjust RBPi as shown in Figure 3.3.14; break.

case (15): go to Step 2.

case (16): adjust RBPi as shown in Figure 3.3.16; break.

case (17): adjust RBPi as shown in Figure 3.3.17; break.

}

goto Step 2.3.

TBL_Allocate(RBP_Nodes, α, β, γ)

} End.

Figure 3.4: Outline of the Detect Procedure in the proposed Contiguous Allocation
Strategy.

Chapter 3: Turning Busy List (TBL): A New Contiguous Allocation Algorithm for Mesh-
Connected Multicomputers

57

Procedure TBL_Allocate (RBP_Nodes, α, β, γ):

Begin {

int botx, boty, botz;

botx=RBP_Nodes.botx;

boty=RBP_Nodes.boty;

botz=RBP_Nodes.botz;

Add the sub-mesh represented by the address (botx, boty, botz, botx + α -1, boty + β – 1,
botz + γ – 1) to the busy list by setting sub-mesh’s ID to the job ID.

}End.

Figure 3.5: Outline of the proposed Contiguous Allo cation Strategy

Example:

To show the operation of the our allocation algorithm let us consider an example where we

assume the mesh is free, and three allocation requests for the sub-meshes 2 × 4 × 4, 2 × 1 ×

2 and 1 × 2 × 1 arrive in this order. Figure 3.6 illustrates the states of the processors of a 4 ×

4 × 4 mesh. The request 2 × 4 × 4 is allocated the sub-mesh (0, 0, 0, 1, 3, 3), then the

allocation algorithm is invoked for the 2 × 1 × 2 request. The busy list contains the allocated

sub-meshes 0b :(-1, 0, 0, -1, 3, 3) and 1b :(0, 0, 0, 1, 3, 3), and the first RBP (RBP for the

hypothetical allocated sub-mesh 0b) is calculated for this request, resulting in (0, 0, 0, 0, 3,

3). The automatic prohibited regions (3, 0, 0, 3, 3, 3), (0, 4, 0, 3, 3, 3), and (0, 0, 3, 3, 3, 3),

with respect to the second allocation request, are subtracted from the first RBP, resulting in

the plane (0, 0, 0, 0, 3, 2). Then the prohibited region of the allocated sub-mesh 1b :(0, 0, 0,

1, 3, 3) with respect to the second allocation request is calculated, resulting in the (0, 0, 0, 1,

3, 3) prohibited region, which when subtracted from the plane (0, 0, 0, 0, 3, 2) results in the

NILL value, implying that no node is available for the job request up to this point. Then, the

RBP of the allocated sub-mesh 1b :(0, 0, 0, 1, 3, 3) is calculated, resulting in (2, 0, 0, 2, 3, 3).

Again the automatic prohibited regions with respect to the second allocation request are

Chapter 3: Turning Busy List (TBL): A New Contiguous Allocation Algorithm for Mesh-
Connected Multicomputers

58

(0,0,0) (3,0,0)

(0,3,0)

(3,0,1) (0,0,1)

(0,3,1)

(0,0,2) (3,0,2)

(0,3,2)

(3,0,3) (0,0,3)

(0,3,3)

Width

H=0

H=3

H=2

H=1

Depth

Height

Figure 3.6: Allocation Example

subtracted from this new RBP, resulting in (2, 0, 0, 2, 3, 2), and the subtraction of the

prohibited region of the allocated sub-mesh 1b from (2, 0, 0, 2, 3, 2) results in (2, 0, 0, 2, 3,

2). Now, any node on the plane (2, 0, 0, 2, 3, 2) can be used as base node for the second

allocation request. In this example, (2, 0, 0, 2, 0, 0) is used as base node for the second

request and the sub-mesh (2, 0, 0, 3, 0, 1) is allocated to this request, resulting in the

following busy list: { 0b :(-1, 0, 0, -1, 3, 3), 1b :(0, 0, 0, 1, 3, 3), 2b :(2, 0, 0, 3, 0, 1)}. The

same procedure is repeated for the third request, and the sub-meshes allocated to the three

requests are denoted by the black circles, shaded circles and dotted circles, respectively.

In the de-allocation operation, an allocated sub-mesh is de-allocated by removing its

corresponding entry from the busy list. The operation of the de-allocation algorithm is

presented in Figure 3.7.

Chapter 3: Turning Busy List (TBL): A New Contiguous Allocation Algorithm for Mesh-
Connected Multicomputers

59

Procedure TBL_De-allocate ():

Begin

{

jid = id of the departing job;

for all elements in the busy list

if (element’s id = jid)

remove the element from the busy list

} End.

Figure 3.7: Outline of the proposed de-allocation a lgorithm

3.4 Performance Evaluation

In this section, the results from simulations that have been carried out to evaluate the

performance of the proposed allocation algorithm are presented and compared against those

of the existing strategies First Fit (FF) and Turning First Fit (TFF) [34]. According to [31,

34, 94, 99], the FF strategy allocates an incoming job to the first available sub-mesh that is

found but it does not permit the orientation of the allocation request. It has been revealed in

[34] that the TFF strategy improves the performance by considering all orientations of the

request when needed. It is worth noting that switching request orientation has been used in

[31, 34, 94]. FF and TFF strategies have been selected because they have been shown in [34]

to perform well compared to other existing strategies. The FF and TFF strategies have been

discussed in detail in Chapter 2 (please see Section 2.2.1).

3.4.1 Simulation Results

Extensive simulation experiments have been carried out for various system loads and system

sizes to compare the performance of the proposed allocation strategy against well-known FF

contiguous allocation strategy [34], with and without change of request orientation. We have

implemented the proposed allocation and de-allocation algorithms, including the busy list

Chapter 3: Turning Busy List (TBL): A New Contiguous Allocation Algorithm for Mesh-
Connected Multicomputers

60

routines, in the C language, and integrated the software into ProcSimity; simulation tool that

is widely used for processor allocation and job scheduling in parallel systems [50, 66].

The target mesh is a cube with width W , depth D and height H . Jobs are assumed to have

exponential inter-arrival times. They are served on First-Come-First-Served (FCFS) basis to

preserve fairness [33, 51, 52, 93]. We limit ourselves to FCFS scheduling because our main

purpose here is to compare the allocation strategies. The execution times are assumed to be

exponentially distributed with a mean of one time unit [6, 11, 33, 34, 74, 78, 85]. The time

units are simulation time units, measured by floating point numbers, NOT hours, minutes, or

seconds [66], where the numbers generated by the simulator, for some of the system

parameters such as jobs’ execution times, are real numbers. Two distributions are used to

generate the width, depth and height of job requests. The first is the uniform distribution

over the range from 1 to the mesh side length, where the width, depth and height of the job

requests are generated independently. The second is the exponential distribution, where the

width, depth and height of the job requests are exponentially distributed with a mean of half

the side length of the entire mesh; the width, depth, and height of the job requests are

rounded to the integer values using floor function and bounded by the dimensions of the

mesh. The exponential distribution represents the case where most jobs are small relative to

the size of the mesh system. These distributions have often been used in the literature [9, 11,

20, 27, 33, 34, 38, 51, 52, 77, 85, 94, 99]. Simulation parameters are illustrated in Table 3.1.

It is worth noting that most of the values of these parameters have been adopted in the

literature [9, 11, 20, 27, 33, 34, 38, 51, 52, 77, 85, 94, 99].

Table 3.1: The System Parameters Used in the Simula tion Experiments

Simulator Parameter Values

Dimensions of the Mesh Architecture 8 × 8 × 8, 10 × 10 × 10, and 12 × 12 × 12

Chapter 3: Turning Busy List (TBL): A New Contiguous Allocation Algorithm for Mesh-
Connected Multicomputers

61

Allocation Strategy TBL, BL, TFF, and FF

Scheduling Strategy FCFS

Job Size Distribution

Uniform: Job widths, depths, and heights

are uniformly distributed over the range

from 1 to the mesh side lengths.

Exponential: Job widths, depths, and heights

are exponentially distributed with a mean of

half the side length of the entire mesh.

Execution Time Distribution Exponential with a mean of one time unit.

Inter-arrival Time

Exponential with different values for the

mean. The values are determined through

experimentation with the simulator, ranged

from lower values to higher values.

Number of Runs

The number of runs should be enough so

that the confidence level is 95% that

relative errors are below 5% of the means.

The number of runs ranged from dozens to

thousands.

Number of Jobs per Run 1000

Each simulation run consists of 1000 completed jobs. Simulation results are averaged over

enough independent runs so that the confidence level is 95% that relative errors are below

5% of the means [7]. The method used to calculate confidence intervals is called batch

means analysis [4, 66]. In batch means method, a long run is divided into a set of fixed size

batches, computing a separate sample mean for each batch, and using these batches means to

compute the grand mean and the confidence interval. In our simulation experiments, the

grand means are obtained along with several values, including confidence interval and

relative errors as shown in Table 3.2, which outlines the results depicted in Figure 3.8 for

the load 5.8 jobs/time unit. However, as in existing studies [9, 11, 20, 27, 33, 34, 38, 51, 52,

77, 85, 94, 99], only the grand mean is shown in our figures. In most cases the error bars

have been found to be quite small; the error bars have not been included in all the figures for

Chapter 3: Turning Busy List (TBL): A New Contiguous Allocation Algorithm for Mesh-
Connected Multicomputers

62

the sake of clarity and tidiness.

The main performance parameters observed are the average turnaround time of jobs, mean

system utilisation and average allocation overhead. The turnaround time is the time that a

parallel job spends in the mesh from arrival to departure. The utilisation is the percentage of

processors that are utilized over time. The allocation overhead is the time that the allocation

algorithm takes for allocation and de-allocation operations per job (i.e., It is the time a job at

the head of the waiting queue takes to be allocated and de-allocated). The allocation

overhead that is incurred for detecting the availability of a free sub-mesh for an incoming

job request and de-allocating it is the realistic time. We recognize that these results are

implementation dependent, but the trends shown by the results help to indicate the main

features of the strategies. The important independent variable in the simulation is the system

load. It is defined as the inverse of the mean inter-arrival time of jobs. Its range of values

from low to heavy loads has been determined through experimentation with the simulator

allowing each allocation strategy to reach its upper limits of utilisation. In the figures that

are presented below, the x-axis represents the system load while the y-axis represents results

of the performance metric of interest.

Table 3.2: The mean (i.e., mean turnaround time of job), 95% confidence interval, and
relative error for the results shown in Figure 3.8 for the load 5.8 jobs/time unit

Algorithm TBL TFF BL FF

95% Confidence
Interval

[95.87-97.28] [95.58-97.59] [158.85-160.06] [156.03-158.43]

Mean (time unit) 96.580111 96.586394 159.457505 157.225758

Relative Error 0.007 0.01 0.004 0.008

Turnaround Time:

In Figures 3.8 and 3.9, the average turnaround time of jobs is plotted against the system load

for both job size distributions considered in this research. It can be seen in the figures that

Chapter 3: Turning Busy List (TBL): A New Contiguous Allocation Algorithm for Mesh-
Connected Multicomputers

63

the strategies with rotation (TBL and TFF) have almost identical performance, and that they

are superior to all other strategies. They are followed, in order, by the strategies BL and FF

respectively. When compared to TBL and TFF in Figure 3.8, for example, BL increases the

average turnaround times by about 160% and 65% for the loads 3.4 and 5.8 jobs/time unit,

respectively. In Figure 3.9, the increases are by about 1017% and 143% for the loads 5.8 and

12.2 jobs/time unit, respectively. It can also be seen in the figures that the average

turnaround times of the strategies that depend on a list of allocated sub-meshes for both

allocation and de-allocation (as in TBL and BL) is very close to that of the strategies that

depend on the number of processors in the mesh system (as in TFF and FF). For example,

the average turnaround time of TBL is close to that of TFF and the average turnaround time

of BL is close to that of FF. As has been reported above, the average turnaround time of the

strategies with rotation (as in TBL and TFF) is substantially superior to the strategies

without rotation (as in BL and FF) because it is highly likely that a suitable contiguous sub-

mesh is available for allocation to a job when request rotation is allowed. Experiments that

use large mesh system sizes (10 × 10 × 10 and 12 × 12 × 12) have been also conducted.

Their results lead to the same conclusion about the relative performance of the allocation

strategies (please see Section 3.4.1.1).

Utilisation:

In Figures 3.10 and 3.11, the mean system utilisation of the contiguous allocation strategies

is plotted against the system loads for the uniform and exponential job size distributions.

The results reveal that switching request orientation improves performance substantially.

This is indicated by the largely superior mean system utilisation of the allocation strategies

that can switch the orientation of allocation requests (as in TBL and TFF) when they are

compared to the allocation strategies without rotation (as in BL and FF). The allocation

strategies TBL and TFF have comparable performance, and they are superior to the BL and

Chapter 3: Turning Busy List (TBL): A New Contiguous Allocation Algorithm for Mesh-
Connected Multicomputers

64

FF allocation strategies. This is because the rotation of the allocation request increases the

probability of its allocation, which in turn improves system utilization. For both job size

distributions, the allocation strategies with rotation TBL and TFF achieve system utilisation

of 47% under the exponential distribution and 49% under uniform distribution, but the

allocation strategies without rotation BL and FF cannot exceed 37% utilisation. Higher

system utilisation is achievable under heavy loads because the waiting queue is filled very

early, allowing each allocation strategy to reach its upper limits of utilisation.

0

20

40

60

80

100

120

140

160

0.2 0.6 1 1.4 1.8 2.2 2.6 3 3.4 3.8 4.2 4.6 5 5.4 5.8

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e

(t
im

e
un

it)

Load (jobs/time unit)

TBL

TFF

BL

FF

Figure 3.8: Average turnaround time vs. system load for the contiguous allocation
strategies (BL, FF, TBL, TFF) and the uniform side lengths distribution in an 8 × 8 × 8
mesh.

0

20

40

60

80

100

1 1.8 2.6 3.4 4.2 5 5.8 6.6 7.4 8.2 9 9.8 10.6 11.4 12.2

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e

(t
im

e
un

it)

Load (jobs/time unit)

TBL

TFF

BL

FF

Figure 3.9: Average turnaround time vs. system load for the contiguous allocation
strategies (BL, FF, TBL, TFF) and the exponential s ide lengths distribution in an 8 × 8
× 8 mesh.

Chapter 3: Turning Busy List (TBL): A New Contiguous Allocation Algorithm for Mesh-
Connected Multicomputers

65

2

12

22

32

42

52

62

72

82

92

0.2 0.6 1 1.4 1.8 2.2 2.6 3 3.4 3.8 4.2 4.6 5 5.4 5.8

U
til

iz
at

io
n

(%
)

Load (jobs/time unit)

TBL

TFF

BL

FF

Figure 3.10: Mean System utilisation for the contig uous allocation strategies (BL, FF,
TBL, TFF) and the uniform side lengths distribution in an 8 × 8 × 8 mesh.

2

12

22

32

42

52

62

72

82

92

1 1.8 2.6 3.4 4.2 5 5.8 6.6 7.4 8.2 9 9.8 10.6 11.4 12.2

U
til

iz
at

io
n

(%
)

Load (jobs/time unit)

TBL

TFF

BL

FF

Figure 3.11: Mean System utilisation for the contig uous allocation strategies (BL, FF,
TBL, TFF) and the exponential side lengths distribu tion in an 8 × 8 × 8 mesh.

Number of Allocated Sub-meshes (m):

In Figures 3.12~3.15, the average number of allocated sub-meshes (m) in the strategies that

depend on a list of allocated sub-meshes for both allocation and de-allocation (TBL and BL)

is plotted against the system load. Different mesh sizes (8 × 8 × 8, 10 × 10 × 10, and 12 × 12

× 12) are considered under both the uniform and exponential job size distributions. As

expected, the average number of allocated sub-meshes is largest when the side lengths

follow the exponential distribution. This is because the average sizes of jobs are smallest in

this case. Moreover, the average number of allocated sub-meshes is lower than the number

Chapter 3: Turning Busy List (TBL): A New Contiguous Allocation Algorithm for Mesh-
Connected Multicomputers

66

of processors in the mesh system (n) for both job size distributions. It can be seen in the

figures that m is often less sensitive with n . It can also be noticed that the average number

of allocated sub-meshes for the strategy that use the rotation of the allocation request TBL is

a little bit higher than that of the BL strategy which does not use the rotation of the

allocation request. This is because it is highly likely that a suitable contiguous sub-mesh is

available for allocation to a job when the request orientation is allowed, which in turn

increases the number of allocated sub-meshes in the busy list. In Figures 3.12 and 3.13, for

example, the average number of allocated sub-meshes of BL for all mesh sizes is 74% of

that of TBL when the job arrival rate is 5.8 jobs/time unit.

1

1.5

2

2.5

3

3.5

0.2 0.6 1 1.4 1.8 2.2 2.6 3 3.4 3.8 4.2 4.6 5 5.4 5.8

A
ve

ra
ge

 N
um

be
r

of
 A

llo
ca

te
d

S
ub

-m
es

he
s

Load (jobs/time unit)

TBL 8x8x8

TBL 10x10x10

TBL 12x12x12

Figure 3.12: Average number of allocated sub-meshes (m) in TBL and the uniform
side lengths distribution in 8 × 8 × 8, 10 × 10 × 1 0, and 12 × 12 × 12 meshes.

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

0.2 0.6 1 1.4 1.8 2.2 2.6 3 3.4 3.8 4.2 4.6 5 5.4 5.8A
ve

ra
ge

 N
um

be
r

of
 A

llo
ca

te
d

S
ub

-m
es

he
s

Load (jobs/time unit)

BL 8x8x8

BL 10x10x10

BL 12x12x12

Figure 3.13: Average number of allocated sub-meshes (m) in BL and the uniform
side lengths distribution in 8 × 8 × 8, 10 × 10 × 1 0, and 12 × 12 × 12 meshes.

Chapter 3: Turning Busy List (TBL): A New Contiguous Allocation Algorithm for Mesh-
Connected Multicomputers

67

1

2

3

4

5

6

7

8

9

10

1 1.8 2.6 3.4 4.2 5 5.8 6.6 7.4 8.2 9 9.8 10.6 11.4 12.2

A
ve

ra
ge

 N
um

be
r

of

A
llo

ca
te

d
S

ub
-m

es
he

s

Load (jobs/time unit)

TBL 8x8x8

TBL 10x10x10

TBL 12x12x12

Figure 3.14: Average number of allocated sub-meshes (m) in TBL and the
exponential side lengths distribution in 8 × 8 × 8, 10 × 10 × 10, and 12 × 12 × 12
meshes.

1

1.5

2

2.5

3

3.5

4

4.5

5

1 1.8 2.6 3.4 4.2 5 5.8 6.6 7.4 8.2 9 9.8 10.6 11.4 12.2

A
ve

ra
ge

 N
um

be
r

of

A
llo

ca
te

d
S

ub
-m

es
he

s

Load (jobs/time unit)

BL 8x8x8

BL 10x10x10

BL 12x12x12

Figure 3.15: Average number of allocated sub-meshes (m) in BL and the exponential
side lengths distribution in 8 × 8 × 8, 10 × 10 × 1 0, and 12 × 12 × 12 meshes.

Allocation Overhead (Allocation and De-allocation Time):

Before presenting the simulation results, let us first carry out a simple analysis of the time

required for the allocation and de-allocation operations in the new TBL strategy. To do so,

we need to examine the algorithm outlined in Figure 3.4 above. The RBP construction

operation in Steps 2 and 2.1 of this algorithm requires)(mO time, where m is the number

of allocated sub-meshes. Subtracting a prohibited region from a RBP takes)1(O time. As

there are at most four RBP’s and m prohibited regions, subtracting m prohibited regions

from a RBP in step 2.3 of the algorithm takes)(mO time. In total, the allocation operation

takes)(2mO time since there are m×4 RBP’s and m prohibited regions to be considered.

Chapter 3: Turning Busy List (TBL): A New Contiguous Allocation Algorithm for Mesh-
Connected Multicomputers

68

Typically, the average values of m are less sensitive with n , where n is the number of

processors in the mesh, as has been seen in the simulation results above in Figures

3.12~3.15. The de-allocation operation requires m iterations to remove the allocated sub-

mesh from the busy list. Therefore, the de-allocation operation takes)(mO time. TBL

maintains a busy list of m allocated sub-meshes. Thus, the space requirement of the TBL

allocation strategy is)(mO . The space incurred by this strategy is small compared to the

improvement in performance in terms of allocation overhead, as we will see in the

simulation results.

As previously reported in Chapter 2, Section 2.5, the current version of ProcSimity ignores

the overhead of allocation and de-allocation (i.e., the time that the allocation and de-

allocation operations take per job). To compare the allocation strategies in terms of the

allocation overhead associated with the allocation and de-allocation operations, we

measured the average actual time taken by these operations on a Pentium machine running

under Windows XP. The clock cycle of the machine is 3 GHz and the RAM size is 504 MB.

The per-job average allocation overhead was computed in milliseconds over enough

independent runs so that the confidence level is 95% that relative errors are below 5% of the

mean.

In the remainder of this section, Figures 3.16~3.21 depict the average allocation overhead

for the allocation strategies against the job arrival rate for different mesh sizes (8 × 8 × 8, 10

× 10 × 10, and 12 × 12 × 12), when request side lengths follow the uniform and exponential

distributions. We observe that the strategies that depend on the busy list for both allocation

and de-allocation (TBL, BL) have much smaller allocation overhead than the strategies that

depend on the number of processors in the mesh system (TFF, FF). In Figure 3.16, for

example, the allocation overhead of TBL strategy is 4% of that in TFF strategy under the job

arrival rate 4.6 jobs/time unit. It can also be seen in the figures that the allocation overhead

Chapter 3: Turning Busy List (TBL): A New Contiguous Allocation Algorithm for Mesh-
Connected Multicomputers

69

for the strategies with rotation is higher than that of the strategies without rotation because

in the worst case, the allocation process, in the strategies with rotation, is repeated for all

possible permutations (6 permutations) of the job request while this process is repeated only

one time for the other strategies.

The allocation overhead for the allocation strategies that depend on the list of allocated sub-

meshes (TBL, BL) is little affected by changes in the system loads in our considered

scenarios. This is because the average number of allocated sub-meshes in the busy list for

these allocation strategies is much lower than the number of processors in the mesh system.

In Figure 3.12 above, for example, the average number of allocated sub-meshes in the busy

list varied from 1.09 to 2.76 from low to heavy loads. The allocation strategies, TBL and

BL, depend on this small number of allocated sub-meshes in the busy list for both allocation

and de-allocation. Consequently, the time needed for both allocation and de-allocation

operations, for the allocation strategies that depend on a list of allocated sub-meshes, is little

affected by changes in the system loads.

The average size of a requested sub-mesh is relatively small when the exponential

distribution is used for generating job side lengths. Therefore, the number of allocated sub-

meshes is larger in this case, meaning that the allocation choices are more numerous.

Consequently, the allocation overhead of the strategies that depend on the busy list is largest

when the side lengths follow the exponential distribution. Also and as shown in Figures

3.18~3.21, when the number of processors increases the allocation overhead increases for

the allocation strategies that depend on the number of processors in the mesh system while it

does not increase for the strategies that depend on a list of allocated sub-meshes. In Figures

3.16 and 3.20, for example, the allocation overhead of the TFF strategy for an 8 × 8 × 8

mesh system size is 11% of that in TFF for a 12 × 12 × 12 mesh system size under the job

arrival rate 5.8 jobs/time unit. Moreover, the results reveal that the difference in allocation

Chapter 3: Turning Busy List (TBL): A New Contiguous Allocation Algorithm for Mesh-
Connected Multicomputers

70

overhead gets more noticeable as the system load increases. Thus, the strategies which

depend on a list of allocated sub-meshes are more effective than the strategies that depend

on the size of the mesh system.

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

0.2 0.6 1 1.4 1.8 2.2 2.6 3 3.4 3.8 4.2 4.6 5 5.4 5.8

A
ve

ra
g

e
A

llo
ca

tio
n

O
ve

rh
ea

d
 (

m
se

c)

Load (jobs/time unit)

TBL

TFF

BL

FF

Figure 3.16: Average allocation overhead for the al location strategies (TBL, TFF, BL,
and FF) and uniform side lengths distribution in an 8 × 8 × 8 mesh.

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1 1.8 2.6 3.4 4.2 5 5.8 6.6 7.4 8.2 9 9.8 10.6 11.4 12.2

A
ve

ra
g

e
A

llo
ca

tio
n

O
ve

rh
ea

d
 (

m
se

c)

Load (jobs/time unit)

TBL

TFF

BL

FF

Figure 3.17: Average allocation overhead for the al location strategies (TBL, TFF, BL,
and FF) and exponential side lengths distribution i n an 8 × 8 × 8 mesh.

-0.1

0.4

0.9

1.4

1.9

2.4

2.9

3.4

0.2 0.6 1 1.4 1.8 2.2 2.6 3 3.4 3.8 4.2 4.6 5 5.4 5.8

A
ve

ra
g

e
A

llo
ca

tio
n

O
ve

rh
ea

d
 (

m
se

c)

Load (jobs/time unit)

TBL

TFF

BL

FF

Figure 3.18: Average allocation overhead for the al location strategies (TBL, TFF, BL,
and FF) and uniform side lengths distribution in a 10 × 10 × 10 mesh.

Chapter 3: Turning Busy List (TBL): A New Contiguous Allocation Algorithm for Mesh-
Connected Multicomputers

71

-0.1

0.4

0.9

1.4

1.9

2.4

2.9

3.4

1 1.8 2.6 3.4 4.2 5 5.8 6.6 7.4 8.2 9 9.8 10.6 11.4 12.2

A
ve

ra
g

e
A

llo
ca

tio
n

O
ve

rh
ea

d
 (

m
se

c)

Load (jobs/time unit)

TBL

TFF

BL

FF

Figure 3.19: Average allocation overhead for the al location strategies (TBL, TFF, BL,
and FF) and exponential side lengths distribution i n a 10 × 10 × 10 mesh.

-0.5
0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

0.2 0.6 1 1.4 1.8 2.2 2.6 3 3.4 3.8 4.2 4.6 5 5.4 5.8

A
ve

ra
ge

 A
llo

ca
tio

n
O

ve
rh

ea
d

(m
se

c)

Load (jobs/time unit)

TBL

TFF

BL

FF

Figure 3.20: Average allocation overhead for the al location strategies (TBL, TFF, BL,
and FF) and uniform side lengths distribution in a 12 × 12 × 12 mesh.

-0.5
0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

1 1.8 2.6 3.4 4.2 5 5.8 6.6 7.4 8.2 9 9.8 10.6 11.4 12.2

A
ve

ra
ge

 A
llo

ca
tio

n
O

ve
rh

ea
d

(m
se

c)

Load (jobs/time unit)

TBL

TFF

BL

FF

Figure 3.21: Average allocation overhead for the al location strategies (TBL, TFF, BL,
and FF) and exponential side lengths distribution i n a 12 × 12 × 12 mesh.

3.4.1.1 Performance Impact of Mesh System Size

In this section, we investigate the effect of the size of the mesh system on the performance

of the allocation strategies considered in this chapter in terms of average turnaround time of

Chapter 3: Turning Busy List (TBL): A New Contiguous Allocation Algorithm for Mesh-
Connected Multicomputers

72

jobs. Figures 3.22 and 3.23 plot the average turnaround time of jobs against the size of the

mesh system, assuming a heavy system load of 5.8 and 12.2 jobs/time unit for the uniform

and exponential side lengths distribution, respectively. The results show that the

performance of the allocation strategies is little affected by changes in the system size in our

considered scenarios. In Figure 3.22, for example, the average turnaround time of the TBL

strategy for a 12 × 12 × 12 mesh system size is 93% of that of the TBL strategy for an 8 × 8

× 8 mesh system size. Moreover, the allocation strategies that use the orientation of the

allocation request perform much better than the allocation strategies that do not use the

orientation of the allocation request regardless of the mesh system size. For instance, Figure

3.23 shows that the average turnaround time of the TBL strategy is 44% of that of the BL

strategy for a 12 × 12 × 12 mesh system size.

T
B

L

T
B

L

T
B

L

T
F

F

T
F

F

T
F

F

F
F F
F F
F

B
L B
L B
L

0

20

40

60

80

100

120

140

160

180

8x8x8 10x10x10 12x12x12

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e
(t

im
e

un
it)

Mesh System Size (processor)

TBL

TFF

FF

BL

Figure 3.22: Average turnaround time vs. size of th e mesh system for the contiguous
allocation strategies (BL, FF, TBL, TFF) and the un iform side lengths distribution.

T
B

L

T
B

L

T
B

LT
F

F

T
F

F

T
F

F

F
F

F
F

F
FB

L

B
L

B
L

0

20

40

60

80

100

8x8x8 10x10x10 12x12x12

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e
(t

im
e

un
it)

Mesh System Size (processor)

TBL

TFF

FF

BL

Figure 3.23: Average turnaround time vs. size of th e mesh system for the contiguous
allocation strategies (BL, FF, TBL, TFF) and the ex ponential side lengths distribution.

Chapter 3: Turning Busy List (TBL): A New Contiguous Allocation Algorithm for Mesh-
Connected Multicomputers

73

3.5 Conclusions

While the existing contiguous allocation strategies for the 3D mesh-connected

multicomputers achieve complete sub-mesh recognition capability but with a high allocation

overhead, this chapter has suggested an efficient contiguous allocation strategy, referred to

as the Turning Busy List strategy (TBL for short), which can overcome the limitations of the

existing strategies. The performance of the new strategy has been compared against that of

the existing contiguous allocation strategies which have been suggested for the 3D mesh-

connected multicomputers. Simulation results have shown that the performance of the TBL

proposed allocation strategy is at least as good as that of the previously promising proposed

strategies in terms of average turnaround time and mean system utilisation. Moreover, the

allocation overhead of the TBL strategy is much lower than that of the existing strategies.

The scenarios that have been examined in our simulation experiments have also revealed

that system performance is affected only a little by a change in the network size.

The performance impact of the switching of request orientations has been also evaluated.

The results have revealed that in general the rotation of the job request improves the

performance of the contiguous allocation strategies. Moreover, TBL can be efficient because

it is implemented using a busy list approach. This approach can be expected to be efficient

in practice because when the mesh system size increases the requirement of applications in

terms of the number of requested processors often increases and in such a case our algorithm

is expected to exhibit competitive performance levels.

The subsequent chapter will describe a new non-contiguous allocation algorithm for the 2D

mesh-connected multicomputers which can exhibit better performance in terms of the

turnaround time than the previous non-contiguous allocation strategies in most of the cases

Chapter 3: Turning Busy List (TBL): A New Contiguous Allocation Algorithm for Mesh-
Connected Multicomputers

74

considered. Moreover, in the presence of high message contention due to heavy network

traffic, the proposed strategy exhibits superior performance over the previous contiguous

and non-contiguous allocation strategies; in particular, it exhibits high system utilisation as

it manages to eliminate both internal and external processor fragmentation.

Chapter 4

Greedy Available Busy List (GABL): A New
Non-contiguous Allocation Algorithm for
Mesh-Connected Multicomputers

4.1 Introduction

Most allocation strategies [9, 27, 28, 33, 34, 38, 41, 48, 52, 65, 74, 75, 99] suggested for

mesh-connected multicomputers are based on contiguous allocation, where the processors

allocated to a parallel job are physically contiguous and have the same topology as that of

the interconnection network of the multicomputer. Contiguous allocation strategies often

result in high processor fragmentation, leading to a degradation in system performance in

terms of average turnaround time of jobs and mean system utilisation, as has been shown in

[99] (please refer to Section 2.1 in Chapter 2 for the definition of processor fragmentation).

The main goal of a processor allocation strategy is to reduce the job turnaround time and at

the same time maximize the system utilisation by alleviating the processor fragmentation

problem. Several studies have attempted to reduce processor fragmentation [18, 24, 28, 35,

51, 77, 81, 85]. One of the suggested solutions is to adopt non-contiguous allocation [18, 24,

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 76

49, 72, 85]. In non-contiguous allocation, a job can execute on multiple disjoint smaller sub-

networks rather than always waiting until a single sub-network of the requested size and

shape is available. Although non-contiguous allocation increases message contention in the

network, lifting the contiguity condition is expected to reduce processor fragmentation and

increase processor utilisation [18, 72, 85]. It is the introduction of wormhole routing [2, 11,

83] that has lead researchers to consider non-contiguous allocation on multicomputer

networks with a long communication distances, such as the 2D mesh [2, 18, 49, 77, 85]. This

is due to the fact that one of main advantages of wormhole routing over earlier

communication schemes, e.g., store-and-forward, is that message latency is less dependent

on the message distance.

Most existing research studies have been conducted in the context of contiguous allocation

[9, 27, 28, 33, 38, 48, 65, 81, 99]. There has been comparatively very little work on non-

contiguous allocation. Whereas contiguous allocation eliminates contention among the

messages of concurrently executing jobs, non-contiguous allocation can eliminate processor

fragmentation that contiguous allocation suffers from. Furthermore, most existing research

on contiguous and non-contiguous allocation has been carried out in the context of the 2D

mesh [9, 18, 27, 28, 33, 35, 38, 48, 49, 51, 65, 77, 81, 85, 99]. The mesh network has been

used as the underlying network in a number of practical and experimental parallel machines,

such as the iWARP [15], IBM BlueGene/L [10, 55, 98], Cplant [84], and Delta Touchstone

[40]. Examples of current generation mesh-connected systems that use non-contiguous

allocation are the Cplant [84] and Cray XT3 [19, 60].

The existing non-contiguous allocation strategies suggested for the 2D mesh suffer from

several problems that include internal fragmentation, external fragmentation, and message

contention inside the network [18, 24, 49, 84, 85]. Also, the allocation for job requests is not

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 77

based on free contiguous sub-meshes [18, 85]. Instead, it is often based on artificial

predefined geometric or arithmetic patterns [18, 85]. For example, in the study of [18],

ANCA subdivides job requests into two equal parts. The subparts are successively

subdivided in a similar fashion if allocation fails for any of them. In the study of [85], MBS

strategy bases partitioning on a base-4 representation of the number of processors requested,

and partitioning in Paging [85] is based on the characteristics of the page, which is globally

predefined independently from the request. Hence these strategies may fail to allocate an

available large sub-mesh and which in turn can cause degradation in system performance in

terms of turnaround times [18, 72, 85].

Motivated by the above observations, this chapter makes the following contributions. We

describe a new non-contiguous allocation strategy, referred to here as Greedy Available

Busy List (GABL for short), for the 2D mesh, and compare its performance properties using

detailed simulations against those of the previous non-contiguous allocation strategies

Paging(0) and Multiple Buddy Strategy (MBS) [85]. These two strategies have been selected

because they have been shown to perform well in [85]. The MBS and Paging(0) have been

discussed in detail in Chapter 2 (please see Section 2.2.2). To show the superiority of non-

contiguous allocation against contiguous allocation with respect to fragmentation, the

GABL strategy is compared against the contiguous First Fit strategy (FF) [99] as this has

been used in previous related studies [18, 85].

This chapter also conducts a performance evaluation of the non-contiguous allocation

strategies in terms of overall performance parameters such as the average turnaround time,

average waiting time, and mean system utilisation. Furthermore, the contention in the

network that results from the communication among allocated processors has been measured

using two metrics. These are the contiguous ratio and average blocks per job. The

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 78

contiguous ratio measures the ratio of jobs that allocated contiguously. The average blocks

per job is defined as the average number of non-contiguous blocks allocated to a job.

Message contention decreases when the number of blocks allocated to a job deceases. This

study is the first to examine the non-contiguous allocation based on the sub-meshes

available for allocation. The results show that the proposed strategy has lower turnaround

times than the previous non-contiguous allocation strategies of [85]. When message

contention increases inside the network, the proposed strategy exhibits superior performance

in terms of job turnaround times over the previous contiguous and non-contiguous allocation

strategies. Furthermore, the proposed strategy exhibits high system utilisation as it manages

to eliminate both internal and external fragmentation.

The remainder of the chapter is organized as follows. Section 4.2 describes our proposed

non-contiguous allocation strategy. Section 4.3 compares the performance of the contiguous

and non-contiguous allocation strategies. Finally, Section 4.4 concludes this chapter.

4.2 The Proposed Greedy Available Busy List Allocation Strategy (GABL)

The target system is a 2D mesh-connected multicomputer, referred to as),(LWM , where

W is the width of the mesh, and L is its length (for the sake of conciseness please refer to

the description of 3D mesh in Section 3.2 in Chapter 3, as the adaptation of the description

to the 2D mesh is straightforward).

The GABL strategy partitions requests based on the sub-meshes available for allocation. A

major goal of the partitioning process is to maintain a high degree of contiguity among the

processors allocated to a given parallel job. Furthermore, the GABL strategy combines the

desirable features of both contiguous and non-contiguous allocation strategies. For example,

the desirable features of any ideal contiguous allocation strategy are to eliminate the

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 79

communication overhead among processors allocated to a parallel job and to achieve

complete sub-mesh recognition capability with low allocation overhead. The desirable

feature of an ideal non-contiguous allocation strategy is to alleviate communication

overhead among processors allocated to a job by maintaining a degree of contiguity between

them. Moreover, GABL is general enough in that it could be applied to either the 2D or 3D

mesh. However, for the sake of the present discussion, the new non-contiguous allocation

strategy is adapted for the 2D mesh in order to compare its performance against that of the

existing non-contiguous allocation strategies suggested for the 2D mesh; it is worth pointing

out that there has been hardly any non-contiguous strategy which has been suggested for the

3D mesh network.

In implementing GABL, we exploit an efficient approach, the Turning Busy List (TBL)

approach described in Chapter 3, for the detection of such available sub-meshes. As

previously discussed in Chapter 3, the basic idea of TBL is to maintain a list of the allocated

sub-meshes. The list is used to determine all prohibited regions, which are sub-meshes

consisting of the nodes that cannot serve as base nodes for the requested sub-mesh. The

prohibited regions are then subtracted from the right border lines of the allocated sub-

meshes so as to locate nodes that could be used as base nodes for the required sub-mesh.

The TBL algorithm in Chapter 3 builds the busy list in order to detect the free sub-meshes in

the target mesh. The detection of available sub-meshes and the allocation process for 2D

mesh are implemented by the algorithms illustrated in Figures 4.1 and 4.2 respectively.

Procedure Detect (α, β):

Begin {
 {Mesh M(W, L); incoming job J requests for an α×β free sub-mesh;

Busy list B = {b0, b1, b2, ….., bm} where b0 is a hypothetical allocated sub-mesh
and bi, 1≤i≤m, are the m already allocated sub-meshes; Both sub-meshes (W-α+1,
0, W-1, L-1) and (0, L-β+1, W-1, L-1) are automatic prohibited regions and

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 80

automatically not available for accommodating the base node of a free α×β sub-
mesh for J.}

 Step 1. RBL_Nodes←NULL.
 Step 2. for each allocated sub-mesh bi(x1, y1, x2, y2) from i = 0 to m

Step 2.1. Construct RBL of bi, denoted as RBLi= (xr, yr1, xr, yr2), with respect to
J where xr=x2+1, yr1=max(y1-β+1, 0), and yr2=y2.
Step 2.2. if RBLi is within an automatic prohibited region then goto Step 2.
Step 2.3. for each allocated sub-mesh bj (x1,y1,x2,y2) from j = 1 to m

Construct prohibited region of J with respect to bj, denoted as Pj = (xp1,
yp1,xp2,yp2) where xp1=max(x1-α+1, 0), yp1=max(y1-β+1, 0), xp2=x2,
and yp2=y2.
subtract Pj from RBLi as follows:
Determine the case to which the subtraction belongs by comparing the
coordinates of RBLi and Pj as the following:
1. ((xr < xp1) ׀׀ (xr > xp2) ׀׀ (yr2< yp1) ׀׀ (yr1> yp2)).
2. ((xr >= xp1) && (x r <= xp2) && (y r2>= yp1) && (y r2<= yp2) && (y r1< yp1))
3. ((xr >= xp1) && (x r <= xp2) && (y r1>= yp1) && (y r1<= yp2) && (y r2> yp2))
4. ((xr >= xp1) && (x r <= xp2) && (y r1< yp1) && (y r2> yp2))
5. ((xr >= xp1) && (x r <= xp2) && (y r1>= yp1) && (y r2<= yp2))
 Switch (subtraction case)
{

case (1): if (yr1> yp2) then
begin

add the whole RBLi to RBL_Nodes.
goto Step 2.

end
break.

case (2): adjust RBLi such that yr2← yp1-1.
break.

case (3): add line segment (xr, yp2+1,xr,yr2) to RBL_Nodes.
goto Step 2.

case (4): add line segment (xr, yp2+1,xr,yr2) to RBL_Nodes.
adjust RBLi such that yr2← yp1-1.
break.

case (5): goto Step 2.
 }
 goto Step 2.3.

 TBL_Allocate(RBL_Nodes, α, β)

} End.

Figure 4.1: Outline of the Detect Procedure in TBL Contiguous Allocation Strategy for
2D Mesh

Procedure TBL_Allocate (RBL_Nodes, α, β):
Begin {

 int botx, boty;

 botx=RBL_Nodes.botx;

 boty=RBL_Nodes.boty;

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 81

Add the sub-mesh represented by the address (botx, boty, botx + α -1, boty + β – 1)
to the busy list by setting sub-mesh’s ID to the job ID.

} End.

Figure 4.2: Outline of the TBL Contiguous Allocatio n Strategy for 2D Mesh

To explain how the detection of the available sub-meshes and the allocation process on the

2D mesh works; consider the example of Figure 4.3 in which a 6 × 6 mesh is illustrated.

There are 4 allocated sub-meshes in this example. These allocated sub-meshes are denoted

by },,,{ 4321 bbbb and represented by the addresses 1b (1, 4, 5, 5), 2b (0, 2, 1, 3), 3b (4, 3, 5,

3), and 4b (5, 2, 5, 2), respectively. Assume that an incoming job J requests a 2 × 4 sub-

mesh. Now, consider the sub-mesh 2b (0, 2, 1, 3). The RBL of 2b (0, 2, 1, 3) with respect to

the job request)42(×J is (2, 0, 2, 3). The automatic prohibited regions with respect to the

job request)42(×J are calculated resulting in the regions (5, 0, 5, 5) and (0, 3, 5, 5). The

automatic prohibited regions are subtracted from the RBL (2, 0, 2, 3) resulting in (2, 0, 2, 2).

Now, the prohibited region of the first allocated sub-mesh in the busy list 1b (1, 4, 5, 5) with

respect to the job request)42(×J is calculated resulting in (0, 1, 5, 5), which when

subtracted from the RBL (2, 0, 2, 2) results in (2, 0, 2, 0). Then, the prohibited region of the

second allocated sub-mesh 2b (0, 2, 1, 3) with respect to the job request)42(×J is

calculated resulting in (0, 0, 1, 3), which when subtracted from the RBL (2, 0, 2, 0) results in

RBL (2, 0, 2, 0). The prohibited region of the third allocated sub-mesh 3b (4, 3, 5, 3) with

respect to the job request)42(×J is calculated resulting in (3, 0, 5, 3), which when

subtracted from RBL (2, 0, 2, 0) results in (2, 0, 2, 0). Finally, the prohibited region of the

last allocated sub-mesh 4b (5, 2, 5, 2) with respect to the job request)42(×J is calculated

resulting in (4, 0, 5, 2), which when subtracted from the RBL (2, 0, 2, 0) results in (2, 0, 2,

0). Now, the node (2, 0, 2, 0) will be used as a base node for the sub-mesh requested by the

job request)42(×J and the sub-mesh (2, 0, 3, 3) is allocated to the job request)42(×J

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 82

and then it is added to the busy list.

In GABL, when a parallel job is selected for allocation, a sub-mesh suitable for the entire

job is searched. If such a sub-mesh is found it is allocated to the job using the above TBL

contiguous allocation strategy. Otherwise, the largest free sub-mesh that can fit inside

),(βαS is allocated, where α and β are the dimensions of the job request. Then, the

largest free sub-mesh whose side lengths do not exceed the corresponding side lengths of the

previous allocated sub-mesh is searched under the constraint that the number of processors

allocated does not exceed βα × . This last step is repeated until βα × processors are

allocated. For example, given the system state shown in Figure 4.3 and a job that requests

the allocation of an 8 × 2 sub-mesh, contiguous allocation is not possible and non-

contiguous allocation is adopted. The job is allocated the sub-meshes (0, 0, 5, 1) and (2, 2, 3,

3) as follows. Firstly, the algorithm subtracts one from the maximum length of the side

lengths of the job request resulting in 7 × 2 sub-mesh which is not available for allocation in

the mesh system. So the subtraction process is repeated again resulting in a 6 × 2 sub-mesh

which is available for allocation in the mesh system, so that the sub-mesh (0, 0, 5, 1) is

allocated to the job request using TBL contiguous allocation strategy. Then, the algorithm

tries to allocate a sub-mesh whose side lengths do not exceed the corresponding side lengths

of the previous allocated sub-mesh (6 × 2) if this does not result in allocating more

processors than the original allocation request (8 × 2); in this example, [(6 × 2) + (6 × 2)] >

(8 × 2). The algorithm subtracts one from the maximum lengths of 6 × 2 resulting in 5 × 2,

but again [(6 × 2) + (5 × 2)] > (8 × 2). So the subtraction process is repeated again until it

gets a sub-mesh whose processors, along with the processors of the previous allocated sub-

mesh, are less than or equal the number of processors requested by the original request (8 ×

2). In this case, a 2 × 2 sub-mesh results from the subtraction process which is available in

the mesh system so that the sub-mesh (2, 2, 3, 3) is allocated to the job request.

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 83

Allocated sub-meshes are kept in a busy list. Each element in this list includes the id of the

job to which the sub-mesh is allocated. When a job departs the system its allocated sub-

meshes are removed from the busy list and the number of free processors is updated.

Allocation in GABL is implemented by the algorithm outlined in Figure 4.4, while the de-

allocation algorithm is outlined in Figure 4.5. Note that allocation always succeeds if the

number of free processors is βα ×≥ . Moreover, it can be noticed that the methodology

used for maintaining contiguity is greedy. GABL attempts to allocate large sub-meshes first.

Procedure GABL_Allocate (α, β):

Begin {
 Total_Allocated = 0
 Job_Size = βα ×

 Step1. If (number of free processors < Job_Size)

return failure.
 Step2. If (there is a free S(w, l) suitable for S(α, β))

{
allocate it using the TBL contiguous allocation algorithm.
return success.

 }
 Step3. αnew = α and βnew = β
 Step4. Subtract 1 from max (αnew, βnew) if max > 1
 Step5. If (Total _allocated + αnew × βnew > Job_Size) go to step 4
 Step6. If there is a free S (w, l) suitable for S(αnew, βnew)

4b

3b

2b

1b

Figure 4.3: A 6 × 6 sub-mesh with 19 free processor s forming several free sub-meshes

 : Allocated Node

 : Free Node

 (0,4) (1,4) (2,4) (3,4) (4,4) (5,4)

 (0,3) (1,3) (2,3) (3,3) (4,3) (5,3)

 (0,2) (1,2) (2,2) (3,2) (4,2) (5,2)

 (0,1) (1,1) (2,1) (3,1) (4,1) (5,1)

 (0,0) (1,0) (2,0) (3,0) (4,0) (5,0)

 (0,5) (1,5) (2,5) (3,5) (4,5) (5,5)

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 84

{
Allocate it using TBL contiguous allocation algorithm.
Total_allocated = Total_allocated + αnew × βnew

}
 Step7. If (Total_allocated == Job_Size)

 return success.
 else

go to Step 5.
} End.

Figure 4.4: Outline of the Greedy Available Busy Li st allocation algorithm

Procedure GABL_De-allocate ():
Begin {

jid = id of the departing job;
For all elements in the busy list

if (element’s id = jid)
remove the element from the busy list

} End.

Figure 4.5: Outline of the Greedy Available Busy Li st de-allocation algorithm

4.3 Performance Evaluation

In this section, the allocation and de-allocation time, in addition to the space requirement in

the proposed allocation strategy, are presented first. Then, the results from simulations that

have been carried out to evaluate the performance of the proposed algorithm are presented

and compared against those of Paging(0), MBS and FF.

4.3.1 Allocation and De-allocation Time in GABL

When a sub-mesh is allocated, TBL takes)(2mO time, where m is the number of allocated

sub-meshes. Therefore, the time of Step 6 in GABL’s allocation algorithm is in the order of

)(2bmO , where b is the number of allocation attempts carried out in this step. The worst

case for TBL occurs when the free and busy processors alternate in the same way as the

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 85

light and dark positions on a chessboard, and a job requires the allocation of 2/n

processors, where n is the number of processors in the mesh system. As b is in)(nO in

such a case, the worst-case time for Step 6 of the allocation algorithm is in)(3nO .

However, as we shall show in the simulation results below, the average values of b and m

are less sensitive to n . The number of times Steps 4 and 5 are executed is in)(nO in the

worst case. These steps exhibit their worst case behaviour when all free sub-meshes are of

size equal to one. The simulation results show that Step 6 dominates Steps 4 and 5 for the

typical cases considered in this study. When a job departs, the busy list is scanned so as to

determine the sub-meshes to be released. Therefore, the de-allocation algorithm takes)(mO

time. The proposed algorithm maintains a busy list. Therefore, its space requirement is in

)(mO .

4.3.2 Simulation Results

In addition to simulation results for GABL, we will show below the results for Paging(0),

MBS and FF. We have implemented the proposed allocation and de-allocation algorithms,

including the busy list routines, in the C language, and integrated the software into the

ProcSimity; simulation tool that is widely used for processor allocation and job scheduling

in parallel systems [50, 66].

The target mesh modelled in the simulation experiments is square with side lengths L . Jobs

are assumed to have exponential inter-arrival times. They are served on a First-Come-First-

Served (FCFS) basis. We have limited ourselves to FCFS scheduling because our main

purpose here is to compare the allocation strategies. The execution time of a job is the time

at which a job completes (i.e., a job completes when the messages it should send have been

sent [85]) minus the time at which allocation succeeds for the job and the job starts

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 86

execution. The execution times of jobs depend on the time needed for flits to be routed

through the node, packet sizes, the number of messages sent, message contention and

distances messages traverse. As previously reported in Chapter 3, two distributions are used

to generate the lengths and widths of job requests. The first is the uniform distribution over

[1, L], where the width and length of a request are generated independently. The second is

the exponential distribution, where the width and length of job requests are exponentially

distributed with a mean of half the side length of the entire mesh; where the width and

length of the job requests are rounded to the integer values using floor function and bounded

by the dimensions of the mesh. The exponential distribution represents the case where most

jobs are small relative to the size of the system. These distributions have often been used in

the literature [20, 27, 77, 85, 99].

The interconnection network uses wormhole routing. Flits are assumed to take one time unit

to move between two adjacent nodes, and st time units to be routed through a node. Packet

sizes are represented bylenP . As previously reported in Chapter 2, Section 2.3.3, processors

allocated to a job communicate with each other using one of three common communication

patterns [49, 83, 85]. The first communication pattern is one-to-all, where a randomly

selected processor sends a packet to all other processors allocated to the same job. The

second communication pattern is all-to-all, where each processor allocated to a job sends a

packet to all other processors allocated to the same job. This communication pattern causes

much message collision and is known as the weak point for non-contiguous allocation

algorithms [49]. In the third communication pattern, randomly selected processors send

packets to randomly selected destinations within the set of processors allocated the same

job. In all cases, processors allocated to a job are mapped to a linear array of processors

using row-major indexing. The simulator selects the sources and destinations from this

array, and the mapping is used for determining the x and y coordinates of the sources and

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 87

destinations of communication operations. As in [85], the number of messages that are

actually generated by a given job is exponentially distributed with a mean mesnum_ .

Unless specified otherwise, the performance figures shown below are for a 16 × 16 mesh,

st = 3 time units, lenP = 8 flits and 5_ =mesnum packets. Simulation parameters are

illustrated in Table 4.1. It is worth noting that most of the values of these parameters have

been adopted in the literature [20, 27, 49, 77, 85, 99] and have been recommended in [66].

Table 4.1: The System Parameters used in the Simula tion Experiments

Simulator Parameter Values

Dimensions of the Mesh Architecture 16 × 16

Packet Length 8 flits

Flow Control Mechanism Wormhole Routing

Buffer Size 1 flit

Routing Delay 3 time units

Router Type Mesh XY Routing

Allocation Strategy GABL, MBS, Paging(0), and FF

Scheduling Strategy FCFS

Job Size Distribution

Uniform: Job widths and lengths are

uniformly distributed over the range from 1

to the mesh side lengths.

Exponential: Job widths and lengths are

exponentially distributed with a mean of

half the side length of the entire mesh.

Inter-arrival Time

Exponential with different values for the

mean. The values are determined through

experimentation with the simulator, ranged

from lower values to higher values.

Mean Time between Sends 0.0

Communication Patterns One-to-All, All-to-All, and Random

Messages per Job
Messages per Job are exponential

distributed with a mean = 5.0.

Number of Runs

The number of runs should be enough so

that the confidence level is 95% that

relative errors are below 5% of the means.

The number of runs ranged from dozens to

thousands.

Number of Jobs per Run 1000

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 88

Each simulation run consists of 1000 completed jobs. Simulation results are averaged over

enough independent runs so that the confidence level is 95% and the relative errors do not

exceed 5% [7]. The method used to calculate confidence intervals is called the batch means

analysis [4, 66]. This method has been discussed in detail in Chapter 3 (please see Section

3.4.1). Table 4.2 shows the grand means, confidence intervals, and relative errors that

outline the results depicted in Figure 4.6 for the load 0.0185 jobs/time unit. In most of the

cases the error bars are quite small. These error bars are not shown on all the figures for the

sake of clarity.

Table 4.2: The mean (i.e., mean turnaround time of job), 95% confidence interval, and
relative error for the results shown in Figure 4.6 for the load 0.0185 jobs/time unit

Algorithm GABL MBS Paging(0) FF

95% Confidence
Interval

[5019.37-
5329.85]

[8177.79-
8342.99]

[9079.11-
9449.688]

[18661.92-
19038.93]

Mean (time unit) 5174.610807 8260.392389 9264.400494 18850.428350

Relative Error 0.03 0.01 0.02 0.01

The main performance parameters used are the average turnaround time of jobs, average

waiting time, mean system utilisation, and contiguous ratio. The turnaround time of a job is

the time that the job spends in the mesh from arrival to departure. The waiting time is the

time that the job spends in the queue before it is allocated the requested sub-mesh. The

system utilisation is the percentage of processors that are utilized over time. The contiguous

ratio is the ratio of jobs which are allocated contiguously. The important independent

variable in the simulation is the system load. It is defined as the inverse of the mean inter-

arrival time of jobs. Its range of values from low to heavy loads has been determined

through experimentation with the simulator allowing each allocation strategy to reach its

upper limits of utilisation. In the figures that are presented below, the x-axis represents the

system load while the y-axis represents results of the performance metric of interest.

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 89

Turnaround Time:

In Figures 4.6 and 4.7, the average turnaround times of jobs are plotted against the system

load for the one-to-all communication pattern. The results reveal that GABL performs better

than all other contiguous and non-contiguous allocation strategies for both job size

distributions considered in this research. Furthermore, GABL is substantially superior to the

contiguous allocation FF strategy for both job size distributions. In Figure 4.6, for example,

the difference in performance in favour for GABL could be as large as 65% compared to FF,

and 36% to Paging(0), and 30% to MBS under the job arrival rate 0.0205 jobs/time unit.

Experiments that use larger packet sizes (16, 32, and 64 flits) have been also conducted.

Their results lead to the same conclusion on the relative performance of the allocation

strategies (please see Section 4.3.2.2). Moreover, the results indicate that the relative

performance merits of the non-contiguous GABL strategy over the remaining contiguous

and non-contiguous allocation strategies become more noticeable as the packet length

increases.

In Figures 4.8 and 4.9, the average turnaround times of jobs are plotted against the system

load for the all-to-all communication pattern. Again, GABL performs much better than all

other allocation strategies for both job size distributions. Moreover, GABL is substantially

superior to FF for both job size distributions. Figure 4.8, for example, shows that when the

job arrival rate is 0.0305 jobs/time unit, the average turnaround times of GABL are 20%,

24%, and 38% of that of FF, Paging(0), and MBS, respectively. Experiments that use larger

packet sizes (16, 32, and 64 flits) have lead to the same conclusion as to the relative

performance of the allocation strategies (please see Section 4.3.2.2).

In Figures 4.10 and 4.11, the average turnaround times are plotted against the system load

for the random communication pattern. The results in Figure 4.10 reveal that the non-

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 90

contiguous GABL strategy outperforms the other non-contiguous allocation strategies for

the uniform side lengths distribution. It can also be noticed from Figure 4.11 that GABL

performs better than the non-contiguous Paging(0) strategy for the exponential side lengths

distribution. However the performance of GABL is very close to that of the non-contiguous

MBS strategy. For instance, Figure 4.11 reveals that the average turnaround times of GABL

are 44%, 89%, and 99% of that of FF, Paging(0), and MBS, respectively, under the job

arrival rate 0.1 jobs/time unit.

GABL is overall better than the previous non-contiguous allocation strategies at alleviating

message contention, but contention in the random communication pattern is lower than that

in the one-to-all and all-to-all communication patterns. This is because destinations are

chosen randomly and paths are less likely to overlap. Contention that results from the

random communication pattern is not sufficient for differentiating among the non-

contiguous allocation strategies. For Paging(0), the performance is relatively poor because

the distances between nodes are relatively high. Distances between communicating nodes

have significant impact on message latency, independently of contention, when messages

are short. This is the case in the simulation scenarios, where the length of packets is 8 flits.

Also, when messages traverse longer distances they are more likely to collide with other

messages. As expected, the results show that GABL is substantially superior to the

contiguous FF strategy. The increase in contention associated with non-contiguous

allocation strategies is outweighed by the superior ability of the non-contiguous strategies at

allocating free processors.

Experiments that use large system sizes (32 × 32 and 64 × 64) have been also conducted for

the three communication patterns. The results lead to the same conclusion about the relative

performance of the allocation strategies (please see Section 4.3.2.1).

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 91

140
1140
2140
3140
4140
5140
6140
7140
8140
9140

10140
11140

0.0005 0.0025 0.0045 0.0065 0.0085 0.0105 0.0125 0.0145 0.0165 0.0185 0.0205

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e
(t

im
e

un
it)

Load (jobs/time unit)

FF

GABL

Paging(0)

MBS

Figure 4.6: Average turnaround time vs. system load for the one-to-all
communication pattern and uniform side lengths dist ribution in a 16 × 16 mesh .

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e
(t

im
e

un
it)

Load (jobs/time unit)

FF

GABL

Paging(0)

MBS

Figure 4.7: Average turnaround time vs. system load for the one-to-all
communication pattern and exponential side lengths distribution in a 16 × 16 mesh.

90

2090

4090

6090

8090

10090

12090

0.0005 0.0055 0.0105 0.0155 0.0205 0.0255 0.0305

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e
(t

im
e

un
it)

Load (jobs/time unit)

FF

GABL

Paging(0)

MBS

Figure 4.8: Average turnaround time vs. system load for the all-to-all communication
pattern and uniform side lengths distribution in a 16 × 16 mesh.

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 92

100

1000

1900

2800

3700

4600

5500

6400

7300

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e
(t

im
e

un
it)

Load (jobs/time unit)

FF

GABL

Paging(0)

MBS

Figure 4.9: Average turnaround time vs. system load for the all-to-all communication
pattern and exponential side lengths distribution i n a 16 × 16 mesh.

60

560

1060

1560

2060

2560

3060

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e
(t

im
e

un
it)

Load (jobs/time unit)

FF

GABL

Paging(0)

MBS

Figure 4.10: Average turnaround time vs. system loa d for the random communication
pattern and uniform side lengths distribution in a 16 × 16 mesh.

50

550

1050

1550

2050

2550

3050

3550

4050

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e
(t

im
e

un
it)

Load (jobs/time unit)

FF

GABL

Paging(0)

MBS

Figure 4.11: Average turnaround time vs. system loa d for the random communication
pattern and exponential side lengths distribution i n a 16 × 16 mesh.

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 93

Waiting Time:

In Figures 4.12 and 4.13, the average waiting times of jobs are plotted against the system

load for the one-to-all communication pattern. The results reveal that GABL performs better

than all other contiguous and non-contiguous allocation strategies for both job size

distributions. This is because the degree of contiguity between allocated processors in

GABL is higher than that of the previous non-contiguous allocation strategies, and thus

decreases the distance traversed by messages. This in turn decreases the communication

overhead, which means that the allocation in the GABL strategy is more likely to succeed.

As a consequence, the waiting time is lower. Furthermore, GABL is substantially superior to

FF for both job size distributions. In Figure 4.12, for example, the average waiting times of

GABL are 35%, 64%, and 70% of that of FF, Paging(0), and MBS, respectively, under the

job arrival rate 0.0205 jobs/time unit.

In Figures 4.14 and 4.15, the average waiting times of jobs are plotted against the system

load for the all-to-all communication pattern. Again, GABL outperforms all other strategies

for both job size distributions. Moreover, GABL is substantially superior to FF for both job

size distributions. Figure 4.15, for example, depicts that when the job arrival rate is 0.05

jobs/time unit, the average waiting times of GABL are 19%, 27%, and 50% of that of FF,

Paging(0), and MBS, respectively.

In Figures 4.16 and 4.17, the average waiting times are plotted against the system load for

the random communication pattern. Figure 4.16 depicts that GABL has a better performance

than the other non-contiguous allocation strategies for the uniform side lengths distribution.

It can also be noticed from Figure 4.17 that GABL performs better than the non-contiguous

Paging(0) strategy for the exponential side lengths distribution. But GABL’s performance is

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 94

comparable to that of MBS strategy. For instance, Figure 4.17 shows that the average

waiting times of GABL are 43%, 89%, and 99% of that of FF, Paging(0), and MBS,

respectively, under the job arrival rate 0.1 jobs/time unit.

Overall, GABL is better than the previous non-contiguous allocation strategies at decreasing

waiting times in the waiting queue. This conclusion is compatible with the values of the

average turnaround times shown above.

1

2001

4001

6001

8001

10001

12001

0.0005 0.0045 0.0085 0.0125 0.0165 0.0205

A
ve

ra
ge

 W
ai

tin
g

T
im

e
(t

im
e

un
it)

Load (jobs/time unit)

FF

GABL

Paging(0)

MBS

Figure 4.12: Average waiting time vs. System load fo r the one-to-all communication pattern
and uniform side lengths distribution in a 16 × 16 mesh.

1

2001

4001

6001

8001

10001

12001

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

A
ve

ra
ge

 W
ai

tin
g

T
im

e
(t

im
e

un
it)

Load (jobs/time unit)

FF

GABL

Paging(0)

MBS

Figure 4.13: Average waiting time vs. System load fo r the one-to-all communication pattern
and exponential side lengths distribution in a 16 × 16 mesh.

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 95

1

2001

4001

6001

8001

10001

12001

0.0005 0.0055 0.0105 0.0155 0.0205 0.0255 0.0305

A
ve

ra
ge

 W
ai

tin
g

T
im

e

(t
im

e
un

it)

Load (jobs/time unit)

FF

GABL

Paging(0)

MBS

Figure 4.14: Average waiting time vs. System load fo r the all-to-all communication pattern and
uniform side lengths distribution in a 16 × 16 mesh .

1

1001

2001

3001

4001

5001

6001

7001

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

A
ve

ra
ge

 W
ai

tin
g

T
im

e

(t
im

e
un

it)

Load (jobs/time unit)

FF

GABL

Paging(0)

MBS

Figure 4.15: Average waiting time vs. System load fo r the all-to-all communication pattern and
exponential side lengths distribution in a 16 × 16 mesh.

1

501

1001

1501

2001

2501

3001

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

A
ve

ra
ge

 W
ai

tin
g

T
im

e

(t
im

e
un

it)

Load (jobs/time unit)

FF

GABL

Paging(0)

MBS

Figure 4.16: Average waiting time vs. System load fo r the random communication pattern and
uniform side lengths distribution in a 16 × 16 mesh .

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 96

1

501

1001

1501

2001

2501

3001

3501

4001

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

A
ve

ra
ge

 W
ai

tin
g

T
im

e
(t

im
e

un
it)

Load (jobs/time unit)

FF

GABL

Paging(0)

MBS

Figure 4.17: Average waiting time vs. System load fo r the random communication pattern and
exponential side lengths distribution in a 16 × 16 mesh.

Utilisation:

Figures 4.18 and 4.19 depict the mean system utilisation of the allocation strategies (GABL,

MBS, Paging(0), and FF) for the three communication patterns tested and job size

distributions considered in this study. The simulation results in these two figures are

presented for a heavy system load. The load is such that the waiting queue is filled very

early, allowing each allocation strategy to reach its upper limits of utilisation. For both job

size distributions, the non-contiguous allocation strategies achieve a mean system utilisation

of 71% to 75%, but the contiguous FF strategy cannot exceed 50% utilisation. This is

because contiguous allocation produces high external fragmentation, which makes allocation

less likely to succeed. As a consequent, the mean system utilisation is lower. The utilisation

of the three non-contiguous allocation strategies is approximately the same for both job size

distributions. This is because the non-contiguous allocation strategies have the same ability

to eliminate internal and external processor fragmentation. They always succeed to allocate

processors to a job when the number of free processors is greater than or equal to the

allocation request.

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 97

F
F F
F

F
F

G
A

B
L

G
A

B
L

G
A

B
L

P
aging(0)

P
aging(0)

P
aging(0)

M
B

S

M
B

S

M
B

S

2

14

26

38

50

62

74

86

98

One to All All to All Random

U
til

iz
at

io
n

(%
)

FF

GABL

Paging(0)

MBS

Figure 4.18: System utilisation of the non-contiguo us allocation strategies (GABL,
MBS, Paging(0)) and contiguous allocation strategy FF, for the three communication
patterns tested, and uniform side lengths distribut ion in a 16 × 16 mesh.

F
F F
F

F
F

G
A

B
L

G
A

B
L

G
A

B
L

P
aging(0)

P
aging(0)

P
aging(0)

M
B

S

M
B

S

M
B

S

2

14

26

38

50

62

74

86

98

One to All All to All Random

U
til

iz
at

io
n

(%
)

FF

GABL

Paging(0)

MBS

Figure 4.19: System utilisation of the non-contiguo us allocation strategies (GABL,
MBS, Paging(0)) and contiguous allocation strategy FF, for the three communication
patterns tested, and exponential side lengths distr ibution in a 16 × 16 mesh.

Contiguous Ratio:

Figures 4.20 and 4.21 display the ratio of contiguous jobs of the non-contiguous allocation

strategies (GABL, MBS, and Paging(0)) for the three communication patterns tested and

heavy system loads that allow each allocation strategy to reach its upper limits of utilisation

under both the uniform and exponential job size distributions. When the number of jobs that

are allocated contiguously increases, the contention in the network decreases. This is

because only messages generated by the same job are expected within a sub-mesh and

therefore cause no inter-job contention in the network. The results reveal that GABL

performs better than both MBS and Paging(0) strategies. For example, Figure 4.21 shows

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 98

that the ratio of jobs which allocated contiguously in GABL is 60% approximately while it

is less than 5% for Paging(0) and less than 19% for MBS, so that GABL has a greater ability

than the remaining strategies, MBS and Paging(0), to alleviate message contention in the

network and hence achieves better performance than the previous non-contiguous allocation

strategies in terms of average turnaround time. This conclusion is compatible with the values

of the performance parameters shown above.

G
A

B
L

G
A

B
L

G
A

B
L

P
aging(0)

P
aging(0)

P
aging(0)

M
B

S

M
B

S

M
B

S

-10

0

10

20

30

40

50

60

70

80

One to All All to All Random

C
on

tig
uo

us
 R

at
io

 (
%

)

GABL

Paging(0)

MBS

Figure 4.20: Percent of jobs allocated contiguously in the non-contiguous allocation
strategies (GABL, MBS, Paging(0)), for the three co mmunication patterns tested, and
uniform side lengths distribution in a 16 × 16 mesh .

G
A

B
L

G
A

B
L

G
A

B
L

P
aging(0)

P
aging(0)

P
aging(0)

M
B

S

M
B

S

M
B

S

-10

0

10

20

30

40

50

60

70

80

One to All All to All Random

C
on

tig
uo

us
 R

at
io

 (
%

)

GABL

Paging(0)

MBS

Figure 4.21: Percent of jobs allocated contiguously in the non-contiguous allocation
strategies (GABL, MBS, Paging(0)), for the three co mmunication patterns tested, and
exponential side lengths distribution in a 16 × 16 mesh.

Average Blocks per Job:

In addition to the performance parameters shown above, we have measured another

performance parameter for the non-contiguous allocation strategies that gave the best

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 99

performance (GABL and MBS), and that is the average blocks per job. It is defined as the

average number of non-contiguous blocks allocated to a job in each strategy. The higher the

average number of blocks the more likely it is that the job’s messages visit nodes allocated

to other jobs, potentially causing higher contention inside the network [85].

In Figures 4.22~4.27, the average blocks per job is plotted against the system load for the

three communication patterns tested and for both job size distributions. The results reveal

that GABL has a lower average blocks per job than MBS over all loads. In Figure 4.25, for

example, the average blocks per job of GABL is 39%, 53%, and 75% of that of MBS when

the job arrival rates are 0.015, 0.03, and 0.05 jobs/time unit, respectively. This conclusion is

compatible with the values of the average turnaround times shown above.

0

1

2

3

4

5

6

0.0005 0.0025 0.0045 0.0065 0.0085 0.0105 0.0125 0.0145 0.0165 0.0185 0.0205

A
ve

ra
ge

 B
lo

ck
s

P
er

 J
ob

Load (jobs/time unit)

GABL

MBS

Figure 4.22: Average blocks per job vs. system load for the one-to-all communication
pattern and uniform side lengths distribution.

0

1

2

3

4

5

6

0.005 0.01 0.015 0.02 0.025 0.03 0.035

A
ve

ra
ge

 B
lo

ck
s

P
er

 J
ob

Load (jobs/time unit)

GABL

MBS

Figure 4.23: Average blocks per job vs. system load for the one-to-all communication
pattern and exponential side lengths distribution.

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 100

0

1

2

3

4

5

6

0.0005 0.0055 0.0105 0.0155 0.0205 0.0255 0.0305

A
ve

ra
ge

 B
lo

ck
s

P
er

 J
ob

Load (jobs/time unit)

GABL

MBS

Figure 4.24: Average blocks per job vs. system load for the all-to-all communication
pattern and uniform side lengths distribution.

0

1

2

3

4

5

6

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

A
ve

ra
ge

 B
lo

ck
s

pe
r

Jo
b

Load (jobs/time unit)

GABL

MBS

Figure 4.25: Average blocks per job vs. system load for the all-to-all communication
pattern and exponential side lengths distribution.

0

1

2

3

4

5

6

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

A
ve

ra
ge

 B
lo

ck
s

P
er

 J
ob

Load (jobs/time unit)

GABL

MBS

Figure 4.26: Average blocks per job vs. system load for the random communication
pattern and uniform side lengths distribution.

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 101

0

1

2

3

4

5

6

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

A
ve

ra
ge

 B
lo

ck
s

P
er

 J
ob

Load (jobs/time unit)

GABL

MBS

Figure 4.27: Average blocks per job vs. system load for the random communication
pattern and exponential side lengths distribution.

Number of Allocated Sub-meshes (m) in the Busy List and the Number of
Allocation Attempts (b) that Carried out in Step 6 in GABL Algorithm:

We have calculated the average number of allocated sub-meshes in the busy list (m) and the

average number of allocation attempts (b) that were carried out in Step 6 in the GABL

allocation algorithm. These experiments have been conducted to show that m and b are

less sensitive to the size of the mesh system. In such experiments, different mesh sizes have

been considered under both the uniform and exponential job size distributions.

In Figures 4.28~4.33, the average number of allocated sub-meshes (m) is plotted against the

system load for the three communication patterns tested and for both job size distributions

considered in this research. As expected, the average number of allocated sub-meshes is

largest when the side lengths follow the exponential distribution. This is because the average

sizes of jobs are smallest in this case. Moreover, and as discussed in Section 4.3.1 on the

allocation and de-allocation time, the average number of allocated sub-meshes (m) is lower

than n for both job size distributions and the three communication patterns tested under

different mesh system sizes.

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 102

1

2

3

4

5

6

7

8

9

10

0.0005 0.0025 0.0045 0.0065 0.0085 0.0105 0.0125 0.0145 0.0165 0.0185 0.0205

M
ea

n
N

um
be

r
of

 A
llo

ca
te

d
su

b-
m

es
he

s
(m

)

Load (jobs/time unit)

GABL 16x16(One-to-All)

GABL 20x20(One-to-All)

GABL 24x24(One-to-All)

Figure 4.28: Average number of allocated sub-meshes (m) in GABL for the one-to-all
communication pattern and uniform side lengths dist ribution in a 16 × 16 mesh, a 20
× 20 mesh, and a 24 × 24 mesh.

1

3

5

7

9

11

13

15

0.005 0.01 0.015 0.02 0.025 0.03 0.035

M
ea

n
N

um
be

r
of

 A
llo

ca
te

d
su

b-
m

es
he

s
(m

)

Load (jobs/time unit)

GABL16x16(One-to-All)

GABL20x20(One-to-All)

GABL24x24(One-to-All)

Figure 4.29: Average number of allocated sub-meshes (m) in GABL for the one-to-all
communication pattern and exponential side lengths distribution in a 16 × 16 mesh, a
20 × 20 mesh, and a 24 × 24 mesh.

1

2

3

4

5

6

7

8

9

0.0005 0.0055 0.0105 0.0155 0.0205 0.0255 0.0305

M
ea

n
N

um
be

r
of

 A
llo

ca
te

d
su

b-
m

es
he

s
(m

)

Load (jobs/time unit)

GABL16x16(All-to-All)

GABL20x20(All-to-All)

GABL24x24(All-to-All)

Figure 4.30: Average number of allocated sub-meshes (m) in GABL for the all-to-all
communication pattern and uniform side lengths dist ribution in a 16 × 16 mesh, a 20
× 20 mesh, and a 24 × 24 mesh.

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 103

1

3

5

7

9

11

13

15

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

M
ea

n
N

um
be

r
of

 A
llo

ca
te

d
su

b-
m

es
he

s
(m

)

Load (jobs/time unit)

GABL16x16(All-to-All)

GABL20x20(All-to-All)

GABL24x24(All-to-All)

Figure 4.31: Average number of allocated sub-meshes (m) in GABL for the all-to-all
communication pattern and exponential side lengths distribution in a 16 × 16 mesh, a
20 × 20 mesh, and a 24 × 24 mesh.

1

2

3

4

5

6

7

8

9

10

0.005 0.015 0.025 0.035 0.045

M
ea

n
N

um
be

r
of

 A
llo

ca
te

d
su

b-
m

es
he

s
(m

)

Load (jobs/time unit)

GABL16x16(Random)

GABL20x20(Random)

GABL24x24(Random)

Figure 4.32: Average number of allocated sub-meshes (m) in GABL for the random
communication pattern and uniform side lengths dist ribution in a 16 × 16 mesh, a 20
× 20 mesh, and a 24 × 24 mesh.

1

3

5

7

9

11

13

15

17

0.01 0.02 0.03 0.04 0.05 0.06 0.07

M
ea

n
N

um
be

r
of

 A
llo

ca
te

d
su

b-
m

es
he

s
(m

)

Load (jobs/time unit)

GABL16x16(Random)

GABL20x20(Random)

GABL24x24(Random)

Figure 4.33: Average number of allocated sub-meshes (m) in GABL for the random
communication pattern and exponential side lengths distribution in a 16 × 16 mesh, a
20 × 20 mesh, and a 24 × 24 mesh.

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 104

In Figures 4.34~4.39, the average number of allocation attempts (b) is plotted against the

system load for both job size distributions and communication patterns tested. The results

reveal that the average number of allocation attempts is lower than n for both job size

distributions and the communication patterns considered in this study. Moreover,

experiments conducted for larger mesh system sizes have revealed that b is less sensitive to

the size of the mesh system (n) for the common job size distributions used in this study.

Experiments that compute the average number of times Steps 4 and 5 are repeated have also

been conducted. Their results lead to the conclusion that Step 6 dominates Steps 4 and 5

when the average case behaviour of the allocation algorithm is considered.

1

3

5

7

9

11

13

15

17

0.0005 0.0025 0.0045 0.0065 0.0085 0.0105 0.0125 0.0145 0.0165 0.0185 0.0205

A
ve

ra
ge

 n
um

be
r

of

al
lo

ca
tio

n
at

te
m

pt
s

(b
)

Load (jobs/time unit)

GABL16x16(One-to-All)

GABL20x20(One-to-All)

GABL24x24(One-to-All)

Figure 4.34: Average number of allocation attempts (b) in GABL for the one-to-all
communication pattern and uniform side lengths dist ribution in a 16 × 16 mesh, a 20
× 20 mesh, and a 24 × 24 mesh.

1

3

5

7

9

11

13

15

17

0.005 0.01 0.015 0.02 0.025 0.03 0.035

A
ve

ra
ge

 n
um

be
r

of

al
lo

ca
tio

n
at

te
m

pt
s

(b
)

Load (jobs/time unit)

GABL16x16(One-to-All)

GABL20x20(One-to-All)

GABL24x24(One-to-All)

Figure 4.35: Average number of allocation attempts (b) in GABL for the one-to-all
communication pattern and exponential side lengths distribution in a 16 × 16 mesh, a
20 × 20 mesh, and a 24 × 24 mesh.

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 105

1

3

5

7

9

11

13

15

17

0.0005 0.0055 0.0105 0.0155 0.0205 0.0255 0.0305A
ve

ra
ge

 n
um

be
r

of
 a

llo
ca

tio
n

at
te

m
pt

s
(b

)

Load (jobs/time unit)

GABL16x16(All-to-All)

GABL20x20(All-to-All)

GABL24x24(All-to-All)

Figure 4.36: Average number of allocation attempts (b) in GABL for the all-to-all
communication pattern and uniform side lengths dist ribution in a 16 × 16 mesh, a 20
× 20 mesh, and a 24 × 24 mesh.

1

3

5

7

9

11

13

15

17

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

A
ve

ra
ge

 n
um

be
r

of
 a

llo
ca

tio
n

at
te

m
pt

s
(b

)

Load (jobs/time unit)

GABL16x16(All-to-All)

GABL20x20(All-to-All)

GABL24x24(All-to-All)

Figure 4.37: Average number of allocation attempts (b) in GABL for the all-to-all
communication pattern and exponential side lengths distribution in a 16 × 16 mesh, a
20 × 20 mesh, and a 24 × 24 mesh.

1

3

5

7

9

11

13

15

17

0.005 0.015 0.025 0.035 0.045

A
ve

ra
ge

 n
um

be
r

of
 a

llo
ca

tio
n

at
te

m
pt

s
(b

)

Load (jobs/time unit)

GABL16x16(Random)

GABL20x20(Random)

GABL24x24(Random)

Figure 4.38: Average number of allocation attempts (b) in GABL for the random
communication pattern and uniform side lengths dist ribution in a 16 × 16 mesh, a 20
× 20 mesh, and a 24 × 24 mesh.

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 106

1

3

5

7

9

11

13

15

17

0.01 0.02 0.03 0.04 0.05 0.06 0.07

A
ve

ra
ge

 n
um

be
r

of
 a

llo
ca

tio
n

at
te

m
pt

s
(b

)

Load (jobs/time unit)

GABL16x16(Random)

GABL20x20(Random)

GABL24x24(Random)

Figure 4.39: Average number of allocation attempts (b) in GABL for random
communication pattern and exponential side lengths distribution in a 16 × 16 mesh, a
20 × 20 mesh, and a 24 × 24 mesh.

4.3.2.1 Performance Impact of Mesh System Size

In this section, we analyse the effects of the mesh system size on the performance of the

allocation strategies in terms of average turnaround time of jobs. For the sake of

conciseness, we have only concentrated on turnaround time in this Section because it is

usually a good estimate of the performance of processor allocation strategies and it has been

used in the existing allocation strategies [9, 18, 20, 27, 33, 34, 51, 52, 65, 78, 85, 99]. The

parameters used in Section 4.3.2 are recalled here except the change regarding the mesh

system size that is set to 16 × 16, 32 × 32, and 64 × 64 processor.

Figures 4.40~4.45 plot the average turnaround time of jobs against the size of the mesh

system for both job size distributions considered in this chapter and all communication

patterns tested assuming heavy system loads that allow each allocation strategy to reach its

upper limits of utilisation. Figures 4.40 and 4.41 assume the one-to-all communication

pattern. Figures 4.42 and 4.43 assume the all-to-all communication pattern, while Figures

4.44 and 4.45 assume a random communication pattern. The side lengths of the requested

sub-meshes in these figures follow uniform and exponential distributions, respectively.

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 107

The results show that GABL performs better than all of the existing contiguous and non-

contiguous allocation strategies for all mesh system sizes, except that in Figures 4.44 and

4.45 where the random communication pattern is examined. This is because the contention

for the random communication pattern is smaller than that for the one-to-all and all-to-all

communication patterns, as the destinations are chosen randomly and paths are less likely to

overlap. Message contention that results from a random communication pattern is not

sufficient for differentiating among the non-contiguous allocation strategies. For instance,

Figure 4.42 shows that the average turnaround times of GABL are 20%, 24%, and 37% of

that of FF, Paging(0), and MBS, respectively, for high loads and a 16 × 16 mesh system size,

while for a 64 × 64 mesh system size and high loads, the average turnaround times of GABL

are 23%, 34%, and 45% of that of FF, Paging(0), and MBS, respectively. Moreover, the

results have shown that significant drops in performance with increasingly larger systems. In

Figure 4.40, for instance, the average turnaround time of GABL for a 16 × 16 mesh system

size is 34% of that for a 64 × 64 mesh system size. This is because when the system size

increases, the allocated processors might be far from each other. This increases the distance

traversed by messages, and as a result increases the communication overhead, leading to an

increases in the turnaround time of jobs.

G
A

B
L

G
A

B
L

G
A

B
L

M
B

S

M
B

S

M
B

SP
aging(0)

P
aging(0)

P
aging(0)

FF

FF

FF

1000

11000

21000

31000

41000

51000

61000

16x16 32x32 64x64

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e

(t
im

e
un

it)

System Size (processor)

GABL

MBS

Paging(0)

FF

Figure 4.40: Average turnaround time vs. mesh syste m size for the one-to-all
communication pattern and the uniform side lengths distribution.

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 108

G
A

B
L

G
A

B
L

G
A

B
L

M
B

S

M
B

S

M
B

S

P
aging(0)

P
aging(0)

P
aging(0)

FF

FF

FF

1000

6000

11000

16000

21000

26000

31000

36000

41000

16x16 32x32 64x64

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e
(t

im
e

un
it)

System Size (processor)

GABL

MBS

Paging(0)

FF

Figure 4.41: Average turnaround time vs. mesh syste m size for the one-to-all
communication pattern and the exponential side leng ths distribution.

G
A

B
L

G
A

B
L

G
A

B
L

M
B

S

M
B

S

M
B

S

P
aging(0)

P
aging(0)

P
aging(0)FF

FF
FF

1000

3000
5000

7000

9000

11000
13000

15000

17000

19000
21000

16x16 32x32 64x64

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e
(t

im
e

un
it)

System Size (processor)

GABL

MBS

Paging(0)

FF

Figure 4.42: Average turnaround time vs. mesh syste m size for the all-to-all
communication pattern and the uniform side lengths distribution.

G
A

B
L

G
A

B
L

G
A

B
LM
B

S

M
B

S

M
B

S

P
aging(0)

P
aging(0)

P
aging(0)

FF

FF

FF

1000

3000

5000

7000

9000

11000

13000

15000

17000

16x16 32x32 64x64

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e
(t

im
e

un
it)

System Size (processor)

GABL

MBS

Paging(0)

FF

Figure 4.43: Average turnaround time vs. mesh syste m size for the all-to-all
communication pattern and the exponential side leng ths distribution.

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 109

G
A

B
L

G
A

B
L

G
A

B
L

M
B

S

M
B

S

M
B

S

P
aging(0)

P
aging(0)

P
aging(0)

FF

FF

FF

0

5000

10000

15000

20000

25000

30000

16x16 32x32 64x64

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e
(t

im
e

un
it)

System Size (processor)

GABL

MBS

Paging(0)

FF

Figure 4.44: Average turnaround time vs. mesh syste m size for the random
communication pattern and the uniform side lengths distribution.

G
A

B
L

G
A

B
L

G
A

B
L

M
B

S

M
B

S

M
B

S

P
aging(0)

P
aging(0)

P
aging(0)

FF
FF

FF

1000

6000

11000

16000

21000

26000

16x16 32x32 64x64

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e
(t

im
e

un
it)

System Size (processor)

GABL

MBS

Paging(0)

FF

Figure 4.45: Average turnaround time vs. mesh syste m size for the random
communication pattern and the exponential side leng ths distribution.

4.3.2.2 Performance Impact of Packet Length

In this section, we investigate the effect of varying the packet length on the performance of

the allocation strategies in terms of average turnaround time of jobs. As previously reported

in Section 4.3.2.1, turnaround time has been chosen in this Section because it is usually a

good estimate of the performance of processor allocation strategies and it has been used in

the existing allocation strategies [9, 18, 20, 27, 33, 34, 51, 52, 65, 78, 85, 99]. The

parameters used in Section 4.3.2 are recalled here, except for the change regarding the

packet length that is set to 64 flits.

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 110

Figures 4.46 and 4.47 depict the performance of the allocation strategies in terms of

turnaround times of jobs for the one-to-all communication pattern. The results have revealed

that GABL has a lower turnaround time than all other contiguous and non-contiguous

allocation strategies for both the exponential and uniform job size distributions. As

previously reported in Section 4.3.2, the relative performance merits of the non-contiguous

GABL strategy over the remaining contiguous and non-contiguous allocation strategies

become more noticeable as the packet length increases. For example, in Figure 4.6 in

Section 4.3.2 and for 8-flits packet length, the difference in performance in favour for

GABL could be as large as 36% over Paging(0) and 30% over MBS for high loads while in

Figure 4.46 and for 64-flits packet length, the difference in performance in favour for GABL

could be as large as 45% over Paging(0) and 40% over MBS for high loads.

In Figures 4.48 and 4.49, the average turnaround times of jobs are plotted against the system

load for the all-to-all communication pattern. Again, GABL performs much better than all

other allocation strategies when the packet length increases for both job size distributions.

Moreover, the difference in performance between GABL and the remaining non-contiguous

strategies increases when the packet length increases. For example, in Figure 4.9 in Section

4.3.2 and for 8-flits packet length, the difference in performance in favour for GABL could

be as large as 72% over Paging(0) and 49% over MBS for high loads while in Figure 4.49

and for 64-flits packet length, the difference in performance in favour for GABL could be as

large as 85% over Paging(0) and 55% over MBS for high loads.

In Figures 4.50 and 4.51, the average turnaround times are plotted against the system load

for the random communication pattern. As previously reported in Section 4.3.2, the

contention for the random communication pattern is smaller than that for the one-to-all and

all-to-all communication patterns. This is because destinations are chosen randomly and

paths are less likely to overlap. Again, for larger packet sizes, the contention that results

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 111

from the random communication pattern is not sufficient for differentiating among the non-

contiguous allocation strategies. As a consequence, the difference in performance between

the non-contiguous strategies considered in this study is not changed by increasing the

packet length.

To sum up, the above performance results demonstrate that GABL is the most flexible

allocation strategy. Overall, it is superior to all other allocation strategies considered in this

research; including when contention is heavy (the communication pattern is all-to-all).

900

10900

20900

30900

40900

50900

60900

70900

0.0002 0.0012 0.0022 0.0032 0.0042

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e
(t

im
e

un
it)

Load (jobs/time unit)

FF

GABL

Paging(0)

MBS

Figure 4.46: Average turnaround time vs. system loa d for the one-to-all
communication pattern and uniform side lengths dist ribution with a 64-flits packet
length in a 16 × 16 mesh.

700

5700

10700

15700

20700

25700

30700

35700

40700

0.0005 0.0015 0.0025 0.0035 0.0045 0.0055 0.0065

A
ve

ra
g

e
Tu

rn
ar

o
un

d
 T

im
e

(t
im

e
un

it)

Load (jobs/time unit)

FF

GABL

Paging(0)

MBS

Figure 4.47: Average turnaround time vs. system loa d for the one-to-all
communication pattern and exponential side lengths distribution with a 64-flits
packet length in a 16 × 16 mesh.

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 112

500

10500

20500

30500

40500

50500

60500

0.0002 0.0012 0.0022 0.0032 0.0042 0.0052

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e
(t

im
e

un
it)

Load (jobs/time unit)

FF

GABL

Paging(0)

MBS

Figure 4.48: Average turnaround time vs. system loa d for the all-to-all
communication pattern and uniform side lengths dist ribution with a 64-flits packet
length in a 16 × 16 mesh.

500

10500

20500

30500

40500

50500

60500

0.0005 0.002 0.0035 0.005 0.0065 0.008 0.0095

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e
(t

im
e

un
it)

Load (jobs/time unit)

GABL

MBS

Paging(0)

FF

Figure 4.49: Average turnaround time vs. system loa d for the all-to-all
communication pattern and exponential side lengths distribution with a 64-flits
packet length in a 16 × 16 mesh.

300

2300

4300

6300

8300

10300

12300

0.0015 0.0025 0.0035 0.0045 0.0055 0.0065 0.0075 0.0085 0.0095 0.0105

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e
(t

im
e

un
it)

Load (jobs/time unit)

FF

GABL

Paging(0)

MBS

Figure 4.50: Average turnaround time vs. system loa d for the random communication
pattern and uniform side lengths distribution with a 64-flits packet length in a 16 × 16
mesh.

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 113

350

2350

4350

6350

8350

10350

12350

14350

16350

0.001 0.003 0.005 0.007 0.009 0.011 0.013 0.015

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e
(t

im
e

un
it)

Load (jobs/time unit)

FF

GABL

Paging(0)

MBS

Figure 4.51: Average turnaround time vs. system loa d for the random communication
pattern and exponential side lengths distribution w ith a 64-flits packet length in a 16
× 16 mesh.

4.4 Conclusions

This chapter has investigated the performance merits of the non-contiguous allocation in the

2D mesh network. To this end, we have suggested a new non-contiguous allocation strategy,

referred to as Greedy Available Busy List (GABL for short), which differs from the earlier

non-contiguous allocation strategies in the method used for partitioning allocation requests.

The GABL strategy partitions the allocation requests based on the sub-meshes available for

allocation. The major goal of the partitioning process is to maintain a high degree of

contiguity among processors allocated to a job. This decreases the number of sub-meshes

allocated to a job, and hence decreases the distance traversed by a message. This in turn

decreases the communication overhead. GABL achieves this by using a busy list whose

length is often small even when the size of the mesh scales up.

The performance of GABL has been compared against that of the existing non-contiguous

and contiguous strategies. Simulation results have shown that GABL can greatly improve

performance despite the additional message contention inside the network that results from

the interference among the messages of different jobs. GABL also produces superior system

Chapter 4: Greedy Available Busy List (GABL): A New Non-contiguous Allocation
Algorithm for Mesh-Connected Multicomputers 114

utilisation than its contiguous counterpart as it manages to eliminate both internal and

external processor fragmentation. The results have also revealed that GABL is substantially

superior over the previous well known non-contiguous allocation strategies, such as MBS

and Paging(0), in terms of turnaround times. Furthermore, experiments for larger packet

sizes and larger mesh system sizes have shown that GABL outperforms the previous

contiguous and non-contiguous allocation strategies. Moreover, GABL can be efficient

because it is implemented using a busy list approach. This approach can be expected to be

efficient in practice because when the mesh system size increases the requirement of

applications, in terms of the number of requested processors, often increases and in such a

case our algorithm is often expected to exhibit competitive performance levels.

Chapter 5

Comparative Evaluation of Contiguous
Allocation Strategies on Mesh-Connected
Multicomputers

5.1 Introduction

The performance of contiguous allocation strategies can be significantly affected by the type

of distribution adopted for job execution times [59]. The efficiency of the existing

contiguous allocation strategies has typically been assessed under the assumption of

exponentially distributed job execution times [27, 31, 33, 34, 35, 38, 48, 51, 52, 74, 78, 94,

99], which may not reflect all possible practical scenarios. For instance, a number of

measurement studies [22, 47, 57, 58, 59, 88, 96] have convincingly shown that the execution

times of certain computational jobs are better characterised by heavy-tailed execution times;

that is, many jobs are short and fewer are long. The fewer jobs that have long execution time

account for more than half of the total jobs’ execution time [59]. Heavy-tailed distributions

can capture this variability and have been shown to behave quite differently from the

distributions more commonly used to evaluate the performance of allocation strategies (e.g.,

the exponential distribution) [22, 57, 58]. In particular, when sampling random variables that

Chapter 5: Comparative Evaluation of Contiguous Allocation Strategies on Mesh-
Connected Multicomputers

116

follow a heavy-tailed distribution, the probability of large observations occurring is non-

negligible. In order to gain a deeper understanding of the performance of the allocation

strategies under various job execution time distributions, this chapter conducts an extensive

comparison of the contiguous allocation strategies for 3D mesh-connected multicomputers,

considering different mesh system sizes and various system loads.

Existing allocation strategies have typically been evaluated with the assumption of First-

Come-First-Served (FCFS) job scheduling strategy [9, 11, 18, 20, 27, 31, 33, 34, 51, 52]. In

this chapter, in addition to FCFS, a Shortest-Service-Demand (SSD) scheduling strategy is

also adopted because it is expected to reduce performance loss due to FCFS blocking. SSD

considers the shortest job to be the one having the shortest total processors service demand

[63]. This strategy was found to improve system performance in a some previous studies

[50, 73, 79].

Motivated by the above observations, this chapter makes the following contributions. We

first compare the performance of the contiguous allocation strategy proposed in Chapter 3 as

well as the existing contiguous allocation strategies for 3D mesh-connected multicomputers

when subjected to heavy-tailed and exponential job execution times, respectively, under the

FCFS strategy. We assess the effects of the heavy-tailed distribution on the performance of

the contiguous allocation strategies for various system loads and different scheduling

strategies and system sizes are investigated. To the best of our knowledge, this study is the

first to consider heavy-tailed distributions in the context of processor allocation in mesh-

connected multicomputers.

The performance of the allocation strategies is measured in terms of the usual performance

parameters [27, 31, 33, 35, 73, 74, 77, 78, 79, 94, 99] including the average turnaround time

Chapter 5: Comparative Evaluation of Contiguous Allocation Strategies on Mesh-
Connected Multicomputers

117

and mean system utilisation, as well as the mean measured allocation overhead, that

accounts for the time required for the allocation and de-allocation of processors to jobs. The

results presented below will reveal that the performance of the allocation strategies degrades

when the distribution of job execution times are heavy-tailed. As a consequence, an

appropriate scheduling strategy is required to deal with heavy-tailed distributions. Our

analysis reveals that SSD exhibits superior performance than FCFS in terms of average

turnaround time and mean system utilization.

The remainder of the chapter is organised as follows. Section 5.2 provides a brief overview

of the allocation strategies whereas Section 5.3 provides a brief overview of the scheduling

strategies considered in this chapter. Section 5.4 presents the results of the comparative

performance study. Finally, Section 5.5 concludes this chapter.

5.2 Processor Allocation Strategies

The allocation strategies compared in this chapter cover a wide range of choices, including

traditional First Fit (FF), Turning First Fit (TFF), a Busy List allocation strategy (BL) and

the Turning Busy List allocation strategy (TBL).

The FF strategy [34] allocates the first available sub-mesh that is found, but it does not

permit changing the orientation of the allocation requests, hence it suffers from high

external processor fragmentation. The TFF strategy [34] improves performance by

considering all possible orientations of the allocation request when needed, however its

allocation overhead (i.e., allocation and de-allocation time) is high; FF and TFF strategies

have been discussed in detail in Chapter 2 (please see Section 2.2.1). The BL strategy

maintains a list of allocated sub-meshes to determine the nodes that cannot be used as base

nodes for the requested sub-meshes and it reduces the allocation overhead that FF and TFF

Chapter 5: Comparative Evaluation of Contiguous Allocation Strategies on Mesh-
Connected Multicomputers

118

suffer from, but it does not permit the orientation of the allocation request, hence it suffers

from high processor fragmentation. The TBL strategy attempts to maintain good

performance in terms of mean system utilisation and average turnaround time, by

considering all the orientations of the allocation request when needed, with little allocation

overhead. BL and TBL strategies have been discussed in detail in Chapter 3 (please see

Section 3.3).

5.3 Job Scheduling Strategies

The order in which jobs are scheduled can have considerable effect on system performance

[34, 73, 79]. The scheduling strategies used in this chapter include FCFS and SSD. In FCFS

scheduling, the allocation request that arrives first is considered for allocation first.

Allocation attempts stop when they fail for the current FIFO queue head. In SSD scheduling,

the job with the shortest service demand is scheduled first [50, 73, 79].

Job scheduling is an important factor of processor allocation in multicomputers. For meshes,

the results in [50, 73, 79] have shown that the SSD strategy results in significantly better

performance than FCFS. In this chapter we show that SSD could be used with other mesh

processor allocation strategies to yield improvement in performance in terms of average

turnaround time and mean system utilisation.

The performance of the contiguous allocation can be significantly affected by both the type

of the distribution adopted for job execution times and the scheduling strategy adopted for

determining the order in which jobs are selected for execution. To illustrate this, the

performance of the allocation strategies considered in this chapter has been evaluated in the

context of a heavy-tailed distribution and both the FCFS and SSD strategies.

Chapter 5: Comparative Evaluation of Contiguous Allocation Strategies on Mesh-
Connected Multicomputers

119

5.4 Simulation Results

Extensive simulation experiments have been carried out in order to compare the

performance of the allocation strategies considered in this chapter, with and without change

of request orientation. The performance analysis has been conducted using the same

simulation model as outlined in Chapter 3 (please see Section 3.2).

The allocation and de-allocation algorithms, including the busy list routines, have been

implemented in the C language, and integrated into the software ProcSimity; a simulation

tool that is widely used for processor allocation and job scheduling in parallel systems [50,

66]. The target mesh is a cube with width W , depth D and height H . Jobs are assumed to

have exponential inter-arrival times. They are scheduled using the FCFS and SSD strategies.

FCFS is chosen because it is fair and it is widely used in other similar studies [6, 33, 51, 52,

73, 74, 77, 78, 79, 93], while SSD is used to avoid potential performance loss due to FCFS

blocking [73, 79]. We assume that job execution times show some maximum values. As a

consequence, job execution times are modelled by a Bounded Pareto [53] (exhibiting a

heavy-tailed property but has an upper bound), which is defined as follows:

)(
)/(1

)(1 qxkx
qk

k
xf ≤≤

−
= −−α

α

αα
 ………………………………..……………. (5.1)

where k and q are the lower and upper limits of the job execution time, and α is a factor

that reflects the variability of job execution times. In the experiments, these parameters are

set to 0.15=k , 0.4241=q and 0.1=α , as suggested in [53]. A Bounded Pareto

distribution shows very high variability when qk << and 0.1≈α . So, the values of qk, ,

and α have been chosen as above to show this variability. However, when α increases the

Chapter 5: Comparative Evaluation of Contiguous Allocation Strategies on Mesh-
Connected Multicomputers

120

probability of large values decreases. For instance, when 0.3=α and 0.1=k the Bounded

Pareto distribution approaches the exponential distribution with a mean of 1 time unit.

As has been mentioned in the previous Chapters, two distributions are used to generate the

width, depth and height of job requests. The first is the uniform distribution over the range

from 1 to the mesh side length, where the width, depth and height of the job requests are

generated independently. The second is the exponential distribution, where the width, depth

and height of the job requests are exponentially distributed with a mean of half the side

length of the entire mesh; the width, depth, and height of the job requests are rounded to the

integer values using floor function and bounded by the dimensions of the mesh. These

distributions have often been used in the literature [9, 20, 27, 33, 34, 35, 51, 52, 73, 74, 76,

77, 78, 79, 85, 94, 99]. Simulation parameters are illustrated in Table 5.1. It is worth noting

that most of the values of these parameters have been adopted in the literature [9, 11, 20, 27,

33, 34, 38, 50, 51, 52, 53, 73, 77, 79, 85, 94, 99].

Table 5.1: The System Parameters Used in the Simula tion Experiments

Simulator Parameter Values

Dimensions of the Mesh Architecture 8 × 8 × 8, 10 × 10 × 10, and 12 × 12 × 12

Allocation Strategy TBL, BL, TFF, and FF

Scheduling Strategy FCFS and SSD

Job Size Distribution

Uniform: Job widths, depths, and heights

are uniformly distributed over the range

from 1 to the mesh side lengths.

Exponential: Job widths, depths, and

heights are exponentially distributed with a

mean of half the side length of the entire

mesh.

Chapter 5: Comparative Evaluation of Contiguous Allocation Strategies on Mesh-
Connected Multicomputers

121

Execution Time Distribution

Bounded Pareto with the following

parameters: 0.15=k , 0.4241=q and

0.1=α [53].

Inter-arrival Time

Exponential with different values for the

mean. The values are determined through

experimentation with the simulator, ranged

from lower values to higher values.

Number of Runs

The number of runs should be enough so

that the confidence level is 95% that

relative errors are below 5% of the means.

The number of runs ranged from dozens to

thousands.

Number of Jobs per Run 1000

Each simulation run consists of one thousand completed jobs. Simulation results are

averaged over enough independent runs so that the confidence level is 95% that relative

errors are below 5% of the means [7]. The batch means analysis has been used to calculate

confidence intervals [4, 66]. This method has been discussed in detail in Chapter 3 (please

see Section 3.4.1). Table 5.2 shows the grand means, confidence intervals, and relative

errors that outline the results depicted, for example, in Figure 5.3 for the load 0.035

jobs/time unit under SSD. In most of the cases, the error bars are quite small. For the sake of

clarity of the figures, the error bars are not shown on all the subsequent figures.

Table 5.2: The mean (i.e., mean turnaround time of job), 95% confidence interval, and
relative error for the results shown in Figure 5.3 for the load 0.035 jobs/time unit and

the SSD scheduling strategy

Algorithm TBL TFF BL FF

95%
Confidence

Interval
[572.11- 585.45] [569.01- 588.22] [657.04- 669.14] [640.43- 660.82]

Mean
(time unit)

578.781626 578.614877 663.090303 650.626269

Relative
Error

0.011 0.016 0.009 0.015

Chapter 5: Comparative Evaluation of Contiguous Allocation Strategies on Mesh-
Connected Multicomputers

122

The main performance parameters observed are the average turnaround time of jobs, mean

system utilisation and average allocation overhead. As previously reported in Chapter 3, the

turnaround time is the time that a parallel job spends in the mesh from arrival to departure.

The utilisation is the percentage of processors that are utilized over time. The allocation

overhead is the time that the allocation algorithm takes for the allocation and de-allocation

operations per job. The important independent variable in the simulation is the system load.

It is defined as the inverse of the mean inter-arrival time of jobs. Its range of values from

low to heavy loads has been determined through experimentation with the simulator

allowing each allocation strategy to reach its upper limits of utilisation.

In what follows, the notation <allocation strategy>(<scheduling strategy>) is adopted to

represent the strategies in the performance figures. For instance, TBL(SSD) refers to the

Turning Busy List allocation strategy under the Shortest-Service-Demand scheduling

strategy.

5.4.1 Performance Comparison under Heavy-Tailed and Exponential Job
Execution Times with the FCFS Scheduling Strategy.

To evaluate the impact of heavy-tailed distribution on the performance of the allocation

strategies, its performance is compared, in terms of the average turnaround time of jobs and

mean system utilisation when the job execution times follow heavy-tailed distribution

according to the values specified in Table 5.1, against that of the exponential job execution

times with a mean of 83 time units. Figure 5.1 depicts the average turnaround time of the

allocation strategies (TBL, TFF, BL, and FF) for the heavy-tailed and exponential job

execution times and FCFS scheduling strategy under uniform side lengths distribution. The

simulation results in this figure are presented for a heavy system load that allows each

allocation strategy to reach its upper limits of utilisation. The results reveal that the

performance of the allocation strategies degrades when the distribution of job execution

Chapter 5: Comparative Evaluation of Contiguous Allocation Strategies on Mesh-
Connected Multicomputers

123

times is heavy-tailed. This is because the long jobs’ execution times, resulting from the

heavy-tailed distribution, increase the average turnaround time and consequently lead to a

degradation in system performance. For example, the average turnaround time of

TBL(FCFS) under exponential job execution time distribution is 49% of that of TBL(FCFS)

under heavy-tailed job execution time distribution.

T
B

L(F
C

F
S

)

T
B

L(F
C

F
S

)

T
F

F
(F

C
F

S
)

T
F

F
(F

C
F

S
)

B
L(F

C
F

S
)

B
L(F

C
F

S
)

F
F

(F
C

F
S

)

F
F

(F
C

F
S

)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Exponential Heavy Tailed

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e

(t
im

e
un

it) TBL(FCFS)

TFF(FCFS)

BL(FCFS)

FF(FCFS)

Figure 5.1: Turnaround time in BL, FF, TBL, and TFF under the exponential and
heavy-tailed job execution times with FCFS scheduli ng strategy and the uniform side
lengths distribution in an 8 × 8 × 8 mesh.

Figure 5.2 depicts the mean system utilisation of the strategies (TBL, TFF, BL, and FF) for

the heavy-tailed and exponential job execution times with FCFS and uniform side lengths

distribution. The simulation results in this figure are presented for a heavy system load. The

load is such that the waiting queue is filled very early, allowing each allocation strategy to

reach its upper limits of utilisation. The results reveal that the utilisation of the allocation

strategies degrades when job execution times follow heavy-tailed distribution, while it is

better for the exponential job execution times. This is because the long jobs’ execution times

due to the heavy-tailed distribution decrease the probability of successful allocation to other

jobs, and this in turn degrades system performance. For example, the allocation strategies

with rotation, as in TBL and TFF, achieve a mean system utilisation of 49% for exponential

Chapter 5: Comparative Evaluation of Contiguous Allocation Strategies on Mesh-
Connected Multicomputers

124

job execution times, but cannot exceed 39% for heavy-tailed job execution times.

T
B

L(F
C

F
S

)

T
B

L(F
C

F
S

)

T
F

F
(F

C
F

S
)

T
F

F
(F

C
F

S
)

B
L(F

C
F

S
)

B
L(F

C
F

S
)

F
F

(F
C

F
S

)

F
F

(F
C

F
S

)

0

10

20

30

40

50

60

70

Exponential Heavy Tailed

U
til

iz
at

io
n

(%
)

TBL(FCFS)

TFF(FCFS)

BL(FCFS)

FF(FCFS)

Figure 5.2: Mean system utilisation in BL, FF, TBL, and TFF under the exponential
and heavy-tailed job execution times with FCFS sche duling strategy and the uniform
side lengths distribution in an 8 × 8 × 8 mesh.

5.4.2 Performance Comparison under Different System Loads and Scheduling
Strategies

In the figures that are presented below, the x-axis represents the system load while the y-axis

represents results of the performance metric of interest. The results obtained have been

found to be similar to those observed when other mesh system sizes are considered (please

see Section 5.4.3).

Turnaround Time:

In Figures 5.3 and 5.4, the average turnaround time of jobs is plotted against the system load

for both job size distributions and the two scheduling strategies considered. The results

reveal that the allocation strategies with rotation under SSD scheduling (TBL(SSD) and

TFF(SSD)) have comparable performance, and that they are superior to all other strategies.

They are followed, in order, by the strategies BL(SSD), FF(SSD), TBL(FCFS), TFF(FCFS),

BL(FCFS), and FF(FCFS). When compared to TBL(SSD) and TFF(SSD) in Figure 5.3,

Chapter 5: Comparative Evaluation of Contiguous Allocation Strategies on Mesh-
Connected Multicomputers

125

BL(SSD) increases the average turnaround times by about 13% and 48% for the loads 0.03

and 0.045 jobs/time unit, respectively. In Figure 5.4, the increases are by about 21% and

32% for the loads 0.075 and 0.105 jobs/time unit, respectively.

It can also be seen in the figures that the average turnaround times of the strategies that

depend on a list of allocated sub-meshes for both allocation and de-allocation, as in TBL and

BL, is very close to that of the strategies that depend on the allocation states of processors,

as in TFF and FF, assuming that the same scheduling strategy is used. For example, the

average turnaround time of TBL(SSD) is very close to that of TFF(SSD). It can also be seen

in the figures that the average turnaround time of the strategies with rotation, as in TBL and

TFF, is substantially superior to that of the strategies without rotation, as in BL and FF,

because it is more likely that a suitable contiguous sub-mesh is available for allocation to a

job when request rotation is allowed. It can also be noticed in the figures that SSD is much

better than FCFS. In Figure 5.3, for instance, the average turnaround time of TBL(SSD) is

7% of that of TBL(FCFS) in the presence of high loads. This finding demonstrates that the

scheduling and allocation strategies both have substantial effect on the performance of the

contiguous allocation strategies in the 3D mesh.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e
(t

im
e

un
it)

Load (jobs/time unit)

TBL(FCFS)

TFF(FCFS)

TBL(SSD)

TFF(SSD)

BL(FCFS)

FF(FCFS)

BL(SSD)

FF(SSD)

Figure 5.3: Average turnaround time vs. system load for the contiguous allocation
strategies (BL, FF, TBL, TFF) under the scheduling strategies (FCFS and SSD) and
the uniform side lengths distribution in an 8 × 8 × 8 mesh.

Chapter 5: Comparative Evaluation of Contiguous Allocation Strategies on Mesh-
Connected Multicomputers

126

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.005 0.025 0.045 0.065 0.085 0.105

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e
(t

im
e

un
it)

Load (jobs/time unit)

TBL(FCFS)

TFF(FCFS)

TBL(SSD)

TFF(SSD)

BL(FCFS)

FF(FCFS)

BL(SSD)

FF(SSD)

Figure 5.4: Average turnaround time vs. system load for the contiguous allocation
strategies (BL, FF, TBL, TFF) under the scheduling strategies (FCFS and SSD) and
the exponential side lengths distribution in an 8 × 8 × 8 mesh.

Utilisation:

In Figures 5.5 and 5.6, the mean system utilisation of the allocation strategies is plotted

against the system loads under the uniform and exponential job size distributions,

respectively, and both scheduling strategies considered. In these two figures, TBL(SSD) and

TFF(SSD) have almost identical performance, and they are superior to the other strategies.

In Figure 5.5, for example, TBL(SSD) achieves system utilisation of 52%, but TBL(FCFS)

cannot exceed 39% system utilisation. Also, the results show that the switching request

orientation improves performance substantially. This is indicated by the largely superior

mean system utilisation of the allocation strategies that can switch the orientation of

allocation requests when they are compared to the strategies without rotation. The strategies

with rotation, as in TBL(SSD) and TFF(SSD), achieve system utilisation of 44% under the

exponential distribution and 52% under uniform distribution. But the strategies without

rotation, as in BL(SSD) and FF(SSD), cannot exceed 42% utilisation. Higher system

utilisation is achievable under heavy loads because the waiting queue is filled very early,

allowing each allocation strategy to reach its upper limits of utilisation.

Chapter 5: Comparative Evaluation of Contiguous Allocation Strategies on Mesh-
Connected Multicomputers

127

5
10
15
20
25
30
35
40
45
50
55

0.005 0.015 0.025 0.035 0.045

U
til

iz
at

io
n

(%
)

Load (jobs/time unit)

TBL(FCFS)

TFF(FCFS)

TBL(SSD)

TFF(SSD)

BL(FCFS)

FF(FCFS)

BL(SSD)

FF(SSD)

Figure 5.5: Mean System utilisation for the contigu ous allocation strategies (BL, FF,
TBL, TFF) under the scheduling strategies (FCFS and SSD) and the uniform side
lengths distribution in an 8 × 8 × 8 mesh.

2

7

12

17

22

27

32

37

42

47

0.005 0.025 0.045 0.065 0.085 0.105

U
til

iz
at

io
n

(%
)

Load (jobs/time unit)

TBL(FCFS)

TFF(FCFS)

TBL(SSD)

TFF(SSD)

BL(FCFS)

FF(FCFS)

BL(SSD)

FF(SSD)

Figure 5.6: Mean System utilisation for the contigu ous allocation strategies (BL, FF,
TBL, TFF) under the scheduling strategies (FCFS and SSD) and the exponential side
lengths distribution in an 8 × 8 × 8 mesh.

Number of Allocated Sub-meshes (m):

In Figures 5.7~5.10, the average number of allocated sub-meshes in the strategies that

depend on a list of allocated sub-meshes for both allocation and de-allocation (TBL and BL)

is plotted against the system load. Different mesh sizes are considered under both job size

distributions and scheduling strategies examined in this study. As expected, the average

number of allocated sub-meshes is largest when the side lengths follow the exponential

distribution. This is because the average sizes of jobs are smallest in this case. Moreover, the

Chapter 5: Comparative Evaluation of Contiguous Allocation Strategies on Mesh-
Connected Multicomputers

128

average number of allocated sub-meshes is much lower than the number of processors in the

mesh system (n) for both job size distributions. Figure 5.7 depicts that the average number

of allocated sub-meshes in the busy list varied from 1.19 to 2.22 for the uniform side lengths

distribution and FCFS scheduling, and from 1.19 to 3.03 for the uniform side lengths

distribution and SSD scheduling. In Figure 5.8, the average number of allocated sub-meshes

varied from 1.22 to 4.72 for the exponential side lengths distribution and FCFS, and from

1.22 to 6.62 for the exponential side lengths distribution and SSD. It can be seen in the

figures that m is often less sensitive with n . It can also be noticed that the average number

of allocated sub-meshes under SSD is higher than that under FCFS. In Figure 5.7, for

example, the average number of allocated sub-meshes of TBL(FCFS) for all mesh sizes are

84% and 75% of that of TBL(SSD) under the job arrival rates 0.04 and 0.105 jobs/time unit,

respectively. This is because in SSD, the job with the shortest service demand is scheduled

first, meaning that allocation and de-allocation operations are more numerous within a given

time period, resulting in more allocated sub-meshes in the busy list.

As previously reported in Chapter 3, the average number of allocated sub-meshes for the

TBL strategy that use the rotation of the allocation request is a bit higher than that of the BL

strategy that does not use the rotation of the allocation request. This is because it is highly

likely that a suitable contiguous sub-mesh is available for allocation to a job when the

request orientation is allowed, which in turn increases the number of allocated sub-meshes

in the busy list. In Figures 5.7 and 5.9, the average number of allocated sub-meshes of

BL(FCFS) for all mesh system sizes is 74% of that of TBL(FCFS) under the job arrival rate

0.105 jobs/time unit, and the average number of allocated sub-meshes of BL(SSD) for all

mesh system sizes is 80% of that of TBL(SSD) when the job arrival rate is 0.105 jobs/time

unit.

Chapter 5: Comparative Evaluation of Contiguous Allocation Strategies on Mesh-
Connected Multicomputers

129

1

1.5

2

2.5

3

3.5

0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.105

A
ve

ra
ge

 N
um

be
r

of

A
llo

ca
te

d
S

ub
-m

es
he

s

Load (jobs/time unit)

TBL(FCFS)8x8x8

TBL(FCFS)10x10x10

TBL(FCFS)12x12x12

TBL(SSD)8x8x8

TBL(SSD)10x10x10

TBL(SSD)12x12x12

Figure 5.7: Average number of allocated sub-meshes (m) in TBL under the
scheduling strategies (FCFS and SSD) and the unifor m side lengths distribution in 8
× 8 × 8, 10 × 10 × 10 and 12 × 12 × 12 meshes.

1

1.8

2.6

3.4

4.2

5

5.8

6.6

7.4

0.005 0.025 0.045 0.065 0.085 0.105 0.125 0.145 0.165 0.185 0.205

A
ve

ra
ge

 N
um

be
r

of

A
llo

ca
te

d
S

ub
-m

es
he

s

Load (jobs/time unit)

TBL(FCFS)8x8x8

TBL(FCFS)10x10x10

TBL(FCFS)12x12x12

TBL(SSD)8x8x8

TBL(SSD)10x10x10

TBL(SSD)12x12x12

Figure 5.8: Average number of allocated sub-meshes (m) in TBL under the
scheduling strategies (FCFS and SSD) and the expone ntial side lengths distribution
in 8 × 8 × 8, 10 × 10 × 10 and 12 × 12 × 12 meshes.

1

1.5

2

2.5

3

0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.105

A
ve

ra
ge

 N
um

be
r

of

A
llo

ca
te

d
S

ub
-m

es
he

s

Load (jobs/time unit)

BL(FCFS)8x8x8

BL(FCFS)10x10x10

BL(FCFS)12x12x12

BL(SSD)8x8x8

BL(SSD)10x10x10

BL(SSD)12x12x12

Figure 5.9: Average number of allocated sub-meshes (m) in BL under the scheduling
strategies (FCFS and SSD) and the uniform side leng ths distribution in 8 × 8 × 8, 10 ×
10 × 10 and 12 × 12 × 12 meshes.

Chapter 5: Comparative Evaluation of Contiguous Allocation Strategies on Mesh-
Connected Multicomputers

130

1

1.8

2.6

3.4

4.2

5

5.8

0.005 0.025 0.045 0.065 0.085 0.105 0.125 0.145 0.165 0.185 0.205

A
ve

ra
ge

 N
um

be
r

of

A
llo

ca
te

d
S

ub
-m

es
he

s

Load (jobs/time unit)

BL(FCFS)8x8x8

BL(FCFS)10x10x10

BL(FCFS)12x12x12

BL(SSD)8x8x8

BL(SSD)10x10x10

BL(SSD)12x12x12

Figure 5.10: Average number of allocated sub-meshes (m) in BL under the
scheduling strategies (FCFS and SSD) and the expone ntial side lengths distribution
in 8 × 8 × 8, 10 × 10 × 10 and 12 × 12 × 12 meshes.

Allocation Overhead (Allocation and De-allocation Time):

Figures 5.11~5.18 show the average allocation and de-allocation time (allocation overhead)

for the allocation strategies considered against the job arrival rate for an 8 × 8 × 8, a 10 × 10

× 10, and a 12 × 12 × 12 system sizes, when the request side lengths follow the uniform and

exponential distributions, respectively. We observe that the strategies that depend on a list

of allocated sub-meshes for both allocation and de-allocation, as in TBL and BL, have much

smaller allocation overhead than the strategies that depend on the number of processors in

the mesh system, as in TFF and FF, under both scheduling strategies considered.

In Figure 5.11, for example, the allocation overhead of TBL(FCFS) is 4% of that in

TFF(FCFS) under the job arrival rate 0.075 jobs/time unit. It can also be seen in the figures

that the time needed for both allocation and de-allocation for the strategies with rotation, as

in TBL and TFF, is higher than that of the strategies without rotation, as in BL and FF. This

is because in the worst case, the allocation process, in the allocation strategies with rotation,

is repeated for all possible permutations (6 permutations) of the job request while this

process is repeated only one time for the strategies without rotation. In Figures 5.11 and

5.13, for example, the allocation overhead of BL(SSD) is 37% of that in TBL(SSD) under

Chapter 5: Comparative Evaluation of Contiguous Allocation Strategies on Mesh-
Connected Multicomputers

131

the job arrival rate 0.105 jobs/time unit.

The average size of a requested sub-mesh is relatively small when the exponential

distribution is used for generating job side lengths. Therefore, the number of allocated sub-

meshes is larger in this case, meaning that the allocation choices are more numerous.

Consequently, the time needed for both the allocation and de-allocation operations of the

allocation strategies that depend on a list of allocated sub-meshes is largest when the side

lengths follow the exponential distribution.

Also and as shown in Figures 5.15~5.22, when the number of processors increases the

allocation overhead increases for the strategies that depend on the number of processors in

the mesh system, as in TFF and FF, while it does not increase for the strategies that depend

on a list of allocated sub-meshes, as in TBL and BL. In Figures 5.12 and 5.20, for example,

the allocation overhead of TFF(SSD) for an 8 × 8 × 8 mesh system size is 11% of that in

TFF(SSD) for a 12 × 12 × 12 mesh system size under the job arrival rate 0.205 jobs/time

unit. Moreover, it can be noticed in the figures that the difference in allocation and de-

allocation time becomes more significant as the system load increases. Thus, the allocation

strategies that depend on a list of allocated sub-meshes are more effective than the strategies

that depend on the size of the mesh system.

0

0.2

0.4

0.6

0.8

1

1.2

0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.105

A
ve

ra
ge

 A
llo

ca
tio

n
O

ve
rh

ea
d

(m
se

c)

Load (jobs/time unit)

TBL(FCFS)

TFF(FCFS)

TBL(SSD)

TFF(SSD)

Figure 5.11: Average allocation overhead for the co ntiguous allocation strategies
(TBL and TFF) under the scheduling strategies (FCFS and SSD) and uniform side
lengths distribution in an 8 × 8 × 8 mesh.

Chapter 5: Comparative Evaluation of Contiguous Allocation Strategies on Mesh-
Connected Multicomputers

132

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.005 0.025 0.045 0.065 0.085 0.105 0.125 0.145 0.165 0.185 0.205

A
ve

ra
ge

 A
llo

ca
tio

n
O

ve
rh

ea
d

(m
se

c)

Load (jobs/time unit)

TBL(FCFS)

TFF(FCFS)

TBL(SSD)

TFF(SSD)

Figure 5.12: Average allocation overhead for the co ntiguous allocation strategies
(TBL and TFF) under the scheduling strategies (FCFS and SSD) and exponential side
lengths distribution in an 8 × 8 × 8 mesh.

0

0.04

0.08

0.12

0.16

0.2

0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.105

A
ve

ra
ge

 A
llo

ca
tio

n
O

ve
rh

ea
d

(m
se

c)

Load (jobs/time unit)

BL(FCFS)

FF(FCFS)

BL(SSD)

FF(SSD)

Figure 5.13: Average allocation overhead for the co ntiguous allocation strategies (BL
and FF) under the scheduling strategies (FCFS and S SD) and uniform side lengths
distribution in an 8 × 8 × 8 mesh.

0

0.04

0.08

0.12

0.16

0.2

0.005 0.025 0.045 0.065 0.085 0.105 0.125 0.145 0.165 0.185 0.205

A
ve

ra
ge

 A
llo

ca
tio

n
O

ve
rh

ea
d

(m
se

c)

Load (jobs/time unit)

BL(FCFS)

FF(FCFS)

BL(SSD)

FF(SSD)

Figure 5.14: Average allocation overhead for the co ntiguous allocation strategies (BL
and FF) under the scheduling strategies (FCFS and S SD) and exponential side
lengths distribution in an 8 × 8 × 8 mesh.

Chapter 5: Comparative Evaluation of Contiguous Allocation Strategies on Mesh-
Connected Multicomputers

133

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.105

A
ve

ra
ge

 A
llo

ca
tio

n
O

ve
rh

ea
d

(m
se

c)

Load (jobs/time unit)

TBL(FCFS)

TFF(FCFS)

TBL(SSD)

TFF(SSD)

Figure 5.15: Average allocation overhead for the co ntiguous allocation strategies
(TBL and TFF) under the scheduling strategies (FCFS and SSD) and uniform side
lengths distribution in a 10 × 10 × 10 mesh.

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0.005 0.025 0.045 0.065 0.085 0.105 0.125 0.145 0.165 0.185 0.205

A
ve

ra
ge

 A
llo

ca
tio

n
O

ve
rh

ea
d

(m
se

c)

Load (jobs/time unit)

TBL(FCFS)

TFF(FCFS)

TBL(SSD)

TFF(SSD)

Figure 5.16: Average allocation overhead for the co ntiguous allocation strategies
(TBL and TFF) under the scheduling strategies (FCFS and SSD) and exponential side
lengths distribution in a 10 × 10 × 10 mesh.

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.105

A
ve

ra
ge

 A
llo

ca
tio

n
O

ve
rh

ea
d

(m
se

c)

Load (jobs/time unit)

BL(FCFS)

FF(FCFS)

BL(SSD)

FF(SSD)

Figure 5.17: Average allocation overhead for the co ntiguous allocation strategies (BL
and FF) under the scheduling strategies (FCFS and S SD) and uniform side lengths
distribution in a 10 × 10 × 10 mesh.

Chapter 5: Comparative Evaluation of Contiguous Allocation Strategies on Mesh-
Connected Multicomputers

134

-0.05

0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.005 0.025 0.045 0.065 0.085 0.105 0.125 0.145 0.165 0.185 0.205

A
ve

ra
ge

 A
llo

ca
tio

n
O

ve
rh

ea
d

(m
se

c)

Load (jobs/time unit)

BL(FCFS)

FF(FCFS)

BL(SSD)

FF(SSD)

Figure 5.18: Average allocation overhead for the co ntiguous allocation strategies (BL
and FF) under the scheduling strategies (FCFS and S SD) and exponential side
lengths distribution in a 10 × 10 × 10 mesh.

-0.5

1.5

3.5

5.5

7.5

9.5

11.5

0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.105

A
ve

ra
ge

 A
llo

ca
tio

n
O

ve
rh

ea
d

(m
se

c)

Load (jobs/time unit)

TBL(FCFS)

TFF(FCFS)

TBL(SSD)

TFF(SSD)

Figure 5.19: Average allocation overhead for the co ntiguous allocation strategies
(TBL and TFF) under the scheduling strategies (FCFS and SSD) and uniform side
lengths distribution in a 12 × 12 × 12 mesh.

-0.5

1.5

3.5

5.5

7.5

9.5

11.5

0.005 0.025 0.045 0.065 0.085 0.105 0.125 0.145 0.165 0.185 0.205

A
ve

ra
ge

 A
llo

ca
tio

n
O

ve
rh

ea
d

(m
se

c)

Load (jobs/time unit)

TBL(FCFS)

TFF(FCFS)

TBL(SSD)

TFF(SSD)

Figure 5.20: Average allocation overhead for the co ntiguous allocation strategies
(TBL and TFF) under the scheduling strategies (FCFS and SSD) and exponential side
lengths distribution in a 12 × 12 × 12 mesh.

Chapter 5: Comparative Evaluation of Contiguous Allocation Strategies on Mesh-
Connected Multicomputers

135

-0.1

0.4

0.9

1.4

1.9

0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.105

A
ve

ra
ge

 A
llo

ca
tio

n
O

ve
rh

ea
d

(m
se

c)

Load (jobs/time unit)

BL(FCFS)

FF(FCFS)

BL(SSD)

FF(SSD)

Figure 5.21: Average allocation overhead for the co ntiguous allocation strategies (BL
and FF) under the scheduling strategies (FCFS and S SD) and uniform side lengths
distribution in a 12 × 12 × 12 mesh.

-0.1

0.4

0.9

1.4

1.9

0.005 0.025 0.045 0.065 0.085 0.105 0.125 0.145 0.165 0.185 0.205

A
ve

ra
ge

 A
llo

ca
tio

n
O

ve
rh

ea
d

(m
se

c)

Load (jobs/ time unit)

BL(FCFS)

FF(FCFS)

BL(SSD)

FF(SSD)

Figure 5.22: Average allocation overhead for the co ntiguous allocation strategies (BL
and FF) under the scheduling strategies (FCFS and S SD) and exponential side
lengths distribution in a 12 × 12 × 12 mesh.

5.4.3 Impact of System Size

In this section, we investigate the effect of the size of the mesh system on the performance

of the allocation strategies considered in terms of average turnaround time of jobs under

both FCFS and SSD when job execution times follow heavy-tailed distributions. For the

sake of conciseness, we have only concentrated on job turnaround time in this section

because it is usually a good estimate of the performance of processor allocation strategies

and it has been used in the existing allocation strategies [9, 18, 20, 27, 33, 34, 51, 52, 65, 78,

Chapter 5: Comparative Evaluation of Contiguous Allocation Strategies on Mesh-
Connected Multicomputers

136

85, 99].

Figure 5.23 assumes that the side lengths of the requested sub-meshes follow a uniform

distribution, while an exponential distribution is assumed in Figure 5.24. The results reveal

that the performance of the allocation strategies is little affected by changes in the system

size in our considered scenarios. In Figure 5.24, the average turnaround time of the

TBL(SSD) strategy for an 8 × 8 × 8 mesh system size is 98% of that of TBL(SSD) for a 10 ×

10 × 10 mesh system size and 91% of that of TBL(SSD) for a 12 × 12 × 12 mesh system

size. Moreover, the allocation strategies that use the rotation of the allocation request, as in

TBL and TFF, perform much better than the allocation strategies that do not use the rotation

of the allocation request, as in BL and FF, regardless of the mesh system size. Figure 5.23

shows that the average turnaround time of TBL(SSD) is 34% of that of BL(SSD) for a 12 ×

12 × 12 mesh system size. The results also show that the SSD scheduling strategy improves

the performance of the allocation strategies compared to FCFS scheduling. In Figure 5.23,

the average turnaround time of TBL(SSD) is 8% of that of TBL(FCFS) for a 12 × 12 × 12

mesh system size.

T
B

L(F
C

F
S

)

T
B

L(F
C

F
S

)

T
B

L(F
C

F
S

)

T
F

F
(F

C
F

S
)

T
F

F
(F

C
F

S
)

T
F

F
(F

C
F

S
)

F
F

(F
C

F
S

)

F
F

(F
C

F
S

)

F
F

(F
C

F
S

)

B
L(F

C
F

S
)

B
L(F

C
F

S
)

B
L(F

C
F

S
)

T
B

L(S
S

D
)

T
B

L(S
S

D
)

T
B

L(S
S

D
)

T
F

F
(S

S
D

)

T
F

F
(S

S
D

)

T
F

F
(S

S
D

)

F
F

(S
S

D
)

F
F

(S
S

D
)

F
F

(S
S

D
)

B
L(S

S
D

)

B
L(S

S
D

)

B
L(S

S
D

)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

8x8x8 10x10x10 12x12x12

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e

(t
im

e
un

it)

Mesh System Size (processor)

TBL(FCFS)

TFF(FCFS)

FF(FCFS)

BL(FCFS)

TBL(SSD)

TFF(SSD)

FF(SSD)

BL(SSD)

Figure 5.23: Average turnaround time vs. size of th e mesh system for the contiguous
allocation strategies (BL, FF, TBL, TFF) and the un iform side lengths distribution
under FCFS and SSD scheduling strategies.

Chapter 5: Comparative Evaluation of Contiguous Allocation Strategies on Mesh-
Connected Multicomputers

137

T
B

L(F
C

F
S

)

T
B

L(F
C

F
S

)

T
B

L(F
C

F
S

)

T
F

F
(F

C
F

S
)

T
F

F
(F

C
F

S
)

T
F

F
(F

C
F

S
)

F
F

(F
C

F
S

)

F
F

(F
C

F
S

)

F
F

(F
C

F
S

)

B
L(F

C
F

S
)

B
L(F

C
F

S
)

B
L(F

C
F

S
)

T
B

L(S
S

D
)

T
B

L(S
S

D
)

T
B

L(S
S

D
)

T
F

F
(S

S
D

)

T
F

F
(S

S
D

)

T
F

F
(S

S
D

)

F
F

(S
S

D
)

F
F

(S
S

D
)

F
F

(S
S

D
)

B
L(S

S
D

)

B
L(S

S
D

)

B
L(S

S
D

)

0

2000

4000

6000

8000

10000

12000

14000

8x8x8 10x10x10 12x12x12

A
ve

ra
ge

 T
ur

na
ro

un
d

T
im

e

(t
im

e
un

it)

Mesh System Size (processor)

TBL(FCFS)

TFF(FCFS)

FF(FCFS)

BL(FCFS)

TBL(SSD)

TFF(SSD)

FF(SSD)

BL(SSD)

Figure 5.24: Average turnaround time vs. size of th e mesh system for the contiguous
allocation strategies (BL, FF, TBL, TFF) and the ex ponential side lengths distribution
under FCFS and SSD scheduling strategies.

5.5 Conclusions

We have compared the performance of processor allocation strategies proposed for 3D

mesh-connected multicomputers for a wide range of system loads and system sizes when the

distribution of job execution times is heavy-tailed (e.g., Bounded Pareto distribution). The

strategies examined in this chapter include First Fit (FF), Turning First Fit (TFF), a Busy

List strategy (BL) and the Turning Busy List strategy (TBL). BL maintains a list of allocated

sub-meshes to determine the nodes that cannot be used as base nodes for the requested sub-

meshes, whereas TBL attempts to maintain a good performance in terms of mean system

utilisation and average turnaround time with little allocation overhead.

The heavy-tailed distribution has been adopted in this study because many measurement

studies have convincingly demonstrated that the execution times of certain computational

jobs can be characterised by heavy-tailed distributions; that is, many jobs are short and

fewer are long. Heavy-tailed distributions can capture this variability and have been shown

to behave quite differently from the exponential distribution which may not reflect all

Chapter 5: Comparative Evaluation of Contiguous Allocation Strategies on Mesh-
Connected Multicomputers

138

possible practical scenarios when compared to the heavy-tailed distribution.

The performance of the allocation strategies is measured in terms of usual performance

parameters that have been used in the existing strategies including the average turnaround

time and mean system utilisation, as well as the measured allocation overhead, that the

allocation and de-allocation operations take per job. Moreover, the SSD scheduling strategy

has been used to deal with heavy-tailed job execution times to avoid performance loss due to

FCFS blocking that results from large jobs.

The simulation results have shown that the performance of the allocation strategies in terms

of average turnaround time and mean system utilisation degrades considerably when the

distribution of job execution times is heavy-tailed. This is because the long jobs’ execution

times that have been resulted from heavy-tailed distribution increase the average turnaround

time of those jobs and which consequently degrade the system performance. Our analysis

has shown that when job executions times follow a heavy-tailed distribution, SSD improves

the performance of the allocation strategies compared to FCFS in terms of the performance

metrics measured in this study.

The simulation results have also shown that the performance of TBL(SSD) is almost

identical to that of TFF(SSD) and is superior over that of the other allocation strategies.

Moreover, the performance of the TBL and BL strategies that depend on a list of allocated

sub-meshes for both allocation and de-allocation is at least as good as that of the TFF and

FF strategies that depend on the number of processors in the mesh system, assuming that the

same scheduling strategy is used. The results have also shown that the average allocation

overhead of the TBL and BL strategies is lower than that of the TFF and FF strategies that

depend on the states of processors in the mesh system.

Chapter 6

Conclusions and Future Directions

Parallel computers are often considered to be one of the most feasible ways of achieving the

enormous computational power required by many real-life parallel applications found in

science, engineering, and a number of other fields [43, 70, 90]. Distributed-memory

multicomputers are an important class of parallel computers for building large-scale parallel

systems [83]. Among the various distributed-memory multicomputers those based on the

mesh network have received much attention from the research community due to the

simplicity, structural regularity, partition-ability, and ease of implementation of this network

topology [9, 18, 20, 21, 27, 31, 33, 35, 51, 52, 77, 78, 85, 99]. Meshes are suited to a variety

of practical applications including matrix computation, image processing and problems

whose task graphs can be embedded naturally into the mesh [89, 95]. It has been used as the

underlying network in a number of commercial and experimental multicomputers, including

the Intel Paragon [39], Cray XT3 [19, 60], MIT J-machine [61], Cray T3D [67], Cray T3E

[25], iWARP [15], IBM BlueGene/L [10, 55, 97, 98], and Delta Touchstone [40].

Processor allocation in distributed-memory multicomputers, particularly those based on the

Chapter 6: Conclusions and Future Directions 140

mesh network, has been the focus of a lot of research over the past years [9, 11, 16, 24, 26,

28, 31, 33, 34, 35, 45, 51, 52, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 93, 97]. Several

commercial and experimental parallel machines have used space sharing for processor

allocation [10, 15, 19, 25, 39, 40, 55, 61, 67, 97, 98]. In space sharing, the set of processors

in a system, e.g., mesh-connected multicomputer, is partitioned into a set of sub-meshes

each of which is exclusively allocated to a single job [6, 11, 17, 37]. Processor allocation

strategies based on space sharing can be divided into two broad categories: contiguous and

non-contiguous. In contiguous allocation [9, 20, 21, 26, 27, 31, 33, 34, 35, 38, 48, 52, 65,

74, 75, 78, 94, 99], the allocated processors are physically contiguous and have the same

topology as the underlying network, e.g. the mesh, in order to maintain low communication

overhead among the allocated processors. The direct consequence of contiguous allocation

is that good system utilisation is often difficult to achieve due to the fragmentation problem

which results from contiguous allocation [18, 85]. The fragmentation problem could be of

two types: internal and external. Internal fragmentation occurs when more processors are

allocated to a job but not used, whereas external fragmentation occurs when there are a

sufficient number of free processors are available to satisfy a job request but they are not

allocated to it because they are not contiguous.

To solve the fragmentation problem, a number of researchers have adopted non-contiguous

allocation [18, 24, 49, 71, 72, 84, 85] where a job can be executed on multiple disjoint sub-

meshes rather than waiting until a single sub-mesh of requested size and shape is available.

In the past, non-contiguous allocation has not attracted considerable research attention

because the communication latency was sensitive to the distance in the network employed in

the first generation of multicomputers [11]. However, the advances in routing technique

such as wormhole routing [2, 4, 11, 29, 71, 72, 83] have made non-contiguous allocation

plausible in networks characterised by long diameters such as the mesh. Wormhole routing

Chapter 6: Conclusions and Future Directions 141

has been widely adopted in the second generation of multicomputers [25, 39, 40, 54, 67, 91].

An advantage of wormhole routing over earlier communication schemes, mainly store-and-

forward, is that message latency has become less dependent on message distance [2, 43].

The main goal of a processor allocation strategy is to reduce job turnaround times and

maximize system utilisation [72]. A given allocation strategy may have a partial or full sub-

mesh recognition ability [85, 99]. Having a full sub-mesh recognition ability increases the

time to allocate a sub-mesh to a new job, as has been shown in the studies of [26, 31, 34, 94,

97]. With increased system size, the time to search for free processors to satisfy an incoming

job might be comparable to the job’s execution time [46]. Hence it is important to develop

allocation strategies that minimize the search time (also referred to as the allocation time),

and as a result decrease the turnaround time of jobs. Furthermore, the method used for

partitioning allocation requests in non-contiguous allocation has a considerable impact on

the performance of non-contiguous allocation strategies [18, 71, 72, 85]. Hence, the

partitioning process in non-contiguous allocation should aim to maintain a high degree of

contiguity between the processors allocated to a given parallel job. This is so that the

communication overhead is kept to a minimum without adversely affecting the overall

system performance [71, 72].

6.1 Summary of the Results

The major focus of the present research has been the development of new efficient

contiguous and non-contiguous allocation strategies for mesh-connected multicomputers that

overcome the limitations of the existing strategies suggested for the 2D and the 3D mesh

networks. Summarised below are the major contributions made in this research study.

• There have been relatively few contiguous allocation strategies that have been

Chapter 6: Conclusions and Future Directions 142

suggested for the 3D mesh-connected multicomputers. These strategies achieve a

complete sub-mesh recognition capability at the expense of a high allocation

overhead [31, 34, 94], that accounts for the time required to allocate and de-allocate

a set of processors to an incoming job. Furthermore, the allocation overhead in the

previously proposed contiguous allocation strategies has been shown to grow with

the system size [26, 31, 34, 94]. Motivated by these observations, the first part of

this dissertation has proposed a new contiguous allocation strategy, referred to as

Turning Busy List (TBL for short), for the 3D mesh-connected multicomputers. The

TBL strategy exhibits a low allocation overhead and can identify a free sub-mesh of

the requested size as long as it exists in the mesh system. It can do so because it

relies on a new approach that maintains a list of allocated sub-meshes to determine

all the regions consisting of the nodes that cannot be used as base nodes for the

requested sub-mesh. These nodes are then subtracted from the right border plane of

the already allocated sub-meshes in order to determine the nodes that can be used as

base nodes for the required sub-mesh size.

• Extensive simulation experiments under a variety of system loads have been carried

out in order to compare the performance of the proposed TBL allocation strategy

against well-known contiguous allocation strategies [34], with and without change

of request orientation. Our analysis has shown that in most circumstances TBL

strategy exhibits a lower allocation overhead than the previous strategies [34]. For

instance, simulation results have revealed that the allocation overhead in the TBL

strategy can be as low as 4% of that in the existing Turning First Fit (TFF) strategy

[34] in the presence of high loads. Moreover, when the number of processors

increases the allocation overhead increases for the allocation strategies that depend

on the number of processors in the mesh system (as in TFF and FF) while it does not

Chapter 6: Conclusions and Future Directions 143

increase for the allocation strategies that depend on a list of allocated sub-meshes

(as in TBL and BL). For example, the allocation overhead of the existing TFF

strategy for a 12 × 12 × 12 mesh system size can increase by up to 773% of that for

an 8 × 8 × 8 mesh system size. The allocation overhead in the proposed TBL

strategy is kept low when the mesh system size increases, while its performance, in

terms of the turnaround times and system utilisation, is still as good as that of the

existing competing TFF strategy [34]. The new TBL strategy is efficient because it

is implemented using a busy list approach. In practice it is often the case that when

the system size scales up, the requirement of applications in terms of the number of

requested processors often increases to exploit the available computational power,

and in such scenarios our suggested strategy is expected to exhibit competitive

performance levels.

• Our results have also revealed that the contiguous TBL and TFF strategies that

employ request rotation have comparable performance, and are both superior to the

other strategies that do not employ rotation (e.g., BL and FF). When compared

against TBL and TFF, BL increases the average turnaround times by up to 65% in

the presence high loads. The allocation strategies with rotation, notably, TBL and

TFF, achieve system utilisation of 47% under the exponential distribution and 49%

under uniform distribution. On the other hand, the BL and FF strategies that do not

employ rotation cannot exceed 37% utilisation for both job size distributions.

• There have been many non-contiguous allocation strategies that have been suggested

for the 2D mesh network. However most of these suffer from several problems that

include internal fragmentation, external fragmentation, as well as message

contention inside the network [18, 24, 84, 85]. Moreover, the allocation of

Chapter 6: Conclusions and Future Directions 144

processors to job requests is not based on free contiguous sub-meshes in the existing

strategies [18, 85]. Instead, it is often based on artificial predefined geometric or

arithmetic patterns [18, 85]. Hence these strategies may fail to allocate an available

large sub-mesh, which in turn cause degradation in system performance in terms of

turnaround times [18, 72, 85]. Motivated by these observations, the second part of

this dissertation has suggested a new non-contiguous allocation algorithm, referred

to as Greedy Available Busy List (GABL for short), for mesh-connected

multicomputers. The GABL strategy combines the main desirable features of both

the contiguous and non-contiguous allocation strategies. Moreover, GABL is

general enough in that it could be applied to either the 2D or 3D mesh. However, in

this research study the new proposed non-contiguous allocation strategy has been

adapted to the 2D mesh in order to compare its performance against that of the

existing non-contiguous allocation strategies suggested for the same network; it is

worth pointing out that we have opted to discuss our new allocation strategy in the

context of the 2D mesh network because there has been hardly any non-contiguous

allocation strategy which has been suggested for the 3D mesh network.

• The proposed GABL strategy relies on a new approach that maintains a higher

degree of contiguity among the processors than that of the previous non-contiguous

allocation strategies. This decreases the number of sub-meshes allocated to a job,

hence decreases the distance traversed by messages, which in turn decreases

communication overhead. Extensive simulation experiments under a variety of

system operating conditions have been carried out to compare the performance of

the proposed GABL strategy against that of the existing non-contiguous and

contiguous allocation strategies. The results have shown that in most cases the new

strategy has better performance in terms of the turnaround time than the previous

Chapter 6: Conclusions and Future Directions 145

contiguous and non-contiguous allocation strategies of [85]. Moreover, when

message contention increases inside the network due to using the all-to-all

communication pattern, for example, GABL exhibits superior performance over the

previous contiguous and non-contiguous allocation strategies. For instance, under

high loads, the average turnaround times in GABL are 20%, 24%, and 38% of that

of the contiguous First Fit (FF) [85, 99], non-contiguous Paging(0) [85], and non-

contiguous Multiple Buddy Strategy (MBS) [85], respectively. Furthermore, the

proposed strategy exhibits high system utilisation as it manages to eliminate both

internal and external fragmentation. For instance, under high loads, GABL achieves

a mean system utilisation of 71% to 75% under the exponential and uniform side

lengths distributions, respectively, but system utilisation in the contiguous FF

allocation strategy cannot exceed 50%.

• Experiments for large packet sizes have been also conducted. The results have

shown that under most system loads GABL outperforms the previous contiguous

and non-contiguous allocation strategies. For instance, when the packet length is 8-

flits, the difference in performance in terms of average turnaround times in favour

for the GABL strategy could be as large as 72% over Paging(0) and 49% over MBS

under high loads. Similarly, when packet length is increased to 64 flits, the

difference in performance in terms of average turnaround times in favour for the

GABL strategy could be as large as 85% over Paging(0) and 55% over MBS.

• Experiments for large system sizes in terms of average turnaround times have also

been carried out. GABL has been found to perform better than the existing

contiguous and non-contiguous allocation strategies for all system sizes. For

instance, for a 16 × 16 mesh system size, the average turnaround times of GABL can

be 20%, 24%, and 37% lower of that of FF, Paging(0), and MBS, respectively. For a

Chapter 6: Conclusions and Future Directions 146

64 × 64 mesh system size, the average turnaround times of GABL can be 23%, 34%,

and 45% lower of that of FF, Paging(0), and MBS, respectively. Moreover, the

results have shown a significant drop in performance as the system scales up. For

instance, the average turnaround time of GABL for a 64 × 64 mesh system size

could increase by as much as 194% of that for a 16 × 16 mesh system size. This is

because when the system size increases, the allocated processors might be far from

each other. This increases the distance traversed by messages, and as a result

increases the communication overhead, leading to an increases in the turnaround

time of jobs.

• The performance evaluation of most allocation strategies, including those described

here [6, 11, 18, 27, 31, 33, 34, 35, 38, 48, 51, 52, 74, 78, 85, 94, 99] have assumed

an exponential distribution for job execution times. However, many measurement

studies [22, 47, 56, 57, 58, 59, 88, 96] have convincingly demonstrated that the

execution times of certain computational jobs could be better characterised by

heavy-tailed distributions; that is, many jobs are short and fewer are long. The few

jobs that have long execution times can account for more than half of the total jobs’

execution time [59]. Heavy-tailed probability distributions (e.g., Bounded Pareto)

can capture this variability in job execution times and have been shown to behave

quite differently from the traditional exponential probability distribution, which has

been widely used to evaluate the performance of allocation strategies [22, 57, 58,

75]. Most importantly, when sampling random variables that follow a heavy-tailed

distribution, the probability of large generated values is non-negligible [22, 47, 56,

57, 58, 59, 88, 96].

• In the final part of this dissertation, the performance of the existing contiguous

allocation strategies for 3D mesh-connected multicomputers, including the ones

Chapter 6: Conclusions and Future Directions 147

developed in this research, has been revisited in the context of heavy-tailed job

execution times. To the best of our knowledge, this study is the first to consider

heavy-tailed distributions in the context of processor allocation on mesh-connected

multicomputers. As in [6, 9, 18, 21, 27, 31, 33, 34, 35, 38, 71, 72, 73, 74, 75, 77, 78,

79, 85, 94, 99], in this part, the performance of allocation strategies is measured in

terms of the average turnaround time and mean system utilisation, as well as the

measured allocation overhead, that is, the time that the allocation and de-allocation

operations take per job. It is worth noting that we have limited our investigation to

contiguous allocation strategies in this research due to time and resource limitations.

• Our study has revealed that in general the performance of the allocation strategies

degrades considerably when the distribution of job execution times is heavy-tailed

(e.g., Bounded Pareto). This is because the long jobs’ execution times due to the

heavy-tailed distribution increase the average turnaround time of those jobs, and

consequently degrade system performance. For instance, the average turnaround

time of TBL(FCFS) (i.e., TBL with the FCFS scheduling strategy) under the

exponential job execution time distribution is 49% of that of TBL(FCFS) under the

heavy-tailed job execution time distribution and high loads. Our analysis has also

shown that when job executions times follow a heavy-tailed distribution the

Shortest-Service-Demand (SSD) scheduling strategy improves the performance of

the allocation strategies compared to the FCFS scheduling strategy. For instance, the

average turnaround time of TBL(SSD) (i.e., TBL with the SSD scheduling strategy)

is 7% of that of TBL(FCFS) in the presence of high loads. Also, TBL(SSD)

achieves system utilisation of 52%, but TBL(FCFS) cannot exceed 39% system

utilisation.

• Having said the above, the allocation overhead of the TBL and BL allocation

Chapter 6: Conclusions and Future Directions 148

strategies is still much lower than that of the TFF and FF allocation strategies when

the job execution times follow a heavy tailed distribution. For instance, the

allocation overhead in the TBL(FCFS) strategy for an 8 × 8 × 8 mesh system size is

4% of that in the TFF(FCFS) strategy. Moreover, when the number of processors

increases the allocation overhead increases in the allocation strategies that depend

on the number of processors in the mesh system, as in TFF and FF, while it does not

increase in the allocation strategies that depend on a list of allocated sub-meshes, as

in TBL and BL. For instance, the allocation overhead in the TFF(FCFS) strategy for

an 8 × 8 × 8 mesh system size is 11% of that in the TFF(FCFS) strategy for a 12 ×

12 × 12 mesh system size.

• Experiments to measure the average turnaround times have also been conducted for

large system sizes. However, the main conclusions on the performance of the

allocation strategies remain unchanged. For example, the average turnaround time of

the TBL(SSD) strategy for an 8 × 8 × 8 mesh system size is 98% of that for a 10 ×

10 × 10 mesh system size and 91% for a 12 × 12 × 12 mesh system size.

6.2 Directions for the Future Work

There are several interesting issues and open problems that require further investigation.

These are briefly outlined below.

• In this research, the performance of the allocation strategies proposed in Chapters 3

and 4 has been evaluated assuming the First-Come-First-Served (FCFS) scheduling

strategy. A natural extension of this work would be to evaluate the performance of

our allocation strategies with other possible scheduling approaches, such as smallest

job first (SJF) [66], Last Come First Served (LCFS) [66], Out of Order (OO) [34],

Chapter 6: Conclusions and Future Directions 149

and backfilling [93]. Backfilling allows a later job in the waiting queue to be chosen

to schedule as long as its execution does not delay the earliest possible execution of

the earliest arriving job in the queue [93]. This requirement imposes the need for an

estimation of job execution times.

• The results in Chapter 4 and in [85] have shown that non-contiguous allocation

strategies dramatically outperform contiguous allocation strategies in the 2D mesh

network. Greedy Available Busy List strategy (GABL) proposed in Chapter 4 can be

applied to either the 2D or 3D mesh network. It can be adapted to 3D mesh by

exploiting an efficient approach, the Turning Busy List (TBL) approach described in

Chapter 3 for 3D mesh, for the detection of such available sub-meshes. It would be

interesting to investigate the performance of the non-contiguous allocation against

that of the contiguous allocation in 3D mesh network by comparing the performance

of the proposed GABL non-contiguous allocation algorithm described in Chapter 4

against that of the TBL contiguous allocation algorithm described in Chapter3.

• The study conducted in Chapter 5 has examined the performance of the contiguous

allocation strategies in the context of heavy-tailed distributions. It would be

interesting to conduct a similar performance study on the non-contiguous allocation

strategies.

• The results in Chapter 5 have revealed that the performance of the allocation

strategies degrades considerably when the distribution of job execution times is

heavy-tailed. A challenging continuation of this work would be to develop new

allocation strategies that can efficiently support heavy-tailed job execution times.

• There have been a number of interconnection networks such as torus and hypercube

Chapter 6: Conclusions and Future Directions 150

networks which have been suggested for multicomputers over the past years [93]. It

would be interesting to adapt the proposed allocation strategies to other well-known

network topologies and assess their performance on these networks.

• Throughout this research, it has been assumed that messages are routed according to

deterministic routing. Even though this form of routing is simple to implement it

cannot react to a change in network conditions. In adaptive routing, intermediate

nodes take current network conditions, such as the presence of congestions or

failures, into account to determine a route that a message should select to cross the

network. It would be interesting to extend the proposed allocation strategies to this

type of routing.

• Irregular networks have received considerable attention from the research

community due to the emergence of clusters of workstations as a cost-effective

method for achieving parallel processing. A new direction of research along the

broad lines of this dissertation would be to investigate the development of efficient

contiguous and non-contiguous allocation algorithms for this class of network

topologies.

• The performance of the proposed allocation strategies, as well as the existing

strategies, has been traditionally carried out by means of simulation based on

stochastic workload models to generate a stream of incoming jobs. To validate the

findings of the existing research, including that outlined in this thesis, on the

performance properties of the existing allocation algorithms, there is a need to

examine the performance of these strategies using real workload traces. Hence, it

would be very interesting to analyse the performance of our strategies based on real

workload traces collected from practical parallel systems and contrast the results

Chapter 6: Conclusions and Future Directions 151

obtained against those obtained by means of simulation.

• Research efforts on processor allocation have relied on the simulation method to

analyse the performance behaviour of most suggested strategies. As in other

research endeavours, simulation cannot (due to time and complexity considerations)

predict results and provide insight for all possible scenarios. A natural extension to

the research efforts described in this dissertation would be to develop analytical

models that can capture the performance behaviour of the proposed allocation

strategies for cases that cannot be investigated by simulations.

• There has been little research activity in the performance measurement of actual

parallel systems. Provided sufficient resources were available to materialise an

actual multicomputer, it would be useful to conduct measurements to verify the

conclusions that have been reported in the literature and which have largely been

reached by means of simulations. Apart from instilling confidence in the existing

work, such an investigation might reveal issues ignored in the assumptions of the

simulation model or otherwise not captured by present simulation tools.

Appendix A

The Components of the MBS
Allocation Algorithm

A.1 Introduction

In the MBS allocation strategy, a job request for p processors is represented as a base 4 number

of the following form: 00
0

11
1 22............2222 ××++××+××= −−

− dddp ii
i

ii
i . MBS is

composed of the following five parts [85]: system initialisation, request factoring algorithm,

buddy generating algorithm, allocation algorithm, and de-allocation algorithm.

A.2 System Initialisation

In this part, the mesh system is divided into initial blocks (i.e., sub-meshes), which are non-

overlapped square sub-meshes with side lengths equal to powers of 2. The concept of free block

records (FBR) extends the notion of the free block lists in the 2DBS strategy [48]. FBR[i]

records the number (FBR[i].block_num) of available blocks of size ii 22 × and an ordered list

Appendix A: The Components of the MBS Allocation Algorithm 153

(FBR[i].block_list) of the locations of such blocks. Another global variable, AVAIL, keeps track

of the current number of available processors in the mesh system, and is initialised to the number

of processors in the system (N).

A.3 The Request Factoring Algorithm

The number of processors requested by an incoming job request has a base 4 representation of

the form
 
∑ ××
=

N

i

ii
id

4log

0
)22(where 30 ≤≤ id . Thus any job request can be accommodated by

id blocks of size ii 22 × . At most  N4log distinct blocks are needed with a maximum of 3

blocks of a given size. The Maximum distinct blocks (MaxDB) of a given mesh system is defined

as  N4log . The factoring algorithm needs to take as an input the job size and produces as

output a request array (Request_Array[0..MaxDB]). Request_Array[i] is the number of size

ii 22 × blocks that the job needs.

A.4 The Buddy Generating Algorithm

The buddy breaks a large block into 4 smaller adjacent blocks to satisfy the ii 22 × requests. For

example, the 4 buddies of a large block jj 22 × are 11 22 −− × jj blocks. The algorithm operates

in two phases. In the first phase, an available block is searched by examining the FBRs in

increasing order of block size from 11 22 ++ × ii to maxmax 22 × . During the second phase, the

block is repeatedly broken down into smaller buddies until the desired size blocks are found. If

no block is found during the search phase, the algorithm breaks the request for a ii 22 × block

into 4 smaller requests for 11 22 −− × ii blocks.

Appendix A: The Components of the MBS Allocation Algorithm 154

A.5 The Allocation Algorithm

First, the request is factored and stored in Request_Array. This strategy attempts to satisfy each

request for a block of size ii 22 × from FBR[i]. Otherwise, MBS searches for a larger block in

FBR and repeatedly breaks it down into 4 adjacent buddies until it produces blocks of the

desired size. The 4 buddies of a jj 22 × block are 11 22 −− × jj blocks. If that fails, MBS breaks

the request for a ii 22 × block into 4 smaller requests for 11 22 −− × ii blocks, which are stored in

Request_Array[i-1], and repeats the allocation process. In MBS, allocation always succeeds

when the number of free processors in the mesh system is sufficient. This is because the request

or parts of it can be partitioned into requests for 1 × 1 blocks.

A.6 The De-allocation Algorithm

The MBS strategy needs to return all the blocks owned by the job to the system, and merge the

buddies up to restore the larger blocks.

Appendix B

The Possible Cases for Subtracting
Prohibited Regions from RBP’s in
the TBL Allocation Algorithm

The figures for all possible cases of subtracting Prohibited Regions (PR) from a Right Border

Plane (RBP) introduced in Chapter 3 are presented for each case. In all of the figures presented

in this Appendix, the coordinates of the RBP are represented by the address),,,,,(2211 zyxzyx

while the coordinates of PR are represented by the address),,,,,(222111 wvuwvu .

For example, Figure B.1 shows 6 possible situations for subtracting PR from RBP (please see

Case 3.3.1 in Figure 3.3, Chapter 3); in all of these situations the subtraction process results in

the same RBP. As a consequence, all processors on the RBP can be used as base processors for

an allocation sub-mesh. The 6 possible situations for the RBP in Figure B.1 are: 1ux < , 2ux > ,

12 wz < , 21 wz > , 12 vy < , 21 vy > .

Appendix B: The Possible Cases for Subtracting Prohibited Regions from RBP’s in the TBL
Allocation Algorithm

156

Figure B.1: Subtracting PR from RBP (Case 3.3.1 fro m Figure 3.3 in Chapter 3)

1. 1ux <

2. 2ux >

3. 12 wz <

4. 21 wz >

5. 12 vy <

6. 21 vy >

((x< u1) or (x> u2) or (z2< w1) or (z1> w2) or (y2< v1) or (y1> v2))

In this figure the result is RBP itself.

(x,y2,z2)

 (x,y2,z2)

(x,y1,z1)

(x,y1,z1)

6

5

4

2

3

1

(u1,v1,w1)

(u2,v2,w2)

(x,y2,z2)

(x,y2,z2)

(x,y2,z2)

(x,y1,z1)

(x,y1,z1)

(x,y1,z1)

(x,y1,z1)

(x,y2,z2)

Appendix B: The Possible Cases for Subtracting Prohibited Regions from RBP’s in the TBL
Allocation Algorithm

157

Figure B.2: Subtracting PR from RBP (Cases 3.3.2, 3 .3.3, 3.3.4 in Figure 3.3 in Chapter 3).

1. (u1≤x≤u2) and (v1≤y1≤v2) and (v1≤y2≤v2) and (w1≤z2≤w2) and (z1<w1)

RBP (x, y1, z1, x, y2, w1-1)

2. (u1≤x≤u2) and (v1≤y1≤v2) and (y2>v2) and (w1≤z2≤w2) and (z1<w1)

RBP1 (x, y1, z1, x, y2, w1-1)

RBP2 (x, v2+1, w1, x, y2, z2)

3. (u1≤x≤u2) and (v1≤y2≤v2) and (y1<v1) and (w1≤z2≤w2) and (z1<w1)

RBP1 (x, y1, z1, x, y2, w1-1)

RBP2 (x, y1, w1, x, v1-1, z2)

3 1

2

(x,y2,z2)

(u2,v2,w2)

(u1,v1,w1)

 (x,y2,z2)
(x,y2,z2)

(x,y1,z1)

((x,y1,z1)
(x,y1,z1)

Appendix B: The Possible Cases for Subtracting Prohibited Regions from RBP’s in the TBL
Allocation Algorithm

158

Figure B.3: Subtracting PR from RBP (Cases 3.3.5, 3 .3.6, 3.3.7 in Figure 3.3 in Chapter 3).

2

3

1

(x,y1,z1)

(x,y1,z1)

(x,y1,z1)

(x,y2,z2)

(u2,v2,w2)

(u1,v1,w1)

(x,y2,z2)

(x,y2,z2)

1. (u1≤x≤u2) and (v1≤y1≤v2) and (v1≤y2≤v2) and (w1≤z1≤w2) and (z2>w2)

RBP (x, y1, w2+1, x, y2, z2)

2. (u1≤x≤u2) and (v1≤y1≤v2) and (y2>v2) and (w1≤z1≤w2) and (z2>w2)

RBP1 (x, v2+1, z1, x, y2, w2)

RBP2 (x, y1, w2+1, x, y2, z2)

3. (u1≤x≤u2) and (v1≤y2≤v2) and (y1<v1) and (w1≤z1≤w2) and (z2>w2)

RBP1 (x, y1, z1, x, v1-1, w2)

RBP2 (x, y1, w2+1, x, y2, z2)

Appendix B: The Possible Cases for Subtracting Prohibited Regions from RBP’s in the TBL
Allocation Algorithm

159

Figure B.4: Subtracting PR from RBP (Cases 3.3.8, 3 .3.9, 3.3.10 in Figure 3.3 in Chapter 3).

(x,y1,z1)

2 3 1

(x,y1,z1)
(x,y1,z1)

(x,y2,z2)

(u2,v2,w2)

(u1,v1,w1)

(x,y2,z2)

(x,y2,z2)

1. (u1≤x≤u2) and (v1≤y1≤v2) and (v1≤y2≤v2) and (z1<w1) and (z2>w2)

RBP1 (x, y1, z1, x, y2, w1-1)

RBP2 (x, y1, w2+1, x, y2, z2)

2. (u1≤x≤u2) and (v1≤y1≤v2) and (y2>v2) and (z1<w1) and (z2>w2)

RBP1 (x, y1, z1, x, v2, w1-1)

RBP2 (x, v2+1, z1, x, y2, z2)

RBP3 (x, y1, w2+1, x, v2, z2)

3. (u1≤x≤u2) and (v1≤y2≤v2) and (y1<v1) and (z1<w1) and (z2>w2)

RBP1 (x, y1, z1, x, v1-1, z2)

RBP2 (x, v1, z1, x, y2, w1-1)

RBP3 (x, v1, w2+1, x, y2, z2)

Appendix B: The Possible Cases for Subtracting Prohibited Regions from RBP’s in the TBL
Allocation Algorithm

160

Figure B.5: Subtracting PR from RBP (Case 3.3.11 in Figure 3.3 in Chapter 3).

Figure B.6: Subtracting PR from RBP (Case 3.3.12 in Figure 3.3 in Chapter 3).

(u1,v1,w1)

1

(u2,v2,w2)

(x,y1,z1)

(x,y2,z2)

1. (u1≤x≤u2) and (y2>v2) and (y1<v1) and (z1<w1) and (z2>w2)

RBP1 (x, y1, z1, x, v1-1, z2) ; RBP2 (x, v2+1, z1, x, y2, z2)

RBP3 (x, v1, z1, x, v2, w1-1) ; RBP4 (x, v1, w2+1, x, v2, z2)

(u1,v1,w1)

1

(u2,v2,w2)

(x,y1,z1)

(x,y2,z2)

1. (u1≤x≤u2) and (y2>v2) and (y1<v1) and (z1≥w1) and (z2≤w2)

RBP1 (x, y1, z1, x, v1-1, z2) ; RBP2 (x, v2+1, z1, x, y2, z2)

Appendix B: The Possible Cases for Subtracting Prohibited Regions from RBP’s in the TBL
Allocation Algorithm

161

Figure B.7: Subtracting PR from RBP (Case 3.3.13 in Figure 3.3 in Chapter 3).

Figure B.8: Subtracting PR from RBP (Case 3.3.14 in Figure 3.3 in Chapter 3).

(u1,v1,w1)

1

(u2,v2,w2)

(x,y1,z1)

(x,y2,z2)

1. (u1≤x≤u2) and (y2>v2) and (y1<v1) and (z1<w1) and (w1≤ z2≤w2)

RBP1 (x, y1, z1, x, v1-1, z2); RBP2 (x, v2+1, z1, x, y2, z2); RBP3 (x, v1, z1, x, v2, w1-1)

(u1,v1,w1)

1

(u2,v2,w2)

(x,y1,z1)

(x,y2,z2)

1. (u1≤x≤u2) and (y2>v2) and (y1<v1) and (z2>w2) and (w1≤ z1≤w2)

RBP1 (x, y1, z1, x, v1-1, z2); RBP2 (x, v2+1, z1, x, y2, z2); RBP3 (x, v1, w2+1, x, v2, z2)

Appendix B: The Possible Cases for Subtracting Prohibited Regions from RBP’s in the TBL
Allocation Algorithm

162

Figure B.9: Subtracting PR from RBP (Cases 3.3.15, 3.3.16, 3.3.17 in Figure 3.3 in Chapter 3).

(x,y2,z2) 2

3
1

(x,y1,z1)

(x,y1,z1)

(x,y1,z1)

(x,y2,z2)

(u2,v2,w2)

(u1,v1,w1)

(x,y2,z2)

1. (u1≤x≤u2) and (v1≤y1≤v2) and (v1≤y2≤v2) and (w1≤z1≤w2) and (w1≤z2≤w2)

No RBP in this case.

2. (u1≤x≤u2) and (v1≤y1≤v2) and (y2>v2) and (w1≤z1≤w2) and (w1≤z2≤w2)

RBP (x, v2+1, z1, x, y2, z2)

3. (u1≤x≤u2) and (v1≤y2≤v2) and (y1<v1) and (w1≤z1≤w2) and (w1≤z2≤w2)

RBP (x, y1, z1, x, v1-1, z2)

Appendix C

Publications during the Course of
this Research

Journal Papers

• S. Bani-Mohammad, M. Ould-Khaoua and I. Ababneh, An Efficient Non-Contiguous

Processor Allocation Strategy for 2D Mesh Connected Multicomputers, Journal of

Information Sciences - Elsevier (INS), Elsevier, Vol. 177, No. 14, pp. 2867-2883, 15

July 2007.

• S. Bani-Mohammad, M. Ould-Khaoua and I. Ababneh, A New Processor Allocation

Strategy with a High Degree of Contiguity in Mesh-Connected Multicomputers, Journal

of Simulation Modelling, Practice & Theory (SIMPRA), Elsevier Science, Vol. 15, No.

4, pp. 465-480, April 2007.

• S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh and Lewis M. Mackenzie, Processor

Allocation and Job Scheduling on 3D Mesh Interconnection Networks, International

Appendix C: Publications during the Course of this Research 164

Journal of Computers and Applications, (ACTA), Vol. 29, No. 3, pp. 309-317, Canada,

ACTA Press, 2007.

• S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh and Lewis M. Mackenzie, A Fast

and Efficient Strategy for Sub-mesh Allocation with Minimal Allocation Overhead in 3D

Mesh Connected Multicomputers, Ubiquitous Computing and Communication Journal

(UBICC), Vol.1, No. 1, pp. 26-36, ISSN 1992-8424, 2006.

• S. Bani-Mohammad, M. Ould-Khaoua and I. Ababneh, Greedy-Available Non-

contiguous Processor Allocation Strategy and Job Scheduling for 2D Mesh Connected

Multicomputers, Accepted to appear in International Journal of Computers and their

Applications (IJCA), International Society for Computers and Their Applications

(ISCA), 2008.

• S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh, and Lewis M. Mackenzie,

Comparative Evaluation of Contiguous Allocation Strategies on 3D Mesh

Multicomputers, Revised version under review for Journal of Systems and Software,

Elsevier Publishing, 2008.

Conference Papers

• S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh, Lewis M. Mackenzie and J. D.

Ferguson, The Effect of Real Workloads and Stochastic Workloads on the Performance

of Allocation and Scheduling Algorithms in 2D Mesh Multicomputers, Proceedings of

the 22nd IEEE International Parallel and Distributed Processing Symposium (IPDPS

2008). Hyatt Regency Hotel, Miami, Florida, USA. IEEE Computer Society Press, April

Appendix C: Publications during the Course of this Research 165

14-18, 2008.

• S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh and Lewis M. Mackenzie,

Comparative Evaluation of the Non-Contiguous Processor Allocation Strategies based

on a Real Workload and a Stochastic Workload on Multicomputers, Proceedings of the

13th International Conference on Parallel and Distributed Systems (ICPADS'07),

Hsinchu, Taiwan, IEEE Computer Society Press, Volume 2 , pp. 1-7, December 5-7,

2007.

• S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh and Lewis M. Mackenzie, A

Performance Comparison of the Contiguous Allocation Strategies in 3D Mesh

Connected Multicomputers, Proceedings of the 5th International Symposium on Parallel

and Distributed Processing and Applications (ISPA 2007), Niagara Falls, ON,

CANADA, Springer-Verlag Berlin Heidelberg, LNCS 4742, pp. 645-656, August 29-21,

2007.

• S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh and Lewis M. Mackenzie, An

Efficient Processor Allocation Strategy that Maintains a High Degree of Contiguity

among Processors in 2D Mesh Connected Multicomputers, 2007 ACS/IEEE

International Conference on Computer Systems and Applications, (AICCSA 2007),

Amman, Jordan, IEEE Computer Society Press, pp. 934-941, May 13-16, 2007.

• S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh and Lewis M. Mackenzie, Non-

contiguous Processor Allocation Strategy for 2D Mesh Connected Multicomputers

based on Sub-meshes Available for Allocation, Proceedings of the 12th International

Conference on Parallel and Distributed Systems (ICPADS'06), Minneapolis, Minnesota,

Appendix C: Publications during the Course of this Research 166

USA, IEEE Computer Society Press, Volume 2 , pp. 41-48, 12-15 July, 2006.

• S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh and Lewis M. Mackenzie, Greedy-

Available Non-contiguous Processor Allocation Strategy and Job Scheduling for 2D

Mesh Connected Multicomputers, Proceedings of the 11th International CSI Computer

Conference (CSICC 2006), School of Computer Science, IPM, Tehran, Iran, pp. 122-

130, January 24-26, 2006. This paper has been selected for the special issue in

International Journal of Computers and their Applications, ISCA Press.

• S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh and Lewis M. Mackenzie, An

Efficient Turning Busy List Sub-mesh Allocation Strategy for 3D Mesh Connected

Multicomputers, Proceedings of the 7th Annual PostGraduate Symposium on the

Convergence of Telecommunications, Networking & Broadcasting, (PGNET 2006),

Liverpool John Moores University, UK, pp. 37-43, 26-27 June 2006.

• Bani-Mohammad S., Ould-Khaoua M., and Ababneh I., Performance Evaluation of

Processor Allocation Strategies in the 2-Dimensional Mesh Network, N. Thomas

(editor), Proceedings of the 21st UK Performance Engineering Workshop (UKPEW

2005), School of Computing Science, Technical Report Series, CS-TR-916, University

of Newcastle, UK, ISSN 1368-1060. pp. 177-188, 14-15 July 2005.

• Bani-Mohammad S., Ould-Khaoua M., and Ababneh I., A Simulation Study of

Allocation Strategies on the Mesh Interconnection Networks, Proceedings of the 6th

Annual PostGraduate Symposium on the Convergence of Telecommunications,

Networking & Broadcasting, (PGNET 2005), Liverpool John Moores University, UK,

ISBN 1-902-56011-6, pp. 197-202, 27-28 June 2005.

Appendix C: Publications during the Course of this Research 167

Technical Reports

• S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh and Lewis M. Mackenzie, A Fast

and Efficient Processor Allocation Strategy which Combines a Contiguous and Non-

contiguous Processor Allocation Algorithms, Technical Report; TR-2007-229, DCS

Technical Report Series, Department of Computing Science, University of Glasgow,

January 2007.

• Bani-Mohammad S., Ould-Khaoua M., and Ababneh I., Performance Analysis of

Processor Allocation Strategies on 2D-Mesh Interconnection Networks, Technical

Report; TR-2005-202, DCS Technical Report Series, Department of Computing

Science, University of Glasgow, June 2005.

• Bani-Mohammad S., Ould-Khaoua M., and Ababneh I., A Simulation Study of

Allocation Strategies on the Mesh Interconnection Networks, Technical Report; TR-

2005-194, DCS Technical Report Series, Department of Computing Science, University

of Glasgow, April 2005.

References

[1] A. A. Chien and J. K. Kim, Planar adaptive routing: low cost adaptive networks for

multiprocessors, Proceedings of the 19th International Symposium on Computer

Architecture, pp. 268-277, 1992.

[2] A. Al-Dubai, M. Ould-Khaoua, K. El-Zayyat, I. Ababneh, and S. Al-Dobai,

Towards scalable collective communication for multicomputer interconnection

networks, Journal of Information Sciences, vol. 163, no. 4, pp. 293-306, 2004.

[3] A. Al-Dubai, M. Ould-Khaoua, and L. M. Mackenzie, An efficient path-based

multicast algorithm for mesh networks, Proceedings of the 17th International

Parallel and Distributed Processing Symposium (IPDPS), Nice, France, IEEE

Computer Society Press , pp. 283-290, 22 -26 April, 2003.

[4] A. Al-Dubai, Towards Efficient Collective Communication in Multicomputer

Interconnection Networks, Ph.D. Thesis, Department of Computing Science,

University of Glasgow, 2004.

[5] A. Ferreira, A. G. vel Lejbman, and S. W. Song, Bus-based parallel computers: a

viable way for massive parallelism, Proceedings of Parallel Architectures

Languages Europe (PARLE '94), Lecture Notes in Computer Science 817, pp. 553-

564, Springer-Verlag, 1994.

[6] A. I. D. Bucur and D. H. J. Epema, Scheduling Policies for Processor Coallocation

in Multicluster Systems, IEEE Transaction on Parallel and Distributed Systems,

vol. 18, no. 7, pp. 958-972, 2007.

References 169

[7] A. Law and W. Kelton, Simulation Modelling and Analysis, Third Edition,

McGraw-Hill, Inc., New York, 2000.

[8] A. Louri and H. Sung, An Optical Multi-Mesh Hypercube: A Scalable Optical

Interconnection Network for Massively Parallel Computing, IEEE/OSA Journal of

Lightwave Technology, vol. 12, no. 4, pp. 704-716, 1994.

[9] B.-S. Yoo and C.-R. Das, A Fast and Efficient Processor Allocation Scheme for

Mesh-Connected Multicomputers, IEEE Transactions on Parallel & Distributed

Systems, vol. 51, no. 1, pp. 46-60, 2002.

[10] Blue Gene Project, http://www.research.ibm.com/bluegene/index.html, 2007.

[11] C. A. F. De Rose, H.-U. Heiss, and B. Linnert, Distributed Dynamic processor

Allocation for Multicomputers, Parallel Computing, vol. 33, no. 3, pp. 145-158,

2007.

[12] C. G. Glass and L. M. Ni, The turn model for adaptive routing, Proceedings of the

19th Annual International Symposium on Computer Architecture, pp. 278-287,

1992.

[13] C. J. Drewes, Simulating Virtual Cut-through and Wormhole Routing in a Clustered

Torus, M.Sc. Thesis, Laboratory of Computer Architecture and Digital Techniques

(CARDIT), Faculty of Electrical Engineering, Delft University of Technology,

1996.

[14] C. P. Kruskal and M. Snir, The performance of multistage interconnection networks

for multiprocessors, IEEE Trans. Computers, vol. 32, no. 12, pp. 1091-1098, 1983.

[15] C. Peterson, J. Sutton, P. Wiley, iWARP: a 100-MPOS, LIW microprocessor for

multicomputers, IEEE Micro, vol. 11, no. 3, pp. 26-29, 81-87, 1991.

[16] C.-C. Hsu, I/O processor Allocation for Mesh Cluster Computers, M.Sc. Thesis,

Department of Computer Science and Information Engineering, National Taiwan

University, 2004.

References 170

[17] C.-S. Wu, Processor scheduling in multiprogrammed shared memory NUMA

multiprocessors, M.Sc. Thesis, Department of Computer Science, University of

Toronto, 1993.

[18] C.-Y. Chang and P. Mohapatra, Performance improvement of allocation schemes

for mesh-connected computers, Journal of Parallel and Distributed Computing,

vol. 52, no. 1, pp. 40-68, 1998.

[19] Cray, Cray XT3 Datasheet, 2005.

[20] D. Babbar and P. Krueger, A performance Comparison of Processor Allocation and

Job Scheduling Algorithms for Mesh-Connected Multiprocessors, Proceedings of

the 6th IEEE Symposium on Parallel and Distributed Processing, pp. 46-53, 1994.

[21] D. Das Sharma and D. K. Pradhan, Submesh Allocation in Mesh-Multicomputers

Using Busy-List: A Best-Fit Approach with Complete Recognition Capability,

Journal of Parallel and Distributed Computing, vol. 36, no. 2, pp. 106-118, 1996.

[22] D. G. Feitelson, Workload Modeling for Computer Systems Performance

Evaluations, http://www.cs.huji.ac.il/~feit/wlmod/wlmod.pdf, 2007.

[23] D. Kulkarni, Deterministic and Adaptive Routing in k-ary n-cube Networks, CS 570

Project Report, Department of Computer Science, Colorado State University, Fort

Collins, Spring 2000.

[24] D. P. Bunde, V. J. Leung and J. Mache, Communication Patterns and Allocation

Strategies, Sandia Technical Report SAND2003-4522, Jan. 2004.

[25] E. Anderson, J. Brooks, C. Grassl, S. Scott, Performance of the Cray T3E

multiprocessor, Proceedings of the ACM/IEEE Supercomputing Conference, pp. 1-

17, 1997.

[26] E. Krevat, J. G. Castannos, and J. E. Moreira, Job Scheduling for the BlueGene/L

System, Proceedings of the Job Scheduling Strategies for Parallel Processing

Workshop (JSSPP), pp. 38-54, 2002.

References 171

[27] F. Wu, C.-C. Hsu and L.-P. Chou, Processor Allocation in the Mesh

Multiprocessors Using the Leapfrog Method, IEEE Transactions on Parallel and

Distributed Systems, vol. 14, no. 3, pp. 276-289, 2003.

[28] G. Gabrani and T. Mulkar, A quad tree-based algorithm for processor allocation in

2D mesh-connected multicomputers, Journal of Computer Standards and

Interfaces, vol. 27, no. 2, pp. 133-147, 2005.

[29] G. Min, Performance Modelling and Analysis of Multicomputer Interconnection

Networks, Ph.D. Thesis, Department of Computing Science, University of

Glasgow, 2003.

[30] G.-M. Chiu, The odd-even turn model for adaptive routing, IEEE Transaction on

Parallel and Distributed Systems, vol. 11, no. 7, pp. 729-738, 2000.

[31] H. Choo, S. Yoo, and H.-Y. Youn, Processor scheduling and allocation for 3D torus

multicomputer systems, IEEE Transactions on Parallel & Distributed Systems, vol.

11, no. 5, pp. 475-484, 2000.

[32] H. Fujii, Y. Yasuda, H. Akashi, Y. Inagami, M. Koga, O. Ishihara, M. Kashiyama,

H. Wada, and T. Sumimoto, Architecture and performance of the Hitachi SR2201

massively parallel processor system, Proceedings of the 11th International Parallel

Processing Symposium (IPPS’97), pp. 233-241, IEEE Computer Society Press,

1997.

[33] I. Ababneh, An efficient free-list submesh Allocation Scheme for two-dimensional

mesh-connected multicomputers, Journal of Systems and Software, vol. 79, no. 8,

pp. 1168-1179, August 2006.

[34] I. Ababneh, Job scheduling and contiguous processor allocation for three-

dimensional mesh multicomputers, AMSE Advances in Modelling & Analysis, vol.

6, no. 4, pp. 43-58, 2001.

[35] I. Ababneh and F. Fraij, Folding contiguous and non-contiguous space sharing

References 172

policies for parallel computers, Mu’tah Lil-Buhuth wad-Dirasat, Natural and

Applied Sciences Series, vol. 16, no. 3, pp. 9-34, 2001.

[36] I. Foster, Designing and Building Parallel Programs, Concepts and Tools for

Parallel Software Engineering, Addison-Wesley, 1995.

[37] I. Ismail, Space sharing job scheduling policies for parallel computers, Ph.D.

Thesis, Department of Electrical and Computer Engineering, Iowa State University,

1995.

[38] I. Ismail and J. Davis, Program-based static allocation policies for highly parallel

computers, Proceedings of the IPCCC 95, IEEE Computer Society Press, pp. 61-68,

1995.

[39] Intel Corp., Paragon XP/S product overview, Supercomputer Systems Division,

Beaverton, Oregon, 1991.

[40] Intel Corporation, A Touchstone DELTA system description, 1991.

[41] J. Ding and L.-N. Bhuyan, An Adaptive Submesh Allocation Strategy for Two-

Dimensional Mesh Connected Systems, Proceedings of the 1993 International

Conference on Parallel Processing, vol. 2, pp. 193-200, 1993.

[42] J. Duato, A new Theory of Deadlock-Free Adaptive Routing in Wormhole

Networks, IEEE Transaction on Parallel and Distributed Systems, vol. 4, no. 12,

pp. 1320-1331, 1993.

[43] J. Duato, C. Yalamanchili, and L. Ni, Interconnection networks: an engineering

approach, IEEE Computer Society Press, 1997.

[44] J. Mache, V. Lo, and K. Windisch, Minimizing Message-Passing Contention in

Fragmentation-Free Processor Allocation, Proceedings of the 10th International

Conference on Parallel and Distributed Computing Systems, pp. 120-124, 1997.

[45] J. Mache, V. Lo, and S. Garg, Job Scheduling that Minimizes Network Contention

due to both Communication and I/O, Proceedings of the 14th International Parallel

References 173

and Distributed Processing Symposium (IPDPS'00), pp. 457-463, 2000.

[46] J. Sua, Processor Allocation in Hypercube Computers, M.Sc. Thesis, Department of

Computer Engineering, Faculty of Engineering, Florida Atlantic University, 1993.

[47] J. Wei, X. Zhou, and C-Z. Xu, Robust Processing Rate Allocation for Proportional

Slowdown Differentiation on Internet Servers, IEEE Transactions on Computers,

vol. 54, no. 8, pp. 964-977, 2005.

[48] K. Li and K.-H. Cheng, A Two-Dimensional Buddy System for Dynamic Resource

Allocation in a Partitionable Mesh Connected System, Journal of Parallel and

Distributed Computing, vol. 12, no. 1, pp. 79-83, 1991.

[49] K. Suzaki, H. Tanuma, S. Hirano, Y. Ichisugi, C. Connelly, and M. Tsukamoto,

Multi-tasking Method on Parallel Computers which Combines a Contiguous and

Non-contiguous Processor Partitioning Algorithm. Proceedings of the 3rd

International Workshop on Applied Parallel Computing, Industrial Computation

and Optimization, Lecture Notes in Computer Science, Springer, London, pp. 641-

650, 1996.

[50] K. Windisch, J. V. Miller, and V. Lo, ProcSimity: an experimental tool for

processor allocation and scheduling in highly parallel systems, Proceedings of the

5th Symposium on the Frontiers of Massively Parallel Computation (Frontiers'95),

Washington, DC, USA, IEEE Computer Society Press, pp. 414-421, 1995.

[51] K.-H. Seo, Fragmentation-Efficient Node Allocation Algorithm in 2D Mesh-

Connected Systems, Proceedings of the 8th International Symposium on Parallel

Architecture, Algorithms and Networks (ISPAN’05), IEEE Computer Society Press,

pp. 318-323, 7-9 December, 2005.

[52] K.-H. Seo and S.-C. Kim, Improving system performance in contiguous processor

allocation for mesh-connected parallel systems, The Journal of Systems and

Software, vol. 67, no. 1, pp. 45-54, 2003.

References 174

[53] L. He, S. Jarvis, D. Spooner, H. Jiang, D. Dillenberger, and G. Nudd, Allocating

Non-Real-Time and Soft Real-Time Jobs in Multiclusters, IEEE Transactions on

Parallel and Distributed Systems, vol. 17, no. 2, pp. 99-112, 2006.

[54] L. M. Ni and P. K. McKinley, A survey of wormhole routing techniques in direct

networks. IEEE Computer, vol. 26, no. 2, pp. 62-76, 1993.

[55] M. Blumrich, D. Chen, P. Coteus, A. Gara, M. Giampapa, P. Heidelberger, S.

Singh, B. Steinmacher-Burow, T. Takken, and P. Vranas, Design and Analysis of

the BlueGene/L Torus Interconnection Network, IBM Research Report RC23025,

IBM Research Division, Thomas J. Watson Research Center, Dec. 3, 2003.

[56] M. E. Crovella and A. Bestavros, Self-Similarity in World Wide Web Traffic:

Evidence and Possible Causes, IEEE/ACM Transactions on Networking, vol. 5, no.

6, pp. 835-846, 1997.

[57] M. E. Crovella and L. Lipsky, Long-Lasting Transient Conditions in Simulations

with Heavy-Tailed Workloads, Proceedings of the 1997 Winter Simulation

Conference, pp. 1005-1012, 7-10 Dec., 1997.

[58] M. H.-Balter, M. E. Crovella, and C. D. Murta, On Choosing a Task Assignment

Policy for a Distributed Server System, Journal of Parallel and Distributed

Computing, vol. 59, no. 2, pp. 204-228, 1999.

[59] M. H.-Balter, The Effect of Heavy-Tailed Job Size Distributions on Computer

System Design, Proceedings of ASA-IMS Conference on Applications of Heavy

Tailed Distributions in Economics, Engineering and Statistics, Washington, DC,

June 1999.

[60] M. Levine, CRAY XT3 at the Pittsburgh Supercomputing Centre, DEISA

Symposium, Bologna, 4-5 May 2006.

[61] M. Noakes, D. A. Wallach, and W. J. Dally, The J-machine multicomputer: an

architecture evaluation, Proceedings of the 20th International Symposium Computer

References 175

Architecture, pp. 224-235, 1993.

[62] N. Alzeidi, Performance Analysis of Wormhole Switched Interconnection

Networks with Virtual Channels and Finite Buffers, Ph.D. Thesis, Department of

Computing Science, University of Glasgow, 2007.

[63] P. Krueger, T. Lai, and V. A. Radiya, Job scheduling is more important than

processor allocation for hypercube computers, IEEE Transactions on Parallel and

Distributed Systems, vol. 5, no. 5, pp. 488-497, 1994.

[64] P. Mohapatra, Wormhole routing techniques in multicomputer systems, ACM

Computing Surveys, vol. 30, no. 3, pp. 375-411, 1998.

[65] P.-J. Chuang and N.-F. Tzeng, Allocating precise submeshes in mesh connected

systems, IEEE Transactions on Parallel and Distributed Systems, vol. 5, no. 2, pp.

211-217, 1994.

[66] ProcSimity V4.3 User’s Manual, University of Oregon, 1997.

[67] R. E. Kessler and J. L. Swarszmeier, Cray T3D: a new dimension for Cray research,

Proceedings of the 38th Annual International Computer Conference (COMPCON

SPRING’93), pp. 176-182, IEEE Computer Society Press, 1993.

[68] R. Jan, The Art of Computer Systems Performance Analysis, John Wiley & Sons,

Inc., New York, 1991.

[69] R. V. Boppana and S. Chalasani, Framework for designing deadlock-free wormhole

routing algorithms, IEEE Transaction on Parallel and Distributed Systems, vol. 7,

no. 2, pp. 169-183, 1996.

[70] S. A. Ghozati and H. C. Wasserman, The k-ary n-cube network: modelling,

topological properties and routing strategies, Computers and Electrical

Engineering, vol. 25, no. 3, pp. 155-168, May 1999.

[71] S. Bani-Mohammad, M. Ould-Khaoua, and I. Ababneh, A New Processor

Allocation Strategy with a High Degree of Contiguity in Mesh-Connected

References 176

Multicomputers, Journal of Simulation Modelling, Practice & Theory, vol. 15, no.

4, pp. 465-480, 2007.

[72] S. Bani-Mohammad, M. Ould-Khaoua, and I. Ababneh, An Efficient Non-

Contiguous Processor Allocation Strategy for 2D Mesh Connected Multicomputers,

Journal of Information Sciences, vol. 177, no. 14, pp. 2867-2883, 2007.

[73] S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh, and L. Machenzie, A Fast and

Efficient Processor Allocation Strategy which Combines a Contiguous and Non-

contiguous Processor Allocation Algorithms, Technical Report; TR-2007-229, DCS

Technical Report Series, Department of Computing Science, University of

Glasgow, January 2007.

[74] S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh, and L. Machenzie, A Fast and

Efficient Strategy for Sub-mesh Allocation with Minimal Allocation Overhead in

3D Mesh Connected Multicomputers, Ubiquitous Computing and Communication

Journal, vol. 1, no. 1, pp. 26-36, ISSN 1992-8424, 2006.

[75] S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh, and L. Machenzie, A

Performance Comparison of the Contiguous Allocation Strategies in 3D Mesh

Connected Multicomputers, Proceedings of The 5th International Symposium on

Parallel and Distributed Processing and Applications (ISPA’07), LNCS 4742,

Springer-Verlag Berlin Heidelberg, pp. 645-656, 2007.

[76] S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh, and L. Machenzie,

Comparative Evaluation of the Non-Contiguous Processor Allocation Strategies

based on a Real Workload and a Stochastic Workload on Multicomputers,

Proceedings of the 13th International Conference on Parallel and Distributed

Systems (ICPADS’07), vol. 2, pp. 1-7, IEEE, Hsinchu, Taiwan, December 5-7,

2007.

[77] S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh, and L. Machenzie, Non-

References 177

contiguous Processor Allocation Strategy for 2D Mesh Connected Multicomputers

Based on Sub-meshes Available for Allocation, Proceedings of the 12th

International Conference on Parallel and Distributed Systems (ICPADS’06),

Minneapolis, Minnesota, USA, IEEE Computer Society Press, vol. 2 , pp. 41-48,

2006.

[78] S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh, and Lewis M. Mackhenzie, An

Efficient Turning Busy List Sub-mesh Allocation Strategy for 3D Mesh Connected

Multicomputers, Proceedings of the 7th Annual PostGraduate Symposium on the

Convergence of Telecommunications, Networking & Broadcasting, (PGNET 2006),

Liverpool John Moores University, UK, pp. 37-43, 26-27 June 2006.

[79] S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh, and Lewis M. Mackhenzie, An

Efficient Processor Allocation Strategy that Maintains a High Degree of Contiguity

among Processors in 2D Mesh Connected Multicomputers, 2007 ACS/IEEE

International Conference on Computer Systems and Applications (AICCSA 2007),

IEEE Computer Society Press, Phiadelphia University, Amman, Jordan, pp. 934-

941, 13-16 May 2007.

[80] T. Liu, W.-K. Huang, F. Lombardi, and L. N. Bhuyan, A Submesh Allocation

Scheme for Mesh-Connected Multiprocessor Systems, Proceedings of the

International Conference Parallel Processing II, pp. 159-163, 1995.

[81] T. Srinivasan, J. Seshadri, A. Chandrasekhar, and J. Jonathan, A Minimal

Fragmentation Algorithm for Task Allocation in Mesh-Connected Multicomputers,

Proceedings of the IEEE International Conference on Advances in Intelligent

Systems – Theory and Applications – AISTA’04, ISBN 2-9599-7768-8, 15-18 Nov,

Luxembourg, Western Europe, IEEE Computer Society, IEEE Press, 2004.

[82] V. Adve and M. K. Vernon, Performance analysis of mesh interconnection

networks with deterministic routing, IEEE Trans. Parallel & Distributed Systems,

References 178

vol. 5, no. 3, pp. 225-246, 1994.

[83] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel

Computing, The Benjamin/Cummings publishing Company, Inc., Redwood City,

California, 2003.

[84] V. Leung, E. Arkin, M. Bender, D. Bunde, J. Johnston, A. Lal, J. Mitchell, C.

Phillips, and S. Seiden, Processor Allocation on Cplant: Achieving General

Processor Locality Using One-Dimensional Allocation Strategies, Proceedings of

the 4th IEEE International Conference on Cluster Computing, IEEE Computer

Society Press , pp. 296-304, 2002.

[85] V. Lo, K. Windisch, W. Liu, and B. Nitzberg, Non-contiguous processor allocation

algorithms for mesh-connected multicomputers, IEEE Transactions on Parallel and

Distributed Systems, vol. 8, no. 7, pp. 712-726, 1997.

[86] V. Lo and J. Mache, Job Scheduling for Prime Time vs. Non-prime Time,

Proceedings of the IEEE International Conference on Cluster Computing

(CLUSTER'02), pp. 488-493, 2002.

[87] V. Naik, S. Setia, and M. Squillante, Scheduling of large scientific applications on

distributed memory multiprocessor systems. Proceedings of the 6th SIAM

Conference on Parallel Processing for Scientific Computing, pp. 913-922, 1993.

[88] V. Tabatabaee, A. Tiwari, and J. K. Hollingsworth, Parallel Parameter Tuning for

Applications with Performance Variability, SC'05, Seattle WA, November 2005.

[89] V. Varavithya, Multicasting in wormhole routed multicomputers, Ph.D. Thesis,

Department of Electrical and Computer Engineering, Iowa State University, 1998.

[90] W. Athas and C. Seitz, Multicomputers: message-passing concurrent computers,

IEEE Computer, vol. 21, no. 8, pp. 9-24, 1988.

[91] W. J. Dally and C. L. Seitz, Deadlock-Free message routing in multiprocessor

interconnection networks, IEEE Transaction on Computers, vol. 36, no. 5, pp. 547-

References 179

553, 1987.

[92] W. J. Dally and H. Aoki, Deadlock-Free Adaptive Routing in Multicomputer

Networks Using Virtual Channels, IEEE Transaction on Parallel and Distributed

Systems, vol. 4, no. 4, pp. 466-475, 1993.

[93] W. Mao, J. Chen, and W. Watson, Efficient Subtorus Processor Allocation in a

Multi-Dimensional Torus, Proceedings of the 8th International Conference on High-

Performance Computing in Asia-Pacific Region (HPCASIA’05), IEEE Computer

Society Press, pp. 53-60, 30 November - 3 December, 2005.

[94] W. Qiao and L. Ni, Efficient processor allocation for 3D tori, Proceedings of the 9th

International Conference on Parallel Processing Symposium, IEEE Computer

Society Press, pp. 466-471, 1995.

[95] X. Lin, P. McKinley, and L. M. Ni, Deadlock-free multicast wormhole routing in

2D mesh multicomputers, IEEE Transactions on Parallel and Distributed Systems,

vol. 5, no. 8, pp. 793-804, 1994.

[96] X. Tang and S. T. Chanson, Optimizing Static Job Scheduling in a Network of

Heterogeneous Computers, Proceedings of the 2000 International Conference on

Parallel Processing (ICPP), IEEE Computer Society Press, pp. 373-382, 2000.

[97] Y. Aridor, T. Domany, O. Goldshmidt, J. Moreira, and E. Shmueli, Resource

allocation and utilization in the BlueGene/L supercomputer, IBM Journal of

Research and Development, vol. 49, no. 2/3, pp. 425-436, 2005.

[98] Y. Aridor, T. Domany, O. Goldshmidt, Y. Kliteynik, J. Moreira, and E. Shmueli,

Open Job Management Architecture for the Blue Gene/L Supercomputer,

Proceedings of the 11th Workshop on Job Scheduling Strategies for Parallel

Processing (JSSPP’05), June 19, Cambridge, pp. 91-107, 2005.

[99] Y. Zhu, Efficient processor allocation strategies for mesh-connected parallel

computers, Journal of Parallel and Distributed Computing, vol. 16, no. 4, pp. 328-

References 180

337, 1992.

[100] Y.-J. Tsai and P. McKinley, An extended dominating node approach to broadcast

and global combine in multiport wormhole-routed mesh networks, IEEE

Transactions on Parallel & Distributed Systems, vol. 8, no. 1, pp. 41-58, 1997.

