
NASA Contractor Report 187635

ICASE Report No. 91-73

ICASE
DISTRIBUTED MEMORY COMPILER METHODS
FOR IRREGULAR PROBLEMS -- DATA COPY
REUSE AND RUNTIME PART_IONING

Raja Das
Ravi Ponnusamy
Joel Saltz
Dimitri Mavriplis

Contract No. NAS1-18605

September 1991

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

National Aeronautic_ and

Space Administralion

I.angley Resesrch Center

Hamplon, Virginia 23665-5225

o,,

,-4 co t,'3
I ..-:0

N U-_"

Z _0

_0

=E
LU

_- ,.J
a_r_
QO

LU ta
E

LU ,.J

{I:LU

I..-H

b..t ¢_"
QO

tL

tr_
t_Q
,O3:
I'-- I.---
00ud

I

tjuJ
I -J

ZO

r-4

,O

Q

17,
O

L'_ ..J
ZU
b,_ V!
ZU
O

I.-

I--
a_

ck

u.J ::3..
Ir

Z

r¢ ,,-_
IdJ

Z'_
,_tJ

UJ,._
V1

LU .1._
L
O

>" Ca.

C3a_:
U

P

i...- E
(::{ .,_

C:) u.,

f

https://ntrs.nasa.gov/search.jsp?R=19920002451 2020-03-17T15:18:23+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42815571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

7

DISTRIBUTED MEMORY COMPILER METHODS

FOR IRREGULAR PROBLEMS - DATA COPY

REUSE AND RUNTIME PARTITIONING 1

Raja Das _, Ravi Ponnusamy b, Joel Saltz _ and Dimitri Mavriplis _

_ICASE, MS 132C, NASA Langley Research Center, Hampton, VA 23665

bDepartment of Computer Science, Syracuse University, Syracuse, NY 13244-4100

ABSTRACT

This paper outlines two methods which we believe will play an important role in any

distributed memory compiler able to handle sparse and unstructured problems. We describe

how to link runtime partitioners to distributed memory compilers. In our scheme, pro-

grammers can implicitly specify how data and loop iterations are to be distributed between

processors. This insulates users from having to deal explicitly with potentially complex

algorithms that carry out work and data partitioning.

We also describe a viable mechanism for tracking and reusing copies of off-processor

data. In many programs, several loops access the same off-processor memory locations. As

long as it can be verified that the values assigned to off-processor memory locations remain

unmodified, we show that we can effectively reuse stored off-processor data. We present

experimental data from a 3-D unstructured Euler solver run on an iPSC/860 to demonstrate

the usefulness of our methods.

IThis work was supported by the National Aeronautics and Space Administration under NASA Contract

No. NAS1-18605 while the authors were in residence at the Institute for Computer Applications in Science

and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665. In addition, support for

Saltz was provided by NSF from NSF Grant ASC-8819374.

1 Introduction

Over the past few years, we have developed methods needed to generate efficient distributed

memory code for a large class of sparse and unstructured problems. In sparse and unstruc-

tured problems, the dependency structure is determined by variable values known only at

runtime. In these cases, effective use of distributed memory architectures is made possible

by a runtime preprocessing phase. This preprocessing is used to partition work, to map data

structures and to schedule the movement of data between the memories of processors. The

code needed to carry out runtime preprocessing can be generated by a distributed memory

compiler in a process we call runtime compilation [38].

This paper presents two new runtime compilation methods. In this paper, we describe:

how to link runtime partitioners to distributed memory compilers, and

how to reduce interprocessor communication requirements by eliminating redundant

off-processor data accesses.

A compiler-linked runtime partitioner uses dynamic data dependency information to de-

compose data structures and to partition loop iterations. The compiler produces code that

at runtime generates a standardized representation of the dependency graph that arises from

one or more loop nests. This dependency graph representation is then passed to a compiler

embedded data structure partitioner. The compiler also generates code that at runtime pro-

duces a graph that is used in a compiler embedded loop iteration partitioner. Programmers

use Fortran extensions to specify which loops and which distributed arrays should be used

to derive data structure partitions. Consequently, programmers implicitly specify how data

and loop iterations are to be distributed between processors. The idea of developing a set of

widely applicable partitioners has been pursued by G. Fox for many years (see for instance

[15] and [16]), and a general scheme for linking such partitioners to compilers was outlined

in [32]. In this paper we describe some of the runtime support and the language exten-

sions that are allowing us to develop the software required to realize some of these ideas.

In the interest of casting our vote for standardization in the development of languages and

extensions for distributed memory MIMD and SIMD machines, we present our work in the

context of a pre-existing language, Fortran D [17].

Once data structure and loop iteration partitioning have been determined, we carry

out further preprocessing to generate communication calls needed to efficiently transport

data between processors. In sparse and unstructured computations, distributed arrays are

typically accessed using indirection. Runtime preprocessing is used to generate a small

number of communications calls to carry out the required data transport. In many cases,

severalloopsaccessthe sameoff-processormemorylocations. As long asit is knownthat the

valuesassignedto off-processormemory locations remain unmodified, it is possibleto reuse
stored off-processordata. A mixture of compile-time and run-time analysiscan be used to

recognizethesesituations. Compiler analysisdetermineswhen it is safeto assumethat the

off-processordata copy remains valid. Softwareprimitives generatecommunicationscalls
which selectively fetch only those off-processordata, which are not available locally. We
will call a communications pattern that eliminates redundant off-processor data accesses an

incremental schedule. The preprocessing described here builds on the work described in [6],

[22] and [45].

We will set the context of the work in Section 2. In Section 3.1, we will describe primi-

tives that produce incremental schedules. In Section 3.2 we will describe the primitives used

to couple data and loop iteration partitioners to compilers. In Section 4 we will present

an overview of our compiler effort. We describe the transformations which generate incre-

mental inspectors and executors, and describe the language extensions we use to control

compiler-linked runtime partitioning. Finally, in Section 5 we will present performance data

to characterize the performance of our methods.

2 Overview

2.1 Overview of Fortran D

We will present our runtime-compilation methods in the context of Fortran D. Fortran D

is a version of Fortran 77 enhanced with a rich set of data decomposition specifications, a

definition of the language extensions may be found in [17], a less detailed description of

Fortran D is given in the article by Hiranandani et. al., found in this book. Fortran D as

currently specified requires that users explicitly define how data is to be distributed. Many

researchers have explored the problem of specifying data decompositions, and FortranD has

drawn extensively on this work (e.g. [45], [25], [35] and [11], [33], [7, 27, 26, 28]) While our

work will be presented in the context of Fortran D, the same optimizations and analogous

language extensions could be used for a wide range of languages and compilers.

Fortran D can be used to explicitly specify an irregular inter-processor partition of dis-

tributed array elements. In Figure 1, we present an example of such a Fortran D declaration.

In Fortran D, one declares a template called a distribution used to characterize the signifi-

cant attributes of a distributed array. The distribution fixes the size, dimension and way in

which the array is to be partitioned between processors. A distribution is produced using

two declarations. The first declaration is decomposition. Decomposition fixes the name, di-

2

.,..

$1 REAL*8 x(N),y(N)

$2 INTEGER map(N)

S3 DECOMPOSITION reg(N),irreg(i)

$4 DISTRIBUTE reg(block)

$5 ALIGN map with reg

$6 ... set values of map array using some mapping method ..

$7 DISTRIBUTE irreg(map)

$8 ALIGN x,y with irreg

Figure h Fortran D Irregular Distribution

mensionality and size of the distributed array template. The second declaration is distribute.

Distribute is an executable statement and specifies how a template is to be mapped onto

processors. Fortran D provides the user with a choice of several regular distributions, in

addition, a user can explicitly specify how a distribution is to be mapped onto processors.

A specific array is associated with a distribution using the Fortran D statement align. In

statement $3, Figure 1, two size N, one dimensional distributions are defined. In statement

$4, decomposition reg is partitioned into equal sized blocks with a block assigned to each

processor. In statement $5, array map is aligned with distribution reg. Array map will be

used to specify (in statement $8) how distribution irreg is to be partitioned between pro-

cessors. An irregular distribution is specified using an integer array; when map(i) is set equal

to p, element i of the distribution £rreg is assigned to processor p.

The current Fortran D syntax requires programmers to explicitly define irregular data

decompositions. As we shall illustrate in the following sections, our new language extensions

and compiler techniques make it possible for programmers to implicitly specify how data and

loop iterations are to be distributed between processors.

2.2 Overview of PARTI

In this section, we will give an overview of the functionality of the PARTI primitives described

in previous publications ([45], [6], [38]). In many algorithms, data produced or input during

a program's initialization plays a large role in determining the nature of the subsequent

computation. In the PARTI approach, when the data structures that define a computation

have been initialized, a preprocessing phase follows. Vital elements of the strategy used by

the rest of the algorithm are determined by this preprocessing phase.

In distributed memory MIMD architectures, there is typically a non-trivial communica-

tions latency or startup cost. For efficiency reasons, information to be transmitted should be

collected into relatively large messages. The cost of fetching array elements can be reduced

by precomputing what data each processor needs to send and receive.

In irregular problems, such as solving PDEs on unstructured meshes and sparse matrix

algorithms, the communication pattern depends on the input data. This typically arises due

to some level of indirection in the code. In this case, it is not possible to predict at compile

time what data must be prefetched. To deal with this lack of information the original

sequential loop is transformed into two constructs namely, the inspector and the executor.

During program execution, the inspector loop examines the data references made by. a

processor, and calculates what off-processor data needs to be fetched and where that data

will be stored once it is received. The executor loop then uses the information from the

inspector to implement the actual computation. We have developed a suite of primitives

that can be used directly by programmers to generate inspector/executor pairs.

These primitives are named PARTI (Parallel Automated Runtime Toolkit at ICASE)

[12], [6]; they carry out the distribution and retrieval of globally indexed but irregularly

distributed data-sets over the numerous local processor memories. Each inspector produces

a set of schedules, which specify the communication calls needed to either:

a obtain copies of data stored in specified off-processor memory locations (i.e. gather)

or,

b modify the contents of specified off-processor memory locations (i.e. scatter), or

c accumulate (e.g. add or multiply) values to specified off-processor memory locations,

(i.e. accumulate).

Schedulers use hash tables to generate communication calls that, for each loop nest, transmit

only a single copy of each off-processor datum [22], [45]. The schedules are used in the

executor by PARTI primitives to gather, scatter and accumulate data to/from off-processor

memory locations. In this paper, the idea of eliminating duplicates has been taken a step

further. If severalloops requiredifferent but overlappingdata referenceswe cannow avoid

communicatingredundant data (SeeSection 3,1 and Section4.1.3).

In distributed memory machines,large data arraysneedto be partitioned betweenlocal
memoriesof processors.Thesepartitioned data arrays are called distributed arrays. Long

term storage of distributed array data is assigned to specific memory locations in the dis-

tributed machine. It is frequently advantageous to partition distributed arrays in an irregular

manner. For instance, the way in which the nodes of an irregular computational mesh are

numbered frequently does not have a useful correspondence to the connectivity pattern of

the mesh. When we partition the data structures in such a problem in a way that minimizes

interprocessor communication, we may need to be able to assign arbitrary array elements

to each processor. Each element in a distributed array is assigned to a particular processor,

and in order for another processor to be able to access a given element of the array we must

know the processor in which it resides, and its local address in this processor's memory. We

thus build a translation table which, for each array element, lists the host processor address.

For a one-dimensional array of N elements, the translation table also contains N elements,

and therefore must be itself be distributed over the local memories of the processors. This

is accomplished by putting the first N/P elements on the first processor, the second N/P

elements on the second processor, etc ..., where P is the number of processors. If we are

required to access the mth element of the array, we look up its address in the distributed

translation table, which we know can be found in the (m/N) • P + 1th processor. One

of the PARTI primitives handles initialization of distributed translation tables, and other

primitives are used to access the distributed translation tables.

3 The PARTI Primitives

This section describes the primitives which schedule and then carry out movement of data

between processors, along with the primitives that couple partitioners to compilers. The

primitives that couple partitioners to compilers are entirely new. The data movement and

scheduling primitives are related to the PARTI primitives described earlier ([6] and [45])

but incorporate a number of new insights we have had about sparse and unstructured com-

putations. These primitives differ in a number of ways from those described earlier in that

the new primitives:

eliminate redundant off-processor references and

make it simple to produce parallelized loops that are virtually identical in form to the

original sequential loops.

5

real*8 x(N),y(N)

C Loop over edges involving x, y

L1 do i=l,n_edge

nl = edge_list(i)

n2 = edge_list(n_edge+i)

$1 y(nl)= y(nl) + ...x(nl)... x(n2)

$2 y(n2)= y(n2) + ...x(nl)... x(n2)

end do

C Loop over Boundary faces involving x, y

L2 do i= 1,n_face

ml = faceAist(i)

m2 = faceJist(n_face+i)

m3 = faceAist(2*n_face + i)

$3 y(ml) = y(ml) + ...x(ml) ... x(m2) ... x(m3)

$4 y(m2)= y(m2) + ...x(ml)... x(m2).., x(m3)

end do

Figure 2: Sequential Code

To explain how the primitives work, we will use an examplewhich is similar to loops
found in unstructured computational fluid dynamics (CFD) codes. In most unstructured

CFD codes,a meshis constructedwhich describesanobject andthe physicalregion in which
a fluid interacts with the object. Loopsin fluid flow solverssweepover this meshstructure.

The two loopsshownin Figure 2 representa sweepoverthe edgesof an unstructured mesh

followed by a sweepover facesthat definethe boundary of the object. Since the mesh is
unstructured, an indirection array has to be usedto accessthe verticesduring a loop over

the edgesor the boundary faces. In loop L1, a sweepis carried out over the edgesof the
meshand the referencepattern is specifiedby integer array edgeAist. Loop L2 represents

a sweepoverboundary faces,and the referencepattern is specifiedby faceAist. The array

x only appearsin the right hand side of expressionsin Figure 2, (statements$1 through

$4), so the valuesof x are not modified by these loops. In Figure 2, array y is both read
and written to. Thesereferencesall involveaccumulationsin which computedquantitiesare

addedto specifiedelementsof y (statements$1, $2, $3 and $4).

3.1 Primitives for Communications Scheduling

In this section we use a running example derived from Figure 2 in order to present the run-

time support we need to eliminate redundant off-processor references. As was the case with

our earlier suite of primitives described in [6], this runtime support can be used either by a

compiler or can be embedded into distributed memory codes manually by programmers. Our

new primitives carry out preprocessing that make it straightforward to produce parallelized

loops that are virtually identical in form to the original sequential loops. The importance of

this is that it will be possible to generate the same quality object code on the nodes of the

distributed memory machine as could be produced by the sequential program running on a

single node.

Our primitives make use of hash tables [22] to allow us to recognize and exploit a num-

ber of situations in which a single off-processor distributed array reference is used several

times. In such situations, the primitives only fetch a single copy of each unique off-processor

distributed array reference.

3.1.1 PARTI Executor

Figure 3 depicts the ezecutor code with embedded fortran callable PARTI procedures dfm-

gather, dfscatter_add and dfscatter_addnc. Before this code is run, we have to carry out a

preprocessing phase, to be described in Section 3.1.2. This executor code changes signif-

icantly when non-incremental schedules are employed. An example of the executor code

when the preprocessingis donewithout using incremental schedulesis given in [40]. The

arraysx and y arepartitioned betweenprocessors,eachprocessoris responsiblefor the long
term storageof specifiedelementsof eachof thesearrays. The way in which x and y are to

be partitioned betweenprocessorsis determinedby the inspector. In this example,elements

of x and y are partitioned betweenprocessorsin exactly the sameway. Eachprocessoris

responsiblefor n_on_proc elements of x and y.

It should be noted that except for the procedure calls, the structure of the loops in

Figure 3 is identical to that of the loops in Figure 2. In Figure 3, we again use arrays

named x and y; in Figure 3, x and y now represent arrays defined on a single processor

of a distributed memory multiprocessor. On each processor P, arrays x and y are declared

to be larger than would be needed to store the number of array elements for which P is

responsible. We will store copies of off-processor array elements beginning with local array

elements x (n_on_pro c+ 1) and y (n_on_pro c+ 1).

The PARTI subroutine calls depicted in Figure 3 move data between processors using" a

precomputed communication pattern. The communication pattern is specified by either a

single schedule or by an array of schedules, dfmgather uses communication schedules to fetch

off-processor data that will be needed either by loop L1 or by loop L2. The schedules specify

the locations in distributed memory from which data is to be obtained. In Figure 3, off-

processor data is obtained from array x defined on each processor. Copies of the off-processor

data are placed in a buffer area beginning with x(n_on_proc+l).

The PARTI procedures dfscatter_add and dfscatter_addnc, in statement 82 and $3 Fig-

ure 3, accumulate data to off-processor memory locations. Both dfscatter_add and dfscat-

ter_addnc obtain data to be accumulated to off processor locations from a buffer area that

begins with y(n_on_proc+l). Off-processor data is accumulated to locations of y between

indices 1 and n_on_proc. The distinctions between dfscatter_add and dfscatter_addnc will

be described in Section 3.1.3. In Figure 3, several data may be accumulated to a given

off-processor location in loop L1 or in loop L2.

3.1.2 PARTI Inspector

In this section, we will outline how we carry out the preprocessing needed to generate the

arguments needed by the code in Figure 3. This preprocessing is depicted in Figure 4.

The way in which the nodes of an irregular mesh are numbered frequently do not have

a useful correspondence to the connectivity pattern of the mesh. When we partition such a

mesh in a way that minimizes interprocessor communication, we may need to be able to assign

arbitrary mesh points to each processor. The PARTI procedure ifbuild_translation_table (S1

in Figure 4) allows us to map a globally indexed distributed array onto processors in an

real*8 x(n_on_proc+n_off_proc)
real*8 y(n_on_proc+n_off_proc)

S1 dfmgather(sched_array,2,x(n_on_proc+1),x)

C Loop overedgesinvolving x, y

L1 do i=l,local_n_edge

nl -- local_edgeAist(i)

n2 = local_edgeAist(local._n_edge+i)

$1 y(nl) = y(nl) + ...x(nl)... x(n2)

$2 y(n2) = y(n2) + ...x(nl)... x(n2)

end do

$2 dfscatter_add(edge_sched,y(n_on-proc+ 1),y)

C Loop over Boundary faces involving x, y

L2 do i=l,localm_face

ml = local_faceAist(i)

m2 = local_faceAist(localm_face+i)

m3 = local_faceAist(2*local_nA'ace + i)

$3 y(ml)= y(ml) + ...x(ml)... x(m2).., x(m3)

$4 y(m2)= y(m2) + ...x(ml)... x(m2).., x(m3)

end do

$3 dfscatter_ddnc(face_sched,y(n_on_proc+ 1),

buffer_mapping,y)

Figure 3: Parallelized Code for Each Processor

9

S1 translation_table= ifbuild_translation_table(1,myvals,n_on_proc)

S2 call flocalize(translation_table,edge_sched,part_edgeJist,local_edgeJist,2*n_edge,n_off_proc)

S3 sched_array(1)= edge_sched

$4 call fmlocalize(translation_table,face_sched,

increment al_face_sched, par t_face__list,local_facedist,

4*n__face, n_off_procface,

n_new_off_proc_face, buffer_mapping, 1,sched_array)

$5 sched_array(2) = incremental_face_sched

Figure 4: Inspector Code for Each Processor

arbitrary fashion. Each processor passes the procedure ifbuild_translation_table a list of

the array elements for which it will be responsible (myvals in S1, Figure 4). If a given

processor needs to obtain a datum that corresponds to a particular global index i for a

specific distributed array, the processor can consult the distributed translation table to find

the location of that datum in distributed memory.

The PARTI procedures flocalize and fmlocalize carry out the bulk of the preprocessing

needed to produce the executor code depicted in Figure 3. We will first describe flocalize,

($2 in Figure 4). On each processor P, flocalize is passed:

(i) a pointer to a distributed translation table (translation_table in $2),

(ii) a list of globally indexed distributed array references for which processor P will be

responsible, (edgedist in $2), and

(iii) number of globally indexed distributed array references (2*n_edge in $2).

Flocalize returns:

(i) a schedule that can be used in PARTI gather and scatter procedures (edge_sched in

S2),

(ii) an integer array that can be used to specify the pattern of indirection in the executor

code (local_edge_.list in $2), and

(iii) number of distinct off-processor references found in edgeAist (n_off_proc in $2).

10

part_edge_list

off

processor

references

Flocalize

Iocal_edgelist

buffer

references

buffer_____

gather into bottom of data array

i
i

local data

off processor data

Figure 5: Flocalize Mechanism

11

A sketchof how the procedure flocalize works is shown in Figure 5. The array edge_list

shown in Figure 2 is partitioned between processors. The part_edge_list passed to flocalize

on each processor in Figure 4 is a subset of edge_list depicted in Figure 2. We cannot use

part_edge_list to index an array on a processor as part_edge_list refers to globally indexed

elements of arrays x and y. Flocalize changes this part_edge_list so that valid references

are generated when the edge loop is executed. The buffer for each data array is placed

immediately following the on-processor data for that array. For example, the buffer for data

array x starts at x(n_on_proeh-1). Hence, when flocalize changes the part_edge__list to

loeal_edgellst, the off-processor references are changed to point to the buffer addresses.

When the off processor data is collected into the buffer using the schedule returned by flocal-

ize, the data is stored in a way such that execution of the edge loop using the loeal_edgelist

accesses the correct data.

There are a variety of situations in which the same data need to be accessed by multiple

loops (Figure 2). In Figure 2, no assignments to x are carried out. In the beginning of

Figure 3, each processor can gather a single copy of every distinct off-processor value of x

referenced by loops L1 or L2. The PARTI procedure fmlocalize ($4 in Figure 4) makes it

simple to remove these duplicate references, fmlocalize makes it possible to obtain only those

off-processor data not requested by a given set of pre-existing schedules. The procedure dfm-

gather in the executor in Figure 3 obtains off-processor data using two schedules; edge_sched

produced by flocalize ($2 Figure 4) and incremental_face_sched produced by fmlocalize ($4

Figure 4).

The pictorial representation of the incremental schedule is given in Figure 6. The schedule

to bring in the off-processor data for the edge_loop is given by the edge schedule and is formed

first. During the formation of the schedule to bring in the off-processor data for the face_loop

we remove the duplicates shown by the shaded region in Figure 6. Removal of duplicates is

achieved by using a hash table. The off-processor data to be accessed by the edge schedule

is first hashed using a simple hash function. Next all the data to be accessed during the

face_loop is hashed. At this point the information that exists in the hash table allows us to

remove all the duplicates and form the incremental schedule. In Section 5 we will present

results showing the usefulness of incremental schedule.

To review the work carried out by fmlocalize, we will summarize the significance of all

but one of the arguments of this PARTI procedure. On each processor, fmlocalize is passed:

(i) a pointer to a distributed translation table (translation_table in $4),

(ii) a list of globally indexed distributed array references. (faceJist in $4),

(iii) number of globally indexed distributed array references (4*n_face in $4),

12

INCREMENTAL SCHEDULE

OFF PROCESSOR FETCfIES

IN SWEEP OVER EDGES

o_._o_o_f/_s_S

/
EDGE SCHEDULE

°o

DUPLICATES

INCREMENTAL

SCHEDULE

Figure 6: Incremental Schedule

13

(iv) number of pre-existing schedules that need to be taken into account when removing

duplicates (1 in $4), and

(v) an array of pointers to pre-existing schedules (sched_array in $4).

Fmlocalize returns:

(i) a schedule that can be used in PARTI gather and scatter procedures. This schedule

does not take any pre-existing schedules into account (face_sched in $4),

(ii) an incremental schedule that includes only off-processor data accesses not included in

the pre-existing schedules (incremental.t'ace..sched in S4),

(iii) a list of integers that can be used to specify the pattern of indirection in the executor

code (local._face..list in $4),

(iv) number of distinct off-processor references in face_list (n_off_proc_face in $4).

(v) number of distinct off-processor references not encountered in any other schedule

(n_new_off_proc_face in $4).

(vi) buffer__mapping - to be discussed in Section 3.1.3.

3.1.3 A Return to the Executor

We have already discussed dfmgather in Section 3.1.1 but we have not said anything so

far about the distinction between dfscatter_add and dfscatter_addnc. When we make use of

incremental schedules, we assign a single buffer location to each off-processor distributed

array element. In our example, we carry out separate off-processor accumulations after

loops L1 and L2. As we will describe below, in this situation, our off-processor accumulation

procedures may no longer reference consecutive elements of a buffer.

We assign copies of distinct off-processor elements of y to buffer locations, to handle

off-processor accesses in loop L1, Figure 3. We can then use a schedule (edge_sched) to

specify where in distributed memory each consecutive value in the buffer is to be accu-

mulated. PARTI procedure dfscatter_add can be employed; this procedure uses schedule

edge_sched to accumulate to off-processor locations consecutive buffer locations beginning

with y(n_on_proc + 1). When we assign off-processor elements of y to buffer locations

in L2, some of the off-processor copies may already be associated with buffer locations.

Consequently in S3, Figure 3, our schedule (face_sched) must access buffer locations in an

irregular manner. :The pattern of buffer locations accessed is specified by integer array

buffer_mapping passed to dfscatter_addnc in S3, Figure 3. (dfscatter_addnc stands for dfscat-

ter_add non-contiguous)

14

3.2 Mapper Coupler

In irregular problems, it is frequently desirable to allocate computational work to processors

by assigning all computations that involve a given loop iteration to a single processor [6].

We consequently partition both distributed arrays and loop iterations. Our approach is to

first partition distributed arrays and then, based on distributed array partitionings, partition

loop iterations. This appears to be a practical approach as in many cases, the same set of

distributed arrays are used by many loops.

When we partition distributed arrays, we have not yet assigned loop iterations to pro-

cessors. We do assume that we will partition loop iterations so as to attempt to minimize

non-local distributed array references. Our approach to data partitioning makes an implicit

assumption that most (although not necessarily all) computation will be carried out in the

processor associated with the variable appearing on the left hand side of each statement.

There are many partitioning methods available, [41], [15], [5] [9] but currently parti-

tioners must be coupled to user programs in a manual fashion. This manual coupling is

particularly troublesome when we wish to make use of parallelized partitioners. Here, we

introduce a new notion of linking partitioners with programs by producing a generic data

structure at run time, which is independent of the problems. For this purpose, we have

developed primitives which can generate a standardized input format for the partitioners.

In our approach the standardized data structure is generated from the loops in the problem

specified by users using certain language extensions to be discussed in Section 4.1.

We now outline what needs to be done to link a data partitioner with a program in which

a specific loop has been specified using the language extensions described in Section 4.1. We

first consider loops in which all distributed arrays appearing in a given loop conform in size

and are to be distributed in an identical manner. We also restrict ourselves to loops without

loop carried dependencies (this restriction will be relaxed slightly later in this section). We

define a statement bipartite runtime dependency graph (statement BRDG) to represent the

dependencies between the index of a distributed array element defined on the left hand side

of a loop statement S and the indices of all distributed array elements on the right hand side

of S. As the name implies, statement BRDG is a bipartite directed graph. We merge the

statement BRDG associated with each statement S in a loop to form a loop BRDG. When

we merge l links we associate a weight l with the merged vertex. Most data partitioners

make use of undirected connectivity graphs. When all distributed arrays appearing in a

statement conform, we can collapse the loop BRDG into a undirected graph, the loop

runtime dependence graph or the loop RDG. The weight associates with each edge of the

loop RDG is the sum of the weights of the two collapsed BRDG edges.

A loop RDG is constructed by adding edge < i,j > between nodes i and j either when

15

a referenceto array index i appears on the left side of an expression and a reference to

j appears on the right side, or

a reference to array index j appears on the left side of an expression and a reference

to i appears on the right side.

Each time edge < i,j > is encountered, we increment a counter associated with < i,j >.

Accumulation type output dependency edges of type < i, i > are ignored in the graph

generation process as the presence of such dependencies do not induce inter-processor com-

munication. The loop RDG is currently represented by a distributed data structure [30],

this data structure is closely related to Saad's Compressed Sparse Row (CSR) format (see

[37]).

Data partitioning is carried out as follows. We assume P processors.

(i) At compile time a dependency coupling code is generated. This code produces a loop

RDG at runtime,

(ii) The loop RDG is passed to a data partitioning procedure that partitions the loop

RDG into P subgraphs. The RDG vertices assigned to each subgraph correspond to

a distributed array distribution.

(iii) The output of the partitioning procedure is a distributed translation table. This trans-

lation table is associated with each of the identically distributed arrays referenced in

the loop.

Once we have partitioned data, we must partition computational work. One convention

is to compute a program statement S in the processor associated with S's left hand side

distributed array element. (If the left hand side of S references a replicated variable then

the work is carried out in all processors). Were we to assign work in this manner, we would

want to partition the RDG for statement S in a way that would correspond to reducing the

combined cost of load imbalance and the cost of interprocessor communication. Each RDG

edge to cross a boundary between partitions would correspond to either a unidirectional or

bidirectional data communication. Instead of assigning work to the processor associated with

S's left hand distributed array element, we partition distributed arrays and loop iterations

separately. Our motivation for using the loop RDG as an input to a data partitioner comes

from our decision to attempt to partition loop iterations so as to minimize off-processor

distributed array references.

To partition loop iterations, we use a graph called the runtime iteration graph or RIG.

The RIG associates with each loop iteration i, all indices of each distributed array accessed

16

during iteration i. The RIG is generated for every loop that references at least one irregularly

distributed array. The runtime iteration processor assignment graph or RIPA lists, for each

loop iteration, the number of distinct data references associated with each processor.

We partition loop iterations in the following manner:

(i) The RIG is generated for each loop in which distributed arrays are referenced.

(ii) The processor assignment is found for for each distributed array reference appearing in

a RIG. If the distributed array is irregularly distributed, this information is obtained

using the array's distributed translation table (Section 2.2). The processor assignments

are used to generate the RIPA graph.

(iii) Loop iterations are partitioned using an iteration partitioning procedure which makes

use of the RIPA graph.

Just as there are many possible strategies that can be used to partition data, there are

also many strategies that could be used to partition loop iterations. We currently employ

strategies that assign loop iterations to the processor associated with the largest number of

distributed array references in the RIG.

3.3 Compiler-linked Mapping: Runtime Support

In this section we outline the primitives employed to carry out compiler-linked data and loop

iteration partitioning.

We begin each compiler-linked mapping with an initial distribution of loop iterations and

of integer indirection arrays needed to determine distributed array references. The object

of this initial preprocessing is to extract information needed for mapping. In many cases,

the initial distribution of loop iterations Ii,_it, will be a simple default distribution. In some

situations (e.g. adaptive codes), preprocessing to support irregular array mappings may have

already been carried out. Thus integer indirection arrays may have already been irregularly

distributed when we begin our derivation of a compiler-linked mapping. Our runtime support

will handle either regular or irregular initial loop iteration distributions Iinit. The local loop

RDG is defined as the restriction of the loop RDG to a single processor. The local loop

RDG includes only distributed array elements associated with Ii,_it.

Procedure eIiminate_dup_edges uses a hash table to store unique directed dependency

edges, along with a count of the number of times each edge has been encountered. Once all

edges in a loop have been recorded, edges_to_RDG generates the local loop RDG and then

merges all local loop RDG graphs to form the loop RDG. The data structures that describe

17

partition loop iterations betweenprocessorsin blocks

partition integer indirection arrayedge_list sothat if iteration i is assigned to processor

P, edge_list(i) and edge_list(n_edgeq-i) are on P (methods needed to carry out this

preprocessing are described in [45]).

do i= 1,n_edge

pass dependency edges (nl,n2), (n2,nl) to procedure eliminate_dup_edges

end do

obtain loop RDG data structure from hash table using procedure edges_to_RDG

loop RDG is passed to RDG_partitioner. A pointer is returned to a distributed

translation table which describes the new mapping.

Figure 7: Runtime Support for Deriving Irregular Data Distributions

the loop RDG graph are passed to a data partitioner RDG_partitioner. RDG_partitioner.

returns a pointer to a distributed translation table that describes the new mapping. Note

that RDG_partitioner. can use any heuristic to partition the data, the only constraint is that

the partitioners have the correct calling sequence.

We consider the sequential code depicted in Figure 2 to illustrate how the primitives

can be used to link partitioners with programs. We assume that the user has specified

using the language extensions that arrays x and y are to be partitioned based the loop L1

in a conforming manner. At compile time, a sequence of calls to a set of mapper coupler

primitives are embedded as shown in Figure 7.

The partitioning of loop iterations is supported by two primitives, deref_rig and patti:

tion_rig. The RIG is generated by code transformed by a compiler. The primitive deter_rig

inputs the RIG. This primitive accesses distributed translation tables to find the processor

assignments associated with each distributed array reference, deter_rig returns the RIP.&.

The RIPA is partitioned using the iteration partitioning procedure, iter_partition.

4 PARTI Compiler

In this section we first describe language extensions which allow a programmer to implicitly

specify how data and loop iterations are to be partitioned between processors. We then

outline compiler transformations used to carry out this implicitly defined work and data

18

mapping. The compiler transformationsgeneratecode which embedsthe mapper coupler

primitives describedin Section3.2. In addition weoutline compiler transformations needed

to take advantageof the incrementalschedulingprimitives describedin Section3.1.

4.1 Compiler-Linked Problem Mapping

4.1.1 Overview

The current Fortran D syntax outlined in Section 2.1 requires programmers to explicitly

define irregular data decompositions.

In Figure 1, we align real arrays x and y with the decomposition irreg (statement $5).

The array map is used to specify the distribution of irreg. Integer array map is aligned with

decomposition reg (statement $4) and then reg is distributed by among the processors blocks

(statement $6). The meaning of the statement $7 is that the distribution of decomposition

irreg is determined by values assigned to map. For example, if the value map(100) is 10, this

indicates that both x(100) and y(100) are assigned to processor 10.

The difficulty with the declarations depicted in Figure 1 is that it is not obvious how one

would partition the irregularly distribute array. The map array which gives the distribution

pattern of irreg has to be generated separately by running a partitioner. The Fortran-

D constructs are not rich enough for the user to couple the generation of the map array

to the program compilation process. While there are a wealth of partitioning heuristics

available (see for instance [41], [15], [5]), coding such partitioners from scratch can represent

a significant effort. There is no standard interface between the partitioners and the different

problems. The partitioners described in the literature typically operate on data structures

whose physical interpretation is known to the programmer (e.g. meshes in finite difference

equations, sparse matrices in sparse linear systems solvers, etc).

Our approach is to identify a nest of loops L that involves each irregularly distributed

array we will need to partition. From the loop L, we produce at compile time a mapper

coupler (see Section 3.2)

Figure 8 is derived from the sequential code in Figure 2. The code in Figure 8 contains

loops L1 and L2 from the code in Figure 2. To simplify presentation, only L1 is depicted

explicitly in Figure 8.

We use statement $4 to designate loop L1 as the loop that will be used to generate a

mapper coupler, implicitmap(x,y) indicates that an RDG graph is to be generated based

on the dependency relations between distributed arrays x and y in loop L1. We assume that

all arrays listed in an implicitmap statement are to be identically distributed and that the

loop in question parallelizes, except for possible accumulation type output dependencies (If

19

,°,°

real*8 x(N),y(N)

decomposition coupling(N)

S1 if(remap.eq.yes) then

$2 distribute coupling(implielt using edges)

endif

$3 align x,y with coupling

,°°,

$4 implicitmap(x,y) edges

C Loop over edges involving x, y

L1 do i=l,n_edge

nl = edge_list(i)

n2 = edge_list(n_edge+i)

S1 y(nl) = y(nl) + ...x(nl)... x(n2)

$2 y(n2)-- y(n2) + ...x(nX)... x(n2)

end do

,,.,

L2 Loop over faces involving x, y

Figure 8: Example of Implicit Mapping

2O

the compiler cannot determine that these assumptions are valid, an error is reported).

In many codes used to solve mesh based problems, we can specify a nest of loops so that

the RDG will represent the original mesh. For instance, in Figure 8, loop L1 represents

a sweep over the edges of a mesh. The RDG obtained from statement $4 recaptures the

original mesh topology.

It is easy to generalize the language extensions described here so that we specify an

implicit mapping using more than one loop. In this case, a multiple loop RDG is generated

based on merged dependency patterns arising from the loops.

4.1.2 Embedding Mapper Coupler Primitives

We use the example in Figure 8 to show how the compiler primitives are embedded in the

code. When the statement distribute ... implicit using is encountered in the code,

the compiler locates the loop L specified by the user. The indirection pattern in this loop

will be used to generate the RDG. In order for the executable statement distribute ...

implicit using to make sense, we must be able to anticipate how the distributed arrays

in L will be indexed, when L is next encountered. We need to be able to determine that

all relevant reference patterns in L can be predicted when distribute ... implicit using

executes. In our simple example (Figure 8, the implicit distribution statement is located

in the same procedure as the user specified loop. The compiler must identify all variables

V that determine the subscript functions of distributed arrays in L and must determine

whether there is any chance that any members of V could be killed between distribute

... implicit using and loop L. In this case, standard data flow analysis can determine

whether any assignments have been made to any of the variables V. In many cases, the

implicit distribution statement might not be placed in the same procedure as L. In this case,

we will require the results of interprocedural analysis. When L is identified and indexing

information pertaining to L is obtained, a transformed loop L' is generated. L' contains

the calls to elirninate_dup_edges that will be needed to generate the local loop RDG (see

Section 3.2). Recall from Section 3.2 that eliminate_dup_edges produces a hash table. A

pointer to this hash table is passed to procedure edges_to_RDG. This procedure produces a

loop RDG which is passed to a data partitioner, RDG_partitioner.

Loop iterations are partitioned at runtime whenever a loop accesses at least one irreg-

ularly distributed array. Corresponding to each such loop L is generated a loop L" which

generates the RIG. As described in Section 3.2, the RIG is passed to deter_rig to produce

the RIPA. The RIPA in turn is partitioned using the iteration partitioning procedure,

iter_partition.

21

4.1.3 Inspector/Executor Generation for Incremental Scheduling

Inspectorsand executorsmust be generatedfor loops in which distributed arrays are ac-
cessedvia indirection. Inspectorsand executorsare also neededin most loops that access

irregularly distributed arrays. In this section we outline what must be done to generate
distributed memoryprogramswhich makeeffectiveuseof incrementaland non-incremental

schedules.Most of what wedescribeis asyet unimplemented,although wehaveconstructed

and benchmarkeda simplecompiler capableof carrying out local transformations to embed

non-incrementalschedules.This work is describedin [45].
We first outline what must be done to generatean inspector and an executor for a

program loop L. We assumethat dependencyanalysishasdetermined that L either hasno

loop carried dependencies,or hasonly the simpleaccumulationtype output dependencies.of

the sort exemplifiedin Figure 2. It shouldbenotedthat thecalling sequencesof the compiler-

embeddablePARTI primitives differ somewhat from the primitives describedin Section3.

The functionality describedin primitives flocalize and fmlocalize are each implemented as a

larger set of simpler primitives.

We scan through the loop and find the set of distributed arrays ,At that are irregularly

distributed or are indexed using indirection. Information needed to generate a schedule

for a given distributed array reference, can be produced from the subscript function of the

reference along with knowledge of an array's distribution. We must check to make sure that

the the subscript functions of all members of ,4 are loop invariant as the methods described

in this paper do not address cases in which indexing patterns are modified by computations

carried out within the loop. As long as a distributed array's indexing pattern is not modified

by computations carried out within a loop, a compiler can generate preprocessing code that

can be hoisted out of L. This preprocessing code produces a representation of the distributed

array's indexing pattern. For instance, consider the following loop:

do i=l,n

nl = nde(2*i)

n2 = nde(2*i-1)

.. = x(nl).., y(n2)

...... z(n2)

end do

22

The subscript function of y and z (usingnotation from the Fortran 90 array extensions)

is nde(2:2*n:2), and the subscript function of x is nde(l:2*n-l:2). Recall from Section2.2,

that schedulesspecify communicationpatterns and are not bound to a specific distributed

array. We can avoid having to compute redundant schedules when we know that the same

communication pattern will reoccur in more than one place in a loop. For instance, if y

and z in the above loop are partitioned in a conforming manner, we need only to compute

a single schedule to bring in off-processor elements of y and z.

Optimizations that reduce the number of schedules reduce the preprocessing time required

by the inspector. Obviously, the elimination of redundant schedules also has a favorable

impact on storage requirements. Minor modifications of common subexpression elimination

should be reasonably effective in identifying redundant schedules. In [45] we describe a

compiler that carries out this optimization in a rudimentary manner.

The use of incremental schedules, (Section 3.1), make it possible to avoid retransmission

of unchanged distributed array. As we wiIl show in Section 5, proper use of incremental

schedules can have a marked effect on the time spent on communication. In order to make

use of previously stored copies of distributed array elements, we must ensure that the off-

processor copies are still valid. Recall that we assumed that loop L had no loop carried

dependencies. Thus our decision to assign each loop iteration to a single processor ensures

that off-processor data obtained immediately before entering L will continue to be valid in

L. The generation of incremental schedules can be carried out in two passes. A compiler

first generates an inspector and executor for L with full schedules. During the second pass,

some full schedules will be replaced with incremental schedules. In order to replace a full

schedule with an incremental schedule, we need to know which schedules will have already

caused the storage of off-processor data within L.

Generation of efficient inspectors and executors for loop L requires us to obtain infor-

mation about a program as a whole. When L is called multiple times we attempt to reuse

previously computed schedules. Each time L is called, we need to determine whether it is

possible that the subscript functions or loop distributions in the set of distributed arrays .A

have been modified since the last call to L.

Analysis must also be carried out if we are to use incremental schedules to eliminate

duplicate data communications between loops. We need rather comprehensive information

about the program behavior. Consider a right hand side reference to distributed array x in

program statement S for which we would like to use an incremental schedule. We will need

to know

when off-processor data copies of values of x become invalidated by new assignments,

and

23

which communicationsscheduleswill havealreadybeeninvokedby the time wereach
X_

Methods exist which appear likely to allow us to be able to do a reasonable job of achieving

both of these objectives for many irregular scientific codes. A program dependence graph

(e.g. [13], [10]) is a directed graph whose vertices represent the assignment statements

and control predicates that occur in a program. The edges represent dependences among

program components. An edge represents either a control dependence or a data dependence.

Each time a schedule is used, new Copies of off-processor array elements become available.

In order to generate an incremental schedule for x at S, we need to know which schedules

have already caused the storage of potentially reusable off-processor data. We can view this

off-processor data reuse as a type of dependence and represent this dependence as a specific

type of edge in a program dependence graph. We will call this kind of dependence edge a

reuse edge. Using slicing methods, [43], [23] we can find all statements and predicates of a

program that might affect the values of the distributed array reference to x in statement S.

In ongoing joint work with Kennedy's group at Rice, we are currently developing a variant

of slicing methods which will allow us to automate the use of incremental schedules. The

results of this work will be implemented as part of the Fortran D compiler being developed

at Rice [21].

5 Experimental Results

5.1 Timing Results from the Euler Equation Solver

The PARTI procedures described in Section 3 were used to port a 3-D unstructured mesh

Euler solver [31]. The Euler code iterates until it has computed a steady state solution on

a given mesh. Two versions of the Euler solver were tested, one version used the primitive

flocalizeand fmIocalize to generate incremental schedules (Section 3.1), the other used only

the primitive flocalize and generated only non-incremental schedules (Section 3.1.2). The 3-

D unstructured mesh Euler solver was tested using a sequence of structurally similar meshes

of varying sizes. The smallest mesh used had 3.6K vertices, the largest mesh had 210K

vertices and 1.2 million edges. Figure 9 depicts a surface view of the 210K vertex mesh. The

unstructured meshes were partitioned by the method described in [41].

Table 1 shows the timings obtained using non-incremental communication scheduling

and Table 2 were obtained using incremental schedules. The single node code for these

meshes run at approximately 4 Megaflops. We conjecture that the single node performance

is relatively poor because the data access patterns in unstructured mesh computations are

24

Size Numberof Processors
Mesh 1 2 8 16 64

Mflops 4.1 6.0 12.0 14.4 -

3.6K Wime/iter(s) 4.6 3.1 1.5 1.3 -

comm/iter(s) 0.5 0.9 0.9 -

Mflops - 19.2 29.9

26K Time/iter(s) - 7.1 4.5

comm/iter(s) - 2.3 2.0

Mflops - - - 118.6

210K Time/iter(s) - - - 8.4

comm/iter(s) - - 3.7

Table 1: Timings from Intel iPSC/860 : Unstructured, Irregular Mesh Using Non-

Incremental Schedule

highly irregular and the number of memory references per floating point operation is very

high. Both of these characteristics make it difficult for the Intel 80860 architecture to keep

the processor supplied with data.

The use of incremental scheduling had a significant impact on communications costs. For

instance, on the 26K mesh, the communications cost per iteration on 16 processors was 2.0

seconds when we did not employ incremental schedules. The communications cost dropped

to 1.1 seconds when we used incremental schedules. On the 210K mesh on 64 processors

the communications cost per iteration dropped from 3.7 seconds to 2.3 seconds when we

employed incremental schedules.

Since the form of the sequential code and the parallelized code is virtually identical,

we did not expect the parallelization process to introduce any new inefficiencies beyond

those exacted by the preprocessing and by the calls to the primitives. We compared the

parallel code running on a single node with the sequential code and found only a 2 %

performance degradation. In the parallelized Euler codes, the total cost of all preprocessing

was insignificant compared to the execution times required to solve the problems. The

program typically requires at least 100 iterations to converge, and the preprocessing times

were less than 3 % of the parallel execution times.

5.2 Timing Results using the Mapper Coupler

In this section, we present data that indicates that the costs incurred by the mapper cou-

25

Size Numberof Processors

Mesh 1 2 8 16 64

Mflops 4.1 7.1 16.9 17.4

3.6K Time/iter(s) 4.6 2.6 1.1 1.1

comm/iter(s) - 0.3 0.5 0.7

Mflops - - 23.8 38.8

26K Time/iter(s) - - 5.6 3.4

comm/iter(s) - - 1.1 1.1

Mflops 144.3

210K Time/iter(s) - - - 7.1

comm/iter(s) 2.3

Table 2: Timings from Intel iPSC/860 : Unstructured, Irregular Mesh Using Incremental

Schedule

Table 3: Mapper Coupler Timings from Intel iPSC/860

Number

of Vertices

3.6K

9.4K

54K

graph generation (secs.)

mapper (secs)

iter partitioner (secs)

comp/iter (secs)

graph generation (secs.)

mapper (secs)

iter partitioner (secs)

comp/iter(secs)

graph generation (secs.)

mapper (secs)

iter partitioner (secs)

comp/iter(secs)

Number of Processors

2

O.34

15.92

0.94

2.4

4 8 16

0.24 0.21 0.20

11.50 12.11 14.92

0.57 0.42 0.34

1.31 0.6 0.34

0.86 0.69 0.53

70.96 62.3 65.2

1.19 0.82 0.60

4.83 2.35 1.1

32 64

0.35

89.7

0.43

0.67

1.50 0.94

544.81 673.14

3.30 3.03

6.06 3.81

26

Figure 9: SurfaceView of Unstructured MeshEmployedfor Computing Flow over ONERA
M6 Wing , Number of nodes= 210K

pier primitives wereroughly on the order of the costof a singleiteration of our unstructured

meshcode. We also show that the mapper coupler costsare quite small comparedto the

cost of partitioning the data.

In Table 3, graph generation depicts the time required by the mapper interface to generate

the runtime dependence graph (RDG) data structure (Section 3.2. These timings involve a

loop over edges that is functionally equivalent to loop L1 in Figure 2. The graph generation

time includes the time required to call eliminate_dup_edges and the time required to call

edges_to_RDG (Section 3.3)

In Table 3, mapper depicts the time needed to partition the RDG using using a par-

allelized version of Simon's eigenvalue partitioner [41]. We partitioned the RDG into a

number of subgraphs equal to the number of processors employed. The cost of the parti-

tioner is relatively high both because of the partitioner's high operation count and because

only a modest effort was made to produce an efficient parallel implementation. It should be

noted that any parallelized graph partitioner could be used as a mapper. The iter partitioner

time shown in Table 3 gives the time needed to partition loop iterations among processors.

The table also includes the time needed for a single iteration of the Euler code for different

problem sizes.

27

6 Conclusions

Programs designed to carry out a range of irregular computations including sparse direct and

iterative methods require many of the optimizations described in this paper. Some examples

of such programs are described in [2], [29], [4], [44] and [18].

Several researchers have developed programming environments that are targeted towards

particular classes of irregular or adaptive problems. Williams [44] describes a programming

environment (DIME) for calculations with unstructured triangular meshes using distributed

memory machines. Baden [3] has developed a programming environment targeted towards

particle computations. This programming environment provides facilities that support dy-

namic load balancing. DecTool [9] is an interactive environment designed to provide facilities

for either automatic or manual decompositions of 2-D or 3-D discrete domains.

There are a variety of compiler projects targeted at distributed memory multiprocessors

[46], [8], [36], [34], [1], [42], [14], [19], [20], [24], [7,27,26,28] [25], [21], [45]. Runtime

compilation methods are employed in three of these projects; the Fortran D project [21],

the Kali project [25], and our PARTI project [32], [39], [45], and [38]. The Kali compiler

which was the first compiler to implement inspector/executor type runtime preprocessing

[25] and the ARF compiler which was the first compiler to support irregularly distributed

arrays [45].

This paper has presented two new runtime compilation methods, and described in detail

the required runtime support. We described how to design distributed memory compilers

capable of carrying out dynamic workload and data partitions. We also described how to

reduce interprocessor communication requirements by eliminating redundant off-processor

data accesses. This runtime support required for this methods has been implemented in the

form of PARTI primitives. We first described the design of the PARTI primitives, and then

outlined the compiler transformations that embed these primitives.

We implemented a full unstructured mesh computational fluid dynamics code by em-

bedding our runtime support by hand and have presented our performance results. These

performance results demonstrated that our method for eliminating redundant off-processor

communication had a significant impact on communications costs. Our performance results

also demonstrated that the costs incurred by the mapper coupler primitives were roughly

on the order of the cost of a single iteration of our unstructured mesh code and were quite

small compared to the cost of the partitioner itself. We did not compare the time required

by the PARTI primitives to Intel send and receive calls in this paper. In [6] we presented

such a comparison and found that overheads incurred by using PARTI appear to be quite

modest (no more than 20 %).

28

We havejoined forceswith the Fortran D group in compiler developmentand are im-

plementing the methodsdescribedin this paper in the context of Fortran D in cooperation

with Kennedy'sgroup at Rice.
The non-incrementalPARTI primitives describedin Section3.1 are availablefor public

distribution and can be obtained from netlib or from the anonymousftp cite ra.cs.yale.edu.

The incremental PARTI primitives and the Mapper coupler primitives described in Sec-
tion 3.2 will be releasedsoonand will be availablethrough the samesources..

Acknowledgements

The authors would like to thank Geoffrey Fox for many enlightening discussions about uni-

versally applicable partitioners; we would also like to thank Ken Kennedy, Chuck Koelbel and

Seema Hiranandani for many useful discussions about integrating into Fortran-D runtime

support for irregular problems.

The authors would also like to thank: Dennis Gannon for the use of his Faust system

and his help in getting us started with Faust, Horst Simon for the use of his unstructured

mesh partitioning software; and Venkatakrishnan for useful suggestions for low level com-

munications scheduling.

29

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

F. Andre, J.-L. Pazat, and H. Thomas. PANDORE: A system to manage data distri-

bution. In International Conference on Supercomputing, pages 380-388, June 1990.

C. Ashcraft, S. C. Eisenstat, and J. W. H. Liu. A fan-in algorithm for distributed sparse

numerical factorization. SISSC, 11(3):593-599, 1990.

S. Baden. Programming abstractions for dynamically partitioning and coordinating

localized scientific calculations running on multiprocessors. To appear, SIAM J. Sci.

Statist. Comput., 1991.

D. Baxter, J. Saltz, M. Schultz, S. Eisentstat, and K. Crowley. An experimental study

of methods for parallel preconditioned krylov methods. In Proceedings of the 1988

Hypercube Multiprocessor Conference, Pasadena, CA, pages 1698, 17il, January 1988.

M. J. Berger and S. H. Bokhari. A partitioning strategy for nonuniform problems on

multiprocessors. IEEE Trans. on Computers, C-36(5):570-580, May 1987.

H. Berryman, J. Saltz, and J. Scroggs. Execution time support for adaptive scientific

algorithms on distributed memory architectures. Concurrency: Practice and Experience,

3(3):159-178, June 1991.

M. C. Chen. A parallel language and its compilation to mulitprocessor axchietctures or

vlsi. In 2nd A CM Symposium on Principles Programming Languages, January 1986.

A. Cheung and A. P. Reeves. The paragon multicomputer environment: A first imple-

mentation. Technical Report EE-CEG-89-9, Cornell University Computer Engineering

Group, Cornell University School of Electrical Engineering, July 1989.

N. P. Chrisochoides, C. E. Houstis, E. N. Houstis, P. N. Papachiou, S. K. Kortesis,

and J. R. Rice. Domain decomposer: A software tool for mapping pde computations

to parallel architectures. Report CSD-TR-1025, Purdue University, Computer Science

Department, September 1990.

K. Cooper and K. Kennedy. Interprocedural side-effect analysis in linear time. In

Proceedings of the ACM SIGPLAN 88 Conference on Programming Language Design

and Implementation, ACM SIGPLAN Not. 23, 7, pages 57-66, July 1988.

Thinking Machines Corporation. CM Fortran reference manual. Technical Report

version 1.0, Thinking Machines Corporation, Feb 1991.

3O

[12]R. Das, J. Saltz, and H. Berryman. A manual for parti runtime primitives - revision 1

(document and patti software available through netlib). Interim Report 91-17, ICASE,

1991.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

J. Ferrante, K. Ottenstein, and J. Warren. The program dependence graph and its use

in optimization. ACM TOPLAS, 1987.

I. Foster and S. Taylor. Strand: New Concepts in Parallel Programming. Prentice-Hall,

Englewood Cliffs, N J, 1990.

G. Fox. A graphical approach to load balancing and sparse matrix vector multiplication

on the hypercube. In The IMA Volumes in Mathematics and its Applications. Volume

13: Numerical Algorithms for Modern Parallel Computer Architectures Martin Schultz

Editor. Springer-Verlag, 1988.

G. Fox and W. Furmanski. Load balancing loosely synchronous problems with a neural

network. In Third Conf. on Hypercube Concurrent Computers and Applications, pages

241-27278, 1988.

G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu.

Fortran D language specificatiofi. Department of Computer Science Rice COMP TR90-

141, Rice University, December 1990.

G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving Problems

on Concurrent Computers. Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

H. M. Gerndt. Automatic parallelization for distributed memory multiprocessing sys-

tems. Report ACPC/TR 90-1, Austrian Center for Parallel Computation, 1990.

P. Hatcher, A. Lapadula, R. Jones, M. Quinn, and J. Anderson. A production quality

C* compiler for hypercube machines. In 3rd A CM SIGPLAN Symposium on Principles

Practice of Parallel Programming, pages 73-82, April 1991.

S. Hiranandani, K. Kennedy, and C. Tseng. Compiler support for machine-independent

parallel programming in Fortran D. In Compilers and Runtime Software for Scalable

Multiprocessors, J. Saltz and P. Mehrotra Editors, Amsterdam, The Netherlands, To

appear 1991. Elsevier.

S. Hiranandani, J. Saltz, P. Mehrotra, and H. Berryman. Performance of hashed cache

data migration schemes on multicomputers. Journal of Parallel and Distributed Com-

puting, to appear, 12, August 1991.

31

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs.

ACM TOPLAS, 12(1):26-60, January 1990.

K. Ikudome, G. Fox, A. Kolawa, and J. Flower. An automatic and symbolic paralleliza-

tion system for distributed memory parallel computers. In DMCC5, pages 1105-1114,

Charleston, SC, April 1990.

C. Koelbel, P. Mehrotra, and J. Van Rosendale. Supporting shared data structures on

distributed memory architectures. In Snd ACM SIGPLAN Symposium on Principles

Practice of Parallel Programming, pages 177-186. ACM SIGPLAN, March 1990.

J. Li and M. Chen. Generating explicit communication from shared-memory program

references. In Proceedings Supercomputing '90, November 1990.

J. Li and M. Chen. Index domain alignment: Minimizing cost of cross-reference between

distributed arrays. In Proceedings of the 3rd Symposium on the Frontiers of Massively

Computation, October 1990.

J. Li and M. Chen. Automating the coordination of interprocessor communication. In

Programming Languages and Compiler for Parallel Computing, Cambridge Mass, 1991.

The MIT Press.

J. W. Liu. Computational models and task scheduling for parallel sparse cholesky

factorization. Parallel Computing, 3:327-342, 1986.

Parti runtime primitives for compilers, in progress. Interim report, ICASE, 1991.

D. J. Mavriplis. Three dimensional unstructured multigrid for the euler equations, paper

91-1549cp. In AIAA lOth Computational Fluid Dynamics Conference, June 1991.

R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M. Nicol, and Kay Crowley. Principles of

runtime support for parallel processors. In Proceedings of the 1988 ACM International

Conference on Supercomputing , St. Malo France, pages 140-152, July 1988.

M. J. Quinn and P. J. Hatcher. Data-parallel programming on multicomputers. IEEE

Software, pages 69-76, September 1990.

A. Rogers and K. Pingali. Process decomposition through locality of reference. In

Conference on Programming Language Design and Implementation. ACM SIGPLAN,

June 1989.

32

[35]

[36]

[37]

[38]

[39]

[4o]

[41]

[42]

[43]

[44]

[45]

[46]

M. Rosing and R. Schnabel. An overview of Dino - a new language for numerical

computation on distributed memory multiprocessors. Technical Report CU-CS-385-88,

University of Colorado, Boulder, 1988.

M. Rosing, R. W. Schnabel, and R. P. Weaver. Expressing complex parallel algorithms

in Dino. In Proceedings of the 4th Conference on Hypercubes, Conurrent Computers and

Applications, pages 553-560, 1989.

Y. Saad. Sparsekit: a basic tool kit for sparse matrix computations. Report 90-20,

RIACS, 1990.

J. Saltz, H. Berryman, and J. Wu. Runtime compilation for multiprocessors, to appear:

Concurrency, Practice and Experience, 1991. Report 90-59, ICASE, 1990.

J. Saltz, K. Crowley, R. Mirchandaney, and Harry Berryman. Run-time scheduling and

execution of loops on message passing machines. Journal of Parallel and Distributed

Computing, 8:303-312, 1990.

J. Saltz, R. Das, R. Ponnusamy, D. Mavriplis, H. Berryman, and J. Wu. Parti procedures

for realistic loops. In Proceedings of the 6th Distributed Memory Computing Conference,

Portland, Oregon, April-May 1991.

H. Simon. Partitioning of unstructured mesh problems for parallel processing. In Pro-

ceedings of the Conference on Parallel Methods on Large Scale Structural Analysis and

Physics Applications. Permagon Press, 1991.

P. S. Tseng. A Parallelizing Compiler for Distributed Memory Parallel Computers. PhD

thesis, Carnegie Mellon University, Pittsburgh, PA, May 1989.

M. Weiser. Program slicing. IEEE Trans. on Software Eng., SE-10(4):352-357, July

1984.

R. D. Williams and R. Glowinski. Distributed irregular finite elements. Technical Report

C3P 715, Caltech Concurrent Computation Program, February 1989.

J. Wu, J. Saltz, S. Hiranandani, and H. Berryman. Runtime compilation methods

for multicomputers. In Proceedings of the 1991 International Conference on Parallel

Processing, pages II-26,II-30, 1991.

H. Zima, H. Bast, and M. Gerndt. Superb: A tool for semi-automatic MIMD/SIMD

parallelization. Parallel Computing, 6:1-18, 1988.

33

NASA

1, Report No,
NASA CR-187635

ICASE Report No. 91-73

4, Title and Subtitle

Report Documentation Page

2. Government Accession No. 3. Recipient's Catalog No.

5. Report Date

DISTRIBUTED MEMORY COMPILER METHODS FOR IRREGULAR

PROBLEMS -- DATA COPY REUSE AND RUNTIME PARTITIONING

7. Author(s}

Raja Das

Ravi Ponnusamy

Joel Saltz

September 1991

6. Performing Organization Code

8. Performing Organization Report No.

91-73

10. Work Unit No.

505-90-.52-01

11. Contract or Grant No.

NASI-18605

13. Type of Report and Period Covered

Contractor Report

14, Sponsoring,_gency Code

Dimitri Mavriplis

9. Pe_orming Organization Name and Address

Institute for Computer Applications inScience

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225

12. SponsoringAgency Name and Addre_

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

15. Supplementaw Notes

Langley Technical Monitor:

Michael F. Card

Final Repor t

To appear in book -- "Languages, Compilers

and Runtime Environments for Distributed

Memory Machines, Editors: J. Saltz and

P. Mehrotra, Elsevier Press.

16_'A_tract

This paper outlines two methods which we believe will play an important role

in any distributed memory compiler able to handle sparse andunstructu=ed problems.

We describe how to link runtime partitioners to distributed memory compilerS.

In our scheme, programmers can implicitly specify how data and loop iterations are

to be distributed between processors. This insulates users from having to deal ex-

plicit!y with potentially complex algorithms that carry out work and data partition-

ing.

We also describe a viable mechanism for tracking and reusing copies of off-

processor data. In many programs, several loops access the same off-processor

memory locations. As long as it can be verified tha@ the values assigned to off-

processor memory locations remain unmodified, we show that we can effectively reuse

stored off-processor data. We present experimental data from a 3-D unstructured

Euler solver run on an iPSC/860 to demonstrate the usefulness of our methods.

17. Key Words(SuggestedbyAuthor|s))

unstructured mesh, inspector, executor,

sparse, compiler, distributed memory

19. Security Classif. (of this report)

Unclassified

. Up¢lassified
. Security Cla=ff. (of this pe}

Unclassified

18. DistributionStatement

59 - Mathematical and Computer Sciences

(General)

61 - Computer Programming and Software

- Unlimited
21. No. of _ges _. Price

35 A03

NASA FORM 1626 OCT86
NASA-L_Jey,1991

