1,350 research outputs found

    A Model-Based Frequency Constraint for Mining Associations from Transaction Data

    Full text link
    Mining frequent itemsets is a popular method for finding associated items in databases. For this method, support, the co-occurrence frequency of the items which form an association, is used as the primary indicator of the associations's significance. A single user-specified support threshold is used to decided if associations should be further investigated. Support has some known problems with rare items, favors shorter itemsets and sometimes produces misleading associations. In this paper we develop a novel model-based frequency constraint as an alternative to a single, user-specified minimum support. The constraint utilizes knowledge of the process generating transaction data by applying a simple stochastic mixture model (the NB model) which allows for transaction data's typically highly skewed item frequency distribution. A user-specified precision threshold is used together with the model to find local frequency thresholds for groups of itemsets. Based on the constraint we develop the notion of NB-frequent itemsets and adapt a mining algorithm to find all NB-frequent itemsets in a database. In experiments with publicly available transaction databases we show that the new constraint provides improvements over a single minimum support threshold and that the precision threshold is more robust and easier to set and interpret by the user

    Reductions for Frequency-Based Data Mining Problems

    Full text link
    Studying the computational complexity of problems is one of the - if not the - fundamental questions in computer science. Yet, surprisingly little is known about the computational complexity of many central problems in data mining. In this paper we study frequency-based problems and propose a new type of reduction that allows us to compare the complexities of the maximal frequent pattern mining problems in different domains (e.g. graphs or sequences). Our results extend those of Kimelfeld and Kolaitis [ACM TODS, 2014] to a broader range of data mining problems. Our results show that, by allowing constraints in the pattern space, the complexities of many maximal frequent pattern mining problems collapse. These problems include maximal frequent subgraphs in labelled graphs, maximal frequent itemsets, and maximal frequent subsequences with no repetitions. In addition to theoretical interest, our results might yield more efficient algorithms for the studied problems.Comment: This is an extended version of a paper of the same title to appear in the Proceedings of the 17th IEEE International Conference on Data Mining (ICDM'17

    Flexible constrained sampling with guarantees for pattern mining

    Get PDF
    Pattern sampling has been proposed as a potential solution to the infamous pattern explosion. Instead of enumerating all patterns that satisfy the constraints, individual patterns are sampled proportional to a given quality measure. Several sampling algorithms have been proposed, but each of them has its limitations when it comes to 1) flexibility in terms of quality measures and constraints that can be used, and/or 2) guarantees with respect to sampling accuracy. We therefore present Flexics, the first flexible pattern sampler that supports a broad class of quality measures and constraints, while providing strong guarantees regarding sampling accuracy. To achieve this, we leverage the perspective on pattern mining as a constraint satisfaction problem and build upon the latest advances in sampling solutions in SAT as well as existing pattern mining algorithms. Furthermore, the proposed algorithm is applicable to a variety of pattern languages, which allows us to introduce and tackle the novel task of sampling sets of patterns. We introduce and empirically evaluate two variants of Flexics: 1) a generic variant that addresses the well-known itemset sampling task and the novel pattern set sampling task as well as a wide range of expressive constraints within these tasks, and 2) a specialized variant that exploits existing frequent itemset techniques to achieve substantial speed-ups. Experiments show that Flexics is both accurate and efficient, making it a useful tool for pattern-based data exploration.Comment: Accepted for publication in Data Mining & Knowledge Discovery journal (ECML/PKDD 2017 journal track

    Using Answer Set Programming for pattern mining

    Get PDF
    Serial pattern mining consists in extracting the frequent sequential patterns from a unique sequence of itemsets. This paper explores the ability of a declarative language, such as Answer Set Programming (ASP), to solve this issue efficiently. We propose several ASP implementations of the frequent sequential pattern mining task: a non-incremental and an incremental resolution. The results show that the incremental resolution is more efficient than the non-incremental one, but both ASP programs are less efficient than dedicated algorithms. Nonetheless, this approach can be seen as a first step toward a generic framework for sequential pattern mining with constraints.Comment: Intelligence Artificielle Fondamentale (2014
    • 

    corecore