5,383 research outputs found

    LandMarkAR: An application to study virtual route instructions and the design of 3D landmarks for indoor pedestrian navigation with a mixed reality head-mounted display

    Get PDF
    Mixed Reality (MR) interfaces on head-mounted displays (HMDs) have the potential to replace screen-based interfaces as the primary interface to the digital world. They potentially offer a more immersive and less distracting experience compared to mobile phones, allowing users to stay focused on their environment and main goals while accessing digital information. Due to their ability to gracefully embed virtual information in the environment, MR HMDs could potentially alleviate some of the issues plaguing users of mobile pedestrian navigation systems, such as distraction, diminished route recall, and reduced spatial knowledge acquisition. However, the complexity of MR technology presents significant challenges, particularly for researchers with limited programming knowledge. This thesis presents “LandMarkAR” to address those challenges. “LandMarkAR” is a HoloLens application that allows researchers to create augmented territories to study human navigation with MR interfaces, even if they have little programming knowledge. “LandMarkAR” was designed using different methods from human-centered design (HCD), such as design thinking and think-aloud testing, and was developed with Unity and the Mixed Reality Toolkit (MRTK). With “LandMarkAR”, researchers can place and manipulate 3D objects as holograms in real-time, facilitating indoor navigation experiments using 3D objects that serve as turn-by-turn instructions, highlights of physical landmarks, or other information researchers may come up with. Researchers with varying technical expertise will be able to use “LandMarkAR” for MR navigation studies. They can opt to utilize the easy-to-use User Interface (UI) on the HoloLens or add custom functionality to the application directly in Unity. “LandMarkAR” empowers researchers to explore the full potential of MR interfaces in human navigation and create meaningful insights for their studies

    Improving the user knowledge and user experience by using Augmented reality in a smart city context

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesThe idea of Virtuality is not new, as research on visualization and simulation dates back to the early use of ink and paper sketches for alternative design comparisons. As the technology has advanced so the way of visualizing simulations as well, but the progress is slow due to difficulties in creating workable simulations models and effectively providing them to the users (Simpson, 2001). Augmented Reality (AR) and Virtual Reality (VR), the evolving technologies that has been haunting the tech industry, receiving excessive attention from the media and growing tremendously are redefining the way we interact, communicate and work together (Shamalinia, 2017). From consumer application to manufacturers these technologies are used in different sectors providing huge benefits through several applications. In this work, we demonstrate the potentials of AR techniques in a smart city context. Initially we present an overview of the state of the art software and technology for AR in different domains of smart cities, and outline considerations from a user study about the effectiveness and user performance of AR technique: real environment with augmented information, everything in the context of a smart city. The evaluation results from the participants show promising results, providing opportunities for improvements and implementation in smart cities

    Towards a Mixed Reality System for Construction Trade Training

    Get PDF

    Collaborative Work Enabled by Immersive Environments

    Get PDF

    Developing a Virtual Reality- and Lean-based Training Platform for Productivity Improvement of Scaffolding Installation in Liquefied Natural Gas Industry

    Get PDF
    This thesis aims to integrate lean and work postures to simultaneously improve productivity and health and safety and develop a lean- and virtual reality-based platform for effective education and training in scaffolding installation in turnaround maintenance projects. It represents an effort to help on-site workers in the Liquefied Natural Gas industry identify waste activities and achieve a balanced improvement in both productivity and health and safety through improved training in a virtual platform

    Holographic Mixed Reality System for Air Traffic Control and Management

    Get PDF
    Based on a long-term prediction by the International Civil Aviation Organization indicating steady increases in air traffic demand throughout the world, the workloads of air traffic controllers are expected to continuously increase. Air traffic control and management (ATC/M) includes the processing of various unstructured composite data along with the real-time visualization of aircraft data. To prepare for future air traffic, research and development intended to effectively present various complex navigation data to air traffic controllers is necessary. This paper presents a mixed reality-based air traffic control system for the improvement of and support for air traffic controllers&rsquo workflow using mixed reality technology that is effective for the delivery of information such as complex navigation data. The existing control systems involve difficulties in information access and interpretation. Therefore, taking notice of the necessity for the integration of air traffic control systems, this study presents the mixed reality (MR) system, which is a new approach, that enables the control of air traffic in interactive environments. This system is provided in a form usable in actual operational environments with a head-mounted see-through display installed with a controller to enable more structured work support. In addition, since this system can be controlled first-hand by air traffic controllers, it provides a new experience through improved work efficiency and productivity. Document type: Articl

    National Conference on COMPUTING 4.0 EMPOWERING THE NEXT GENERATION OF TECHNOLOGY (Era of Computing 4.0 and its impact on technology and intelligent systems)

    Get PDF
    As we enter the era of Computing 4.0, the landscape of technology and intelligent systems is rapidly evolving, with groundbreaking advancements in artificial intelligence, machine learning, data science, and beyond. The theme of this conference revolves around exploring and shaping the future of these intelligent systems that will revolutionize industries and transform the way we live, work, and interact with technology. Conference Topics Quantum Computing and Quantum Information Edge Computing and Fog Computing Artificial Intelligence and Machine Learning in Computing 4.0 Internet of Things (IOT) and Smart Cities Block chain and Distributed Ledger Technologies Cybersecurity and Privacy in the Computing 4.0 Era High-Performance Computing and Parallel Processing Augmented Reality (AR) and Virtual Reality (VR) Applications Cognitive Computing and Natural Language Processing Neuromorphic Computing and Brain-Inspired Architectures Autonomous Systems and Robotics Big Data Analytics and Data Science in Computing 4.0https://www.interscience.in/conf_proc_volumes/1088/thumbnail.jp
    corecore