1,601 research outputs found

    On Simulation-based Ship Maneuvering Prediction in Deep and Shallow Water

    Get PDF
    A simulation-based framework for the prediction of ship maneuvering in deep and shallow water is presented. A mathematical model for maneuvering represented by coupled nonlinear differential equations stemming from Newtonian mechanics is derived. Hydrodynamic forces are modeled by multivariat polynomials, and therein included are coefficients representing ship-specific hydrodynamic properties which are determined by way of captive maneuvering tests using Computational Fluid Dynamics (CFD). The development and evaluation of efficacy of the proposed framework encompasses verification and validation studies on numerical methods for maneuvering and flows around ships in shallow water. The flow field information available from numerical simulations are used to discuss hydrodynamic phenomena related to viscous and free surface effects, as well as squat

    Aspects of automation of selective cleaning

    Get PDF
    Cleaning (pre-commercial thinning) is a silvicultural operation, primarily used to improve growing conditions of remaining trees in young stands (ca. 3 - 5 m of height). Cleaning costs are considered high in Sweden and the work is laborious. Selective cleaning with autonomous artificial agents (robots) may rationalise the work, but requires new knowledge. This thesis aims to analyse key issues regarding automation of cleaning; suggesting general solutions and focusing on automatic selection of main-stems. The essential requests put on cleaning robots are to render acceptable results and to be cost competitive. They must be safe and be able to operate independently and unattended for several hours in a dynamic and non-deterministic environment. Machine vision, radar, and laser scanners are promising techniques for obstacle avoidance, tree identification, and tool control. Horizontal laser scannings were made, demonstrating the possibility to find stems and make estimations regarding their height and diameter. Knowledge regarding stem selections was retrieved through qualitative interviews with persons performing cleaning. They consider similar attributes of trees, and these findings and current cleaning manuals were used in combination with a field inventory in the development of a decision support system (DSS). The DSS selects stems by the attributes species, position, diameter, and damage. It was used to run computer-based simulations in a variety of young forests. A general follow-up showed that the DSS produced acceptable results. The DSS was further evaluated by comparing its selections with those made by experienced cleaners, and by a test in which laymen performed cleanings following the system. The DSS seems to be useful and flexible, since it can be adjusted in accordance with the cleaners’ results. The laymen’s results implied that the DSS is robust and that it could be used as a training tool. Using the DSS in automatic, or semi-automatic, cleaning operations should be possible if and when selected attributes can be automatically perceived. A suitable base-machine and thorough research, regarding e.g. safety, obstacle avoidance, and target identification, is needed to develop competitive robots. However, using the DSS as a training-tool for inexperienced cleaners could be an interesting option as of today

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF

    Air Traffic Control

    Get PDF
    Improving air traffic control and air traffic management is currently one of the top priorities of the global research and development agenda. Massive, multi-billion euro programs like SESAR (Single European Sky ATM Research) in Europe and NextGen (Next Generation Air Transportation System) in the United States are on their way to create an air transportation system that meets the demands of the future. Air traffic control is a multi-disciplinary field that attracts the attention of many researchers, ranging from pure mathematicians to human factors specialists, and even in the legal and financial domains the optimization and control of air transport is extensively studied. This book, by no means intended to be a basic, formal introduction to the field, for which other textbooks are available, includes nine chapters that demonstrate the multi-disciplinary character of the air traffic control domain

    Design and integrity of deterministic system architectures.

    Get PDF
    Architectures represented by system construction 'building block' components and interrelationships provide the structural form. This thesis addresses processes, procedures and methods that support system design synthesis and specifically the determination of the integrity of candidate architectural structures. Particular emphasis is given to the structural representation of system architectures, their consistency and functional quantification. It is a design imperative that a hierarchically decomposed structure maintains compatibility and consistency between the functional and realisation solutions. Complex systems are normally simplified by the use of hierarchical decomposition so that lower level components are precisely defined and simpler than higher-level components. To enable such systems to be reconstructed from their components, the hierarchical construction must provide vertical intra-relationship consistency, horizontal interrelationship consistency, and inter-component functional consistency. Firstly, a modified process design model is proposed that incorporates the generic structural representation of system architectures. Secondly, a system architecture design knowledge domain is proposed that enables viewpoint evaluations to be aggregated into a coherent set of domains that are both necessary and sufficient to determine the integrity of system architectures. Thirdly, four methods of structural analysis are proposed to assure the integrity of the architecture. The first enables the structural compatibility between the 'building blocks' that provide the emergent functional properties and implementation solution properties to be determined. The second enables the compatibility of the functional causality structure and the implementation causality structure to be determined. The third method provides a graphical representation of architectural structures. The fourth method uses the graphical form of structural representation to provide a technique that enables quantitative estimation of performance estimates of emergent properties for large scale or complex architectural structures. These methods have been combined into a procedure of formal design. This is a design process that, if rigorously executed, meets the requirements for reconstructability

    Developing a Holonomic iROV as a Tool for Kelp Bed Mapping

    Get PDF

    The development of improvements to drivers' direct and indirect vision from vehicles - phase 1

    Get PDF
    This research project concerning "The development of improvements to drivers' direct and indirect vision from vehicles" has been designed to be conducted in two phases: . Phase 1 whose aim is to scope the existing knowledge base in order to prioritise and direct activities within Phase 2; . Phase 2 whose aim is to investigate specific driver vision problems prioritised in Phase 1 and determine solutions to them. This report details the activities, findings and conclusions resulting from the Phase 1 tasks undertaken
    • …
    corecore