203 research outputs found

    Reconsidering Anonymization-Related Concepts and the Term "Identification" Against the Backdrop of the European Legal Framework

    Get PDF
    Sharing data in biomedical contexts has become increasingly relevant, but privacy concerns set constraints for free sharing of individual-level data. Data protection law protects only data relating to an identifiable individual, whereas "anonymous" data are free to be used by everybody. Usage of many terms related to anonymization is often not consistent among different domains such as statistics and law. The crucial term "identification" seems especially hard to define, since its definition presupposes the existence of identifying characteristics, leading to some circularity. In this article, we present a discussion of important terms based on a legal perspective that it is outlined before we present issues related to the usage of terms such as unique "identifiers," "quasi-identifiers," and "sensitive attributes." Based on these terms, we have tried to circumvent a circular definition for the term "identification" by making two decisions: first, deciding which (natural) identifier should stand for the individual; second, deciding how to recognize the individual. In addition, we provide an overview of anonymization techniques/methods for preventing re-identification. The discussion of basic notions related to anonymization shows that there is some work to be done in order to achieve a mutual understanding between legal and technical experts concerning some of these notions. Using a dialectical definition process in order to merge technical and legal perspectives on terms seems important for enhancing mutual understanding

    Privacy-preserving data sharing infrastructures for medical research: systematization and comparison

    Get PDF
    Background: Data sharing is considered a crucial part of modern medical research. Unfortunately, despite its advantages, it often faces obstacles, especially data privacy challenges. As a result, various approaches and infrastructures have been developed that aim to ensure that patients and research participants remain anonymous when data is shared. However, privacy protection typically comes at a cost, e.g. restrictions regarding the types of analyses that can be performed on shared data. What is lacking is a systematization making the trade-offs taken by different approaches transparent. The aim of the work described in this paper was to develop a systematization for the degree of privacy protection provided and the trade-offs taken by different data sharing methods. Based on this contribution, we categorized popular data sharing approaches and identified research gaps by analyzing combinations of promising properties and features that are not yet supported by existing approaches. Methods: The systematization consists of different axes. Three axes relate to privacy protection aspects and were adopted from the popular Five Safes Framework: (1) safe data, addressing privacy at the input level, (2) safe settings, addressing privacy during shared processing, and (3) safe outputs, addressing privacy protection of analysis results. Three additional axes address the usefulness of approaches: (4) support for de-duplication, to enable the reconciliation of data belonging to the same individuals, (5) flexibility, to be able to adapt to different data analysis requirements, and (6) scalability, to maintain performance with increasing complexity of shared data or common analysis processes. Results: Using the systematization, we identified three different categories of approaches: distributed data analyses, which exchange anonymous aggregated data, secure multi-party computation protocols, which exchange encrypted data, and data enclaves, which store pooled individual-level data in secure environments for access for analysis purposes. We identified important research gaps, including a lack of approaches enabling the de-duplication of horizontally distributed data or providing a high degree of flexibility. Conclusions: There are fundamental differences between different data sharing approaches and several gaps in their functionality that may be interesting to investigate in future work. Our systematization can make the properties of privacy-preserving data sharing infrastructures more transparent and support decision makers and regulatory authorities with a better understanding of the trade-offs taken

    How will anonymization of simulated clinical data affect the data utility of pharmacoepidemiological studies?

    Get PDF
    Background: The pressure to share more data and being more transparency of clinical study reports has grown and becomes an important topic in recent years. Before clinical data and clinical results can be shared they must undergo anonymization. How anonymization of clinical data affects the utility is poorly-studied, especially in pharmacoepidemiology. Objective: The aim of the study is to describe and evaluate how anonymization of simulated clinical data will affect the data utility of pharmacoepidemiological analyses of these data. Method: We have simulated five clinical datasets with different characteristics, associations, types of outcome and study populations. Suppression, generalization, randomization and k-anonymity were used as our anonymization approaches. These methods will be evaluated by the change in the data and statistical results before and after anonymization. Result: K-anonymity and suppression were the methods that affected the simulated clinical data the most, while generalization and randomization affected the data least. With k-anonymity and suppression there is a risk to overestimating the clinical results due to the elimination of unique records. On the other hand, generalization and randomization preserved the most data utility but they were less effective in anonymizing the data. Conclusion: Our study revealed that different anonymization approaches can affect the clinical results differently. The more we anonymize a record or attribute, the less utility is provided. It is therefore important to construct a balance of data utility and effectiveness of anonymization before the clinical data are published. More investigations about how anonymization of clinical data affects data utility are needed in order to maximize the benefit of using anonymized clinical data to improve public health

    A Study on Privacy Preserving Data Publishing With Differential Privacy

    Get PDF
    In the era of digitization it is important to preserve privacy of various sensitive information available around us, e.g., personal information, different social communication and video streaming sites' and services' own users' private information, salary information and structure of an organization, census and statistical data of a country and so on. These data can be represented in different formats such as Numerical and Categorical data, Graph Data, Tree-Structured data and so on. For preventing these data from being illegally exploited and protect it from privacy threats, it is required to apply an efficient privacy model over sensitive data. There have been a great number of studies on privacy-preserving data publishing over the last decades. Differential Privacy (DP) is one of the state of the art methods for preserving privacy to a database. However, applying DP to high dimensional tabular data (Numerical and Categorical) is challenging in terms of required time, memory, and high frequency computational unit. A well-known solution is to reduce the dimension of the given database, keeping its originality and preserving relations among all of its entities. In this thesis, we propose PrivFuzzy, a simple and flexible differentially private method that can publish differentially private data after reducing their original dimension with the help of Fuzzy logic. Exploiting Fuzzy mapping, PrivFuzzy can (1) reduce database columns and create a new low dimensional correlated database, (2) inject noise to each attribute to ensure differential privacy on newly created low dimensional database, and (3) sample each entry in the database and release synthesized database. Existing literatures show the difficulty of applying differential privacy over a high dimensional dataset, which we overcame by proposing a novel fuzzy based approach (PrivFuzzy). By applying our novel fuzzy mapping technique, PrivFuzzy transforms a high dimensional dataset to an equivalent low dimensional one, without losing any relationship within the dataset. Our experiments with real data and comparison with the existing privacy preserving models, PrivBayes and PrivGene, show that our proposed approach PrivFuzzy outperforms existing solutions in terms of the strength of privacy preservation, simplicity and improving utility. Preserving privacy of Graph structured data, at the time of making some of its part available, is still one of the major problems in preserving data privacy. Most of the present models had tried to solve this issue by coming up with complex solution, as well as mixed up with signal and noise, which make these solutions ineffective in real time use and practice. One of the state of the art solution is to apply differential privacy over the queries on graph data and its statistics. But the challenge to meet here is to reduce the error at the time of publishing the data as mechanism of Differential privacy adds a large amount of noise and introduces erroneous results which reduces the utility of data. In this thesis, we proposed an Expectation Maximization (EM) based novel differentially private model for graph dataset. By applying EM method iteratively in conjunction with Laplace mechanism our proposed private model applies differentially private noise over the result of several subgraph queries on a graph dataset. Besides, to ensure expected utility, by selecting a maximal noise level θ\theta, our proposed system can generate noisy result with expected utility. Comparing with existing models for several subgraph counting queries, we claim that our proposed model can generate much less noise than the existing models to achieve expected utility and can still preserve privacy

    Innovative Verfahren fĂĽr die standortĂĽbergreifende Datennutzung in der medizinischen Forschung

    Get PDF
    Implementing modern data-driven medical research approaches ("Artificial intelligence", "Data Science") requires access to large amounts of data ("Big Data"). Typically, this can only be achieved through cross-institutional data use and exchange ("Data Sharing"). In this process, the protection of the privacy of patients and probands affected is a central challenge. Various methods can be used to meet this challenge, such as anonymization or federation. However, data sharing is currently put into practice only to a limited extent, although it is demanded and promoted from many sides. One reason for this is the lack of clarity about the advantages and disadvantages of different data sharing approaches. The first goal of this thesis was to develop an instrument that makes these advantages and disadvantages more transparent. The instrument systematizes approaches based on two dimensions - utility and protection - where each dimension is further differentiated with three axes describing different aspects of the dimensions, such as the degree of privacy protection provided by the results of performed analyses or the flexibility of a platform regarding the types of analyses that can be performed. The instrument was used for evaluation purposes to analyze the status quo and to identify gaps and potentials for innovative approaches. Next, and as a second goal, an innovative tool for the practical use of cryptographic data sharing methods has been designed and implemented. So far, such approaches are only rarely used in practice due to two main obstacles: (1) the technical complexity of setting up a cryptography-based data sharing infrastructure and (2) a lack of user-friendliness of cryptographic data sharing methods, especially for medical researchers. The tool EasySMPC, which was developed as part of this work, is characterized by the fact that it allows cryptographically secure computation of sums (e.g., frequencies of diagnoses) across institutional boundaries based on an easy-to-use graphical user interface. Neither technical expertise nor the deployment of specific infrastructure components is necessary for its practical use. The practicability of EasySMPC was analyzed experimentally in a detailed performance evaluation.Moderne datengetriebene medizinische Forschungsansätze („Künstliche Intelligenz“, „Data Science“) benötigen große Datenmengen („Big Data“). Dies kann im Regelfall nur durch eine institutionsübergreifende Datennutzung erreicht werden („Data Sharing“). Datenschutz und der Schutz der Privatsphäre der Betroffenen ist dabei eine zentrale Herausforderung. Um dieser zu begegnen, können verschiedene Methoden, wie etwa Anonymisierungsverfahren oder föderierte Auswertungen, eingesetzt werden. Allerdings findet Data Sharing in der Praxis nur selten statt, obwohl es von vielen Seiten gefordert und gefördert wird. Ein Grund hierfür ist die Unklarheit ¸über Vor- und Nachteile verschiedener Data Sharing-Ansätze. Erstes Ziel dieser Arbeit war es, ein Instrument zu entwickeln, welches diese Vor- und Nachteile transparent macht. Das Instrument bewertet Ansätze anhand von zwei Dimensionen - Nutzen und Schutz - wobei jede Dimension mit drei Achsen weiter differenziert ist. Die Achsen bestehen etwa aus dem Grad des Schutzes der Privatsphäre, der durch die Ergebnisse der durchgeführten Analysen gewährleistet wird oder der Flexibilität einer Plattform hinsichtlich der Arten von Analysen, die durchgeführt werden können. Das Instrument wurde zu Evaluationszwecken für die Analyse des Status Quo sowie zur Identifikation von Lücken und Potenzialen für innovative Verfahren eingesetzt. Als zweites Ziel wurde anschließend ein innovatives Werkzeug für den praktischen Einsatz von kryptographischen Data Sharing-Verfahren entwickelt. Der Einsatz entsprechender Ansätze scheitert bisher vor allem an zwei Barrieren: (1) der technischen Komplexität beim Aufbau einer Kryptographie-basierten Data Sharing-Infrastruktur und (2) der Benutzerfreundlichkeit kryptographischer Data Sharing-Verfahren, insbesondere für medizinische Forschende. Das neue Werkzeug EasySMPC zeichnet sich dadurch aus, dass es eine kryptographisch sichere Berechnung von Summen (beispielsweise Häufigkeiten von Diagnosen) über Institutionsgrenzen hinweg auf Basis einer einfach zu bedienenden graphischen Benutzeroberfläche ermöglicht. Zur Anwendung ist weder technische Expertise noch der Aufbau spezieller Infrastrukturkomponenten notwendig. Die Praxistauglichkeit von EasySMPC wurde in einer ausführlichen Performance-Evaluation experimentell analysiert

    Overcoming personal information protection challenges involving real-world data to support public health efforts in China

    Get PDF
    In the information age, real-world data-based evidence can help extrapolate and supplement data from randomized controlled trials, which can benefit clinical trials and drug development and improve public health decision-making. However, the legitimate use of real-world data in China is limited due to concerns over patient confidentiality. The use of personal information is a core element of data governance in public health. In China’s public health data governance, practical problems exist, such as balancing personal information protection and public value conflict. In 2021, China adopted the Personal Information Protection Law (PIPL) to provide a consistent legal framework for protecting personal information, including sensitive medical health data. Despite the PIPL offering critical legal safeguards for processing health data, further clarification is needed regarding specific issues, including the meaning of “separate consent,” cross-border data transfer requirements, and exceptions for scientific research. A shift in the law and regulatory framework is necessary to advance public health research further and realize the potential benefits of combining real-world evidence and digital health while respecting privacy in the technological and demographic change era

    Anonymization Techniques for Privacy-preserving Process Mining

    Get PDF
    Process Mining ermöglicht die Analyse von Event Logs. Jede Aktivität ist durch ein Event in einem Trace recorded, welcher jeweils einer Prozessinstanz entspricht. Traces können sensible Daten, z.B. über Patienten enthalten. Diese Dissertation adressiert Datenschutzrisiken für Trace Daten und Process Mining. Durch eine empirische Studie zum Re-Identifikations Risiko in öffentlichen Event Logs wird die hohe Gefahr aufgezeigt, aber auch weitere Risiken sind von Bedeutung. Anonymisierung ist entscheidend um Risiken zu adressieren, aber schwierig weil gleichzeitig die Verhaltensaspekte des Event Logs erhalten werden sollen. Dies führt zu einem Privacy-Utility-Trade-Off. Dieser wird durch neue Algorithmen wie SaCoFa und SaPa angegangen, die Differential Privacy garantieren und gleichzeitig Utility erhalten. PRIPEL ergänzt die anonymiserten Control-flows um Kontextinformationen und ermöglich so die Veröffentlichung von vollständigen, geschützten Logs. Mit PRETSA wird eine Algorithmenfamilie vorgestellt, die k-anonymity garantiert. Dafür werden privacy-verletztende Traces miteinander vereint, mit dem Ziel ein möglichst syntaktisch ähnliches Log zu erzeugen. Durch Experimente kann eine bessere Utility-Erhaltung gegenüber existierenden Lösungen aufgezeigt werden.Process mining analyzes business processes using event logs. Each activity execution is recorded as an event in a trace, representing a process instance's behavior. Traces often hold sensitive info like patient data. This thesis addresses privacy concerns arising from trace data and process mining. A re-identification risk study on public event logs reveals high risk, but other threats exist. Anonymization is vital to address these issues, yet challenging due to preserving behavioral aspects for analysis, leading to a privacy-utility trade-off. New algorithms, SaCoFa and SaPa, are introduced for trace anonymization using noise for differential privacy while maintaining utility. PRIPEL supplements anonymized control flows with trace contextual info for complete protected logs. For k-anonymity, the PRETSA algorithm family merges privacy-violating traces based on a prefix representation of the event log, maintaining syntactic similarity. Empirical evaluations demonstrate utility improvements over existing techniques

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    A Survey of Social Network Forensics

    Get PDF
    Social networks in any form, specifically online social networks (OSNs), are becoming a part of our everyday life in this new millennium especially with the advanced and simple communication technologies through easily accessible devices such as smartphones and tablets. The data generated through the use of these technologies need to be analyzed for forensic purposes when criminal and terrorist activities are involved. In order to deal with the forensic implications of social networks, current research on both digital forensics and social networks need to be incorporated and understood. This will help digital forensics investigators to predict, detect and even prevent any criminal activities in different forms. It will also help researchers to develop new models / techniques in the future. This paper provides literature review of the social network forensics methods, models, and techniques in order to provide an overview to the researchers for their future works as well as the law enforcement investigators for their investigations when crimes are committed in the cyber space. It also provides awareness and defense methods for OSN users in order to protect them against to social attacks

    Medical Informatics

    Get PDF
    Information technology has been revolutionizing the everyday life of the common man, while medical science has been making rapid strides in understanding disease mechanisms, developing diagnostic techniques and effecting successful treatment regimen, even for those cases which would have been classified as a poor prognosis a decade earlier. The confluence of information technology and biomedicine has brought into its ambit additional dimensions of computerized databases for patient conditions, revolutionizing the way health care and patient information is recorded, processed, interpreted and utilized for improving the quality of life. This book consists of seven chapters dealing with the three primary issues of medical information acquisition from a patient's and health care professional's perspective, translational approaches from a researcher's point of view, and finally the application potential as required by the clinicians/physician. The book covers modern issues in Information Technology, Bioinformatics Methods and Clinical Applications. The chapters describe the basic process of acquisition of information in a health system, recent technological developments in biomedicine and the realistic evaluation of medical informatics
    • …
    corecore